5017 lines
		
	
	
		
			188 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5017 lines
		
	
	
		
			188 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the function verifier interface, that can be used for some
 | |
| // sanity checking of input to the system.
 | |
| //
 | |
| // Note that this does not provide full `Java style' security and verifications,
 | |
| // instead it just tries to ensure that code is well-formed.
 | |
| //
 | |
| //  * Both of a binary operator's parameters are of the same type
 | |
| //  * Verify that the indices of mem access instructions match other operands
 | |
| //  * Verify that arithmetic and other things are only performed on first-class
 | |
| //    types.  Verify that shifts & logicals only happen on integrals f.e.
 | |
| //  * All of the constants in a switch statement are of the correct type
 | |
| //  * The code is in valid SSA form
 | |
| //  * It should be illegal to put a label into any other type (like a structure)
 | |
| //    or to return one. [except constant arrays!]
 | |
| //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
 | |
| //  * PHI nodes must have an entry for each predecessor, with no extras.
 | |
| //  * PHI nodes must be the first thing in a basic block, all grouped together
 | |
| //  * PHI nodes must have at least one entry
 | |
| //  * All basic blocks should only end with terminator insts, not contain them
 | |
| //  * The entry node to a function must not have predecessors
 | |
| //  * All Instructions must be embedded into a basic block
 | |
| //  * Functions cannot take a void-typed parameter
 | |
| //  * Verify that a function's argument list agrees with it's declared type.
 | |
| //  * It is illegal to specify a name for a void value.
 | |
| //  * It is illegal to have a internal global value with no initializer
 | |
| //  * It is illegal to have a ret instruction that returns a value that does not
 | |
| //    agree with the function return value type.
 | |
| //  * Function call argument types match the function prototype
 | |
| //  * A landing pad is defined by a landingpad instruction, and can be jumped to
 | |
| //    only by the unwind edge of an invoke instruction.
 | |
| //  * A landingpad instruction must be the first non-PHI instruction in the
 | |
| //    block.
 | |
| //  * Landingpad instructions must be in a function with a personality function.
 | |
| //  * All other things that are tested by asserts spread about the code...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/ADT/ilist.h"
 | |
| #include "llvm/BinaryFormat/Dwarf.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Comdat.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/ModuleSlotTracker.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| struct VerifierSupport {
 | |
|   raw_ostream *OS;
 | |
|   const Module &M;
 | |
|   ModuleSlotTracker MST;
 | |
|   const DataLayout &DL;
 | |
|   LLVMContext &Context;
 | |
| 
 | |
|   /// Track the brokenness of the module while recursively visiting.
 | |
|   bool Broken = false;
 | |
|   /// Broken debug info can be "recovered" from by stripping the debug info.
 | |
|   bool BrokenDebugInfo = false;
 | |
|   /// Whether to treat broken debug info as an error.
 | |
|   bool TreatBrokenDebugInfoAsError = true;
 | |
| 
 | |
|   explicit VerifierSupport(raw_ostream *OS, const Module &M)
 | |
|       : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
 | |
| 
 | |
| private:
 | |
|   void Write(const Module *M) {
 | |
|     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
 | |
|   }
 | |
| 
 | |
|   void Write(const Value *V) {
 | |
|     if (!V)
 | |
|       return;
 | |
|     if (isa<Instruction>(V)) {
 | |
|       V->print(*OS, MST);
 | |
|       *OS << '\n';
 | |
|     } else {
 | |
|       V->printAsOperand(*OS, true, MST);
 | |
|       *OS << '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Write(ImmutableCallSite CS) {
 | |
|     Write(CS.getInstruction());
 | |
|   }
 | |
| 
 | |
|   void Write(const Metadata *MD) {
 | |
|     if (!MD)
 | |
|       return;
 | |
|     MD->print(*OS, MST, &M);
 | |
|     *OS << '\n';
 | |
|   }
 | |
| 
 | |
|   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
 | |
|     Write(MD.get());
 | |
|   }
 | |
| 
 | |
|   void Write(const NamedMDNode *NMD) {
 | |
|     if (!NMD)
 | |
|       return;
 | |
|     NMD->print(*OS, MST);
 | |
|     *OS << '\n';
 | |
|   }
 | |
| 
 | |
|   void Write(Type *T) {
 | |
|     if (!T)
 | |
|       return;
 | |
|     *OS << ' ' << *T;
 | |
|   }
 | |
| 
 | |
|   void Write(const Comdat *C) {
 | |
|     if (!C)
 | |
|       return;
 | |
|     *OS << *C;
 | |
|   }
 | |
| 
 | |
|   void Write(const APInt *AI) {
 | |
|     if (!AI)
 | |
|       return;
 | |
|     *OS << *AI << '\n';
 | |
|   }
 | |
| 
 | |
|   void Write(const unsigned i) { *OS << i << '\n'; }
 | |
| 
 | |
|   template <typename T> void Write(ArrayRef<T> Vs) {
 | |
|     for (const T &V : Vs)
 | |
|       Write(V);
 | |
|   }
 | |
| 
 | |
|   template <typename T1, typename... Ts>
 | |
|   void WriteTs(const T1 &V1, const Ts &... Vs) {
 | |
|     Write(V1);
 | |
|     WriteTs(Vs...);
 | |
|   }
 | |
| 
 | |
|   template <typename... Ts> void WriteTs() {}
 | |
| 
 | |
| public:
 | |
|   /// \brief A check failed, so printout out the condition and the message.
 | |
|   ///
 | |
|   /// This provides a nice place to put a breakpoint if you want to see why
 | |
|   /// something is not correct.
 | |
|   void CheckFailed(const Twine &Message) {
 | |
|     if (OS)
 | |
|       *OS << Message << '\n';
 | |
|     Broken = true;
 | |
|   }
 | |
| 
 | |
|   /// \brief A check failed (with values to print).
