489 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			489 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the MemorySSAUpdater class.
 | |
| //
 | |
| //===----------------------------------------------------------------===//
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| #define DEBUG_TYPE "memoryssa"
 | |
| using namespace llvm;
 | |
| 
 | |
| // This is the marker algorithm from "Simple and Efficient Construction of
 | |
| // Static Single Assignment Form"
 | |
| // The simple, non-marker algorithm places phi nodes at any join
 | |
| // Here, we place markers, and only place phi nodes if they end up necessary.
 | |
| // They are only necessary if they break a cycle (IE we recursively visit
 | |
| // ourselves again), or we discover, while getting the value of the operands,
 | |
| // that there are two or more definitions needing to be merged.
 | |
| // This still will leave non-minimal form in the case of irreducible control
 | |
| // flow, where phi nodes may be in cycles with themselves, but unnecessary.
 | |
| MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
 | |
|   // Single predecessor case, just recurse, we can only have one definition.
 | |
|   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
 | |
|     return getPreviousDefFromEnd(Pred);
 | |
|   } else if (VisitedBlocks.count(BB)) {
 | |
|     // We hit our node again, meaning we had a cycle, we must insert a phi
 | |
|     // node to break it so we have an operand. The only case this will
 | |
|     // insert useless phis is if we have irreducible control flow.
 | |
|     return MSSA->createMemoryPhi(BB);
 | |
|   } else if (VisitedBlocks.insert(BB).second) {
 | |
|     // Mark us visited so we can detect a cycle
 | |
|     SmallVector<MemoryAccess *, 8> PhiOps;
 | |
| 
 | |
|     // Recurse to get the values in our predecessors for placement of a
 | |
|     // potential phi node. This will insert phi nodes if we cycle in order to
 | |
|     // break the cycle and have an operand.
 | |
|     for (auto *Pred : predecessors(BB))
 | |
|       PhiOps.push_back(getPreviousDefFromEnd(Pred));
 | |
| 
 | |
|     // Now try to simplify the ops to avoid placing a phi.
 | |
|     // This may return null if we never created a phi yet, that's okay
 | |
|     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
 | |
|     bool PHIExistsButNeedsUpdate = false;
 | |
|     // See if the existing phi operands match what we need.
 | |
|     // Unlike normal SSA, we only allow one phi node per block, so we can't just
 | |
|     // create a new one.
 | |
|     if (Phi && Phi->getNumOperands() != 0)
 | |
|       if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
 | |
|         PHIExistsButNeedsUpdate = true;
 | |
|       }
 | |
| 
 | |
|     // See if we can avoid the phi by simplifying it.
 | |
|     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
 | |
|     // If we couldn't simplify, we may have to create a phi
 | |
|     if (Result == Phi) {
 | |
|       if (!Phi)
 | |
|         Phi = MSSA->createMemoryPhi(BB);
 | |
| 
 | |
|       // These will have been filled in by the recursive read we did above.
 | |
|       if (PHIExistsButNeedsUpdate) {
 | |
|         std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
 | |
|         std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
 | |
|       } else {
 | |
|         unsigned i = 0;
 | |
|         for (auto *Pred : predecessors(BB))
 | |
|           Phi->addIncoming(PhiOps[i++], Pred);
 | |
|       }
 | |
| 
 | |
|       Result = Phi;
 | |
|     }
 | |
|     if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
 | |
|       InsertedPHIs.push_back(MP);
 | |
|     // Set ourselves up for the next variable by resetting visited state.
 | |
|     VisitedBlocks.erase(BB);
 | |
|     return Result;
 | |
|   }
 | |
|   llvm_unreachable("Should have hit one of the three cases above");
 | |
| }
 | |
| 
 | |
| // This starts at the memory access, and goes backwards in the block to find the
 | |
| // previous definition. If a definition is not found the block of the access,
 | |
| // it continues globally, creating phi nodes to ensure we have a single
 | |
| // definition.
