771 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			771 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the LoopInfo class that is used to identify natural loops
 | |
| // and determine the loop depth of various nodes of the CFG.  Note that the
 | |
| // loops identified may actually be several natural loops that share the same
 | |
| // header node... not just a single natural loop.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Analysis/LoopInfoImpl.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
 | |
| template class llvm::LoopBase<BasicBlock, Loop>;
 | |
| template class llvm::LoopInfoBase<BasicBlock, Loop>;
 | |
| 
 | |
| // Always verify loopinfo if expensive checking is enabled.
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
| bool llvm::VerifyLoopInfo = true;
 | |
| #else
 | |
| bool llvm::VerifyLoopInfo = false;
 | |
| #endif
 | |
| static cl::opt<bool,true>
 | |
| VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
 | |
|                 cl::desc("Verify loop info (time consuming)"));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Loop implementation
 | |
| //
 | |
| 
 | |
| bool Loop::isLoopInvariant(const Value *V) const {
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return !contains(I);
 | |
|   return true;  // All non-instructions are loop invariant
 | |
| }
 | |
| 
 | |
| bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
 | |
|   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
 | |
| }
 | |
| 
 | |
| bool Loop::makeLoopInvariant(Value *V, bool &Changed,
 | |
|                              Instruction *InsertPt) const {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return makeLoopInvariant(I, Changed, InsertPt);
 | |
|   return true;  // All non-instructions are loop-invariant.
 | |
| }
 | |
| 
 | |
| bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
 | |
|                              Instruction *InsertPt) const {
 | |
|   // Test if the value is already loop-invariant.
 | |
|   if (isLoopInvariant(I))
 | |
|     return true;
 | |
|   if (!isSafeToSpeculativelyExecute(I))
 | |
|     return false;
 | |
|   if (I->mayReadFromMemory())
 | |
|     return false;
 | |
|   // EH block instructions are immobile.
 | |
|   if (I->isEHPad())
 | |
|     return false;
 | |
|   // Determine the insertion point, unless one was given.
 | |
|   if (!InsertPt) {
 | |
|     BasicBlock *Preheader = getLoopPreheader();
 | |
|     // Without a preheader, hoisting is not feasible.
 | |
|     if (!Preheader)
 | |
|       return false;
 | |
|     InsertPt = Preheader->getTerminator();
 | |
|   }
 | |
|   // Don't hoist instructions with loop-variant operands.
 | |
|   for (Value *Operand : I->operands())
 | |
|     if (!makeLoopInvariant(Operand, Changed, InsertPt))
 | |
|       return false;
 | |
| 
 | |
|   // Hoist.
 | |
|   I->moveBefore(InsertPt);
 | |
| 
 | |
|   // There is possibility of hoisting this instruction above some arbitrary
 | |
|   // condition. Any metadata defined on it can be control dependent on this
 | |
|   // condition. Conservatively strip it here so that we don't give any wrong
 | |
|   // information to the optimizer.
 | |
|   I->dropUnknownNonDebugMetadata();
 | |
| 
 | |
|   Changed = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| PHINode *Loop::getCanonicalInductionVariable() const {
 | |
|   BasicBlock *H = getHeader();
 | |
| 
 | |
|   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
 | |
|   pred_iterator PI = pred_begin(H);
 | |
|   assert(PI != pred_end(H) &&
 | |
|          "Loop must have at least one backedge!");
 | |
|   Backedge = *PI++;
 | |
|   if (PI == pred_end(H)) return nullptr;  // dead loop
 | |
|   Incoming = *PI++;
 | |
|   if (PI != pred_end(H)) return nullptr;  // multiple backedges?
 | |
| 
 | |
|   if (contains(Incoming)) {
 | |
|     if (contains(Backedge))
 | |
|       return nullptr;
 | |
|     std::swap(Incoming, Backedge);
 | |
|   } else if (!contains(Backedge))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Loop over all of the PHI nodes, looking for a canonical indvar.