 | |
|   ///
 | |
|   /// This calls the Message-only version so that the above is easier to set a
 | |
|   /// breakpoint on.
 | |
|   template <typename T1, typename... Ts>
 | |
|   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
 | |
|     CheckFailed(Message);
 | |
|     if (OS)
 | |
|       WriteTs(V1, Vs...);
 | |
|   }
 | |
| 
 | |
|   /// A debug info check failed.
 | |
|   void DebugInfoCheckFailed(const Twine &Message) {
 | |
|     if (OS)
 | |
|       *OS << Message << '\n';
 | |
|     Broken |= TreatBrokenDebugInfoAsError;
 | |
|     BrokenDebugInfo = true;
 | |
|   }
 | |
| 
 | |
|   /// A debug info check failed (with values to print).
 | |
|   template <typename T1, typename... Ts>
 | |
|   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
 | |
|                             const Ts &... Vs) {
 | |
|     DebugInfoCheckFailed(Message);
 | |
|     if (OS)
 | |
|       WriteTs(V1, Vs...);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class Verifier : public InstVisitor<Verifier>, VerifierSupport {
 | |
|   friend class InstVisitor<Verifier>;
 | |
| 
 | |
|   DominatorTree DT;
 | |
| 
 | |
|   /// \brief When verifying a basic block, keep track of all of the
 | |
|   /// instructions we have seen so far.
 | |
|   ///
 | |
|   /// This allows us to do efficient dominance checks for the case when an
 | |
|   /// instruction has an operand that is an instruction in the same block.
 | |
|   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
 | |
| 
 | |
|   /// \brief Keep track of the metadata nodes that have been checked already.
 | |
|   SmallPtrSet<const Metadata *, 32> MDNodes;
 | |
| 
 | |
|   /// Keep track which DISubprogram is attached to which function.
 | |
|   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
 | |
| 
 | |
|   /// Track all DICompileUnits visited.
 | |
|   SmallPtrSet<const Metadata *, 2> CUVisited;
 | |
| 
 | |
|   /// \brief The result type for a landingpad.
 | |
|   Type *LandingPadResultTy;
 | |
| 
 | |
|   /// \brief Whether we've seen a call to @llvm.localescape in this function
 | |
|   /// already.
 | |
|   bool SawFrameEscape;
 | |
| 
 | |
|   /// Whether the current function has a DISubprogram attached to it.
 | |
|   bool HasDebugInfo = false;
 | |
| 
 | |
|   /// Stores the count of how many objects were passed to llvm.localescape for a
 | |
|   /// given function and the largest index passed to llvm.localrecover.
 | |
|   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
 | |
| 
 | |
|   // Maps catchswitches and cleanuppads that unwind to siblings to the
 | |
|   // terminators that indicate the unwind, used to detect cycles therein.
 | |
|   MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
 | |
| 
 | |
|   /// Cache of constants visited in search of ConstantExprs.
 | |
|   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
 | |
| 
 | |
|   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
 | |
|   SmallVector<const Function *, 4> DeoptimizeDeclarations;
 | |
| 
 | |
|   // Verify that this GlobalValue is only used in this module.
 | |
|   // This map is used to avoid visiting uses twice. We can arrive at a user
 | |
|   // twice, if they have multiple operands. In particular for very large
 | |
|   // constant expressions, we can arrive at a particular user many times.
 | |
|   SmallPtrSet<const Value *, 32> GlobalValueVisited;
 | |
| 
 | |
|   // Keeps track of duplicate function argument debug info.
 | |
|   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
 | |
| 
 | |
|   TBAAVerifier TBAAVerifyHelper;
 | |
| 
 | |
|   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
 | |
| 
 | |
| public:
 | |
|   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
 | |
|                     const Module &M)
 | |
|       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
 | |
|         SawFrameEscape(false), TBAAVerifyHelper(this) {
 | |
|     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
 | |
|   }
 | |
| 
 | |
|   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
 | |
| 
 | |
|   bool verify(const Function &F) {
 | |
|     assert(F.getParent() == &M &&
 | |
|            "An instance of this class only works with a specific module!");
 | |
| 
 | |
|     // First ensure the function is well-enough formed to compute dominance
 | |
|     // information, and directly compute a dominance tree. We don't rely on the
 | |
|     // pass manager to provide this as it isolates us from a potentially
 | |
|     // out-of-date dominator tree and makes it significantly more complex to run
 | |
|     // this code outside of a pass manager.
 | |
|     // FIXME: It's really gross that we have to cast away constness here.
 | |
|     if (!F.empty())
 | |
|       DT.recalculate(const_cast<Function &>(F));
 | |
| 
 | |
|     for (const BasicBlock &BB : F) {
 | |
|       if (!BB.empty() && BB.back().isTerminator())
 | |
|         continue;
 | |
| 
 | |
|       if (OS) {
 | |
|         *OS << "Basic Block in function '" << F.getName()
 | |
|             << "' does not have terminator!\n";
 | |
|         BB.printAsOperand(*OS, true, MST);
 | |
|         *OS << "\n";
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Broken = false;
 | |
|     // FIXME: We strip const here because the inst visitor strips const.
 | |
|     visit(const_cast<Function &>(F));
 | |
|     verifySiblingFuncletUnwinds();
 | |
|     InstsInThisBlock.clear();
 | |
|     DebugFnArgs.clear();
 | |
|     LandingPadResultTy = nullptr;
 | |
|     SawFrameEscape = false;
 | |
|     SiblingFuncletInfo.clear();
 | |
| 
 | |
|     return !Broken;
 | |
|   }
 | |
| 
 | |
|   /// Verify the module that this instance of \c Verifier was initialized with.
 | |
|   bool verify() {
 | |
|     Broken = false;
 | |
| 
 | |
|     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
 | |
|     for (const Function &F : M)
 | |
|       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
 | |
|         DeoptimizeDeclarations.push_back(&F);
 | |
| 
 | |
|     // Now that we've visited every function, verify that we never asked to
 | |
|     // recover a frame index that wasn't escaped.