 | |
| MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
 | |
|   auto *LocalResult = getPreviousDefInBlock(MA);
 | |
| 
 | |
|   return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
 | |
| }
 | |
| 
 | |
| // This starts at the memory access, and goes backwards in the block to the find
 | |
| // the previous definition. If the definition is not found in the block of the
 | |
| // access, it returns nullptr.
 | |
| MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
 | |
|   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
 | |
| 
 | |
|   // It's possible there are no defs, or we got handed the first def to start.
 | |
|   if (Defs) {
 | |
|     // If this is a def, we can just use the def iterators.
 | |
|     if (!isa<MemoryUse>(MA)) {
 | |
|       auto Iter = MA->getReverseDefsIterator();
 | |
|       ++Iter;
 | |
|       if (Iter != Defs->rend())
 | |
|         return &*Iter;
 | |
|     } else {
 | |
|       // Otherwise, have to walk the all access iterator.
 | |
|       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
 | |
|       for (auto &U : make_range(++MA->getReverseIterator(), End))
 | |
|         if (!isa<MemoryUse>(U))
 | |
|           return cast<MemoryAccess>(&U);
 | |
|       // Note that if MA comes before Defs->begin(), we won't hit a def.
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // This starts at the end of block
 | |
| MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
 | |
|   auto *Defs = MSSA->getWritableBlockDefs(BB);
 | |
| 
 | |
|   if (Defs)
 | |
|     return &*Defs->rbegin();
 | |
| 
 | |
|   return getPreviousDefRecursive(BB);
 | |
| }
 | |
| // Recurse over a set of phi uses to eliminate the trivial ones
 | |
| MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
 | |
|   if (!Phi)
 | |
|     return nullptr;
 | |
|   TrackingVH<MemoryAccess> Res(Phi);
 | |
|   SmallVector<TrackingVH<Value>, 8> Uses;
 | |
|   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
 | |
|   for (auto &U : Uses) {
 | |
|     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
 | |
|       auto OperRange = UsePhi->operands();
 | |
|       tryRemoveTrivialPhi(UsePhi, OperRange);
 | |
|     }
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // Eliminate trivial phis
 | |
| // Phis are trivial if they are defined either by themselves, or all the same
 | |
| // argument.
 | |
| // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
 | |
| // We recursively try to remove them.
 | |
| template <class RangeType>
 | |
| MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
 | |
|                                                     RangeType &Operands) {
 | |
|   // Detect equal or self arguments
 | |
|   MemoryAccess *Same = nullptr;
 | |
|   for (auto &Op : Operands) {
 | |
|     // If the same or self, good so far
 | |
|     if (Op == Phi || Op == Same)
 | |
|       continue;
 | |
|     // not the same, return the phi since it's not eliminatable by us
 | |
|     if (Same)
 | |
|       return Phi;
 | |
|     Same = cast<MemoryAccess>(Op);
 | |
|   }
 | |
|   // Never found a non-self reference, the phi is undef
 | |
|   if (Same == nullptr)
 | |
|     return MSSA->getLiveOnEntryDef();
 | |
|   if (Phi) {
 | |
|     Phi->replaceAllUsesWith(Same);
 | |
|     removeMemoryAccess(Phi);
 | |
|   }
 | |
| 
 | |
|   // We should only end up recursing in case we replaced something, in which
 | |
|   // case, we may have made other Phis trivial.
 | |
|   return recursePhi(Same);
 | |
| }
 | |
| 
 | |
| void MemorySSAUpdater::insertUse(MemoryUse *MU) {
 | |
|   InsertedPHIs.clear();
 | |
|   MU->setDefiningAccess(getPreviousDef(MU));
 | |
|   // Unlike for defs, there is no extra work to do.  Because uses do not create
 | |
|   // new may-defs, there are only two cases:
 | |
|   //
 | |
|   // 1. There was a def already below us, and therefore, we should not have
 | |
|   // created a phi node because it was already needed for the def.