 | |
|   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
 | |
|       if (CI->isZero())
 | |
|         if (Instruction *Inc =
 | |
|             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | |
|           if (Inc->getOpcode() == Instruction::Add &&
 | |
|                 Inc->getOperand(0) == PN)
 | |
|             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | |
|               if (CI->isOne())
 | |
|                 return PN;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Check that 'BB' doesn't have any uses outside of the 'L'
 | |
| static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
 | |
|                                DominatorTree &DT) {
 | |
|   for (const Instruction &I : BB) {
 | |
|     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
 | |
|     // optimizations, so for the purposes of considered LCSSA form, we
 | |
|     // can ignore them.
 | |
|     if (I.getType()->isTokenTy())
 | |
|       continue;
 | |
| 
 | |
|     for (const Use &U : I.uses()) {
 | |
|       const Instruction *UI = cast<Instruction>(U.getUser());
 | |
|       const BasicBlock *UserBB = UI->getParent();
 | |
|       if (const PHINode *P = dyn_cast<PHINode>(UI))
 | |
|         UserBB = P->getIncomingBlock(U);
 | |
| 
 | |
|       // Check the current block, as a fast-path, before checking whether
 | |
|       // the use is anywhere in the loop.  Most values are used in the same
 | |
|       // block they are defined in.  Also, blocks not reachable from the
 | |
|       // entry are special; uses in them don't need to go through PHIs.
 | |
|       if (UserBB != &BB && !L.contains(UserBB) &&
 | |
|           DT.isReachableFromEntry(UserBB))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Loop::isLCSSAForm(DominatorTree &DT) const {
 | |
|   // For each block we check that it doesn't have any uses outside of this loop.
 | |
|   return all_of(this->blocks(), [&](const BasicBlock *BB) {
 | |
|     return isBlockInLCSSAForm(*this, *BB, DT);
 | |
|   });
 | |
| }
 | |
| 
 | |
| bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
 | |
|   // For each block we check that it doesn't have any uses outside of its
 | |
|   // innermost loop. This process will transitively guarantee that the current
 | |
|   // loop and all of the nested loops are in LCSSA form.
 | |
|   return all_of(this->blocks(), [&](const BasicBlock *BB) {
 | |
|     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
 | |
|   });
 | |
| }
 | |
| 
 | |
| bool Loop::isLoopSimplifyForm() const {
 | |
|   // Normal-form loops have a preheader, a single backedge, and all of their
 | |
|   // exits have all their predecessors inside the loop.
 | |
|   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
 | |
| }
 | |
| 
 | |
| // Routines that reform the loop CFG and split edges often fail on indirectbr.
 | |
| bool Loop::isSafeToClone() const {
 | |
|   // Return false if any loop blocks contain indirectbrs, or there are any calls
 | |
|   // to noduplicate functions.
 | |
|   for (BasicBlock *BB : this->blocks()) {
 | |
|     if (isa<IndirectBrInst>(BB->getTerminator()))
 | |
|       return false;
 | |
| 
 | |
|     for (Instruction &I : *BB)
 | |
|       if (auto CS = CallSite(&I))
 | |
|         if (CS.cannotDuplicate())
 | |
|           return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MDNode *Loop::getLoopID() const {
 | |
|   MDNode *LoopID = nullptr;
 | |
|   if (BasicBlock *Latch = getLoopLatch()) {
 | |
|     LoopID = Latch->getTerminator()->getMetadata(LLVMContext::MD_loop);
 | |
|   } else {
 | |
|     assert(!getLoopLatch() &&
 | |
|            "The loop should have no single latch at this point");
 | |
|     // Go through each predecessor of the loop header and check the
 | |
|     // terminator for the metadata.
 | |
|     BasicBlock *H = getHeader();
 | |
|     for (BasicBlock *BB : this->blocks()) {
 | |
|       TerminatorInst *TI = BB->getTerminator();
 | |
|       MDNode *MD = nullptr;
 | |
| 
 | |
|       // Check if this terminator branches to the loop header.