 | |
|     verifyFrameRecoverIndices();
 | |
|     for (const GlobalVariable &GV : M.globals())
 | |
|       visitGlobalVariable(GV);
 | |
| 
 | |
|     for (const GlobalAlias &GA : M.aliases())
 | |
|       visitGlobalAlias(GA);
 | |
| 
 | |
|     for (const NamedMDNode &NMD : M.named_metadata())
 | |
|       visitNamedMDNode(NMD);
 | |
| 
 | |
|     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
 | |
|       visitComdat(SMEC.getValue());
 | |
| 
 | |
|     visitModuleFlags(M);
 | |
|     visitModuleIdents(M);
 | |
| 
 | |
|     verifyCompileUnits();
 | |
| 
 | |
|     verifyDeoptimizeCallingConvs();
 | |
|     DISubprogramAttachments.clear();
 | |
|     return !Broken;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Verification methods...
 | |
|   void visitGlobalValue(const GlobalValue &GV);
 | |
|   void visitGlobalVariable(const GlobalVariable &GV);
 | |
|   void visitGlobalAlias(const GlobalAlias &GA);
 | |
|   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
 | |
|   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
 | |
|                            const GlobalAlias &A, const Constant &C);
 | |
|   void visitNamedMDNode(const NamedMDNode &NMD);
 | |
|   void visitMDNode(const MDNode &MD);
 | |
|   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
 | |
|   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
 | |
|   void visitComdat(const Comdat &C);
 | |
|   void visitModuleIdents(const Module &M);
 | |
|   void visitModuleFlags(const Module &M);
 | |
|   void visitModuleFlag(const MDNode *Op,
 | |
|                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
 | |
|                        SmallVectorImpl<const MDNode *> &Requirements);
 | |
|   void visitFunction(const Function &F);
 | |
|   void visitBasicBlock(BasicBlock &BB);
 | |
|   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
 | |
|   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
 | |
| 
 | |
|   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
 | |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
 | |
| #include "llvm/IR/Metadata.def"
 | |
|   void visitDIScope(const DIScope &N);
 | |
|   void visitDIVariable(const DIVariable &N);
 | |
|   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
 | |
|   void visitDITemplateParameter(const DITemplateParameter &N);
 | |
| 
 | |
|   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
 | |
| 
 | |
|   // InstVisitor overrides...
 | |
|   using InstVisitor<Verifier>::visit;
 | |
|   void visit(Instruction &I);
 | |
| 
 | |
|   void visitTruncInst(TruncInst &I);
 | |
|   void visitZExtInst(ZExtInst &I);
 | |
|   void visitSExtInst(SExtInst &I);
 | |
|   void visitFPTruncInst(FPTruncInst &I);
 | |
|   void visitFPExtInst(FPExtInst &I);
 | |
|   void visitFPToUIInst(FPToUIInst &I);
 | |
|   void visitFPToSIInst(FPToSIInst &I);
 | |
|   void visitUIToFPInst(UIToFPInst &I);
 | |
|   void visitSIToFPInst(SIToFPInst &I);
 | |
|   void visitIntToPtrInst(IntToPtrInst &I);
 | |
|   void visitPtrToIntInst(PtrToIntInst &I);
 | |
|   void visitBitCastInst(BitCastInst &I);
 | |
|   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
 | |
|   void visitPHINode(PHINode &PN);
 | |
|   void visitBinaryOperator(BinaryOperator &B);
 | |
|   void visitICmpInst(ICmpInst &IC);
 | |
|   void visitFCmpInst(FCmpInst &FC);
 | |
|   void visitExtractElementInst(ExtractElementInst &EI);
 | |
|   void visitInsertElementInst(InsertElementInst &EI);
 | |
|   void visitShuffleVectorInst(ShuffleVectorInst &EI);
 | |
|   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
 | |
|   void visitCallInst(CallInst &CI);
 | |
|   void visitInvokeInst(InvokeInst &II);
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|   void visitLoadInst(LoadInst &LI);
 | |
|   void visitStoreInst(StoreInst &SI);
 | |
|   void verifyDominatesUse(Instruction &I, unsigned i);
 | |
|   void visitInstruction(Instruction &I);
 | |
|   void visitTerminatorInst(TerminatorInst &I);
 | |
|   void visitBranchInst(BranchInst &BI);
 | |
|   void visitReturnInst(ReturnInst &RI);
 | |
|   void visitSwitchInst(SwitchInst &SI);
 | |
|   void visitIndirectBrInst(IndirectBrInst &BI);
 | |
|   void visitSelectInst(SelectInst &SI);
 | |
|   void visitUserOp1(Instruction &I);
 | |
|   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | |
|   void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
 | |
|   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
 | |
|   template <class DbgIntrinsicTy>
 | |
|   void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
 | |
|   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
 | |
|   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
 | |
|   void visitFenceInst(FenceInst &FI);
 | |
|   void visitAllocaInst(AllocaInst &AI);
 | |
|   void visitExtractValueInst(ExtractValueInst &EVI);
 | |
|   void visitInsertValueInst(InsertValueInst &IVI);
 | |
|   void visitEHPadPredecessors(Instruction &I);
 | |
|   void visitLandingPadInst(LandingPadInst &LPI);
 | |
|   void visitResumeInst(ResumeInst &RI);
 | |
|   void visitCatchPadInst(CatchPadInst &CPI);
 | |
|   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
 | |
|   void visitCleanupPadInst(CleanupPadInst &CPI);
 | |
|   void visitFuncletPadInst(FuncletPadInst &FPI);
 | |
|   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
 | |
|   void visitCleanupReturnInst(CleanupReturnInst &CRI);
 | |
| 
 | |
|   void verifyCallSite(CallSite CS);
 | |
|   void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
 | |
|   void verifySwiftErrorValue(const Value *SwiftErrorVal);
 | |
|   void verifyMustTailCall(CallInst &CI);
 | |
|   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
 | |
|                         unsigned ArgNo, std::string &Suffix);
 | |
|   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
 | |
|   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
 | |
|                             const Value *V);
 | |
|   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
 | |
|   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
 | |
|                            const Value *V);
 | |
|   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
 | |
| 
 | |
|   void visitConstantExprsRecursively(const Constant *EntryC);
 | |
|   void visitConstantExpr(const ConstantExpr *CE);
 | |
|   void verifyStatepoint(ImmutableCallSite CS);
 | |
|   void verifyFrameRecoverIndices();
 | |
|   void verifySiblingFuncletUnwinds();
 | |
| 
 | |
|   void verifyFragmentExpression(const DbgInfoIntrinsic &I);
 | |
|   void verifyFnArgs(const DbgInfoIntrinsic &I);
 | |
| 
 | |
|   /// Module-level debug info verification...