 | |
|   //
 | |
|   // 2. There is no def below us, and therefore, there is no extra renaming work
 | |
|   // to do.
 | |
| }
 | |
| 
 | |
| // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
 | |
| static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
 | |
|                                       MemoryAccess *NewDef) {
 | |
|   // Replace any operand with us an incoming block with the new defining
 | |
|   // access.
 | |
|   int i = MP->getBasicBlockIndex(BB);
 | |
|   assert(i != -1 && "Should have found the basic block in the phi");
 | |
|   // We can't just compare i against getNumOperands since one is signed and the
 | |
|   // other not. So use it to index into the block iterator.
 | |
|   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
 | |
|        ++BBIter) {
 | |
|     if (*BBIter != BB)
 | |
|       break;
 | |
|     MP->setIncomingValue(i, NewDef);
 | |
|     ++i;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A brief description of the algorithm:
 | |
| // First, we compute what should define the new def, using the SSA
 | |
| // construction algorithm.
 | |
| // Then, we update the defs below us (and any new phi nodes) in the graph to
 | |
| // point to the correct new defs, to ensure we only have one variable, and no
 | |
| // disconnected stores.
 | |
| void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
 | |
|   InsertedPHIs.clear();
 | |
| 
 | |
|   // See if we had a local def, and if not, go hunting.
 | |
|   MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
 | |
|   bool DefBeforeSameBlock = DefBefore != nullptr;
 | |
|   if (!DefBefore)
 | |
|     DefBefore = getPreviousDefRecursive(MD->getBlock());
 | |
| 
 | |
|   // There is a def before us, which means we can replace any store/phi uses
 | |
|   // of that thing with us, since we are in the way of whatever was there
 | |
|   // before.
 | |
|   // We now define that def's memorydefs and memoryphis
 | |
|   if (DefBeforeSameBlock) {
 | |
|     for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
 | |
|          UI != UE;) {
 | |
|       Use &U = *UI++;
 | |
|       // Leave the uses alone
 | |
|       if (isa<MemoryUse>(U.getUser()))
 | |
|         continue;
 | |
|       U.set(MD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // and that def is now our defining access.
 | |
|   // We change them in this order otherwise we will appear in the use list
 | |
|   // above and reset ourselves.
 | |
|   MD->setDefiningAccess(DefBefore);
 | |
| 
 | |
|   SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
 | |
|                                            InsertedPHIs.end());
 | |
|   if (!DefBeforeSameBlock) {
 | |
|     // If there was a local def before us, we must have the same effect it
 | |
|     // did. Because every may-def is the same, any phis/etc we would create, it
 | |
|     // would also have created.  If there was no local def before us, we
 | |
|     // performed a global update, and have to search all successors and make
 | |
|     // sure we update the first def in each of them (following all paths until
 | |
|     // we hit the first def along each path). This may also insert phi nodes.
 | |
|     // TODO: There are other cases we can skip this work, such as when we have a
 | |
|     // single successor, and only used a straight line of single pred blocks
 | |
|     // backwards to find the def.  To make that work, we'd have to track whether
 | |
|     // getDefRecursive only ever used the single predecessor case.  These types
 | |
|     // of paths also only exist in between CFG simplifications.
 | |
|     FixupList.push_back(MD);
 | |
|   }
 | |
| 
 | |
|   while (!FixupList.empty()) {
 | |
|     unsigned StartingPHISize = InsertedPHIs.size();
 | |
|     fixupDefs(FixupList);
 | |
|     FixupList.clear();
 | |
|     // Put any new phis on the fixup list, and process them
 | |
|     FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
 | |
|   }
 | |
|   // Now that all fixups are done, rename all uses if we are asked.
 | |
|   if (RenameUses) {
 | |
|     SmallPtrSet<BasicBlock *, 16> Visited;
 | |
|     BasicBlock *StartBlock = MD->getBlock();
 | |
|     // We are guaranteed there is a def in the block, because we just got it
 | |
|     // handed to us in this function.