 | |
|       for (BasicBlock *Successor : TI->successors()) {
 | |
|         if (Successor == H) {
 | |
|           MD = TI->getMetadata(LLVMContext::MD_loop);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!MD)
 | |
|         return nullptr;
 | |
| 
 | |
|       if (!LoopID)
 | |
|         LoopID = MD;
 | |
|       else if (MD != LoopID)
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
|   if (!LoopID || LoopID->getNumOperands() == 0 ||
 | |
|       LoopID->getOperand(0) != LoopID)
 | |
|     return nullptr;
 | |
|   return LoopID;
 | |
| }
 | |
| 
 | |
| void Loop::setLoopID(MDNode *LoopID) const {
 | |
|   assert(LoopID && "Loop ID should not be null");
 | |
|   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
 | |
|   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
 | |
| 
 | |
|   if (BasicBlock *Latch = getLoopLatch()) {
 | |
|     Latch->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!getLoopLatch() && "The loop should have no single latch at this point");
 | |
|   BasicBlock *H = getHeader();
 | |
|   for (BasicBlock *BB : this->blocks()) {
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     for (BasicBlock *Successor : TI->successors()) {
 | |
|       if (Successor == H)
 | |
|         TI->setMetadata(LLVMContext::MD_loop, LoopID);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Loop::isAnnotatedParallel() const {
 | |
|   MDNode *DesiredLoopIdMetadata = getLoopID();
 | |
| 
 | |
|   if (!DesiredLoopIdMetadata)
 | |
|       return false;
 | |
| 
 | |
|   // The loop branch contains the parallel loop metadata. In order to ensure
 | |
|   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
 | |
|   // dependencies (thus converted the loop back to a sequential loop), check
 | |
|   // that all the memory instructions in the loop contain parallelism metadata
 | |
|   // that point to the same unique "loop id metadata" the loop branch does.
 | |
|   for (BasicBlock *BB : this->blocks()) {
 | |
|     for (Instruction &I : *BB) {
 | |
|       if (!I.mayReadOrWriteMemory())
 | |
|         continue;
 | |
| 
 | |
|       // The memory instruction can refer to the loop identifier metadata
 | |
|       // directly or indirectly through another list metadata (in case of
 | |
|       // nested parallel loops). The loop identifier metadata refers to
 | |
|       // itself so we can check both cases with the same routine.
 | |
|       MDNode *LoopIdMD =
 | |
|           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
 | |
| 
 | |
|       if (!LoopIdMD)
 | |
|         return false;
 | |
| 
 | |
|       bool LoopIdMDFound = false;
 | |
|       for (const MDOperand &MDOp : LoopIdMD->operands()) {
 | |
|         if (MDOp == DesiredLoopIdMetadata) {
 | |
|           LoopIdMDFound = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!LoopIdMDFound)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| DebugLoc Loop::getStartLoc() const {
 | |
|   return getLocRange().getStart();
 | |
| }
 | |
| 
 | |
| Loop::LocRange Loop::getLocRange() const {
 | |
|   // If we have a debug location in the loop ID, then use it.
 | |
|   if (MDNode *LoopID = getLoopID()) {
 | |
|     DebugLoc Start;
 | |
|     // We use the first DebugLoc in the header as the start location of the loop
 | |
|     // and if there is a second DebugLoc in the header we use it as end location
 | |
|     // of the loop.
 | |
|     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
 | |
|         if (!Start)
 | |
|           Start = DebugLoc(L);
 | |
|         else
 | |
|           return LocRange(Start, DebugLoc(L));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Start)
 | |
|       return LocRange(Start);
 | |
|   }
 | |
| 
 | |
|   // Try the pre-header first.
 | |
|   if (BasicBlock *PHeadBB = getLoopPreheader())
 | |
|     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
 | |
|       return LocRange(DL);
 | |
| 
 | |
|   // If we have no pre-header or there are no instructions with debug
 | |
|   // info in it, try the header.