 | |
|   void verifyCompileUnits();
 | |
| 
 | |
|   /// Module-level verification that all @llvm.experimental.deoptimize
 | |
|   /// declarations share the same calling convention.
 | |
|   void verifyDeoptimizeCallingConvs();
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// We know that cond should be true, if not print an error message.
 | |
| #define Assert(C, ...) \
 | |
|   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
 | |
| 
 | |
| /// We know that a debug info condition should be true, if not print
 | |
| /// an error message.
 | |
| #define AssertDI(C, ...) \
 | |
|   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
 | |
| 
 | |
| void Verifier::visit(Instruction &I) {
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | |
|     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
 | |
|   InstVisitor<Verifier>::visit(I);
 | |
| }
 | |
| 
 | |
| // Helper to recursively iterate over indirect users. By
 | |
| // returning false, the callback can ask to stop recursing
 | |
| // further.
 | |
| static void forEachUser(const Value *User,
 | |
|                         SmallPtrSet<const Value *, 32> &Visited,
 | |
|                         llvm::function_ref<bool(const Value *)> Callback) {
 | |
|   if (!Visited.insert(User).second)
 | |
|     return;
 | |
|   for (const Value *TheNextUser : User->materialized_users())
 | |
|     if (Callback(TheNextUser))
 | |
|       forEachUser(TheNextUser, Visited, Callback);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalValue(const GlobalValue &GV) {
 | |
|   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
 | |
|          "Global is external, but doesn't have external or weak linkage!", &GV);
 | |
| 
 | |
|   Assert(GV.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &GV);
 | |
|   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
 | |
|          "Only global variables can have appending linkage!", &GV);
 | |
| 
 | |
|   if (GV.hasAppendingLinkage()) {
 | |
|     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
 | |
|     Assert(GVar && GVar->getValueType()->isArrayTy(),
 | |
|            "Only global arrays can have appending linkage!", GVar);
 | |
|   }
 | |
| 
 | |
|   if (GV.isDeclarationForLinker())
 | |
|     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
 | |
| 
 | |
|   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
 | |
|     if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|       if (!I->getParent() || !I->getParent()->getParent())
 | |
|         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
 | |
|                     I);
 | |
|       else if (I->getParent()->getParent()->getParent() != &M)
 | |
|         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
 | |
|                     I->getParent()->getParent(),
 | |
|                     I->getParent()->getParent()->getParent());
 | |
|       return false;
 | |
|     } else if (const Function *F = dyn_cast<Function>(V)) {
 | |
|       if (F->getParent() != &M)
 | |
|         CheckFailed("Global is used by function in a different module", &GV, &M,
 | |
|                     F, F->getParent());
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   });
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
 | |
|   if (GV.hasInitializer()) {
 | |
|     Assert(GV.getInitializer()->getType() == GV.getValueType(),
 | |
|            "Global variable initializer type does not match global "
 | |
|            "variable type!",
 | |
|            &GV);
 | |
|     // If the global has common linkage, it must have a zero initializer and
 | |
|     // cannot be constant.
 | |
|     if (GV.hasCommonLinkage()) {
 | |
|       Assert(GV.getInitializer()->isNullValue(),
 | |
|              "'common' global must have a zero initializer!", &GV);
 | |
|       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
 | |
|              &GV);
 | |
|       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
 | |
|                        GV.getName() == "llvm.global_dtors")) {
 | |
|     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
 | |
|            "invalid linkage for intrinsic global variable", &GV);
 | |
|     // Don't worry about emitting an error for it not being an array,
 | |
|     // visitGlobalValue will complain on appending non-array.
 | |
|     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
 | |
|       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
 | |
|       PointerType *FuncPtrTy =
 | |
|           FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
 | |
|       // FIXME: Reject the 2-field form in LLVM 4.0.
 | |
|       Assert(STy &&
 | |
|                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
 | |
|                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
 | |
|                  STy->getTypeAtIndex(1) == FuncPtrTy,
 | |
|              "wrong type for intrinsic global variable", &GV);
 | |
|       if (STy->getNumElements() == 3) {
 | |
|         Type *ETy = STy->getTypeAtIndex(2);
 | |
|         Assert(ETy->isPointerTy() &&
 | |
|                    cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
 | |
|                "wrong type for intrinsic global variable", &GV);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GV.hasName() && (GV.getName() == "llvm.used" ||
 | |
|                        GV.getName() == "llvm.compiler.used")) {
 | |
|     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
 | |
|            "invalid linkage for intrinsic global variable", &GV);
 | |
|     Type *GVType = GV.getValueType();
 | |
|     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
 | |
|       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
 | |
|       Assert(PTy, "wrong type for intrinsic global variable", &GV);
 | |
|       if (GV.hasInitializer()) {
 | |
|         const Constant *Init = GV.getInitializer();
 | |
|         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
 | |
|         Assert(InitArray, "wrong initalizer for intrinsic global variable",
 | |
|                Init);
 | |
|         for (Value *Op : InitArray->operands()) {
 | |
|           Value *V = Op->stripPointerCastsNoFollowAliases();
 | |
|           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
 | |
|                      isa<GlobalAlias>(V),
 | |
|                  "invalid llvm.used member", V);
 | |
|           Assert(V->hasName(), "members of llvm.used must be named", V);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Assert(!GV.hasDLLImportStorageClass() ||
 | |
|              (GV.isDeclaration() && GV.hasExternalLinkage()) ||
 | |
|              GV.hasAvailableExternallyLinkage(),
 | |
|          "Global is marked as dllimport, but not external", &GV);
 | |
| 
 | |
|   // Visit any debug info attachments.