 | |
|     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
 | |
|     // Convert to incoming value if it's a memorydef. A phi *is* already an
 | |
|     // incoming value.
 | |
|     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
 | |
|       FirstDef = MD->getDefiningAccess();
 | |
| 
 | |
|     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
 | |
|     // We just inserted a phi into this block, so the incoming value will become
 | |
|     // the phi anyway, so it does not matter what we pass.
 | |
|     for (auto *MP : InsertedPHIs)
 | |
|       MSSA->renamePass(MP->getBlock(), nullptr, Visited);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
 | |
|   SmallPtrSet<const BasicBlock *, 8> Seen;
 | |
|   SmallVector<const BasicBlock *, 16> Worklist;
 | |
|   for (auto *NewDef : Vars) {
 | |
|     // First, see if there is a local def after the operand.
 | |
|     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
 | |
|     auto DefIter = NewDef->getDefsIterator();
 | |
| 
 | |
|     // If there is a local def after us, we only have to rename that.
 | |
|     if (++DefIter != Defs->end()) {
 | |
|       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we need to search down through the CFG.
 | |
|     // For each of our successors, handle it directly if their is a phi, or
 | |
|     // place on the fixup worklist.
 | |
|     for (const auto *S : successors(NewDef->getBlock())) {
 | |
|       if (auto *MP = MSSA->getMemoryAccess(S))
 | |
|         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
 | |
|       else
 | |
|         Worklist.push_back(S);
 | |
|     }
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       const BasicBlock *FixupBlock = Worklist.back();
 | |
|       Worklist.pop_back();
 | |
| 
 | |
|       // Get the first def in the block that isn't a phi node.
 | |
|       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
 | |
|         auto *FirstDef = &*Defs->begin();
 | |
|         // The loop above and below should have taken care of phi nodes
 | |
|         assert(!isa<MemoryPhi>(FirstDef) &&
 | |
|                "Should have already handled phi nodes!");
 | |
|         // We are now this def's defining access, make sure we actually dominate
 | |
|         // it
 | |
|         assert(MSSA->dominates(NewDef, FirstDef) &&
 | |
|                "Should have dominated the new access");
 | |
| 
 | |
|         // This may insert new phi nodes, because we are not guaranteed the
 | |
|         // block we are processing has a single pred, and depending where the
 | |
|         // store was inserted, it may require phi nodes below it.
 | |
|         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
 | |
|         return;
 | |
|       }
 | |
|       // We didn't find a def, so we must continue.
 | |
|       for (const auto *S : successors(FixupBlock)) {
 | |
|         // If there is a phi node, handle it.
 | |
|         // Otherwise, put the block on the worklist
 | |
|         if (auto *MP = MSSA->getMemoryAccess(S))
 | |
|           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
 | |
|         else {
 | |
|           // If we cycle, we should have ended up at a phi node that we already
 | |
|           // processed.  FIXME: Double check this
 | |
|           if (!Seen.insert(S).second)
 | |
|             continue;
 | |
|           Worklist.push_back(S);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Move What before Where in the MemorySSA IR.
 | |
| template <class WhereType>
 | |
| void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
 | |
|                               WhereType Where) {
 | |
|   // Replace all our users with our defining access.
 | |
|   What->replaceAllUsesWith(What->getDefiningAccess());
 | |
| 
 | |
|   // Let MemorySSA take care of moving it around in the lists.
 | |
|   MSSA->moveTo(What, BB, Where);
 | |
| 
 | |
|   // Now reinsert it into the IR and do whatever fixups needed.
 | |
|   if (auto *MD = dyn_cast<MemoryDef>(What))
 | |
|     insertDef(MD);
 | |
|   else
 | |
|     insertUse(cast<MemoryUse>(What));
 | |
| }
 | |
| 
 | |
| // Move What before Where in the MemorySSA IR.
 | |
| void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
 | |
|   moveTo(What, Where->getBlock(), Where->getIterator());
 | |
| }
 | |
| 
 | |
| // Move What after Where in the MemorySSA IR.