 | |
|   if (BasicBlock *HeadBB = getHeader())
 | |
|     return LocRange(HeadBB->getTerminator()->getDebugLoc());
 | |
| 
 | |
|   return LocRange();
 | |
| }
 | |
| 
 | |
| bool Loop::hasDedicatedExits() const {
 | |
|   // Each predecessor of each exit block of a normal loop is contained
 | |
|   // within the loop.
 | |
|   SmallVector<BasicBlock *, 4> ExitBlocks;
 | |
|   getExitBlocks(ExitBlocks);
 | |
|   for (BasicBlock *BB : ExitBlocks)
 | |
|     for (BasicBlock *Predecessor : predecessors(BB))
 | |
|       if (!contains(Predecessor))
 | |
|         return false;
 | |
|   // All the requirements are met.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void
 | |
| Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
 | |
|   assert(hasDedicatedExits() &&
 | |
|          "getUniqueExitBlocks assumes the loop has canonical form exits!");
 | |
| 
 | |
|   SmallVector<BasicBlock *, 32> SwitchExitBlocks;
 | |
|   for (BasicBlock *BB : this->blocks()) {
 | |
|     SwitchExitBlocks.clear();
 | |
|     for (BasicBlock *Successor : successors(BB)) {
 | |
|       // If block is inside the loop then it is not an exit block.
 | |
|       if (contains(Successor))
 | |
|         continue;
 | |
| 
 | |
|       pred_iterator PI = pred_begin(Successor);
 | |
|       BasicBlock *FirstPred = *PI;
 | |
| 
 | |
|       // If current basic block is this exit block's first predecessor
 | |
|       // then only insert exit block in to the output ExitBlocks vector.
 | |
|       // This ensures that same exit block is not inserted twice into
 | |
|       // ExitBlocks vector.
 | |
|       if (BB != FirstPred)
 | |
|         continue;
 | |
| 
 | |
|       // If a terminator has more then two successors, for example SwitchInst,
 | |
|       // then it is possible that there are multiple edges from current block
 | |
|       // to one exit block.
 | |
|       if (std::distance(succ_begin(BB), succ_end(BB)) <= 2) {
 | |
|         ExitBlocks.push_back(Successor);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // In case of multiple edges from current block to exit block, collect
 | |
|       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
 | |
|       // duplicate edges.
 | |
|       if (!is_contained(SwitchExitBlocks, Successor)) {
 | |
|         SwitchExitBlocks.push_back(Successor);
 | |
|         ExitBlocks.push_back(Successor);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| BasicBlock *Loop::getUniqueExitBlock() const {
 | |
|   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
 | |
|   getUniqueExitBlocks(UniqueExitBlocks);
 | |
|   if (UniqueExitBlocks.size() == 1)
 | |
|     return UniqueExitBlocks[0];
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void Loop::dump() const {
 | |
|   print(dbgs());
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
 | |
|   print(dbgs(), /*Depth=*/ 0, /*Verbose=*/ true);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // UnloopUpdater implementation
 | |
| //
 | |
| 
 | |
| namespace {
 | |
| /// Find the new parent loop for all blocks within the "unloop" whose last
 | |
| /// backedges has just been removed.
 | |
| class UnloopUpdater {
 | |
|   Loop &Unloop;
 | |
|   LoopInfo *LI;
 | |
| 
 | |
|   LoopBlocksDFS DFS;
 | |
| 
 | |
|   // Map unloop's immediate subloops to their nearest reachable parents. Nested
 | |
|   // loops within these subloops will not change parents. However, an immediate
 | |
|   // subloop's new parent will be the nearest loop reachable from either its own
 | |
|   // exits *or* any of its nested loop's exits.
 | |
|   DenseMap<Loop*, Loop*> SubloopParents;
 | |
| 
 | |
|   // Flag the presence of an irreducible backedge whose destination is a block
 | |
|   // directly contained by the original unloop.
 | |
|   bool FoundIB;
 | |
| 
 | |
| public:
 | |
|   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
 | |
|     Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
 | |
| 
 | |
|   void updateBlockParents();
 | |
| 
 | |
|   void removeBlocksFromAncestors();
 | |
| 
 | |
|   void updateSubloopParents();
 | |
| 
 | |
| protected:
 | |
|   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Update the parent loop for all blocks that are directly contained within the
 | |
| /// original "unloop".