 | |
|   SmallVector<MDNode *, 1> MDs;
 | |
|   GV.getMetadata(LLVMContext::MD_dbg, MDs);
 | |
|   for (auto *MD : MDs) {
 | |
|     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
 | |
|       visitDIGlobalVariableExpression(*GVE);
 | |
|     else
 | |
|       AssertDI(false, "!dbg attachment of global variable must be a "
 | |
|                       "DIGlobalVariableExpression");
 | |
|   }
 | |
| 
 | |
|   if (!GV.hasInitializer()) {
 | |
|     visitGlobalValue(GV);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Walk any aggregate initializers looking for bitcasts between address spaces
 | |
|   visitConstantExprsRecursively(GV.getInitializer());
 | |
| 
 | |
|   visitGlobalValue(GV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
 | |
|   SmallPtrSet<const GlobalAlias*, 4> Visited;
 | |
|   Visited.insert(&GA);
 | |
|   visitAliaseeSubExpr(Visited, GA, C);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
 | |
|                                    const GlobalAlias &GA, const Constant &C) {
 | |
|   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
 | |
|     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
 | |
|            &GA);
 | |
| 
 | |
|     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
 | |
|       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
 | |
| 
 | |
|       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
 | |
|              &GA);
 | |
|     } else {
 | |
|       // Only continue verifying subexpressions of GlobalAliases.
 | |
|       // Do not recurse into global initializers.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
 | |
|     visitConstantExprsRecursively(CE);
 | |
| 
 | |
|   for (const Use &U : C.operands()) {
 | |
|     Value *V = &*U;
 | |
|     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
 | |
|       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
 | |
|     else if (const auto *C2 = dyn_cast<Constant>(V))
 | |
|       visitAliaseeSubExpr(Visited, GA, *C2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
 | |
|   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
 | |
|          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
 | |
|          "weak_odr, or external linkage!",
 | |
|          &GA);
 | |
|   const Constant *Aliasee = GA.getAliasee();
 | |
|   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
 | |
|   Assert(GA.getType() == Aliasee->getType(),
 | |
|          "Alias and aliasee types should match!", &GA);
 | |
| 
 | |
|   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
 | |
|          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
 | |
| 
 | |
|   visitAliaseeSubExpr(GA, *Aliasee);
 | |
| 
 | |
|   visitGlobalValue(GA);
 | |
| }
 | |
| 
 | |
| void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
 | |
|   // There used to be various other llvm.dbg.* nodes, but we don't support
 | |
|   // upgrading them and we want to reserve the namespace for future uses.
 | |
|   if (NMD.getName().startswith("llvm.dbg."))
 | |
|     AssertDI(NMD.getName() == "llvm.dbg.cu" || NMD.getName() == "llvm.dbg.mir",
 | |
|              "unrecognized named metadata node in the llvm.dbg namespace",
 | |
|              &NMD);
 | |
|   for (const MDNode *MD : NMD.operands()) {
 | |
|     if (NMD.getName() == "llvm.dbg.cu")
 | |
|       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
 | |
| 
 | |
|     if (!MD)
 | |
|       continue;
 | |
| 
 | |
|     visitMDNode(*MD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDNode(const MDNode &MD) {
 | |
|   // Only visit each node once.  Metadata can be mutually recursive, so this
 | |
|   // avoids infinite recursion here, as well as being an optimization.
 | |
|   if (!MDNodes.insert(&MD).second)
 | |
|     return;
 | |
| 
 | |
|   switch (MD.getMetadataID()) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid MDNode subclass");
 | |
|   case Metadata::MDTupleKind:
 | |
|     break;
 | |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
 | |
|   case Metadata::CLASS##Kind:                                                  \
 | |
|     visit##CLASS(cast<CLASS>(MD));                                             \
 | |
|     break;
 | |
| #include "llvm/IR/Metadata.def"
 | |
|   }
 | |
| 
 | |
|   for (const Metadata *Op : MD.operands()) {
 | |
|     if (!Op)
 | |
|       continue;
 | |
|     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
 | |
|            &MD, Op);
 | |
|     if (auto *N = dyn_cast<MDNode>(Op)) {
 | |
|       visitMDNode(*N);
 | |
|       continue;
 | |
|     }
 | |
|     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
 | |
|       visitValueAsMetadata(*V, nullptr);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check these last, so we diagnose problems in operands first.
 | |
|   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
 | |
|   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
 | |
| }
 | |
| 
 | |
| void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
 | |
|   Assert(MD.getValue(), "Expected valid value", &MD);
 | |
|   Assert(!MD.getValue()->getType()->isMetadataTy(),
 | |
|          "Unexpected metadata round-trip through values", &MD, MD.getValue());
 | |
| 
 | |
|   auto *L = dyn_cast<LocalAsMetadata>(&MD);
 | |
|   if (!L)
 | |
|     return;
 | |
| 
 | |
|   Assert(F, "function-local metadata used outside a function", L);
 | |
| 
 | |
|   // If this was an instruction, bb, or argument, verify that it is in the
 | |
|   // function that we expect.