 | |
| void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
 | |
|   moveTo(What, Where->getBlock(), ++Where->getIterator());
 | |
| }
 | |
| 
 | |
| void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
 | |
|                                    MemorySSA::InsertionPlace Where) {
 | |
|   return moveTo(What, BB, Where);
 | |
| }
 | |
| 
 | |
| /// \brief If all arguments of a MemoryPHI are defined by the same incoming
 | |
| /// argument, return that argument.
 | |
| static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
 | |
|   MemoryAccess *MA = nullptr;
 | |
| 
 | |
|   for (auto &Arg : MP->operands()) {
 | |
|     if (!MA)
 | |
|       MA = cast<MemoryAccess>(Arg);
 | |
|     else if (MA != Arg)
 | |
|       return nullptr;
 | |
|   }
 | |
|   return MA;
 | |
| }
 | |
| 
 | |
| void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) {
 | |
|   assert(!MSSA->isLiveOnEntryDef(MA) &&
 | |
|          "Trying to remove the live on entry def");
 | |
|   // We can only delete phi nodes if they have no uses, or we can replace all
 | |
|   // uses with a single definition.
 | |
|   MemoryAccess *NewDefTarget = nullptr;
 | |
|   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
 | |
|     // Note that it is sufficient to know that all edges of the phi node have
 | |
|     // the same argument.  If they do, by the definition of dominance frontiers
 | |
|     // (which we used to place this phi), that argument must dominate this phi,
 | |
|     // and thus, must dominate the phi's uses, and so we will not hit the assert
 | |
|     // below.
 | |
|     NewDefTarget = onlySingleValue(MP);
 | |
|     assert((NewDefTarget || MP->use_empty()) &&
 | |
|            "We can't delete this memory phi");
 | |
|   } else {
 | |
|     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
 | |
|   }
 | |
| 
 | |
|   // Re-point the uses at our defining access
 | |
|   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
 | |
|     // Reset optimized on users of this store, and reset the uses.
 | |
|     // A few notes:
 | |
|     // 1. This is a slightly modified version of RAUW to avoid walking the
 | |
|     // uses twice here.
 | |
|     // 2. If we wanted to be complete, we would have to reset the optimized
 | |
|     // flags on users of phi nodes if doing the below makes a phi node have all
 | |
|     // the same arguments. Instead, we prefer users to removeMemoryAccess those
 | |
|     // phi nodes, because doing it here would be N^3.
 | |
|     if (MA->hasValueHandle())
 | |
|       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
 | |
|     // Note: We assume MemorySSA is not used in metadata since it's not really
 | |
|     // part of the IR.
 | |
| 
 | |
|     while (!MA->use_empty()) {
 | |
|       Use &U = *MA->use_begin();
 | |
|       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
 | |
|         MUD->resetOptimized();
 | |
|       U.set(NewDefTarget);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The call below to erase will destroy MA, so we can't change the order we
 | |
|   // are doing things here
 | |
|   MSSA->removeFromLookups(MA);
 | |
|   MSSA->removeFromLists(MA);
 | |
| }
 | |
| 
 | |
| MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
 | |
|     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
 | |
|     MemorySSA::InsertionPlace Point) {
 | |
|   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
 | |
|   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
 | |
|   return NewAccess;
 | |
| }
 | |
| 
 | |
| MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
 | |
|     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
 | |
|   assert(I->getParent() == InsertPt->getBlock() &&
 | |
|          "New and old access must be in the same block");
 | |
|   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
 | |
|   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
 | |
|                               InsertPt->getIterator());
 | |
|   return NewAccess;
 | |
| }
 | |
| 
 | |
| MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
 | |
|     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
 | |
|   assert(I->getParent() == InsertPt->getBlock() &&
 | |
|          "New and old access must be in the same block");
 | |
|   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
 | |
|   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
 | |
|                               ++InsertPt->getIterator());
 | |
|   return NewAccess;
 | |
| }
 |