 | |
| void UnloopUpdater::updateBlockParents() {
 | |
|   if (Unloop.getNumBlocks()) {
 | |
|     // Perform a post order CFG traversal of all blocks within this loop,
 | |
|     // propagating the nearest loop from successors to predecessors.
 | |
|     LoopBlocksTraversal Traversal(DFS, LI);
 | |
|     for (BasicBlock *POI : Traversal) {
 | |
| 
 | |
|       Loop *L = LI->getLoopFor(POI);
 | |
|       Loop *NL = getNearestLoop(POI, L);
 | |
| 
 | |
|       if (NL != L) {
 | |
|         // For reducible loops, NL is now an ancestor of Unloop.
 | |
|         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
 | |
|                "uninitialized successor");
 | |
|         LI->changeLoopFor(POI, NL);
 | |
|       }
 | |
|       else {
 | |
|         // Or the current block is part of a subloop, in which case its parent
 | |
|         // is unchanged.
 | |
|         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Each irreducible loop within the unloop induces a round of iteration using
 | |
|   // the DFS result cached by Traversal.
 | |
|   bool Changed = FoundIB;
 | |
|   for (unsigned NIters = 0; Changed; ++NIters) {
 | |
|     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
 | |
| 
 | |
|     // Iterate over the postorder list of blocks, propagating the nearest loop
 | |
|     // from successors to predecessors as before.
 | |
|     Changed = false;
 | |
|     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
 | |
|            POE = DFS.endPostorder(); POI != POE; ++POI) {
 | |
| 
 | |
|       Loop *L = LI->getLoopFor(*POI);
 | |
|       Loop *NL = getNearestLoop(*POI, L);
 | |
|       if (NL != L) {
 | |
|         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
 | |
|                "uninitialized successor");
 | |
|         LI->changeLoopFor(*POI, NL);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Remove unloop's blocks from all ancestors below their new parents.
 | |
| void UnloopUpdater::removeBlocksFromAncestors() {
 | |
|   // Remove all unloop's blocks (including those in nested subloops) from
 | |
|   // ancestors below the new parent loop.
 | |
|   for (Loop::block_iterator BI = Unloop.block_begin(),
 | |
|          BE = Unloop.block_end(); BI != BE; ++BI) {
 | |
|     Loop *OuterParent = LI->getLoopFor(*BI);
 | |
|     if (Unloop.contains(OuterParent)) {
 | |
|       while (OuterParent->getParentLoop() != &Unloop)
 | |
|         OuterParent = OuterParent->getParentLoop();
 | |
|       OuterParent = SubloopParents[OuterParent];
 | |
|     }
 | |
|     // Remove blocks from former Ancestors except Unloop itself which will be
 | |
|     // deleted.
 | |
|     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
 | |
|          OldParent = OldParent->getParentLoop()) {
 | |
|       assert(OldParent && "new loop is not an ancestor of the original");
 | |
|       OldParent->removeBlockFromLoop(*BI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update the parent loop for all subloops directly nested within unloop.
 | |
| void UnloopUpdater::updateSubloopParents() {
 | |
|   while (!Unloop.empty()) {
 | |
|     Loop *Subloop = *std::prev(Unloop.end());
 | |
|     Unloop.removeChildLoop(std::prev(Unloop.end()));
 | |
| 
 | |
|     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
 | |
|     if (Loop *Parent = SubloopParents[Subloop])
 | |
|       Parent->addChildLoop(Subloop);
 | |
|     else
 | |
|       LI->addTopLevelLoop(Subloop);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return the nearest parent loop among this block's successors. If a successor
 | |
| /// is a subloop header, consider its parent to be the nearest parent of the
 | |
| /// subloop's exits.
 | |
| ///
 | |
| /// For subloop blocks, simply update SubloopParents and return NULL.