 | |
|   Function *ActualF = nullptr;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
 | |
|     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
 | |
|     ActualF = I->getParent()->getParent();
 | |
|   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
 | |
|     ActualF = BB->getParent();
 | |
|   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
 | |
|     ActualF = A->getParent();
 | |
|   assert(ActualF && "Unimplemented function local metadata case!");
 | |
| 
 | |
|   Assert(ActualF == F, "function-local metadata used in wrong function", L);
 | |
| }
 | |
| 
 | |
| void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
 | |
|   Metadata *MD = MDV.getMetadata();
 | |
|   if (auto *N = dyn_cast<MDNode>(MD)) {
 | |
|     visitMDNode(*N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Only visit each node once.  Metadata can be mutually recursive, so this
 | |
|   // avoids infinite recursion here, as well as being an optimization.
 | |
|   if (!MDNodes.insert(MD).second)
 | |
|     return;
 | |
| 
 | |
|   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
 | |
|     visitValueAsMetadata(*V, F);
 | |
| }
 | |
| 
 | |
| static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
 | |
| static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
 | |
| static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
 | |
| 
 | |
| void Verifier::visitDILocation(const DILocation &N) {
 | |
|   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
 | |
|            "location requires a valid scope", &N, N.getRawScope());
 | |
|   if (auto *IA = N.getRawInlinedAt())
 | |
|     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGenericDINode(const GenericDINode &N) {
 | |
|   AssertDI(N.getTag(), "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIScope(const DIScope &N) {
 | |
|   if (auto *F = N.getRawFile())
 | |
|     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDISubrange(const DISubrange &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
 | |
|   AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIEnumerator(const DIEnumerator &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIBasicType(const DIBasicType &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_unspecified_type,
 | |
|            "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIDerivedType(const DIDerivedType &N) {
 | |
|   // Common scope checks.
 | |
|   visitDIScope(N);
 | |
| 
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
 | |
|                N.getTag() == dwarf::DW_TAG_pointer_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_reference_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_const_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_volatile_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_restrict_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_atomic_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_member ||
 | |
|                N.getTag() == dwarf::DW_TAG_inheritance ||
 | |
|                N.getTag() == dwarf::DW_TAG_friend,
 | |
|            "invalid tag", &N);
 | |
|   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
 | |
|     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
 | |
|              N.getRawExtraData());
 | |
|   }
 | |
| 
 | |
|   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
 | |
|   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
 | |
|            N.getRawBaseType());
 | |
| 
 | |
|   if (N.getDWARFAddressSpace()) {
 | |
|     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
 | |
|                  N.getTag() == dwarf::DW_TAG_reference_type,
 | |
|              "DWARF address space only applies to pointer or reference types",
 | |
|              &N);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool hasConflictingReferenceFlags(unsigned Flags) {
 | |
|   return (Flags & DINode::FlagLValueReference) &&
 | |
|          (Flags & DINode::FlagRValueReference);
 | |
| }
 | |
| 
 | |
| void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
 | |
|   auto *Params = dyn_cast<MDTuple>(&RawParams);
 | |
|   AssertDI(Params, "invalid template params", &N, &RawParams);
 | |
|   for (Metadata *Op : Params->operands()) {
 | |
|     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
 | |
|              &N, Params, Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitDICompositeType(const DICompositeType &N) {
 | |
|   // Common scope checks.
 | |
|   visitDIScope(N);
 | |
| 
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_structure_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_union_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_enumeration_type ||
 | |
|                N.getTag() == dwarf::DW_TAG_class_type,
 | |
|            "invalid tag", &N);
 | |
| 
 | |
|   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
 | |
|   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
 | |
|            N.getRawBaseType());
 | |
| 
 | |
|   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
 | |
|            "invalid composite elements", &N, N.getRawElements());
 | |
|   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
 | |
|            N.getRawVTableHolder());
 | |
|   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
 | |
|            "invalid reference flags", &N);
 | |
|   if (auto *Params = N.getRawTemplateParams())
 | |
|     visitTemplateParams(N, *Params);
 | |
| 
 | |
|   if (N.getTag() == dwarf::DW_TAG_class_type ||
 | |
|       N.getTag() == dwarf::DW_TAG_union_type) {
 | |
|     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
 | |
|              "class/union requires a filename", &N, N.getFile());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitDISubroutineType(const DISubroutineType &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
 | |
|   if (auto *Types = N.getRawTypeArray()) {
 | |
|     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
 | |
|     for (Metadata *Ty : N.getTypeArray()->operands()) {
 | |
|       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
 | |
|     }
 | |
|   }
 | |
|   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
 | |
|            "invalid reference flags", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIFile(const DIFile &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
 | |
|   AssertDI((N.getChecksumKind() != DIFile::CSK_None ||
 | |
|             N.getChecksum().empty()), "invalid checksum kind", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDICompileUnit(const DICompileUnit &N) {
 | |
|   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
 | |
| 
 | |
|   // Don't bother verifying the compilation directory or producer string
 | |
|   // as those could be empty.
 | |
|   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
 | |
|            N.getRawFile());
 | |
|   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
 | |
|            N.getFile());
 | |
| 
 | |
|   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
 | |
|            "invalid emission kind", &N);
 | |
| 
 | |
|   if (auto *Array = N.getRawEnumTypes()) {
 | |
|     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
 | |
|     for (Metadata *Op : N.getEnumTypes()->operands()) {
 | |
|       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
 | |
|       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
 | |
|                "invalid enum type", &N, N.getEnumTypes(), Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawRetainedTypes()) {
 | |
|     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
 | |
|     for (Metadata *Op : N.getRetainedTypes()->operands()) {
 | |
|       AssertDI(Op && (isa<DIType>(Op) ||
 | |
|                       (isa<DISubprogram>(Op) &&
 | |
|                        !cast<DISubprogram>(Op)->isDefinition())),
 | |
|                "invalid retained type", &N, Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawGlobalVariables()) {
 | |
|     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
 | |
|     for (Metadata *Op : N.getGlobalVariables()->operands()) {
 | |
|       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
 | |
|                "invalid global variable ref", &N, Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawImportedEntities()) {
 | |
|     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
 | |
|     for (Metadata *Op : N.getImportedEntities()->operands()) {
 | |
|       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
 | |
|                &N, Op);
 | |
|     }
 | |
|   }
 | |
|   if (auto *Array = N.getRawMacros()) {
 | |
|     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
 | |
|     for (Metadata *Op : N.getMacros()->operands()) {
 | |
|       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
 | |
|     }
 | |
|   }
 | |
|   CUVisited.insert(&N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDISubprogram(const DISubprogram &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
 | |
|   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
 | |
|   if (auto *F = N.getRawFile())
 | |
|     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
 | |
|   else
 | |
|     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
 | |
|   if (auto *T = N.getRawType())
 | |
|     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
 | |
|   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
 | |
|            N.getRawContainingType());
 | |
|   if (auto *Params = N.getRawTemplateParams())
 | |
|     visitTemplateParams(N, *Params);
 | |
|   if (auto *S = N.getRawDeclaration())
 | |
|     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
 | |
|              "invalid subprogram declaration", &N, S);
 | |
|   if (auto *RawVars = N.getRawVariables()) {
 | |
|     auto *Vars = dyn_cast<MDTuple>(RawVars);
 | |
|     AssertDI(Vars, "invalid variable list", &N, RawVars);
 | |
|     for (Metadata *Op : Vars->operands()) {
 | |
|       AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
 | |
|                Vars, Op);
 | |
|     }
 | |
|   }
 | |
|   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
 | |
|            "invalid reference flags", &N);
 | |
| 
 | |
|   auto *Unit = N.getRawUnit();
 | |
|   if (N.isDefinition()) {
 | |
|     // Subprogram definitions (not part of the type hierarchy).
 | |
|     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
 | |
|     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
 | |
|     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
 | |
|   } else {
 | |
|     // Subprogram declarations (part of the type hierarchy).
 | |
|     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
 | |
|   }
 | |
| 
 | |
|   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
 | |
|     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
 | |
|     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
 | |
|     for (Metadata *Op : ThrownTypes->operands())
 | |
|       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
 | |
|                Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
 | |
|   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
 | |
|            "invalid local scope", &N, N.getRawScope());
 | |
| }
 | |
| 
 | |
| void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
 | |
|   visitDILexicalBlockBase(N);
 | |
| 
 | |
|   AssertDI(N.getLine() || !N.getColumn(),
 | |
|            "cannot have column info without line info", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
 | |
|   visitDILexicalBlockBase(N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDINamespace(const DINamespace &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
 | |
|   if (auto *S = N.getRawScope())
 | |
|     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIMacro(const DIMacro &N) {
 | |
|   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
 | |
|                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
 | |
|            "invalid macinfo type", &N);
 | |
|   AssertDI(!N.getName().empty(), "anonymous macro", &N);
 | |
|   if (!N.getValue().empty()) {
 | |
|     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIMacroFile(const DIMacroFile &N) {
 | |
|   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
 | |
|            "invalid macinfo type", &N);
 | |
|   if (auto *F = N.getRawFile())
 | |
|     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
 | |
| 
 | |
|   if (auto *Array = N.getRawElements()) {
 | |
|     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
 | |
|     for (Metadata *Op : N.getElements()->operands()) {
 | |
|       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIModule(const DIModule &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
 | |
|   AssertDI(!N.getName().empty(), "anonymous module", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
 | |
|   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
 | |
| }
 | |
| 
 | |
| void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
 | |
|   visitDITemplateParameter(N);
 | |
| 
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
 | |
|            &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDITemplateValueParameter(
 | |
|     const DITemplateValueParameter &N) {
 | |
|   visitDITemplateParameter(N);
 | |
| 
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
 | |
|                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
 | |
|                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
 | |
|            "invalid tag", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIVariable(const DIVariable &N) {
 | |
|   if (auto *S = N.getRawScope())
 | |
|     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
 | |
|   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
 | |
|   if (auto *F = N.getRawFile())
 | |
|     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
 | |
|   // Checks common to all variables.
 | |
|   visitDIVariable(N);
 | |
| 
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
 | |
|   AssertDI(!N.getName().empty(), "missing global variable name", &N);
 | |
|   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
 | |
|     AssertDI(isa<DIDerivedType>(Member),
 | |
|              "invalid static data member declaration", &N, Member);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitDILocalVariable(const DILocalVariable &N) {
 | |
|   // Checks common to all variables.
 | |
|   visitDIVariable(N);
 | |
| 
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
 | |
|   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
 | |
|            "local variable requires a valid scope", &N, N.getRawScope());
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIExpression(const DIExpression &N) {
 | |
|   AssertDI(N.isValid(), "invalid expression", &N);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIGlobalVariableExpression(
 | |
|     const DIGlobalVariableExpression &GVE) {
 | |
|   AssertDI(GVE.getVariable(), "missing variable");
 | |
|   if (auto *Var = GVE.getVariable())
 | |
|     visitDIGlobalVariable(*Var);
 | |
|   if (auto *Expr = GVE.getExpression())
 | |
|     visitDIExpression(*Expr);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
 | |
|   if (auto *T = N.getRawType())
 | |
|     AssertDI(isType(T), "invalid type ref", &N, T);
 | |
|   if (auto *F = N.getRawFile())
 | |
|     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
 | |
|   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
 | |
|                N.getTag() == dwarf::DW_TAG_imported_declaration,
 | |
|            "invalid tag", &N);
 | |
|   if (auto *S = N.getRawScope())
 | |
|     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
 | |
|   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
 | |
|            N.getRawEntity());
 | |
| }
 | |
| 
 | |
| void Verifier::visitComdat(const Comdat &C) {
 | |
|   // The Module is invalid if the GlobalValue has private linkage.  Entities
 | |
|   // with private linkage don't have entries in the symbol table.