 | |
| Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
 | |
| 
 | |
|   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
 | |
|   // is considered uninitialized.
 | |
|   Loop *NearLoop = BBLoop;
 | |
| 
 | |
|   Loop *Subloop = nullptr;
 | |
|   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
 | |
|     Subloop = NearLoop;
 | |
|     // Find the subloop ancestor that is directly contained within Unloop.
 | |
|     while (Subloop->getParentLoop() != &Unloop) {
 | |
|       Subloop = Subloop->getParentLoop();
 | |
|       assert(Subloop && "subloop is not an ancestor of the original loop");
 | |
|     }
 | |
|     // Get the current nearest parent of the Subloop exits, initially Unloop.
 | |
|     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
 | |
|   }
 | |
| 
 | |
|   succ_iterator I = succ_begin(BB), E = succ_end(BB);
 | |
|   if (I == E) {
 | |
|     assert(!Subloop && "subloop blocks must have a successor");
 | |
|     NearLoop = nullptr; // unloop blocks may now exit the function.
 | |
|   }
 | |
|   for (; I != E; ++I) {
 | |
|     if (*I == BB)
 | |
|       continue; // self loops are uninteresting
 | |
| 
 | |
|     Loop *L = LI->getLoopFor(*I);
 | |
|     if (L == &Unloop) {
 | |
|       // This successor has not been processed. This path must lead to an
 | |
|       // irreducible backedge.
 | |
|       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
 | |
|       FoundIB = true;
 | |
|     }
 | |
|     if (L != &Unloop && Unloop.contains(L)) {
 | |
|       // Successor is in a subloop.
 | |
|       if (Subloop)
 | |
|         continue; // Branching within subloops. Ignore it.
 | |
| 
 | |
|       // BB branches from the original into a subloop header.
 | |
|       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
 | |
| 
 | |
|       // Get the current nearest parent of the Subloop's exits.
 | |
|       L = SubloopParents[L];
 | |
|       // L could be Unloop if the only exit was an irreducible backedge.
 | |
|     }
 | |
|     if (L == &Unloop) {
 | |
|       continue;
 | |
|     }
 | |
|     // Handle critical edges from Unloop into a sibling loop.
 | |
|     if (L && !L->contains(&Unloop)) {
 | |
|       L = L->getParentLoop();
 | |
|     }
 | |
|     // Remember the nearest parent loop among successors or subloop exits.
 | |
|     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
 | |
|       NearLoop = L;
 | |
|   }
 | |
|   if (Subloop) {
 | |
|     SubloopParents[Subloop] = NearLoop;
 | |
|     return BBLoop;
 | |
|   }
 | |
|   return NearLoop;
 | |
| }
 | |
| 
 | |
| LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) {
 | |
|   analyze(DomTree);
 | |
| }
 | |
| 
 | |
| bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
 | |
|                           FunctionAnalysisManager::Invalidator &) {
 | |
|   // Check whether the analysis, all analyses on functions, or the function's
 | |
|   // CFG have been preserved.
 | |
|   auto PAC = PA.getChecker<LoopAnalysis>();
 | |
|   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
 | |
|            PAC.preservedSet<CFGAnalyses>());
 | |
| }
 | |
| 
 | |
| void LoopInfo::markAsRemoved(Loop *Unloop) {
 | |
|   assert(!Unloop->isInvalid() && "Loop has already been removed");
 | |
|   Unloop->invalidate();
 | |
|   RemovedLoops.push_back(Unloop);
 | |
| 
 | |
|   // First handle the special case of no parent loop to simplify the algorithm.
 | |
|   if (!Unloop->getParentLoop()) {
 | |
|     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
 | |
|     for (Loop::block_iterator I = Unloop->block_begin(),
 | |
|                               E = Unloop->block_end();
 | |
|          I != E; ++I) {
 | |
| 
 | |
|       // Don't reparent blocks in subloops.
 | |
|       if (getLoopFor(*I) != Unloop)
 | |
|         continue;
 | |
| 
 | |
|       // Blocks no longer have a parent but are still referenced by Unloop until
 | |
|       // the Unloop object is deleted.
 | |
|       changeLoopFor(*I, nullptr);
 | |
|     }
 | |
| 
 | |
|     // Remove the loop from the top-level LoopInfo object.
 | |
|     for (iterator I = begin();; ++I) {
 | |
|       assert(I != end() && "Couldn't find loop");
 | |
|       if (*I == Unloop) {
 | |
|         removeLoop(I);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Move all of the subloops to the top-level.
 | |
|     while (!Unloop->empty())
 | |
|       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update the parent loop for all blocks within the loop. Blocks within
 | |
|   // subloops will not change parents.
 | |
|   UnloopUpdater Updater(Unloop, this);
 | |
|   Updater.updateBlockParents();
 | |
| 
 | |
|   // Remove blocks from former ancestor loops.
 | |
|   Updater.removeBlocksFromAncestors();
 | |
| 
 | |
|   // Add direct subloops as children in their new parent loop.
 | |
|   Updater.updateSubloopParents();
 | |
| 
 | |
|   // Remove unloop from its parent loop.
 | |
|   Loop *ParentLoop = Unloop->getParentLoop();
 | |
|   for (Loop::iterator I = ParentLoop->begin();; ++I) {
 | |
|     assert(I != ParentLoop->end() && "Couldn't find loop");
 | |
|     if (*I == Unloop) {
 | |
|       ParentLoop->removeChildLoop(I);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| AnalysisKey LoopAnalysis::Key;
 | |
| 
 | |
| LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   // FIXME: Currently we create a LoopInfo from scratch for every function.
 | |
|   // This may prove to be too wasteful due to deallocating and re-allocating
 | |
|   // memory each time for the underlying map and vector datastructures. At some
 | |
|   // point it may prove worthwhile to use a freelist and recycle LoopInfo
 | |
|   // objects. I don't want to add that kind of complexity until the scope of
 | |
|   // the problem is better understood.
 | |
|   LoopInfo LI;
 | |
|   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
 | |
|   return LI;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LoopPrinterPass::run(Function &F,
 | |
|                                        FunctionAnalysisManager &AM) {
 | |
|   AM.getResult<LoopAnalysis>(F).print(OS);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
 | |
|   OS << Banner;
 | |
|   for (auto *Block : L.blocks())
 | |
|     if (Block)
 | |
|       Block->print(OS);
 | |
|     else
 | |
|       OS << "Printing <null> block";
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoopInfo implementation
 | |
| //
 | |
| 
 | |
| char LoopInfoWrapperPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
 | |
|                       true, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
 | |
|                     true, true)
 | |
| 
 | |
| bool LoopInfoWrapperPass::runOnFunction(Function &) {
 | |
|   releaseMemory();
 | |
|   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopInfoWrapperPass::verifyAnalysis() const {
 | |
|   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
 | |
|   // function each time verifyAnalysis is called is very expensive. The
 | |
|   // -verify-loop-info option can enable this. In order to perform some
 | |
|   // checking by default, LoopPass has been taught to call verifyLoop manually
 | |
|   // during loop pass sequences.
 | |
|   if (VerifyLoopInfo) {
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     LI.verify(DT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
| }
 | |
| 
 | |
| void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
 | |
|   LI.print(OS);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LoopVerifierPass::run(Function &F,
 | |
|                                         FunctionAnalysisManager &AM) {
 | |
|   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   LI.verify(DT);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoopBlocksDFS implementation
 | |
| //
 | |
| 
 | |
| /// Traverse the loop blocks and store the DFS result.
 | |
| /// Useful for clients that just want the final DFS result and don't need to
 | |
| /// visit blocks during the initial traversal.
 | |
| void LoopBlocksDFS::perform(LoopInfo *LI) {
 | |
|   LoopBlocksTraversal Traversal(*this, LI);
 | |
|   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
 | |
|          POE = Traversal.end(); POI != POE; ++POI) ;
 | |
| }
 |