 | |
|   if (const GlobalValue *GV = M.getNamedValue(C.getName()))
 | |
|     Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
 | |
|            GV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitModuleIdents(const Module &M) {
 | |
|   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
 | |
|   if (!Idents)
 | |
|     return;
 | |
| 
 | |
|   // llvm.ident takes a list of metadata entry. Each entry has only one string.
 | |
|   // Scan each llvm.ident entry and make sure that this requirement is met.
 | |
|   for (const MDNode *N : Idents->operands()) {
 | |
|     Assert(N->getNumOperands() == 1,
 | |
|            "incorrect number of operands in llvm.ident metadata", N);
 | |
|     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
 | |
|            ("invalid value for llvm.ident metadata entry operand"
 | |
|             "(the operand should be a string)"),
 | |
|            N->getOperand(0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitModuleFlags(const Module &M) {
 | |
|   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
 | |
|   if (!Flags) return;
 | |
| 
 | |
|   // Scan each flag, and track the flags and requirements.
 | |
|   DenseMap<const MDString*, const MDNode*> SeenIDs;
 | |
|   SmallVector<const MDNode*, 16> Requirements;
 | |
|   for (const MDNode *MDN : Flags->operands())
 | |
|     visitModuleFlag(MDN, SeenIDs, Requirements);
 | |
| 
 | |
|   // Validate that the requirements in the module are valid.
 | |
|   for (const MDNode *Requirement : Requirements) {
 | |
|     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
 | |
|     const Metadata *ReqValue = Requirement->getOperand(1);
 | |
| 
 | |
|     const MDNode *Op = SeenIDs.lookup(Flag);
 | |
|     if (!Op) {
 | |
|       CheckFailed("invalid requirement on flag, flag is not present in module",
 | |
|                   Flag);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Op->getOperand(2) != ReqValue) {
 | |
|       CheckFailed(("invalid requirement on flag, "
 | |
|                    "flag does not have the required value"),
 | |
|                   Flag);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| Verifier::visitModuleFlag(const MDNode *Op,
 | |
|                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
 | |
|                           SmallVectorImpl<const MDNode *> &Requirements) {
 | |
|   // Each module flag should have three arguments, the merge behavior (a
 | |
|   // constant int), the flag ID (an MDString), and the value.
 | |
|   Assert(Op->getNumOperands() == 3,
 | |
|          "incorrect number of operands in module flag", Op);
 | |
|   Module::ModFlagBehavior MFB;
 | |
|   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
 | |
|     Assert(
 | |
|         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
 | |
|         "invalid behavior operand in module flag (expected constant integer)",
 | |
|         Op->getOperand(0));
 | |
|     Assert(false,
 | |
|            "invalid behavior operand in module flag (unexpected constant)",
 | |
|            Op->getOperand(0));
 | |
|   }
 | |
|   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
 | |
|   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
 | |
|          Op->getOperand(1));
 | |
| 
 | |
|   // Sanity check the values for behaviors with additional requirements.
 | |
|   switch (MFB) {
 | |
|   case Module::Error:
 | |
|   case Module::Warning:
 | |
|   case Module::Override:
 | |
|     // These behavior types accept any value.
 | |
|     break;
 | |
| 
 | |
|   case Module::Max: {
 | |
|     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
 | |
|            "invalid value for 'max' module flag (expected constant integer)",
 | |
|            Op->getOperand(2));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Module::Require: {
 | |
|     // The value should itself be an MDNode with two operands, a flag ID (an
 | |
|     // MDString), and a value.
 | |
|     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
 | |
|     Assert(Value && Value->getNumOperands() == 2,
 | |
|            "invalid value for 'require' module flag (expected metadata pair)",
 | |
|            Op->getOperand(2));
 | |
|     Assert(isa<MDString>(Value->getOperand(0)),
 | |
|            ("invalid value for 'require' module flag "
 | |
|             "(first value operand should be a string)"),
 | |
|            Value->getOperand(0));
 | |
| 
 | |
|     // Append it to the list of requirements, to check once all module flags are
 | |
|     // scanned.
 | |
|     Requirements.push_back(Value);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Module::Append:
 | |
|   case Module::AppendUnique: {
 | |
|     // These behavior types require the operand be an MDNode.
 | |
|     Assert(isa<MDNode>(Op->getOperand(2)),
 | |
|            "invalid value for 'append'-type module flag "
 | |
|            "(expected a metadata node)",
 | |
|            Op->getOperand(2));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Unless this is a "requires" flag, check the ID is unique.
 | |
|   if (MFB != Module::Require) {
 | |
|     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
 | |
|     Assert(Inserted,
 | |
|            "module flag identifiers must be unique (or of 'require' type)", ID);
 | |
|   }
 | |
| 
 | |
|   if (ID->getString() == "wchar_size") {
 | |
|     ConstantInt *Value
 | |
|       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
 | |
|     Assert(Value, "wchar_size metadata requires constant integer argument");
 | |
|   }
 | |
| 
 | |
|   if (ID->getString() == "Linker Options") {
 | |
|     // If the llvm.linker.options named metadata exists, we assume that the
 | |
|     // bitcode reader has upgraded the module flag. Otherwise the flag might
 | |
|     // have been created by a client directly.
 | |
|     Assert(M.getNamedMetadata("llvm.linker.options"),
 | |
|            "'Linker Options' named metadata no longer supported");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if this attribute kind only applies to functions.
 | |
| static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case Attribute::NoReturn:
 | |
|   case Attribute::NoUnwind:
 | |
|   case Attribute::NoInline:
 | |
|   case Attribute::AlwaysInline:
 | |
|   case Attribute::OptimizeForSize:
 | |
|   case Attribute::StackProtect:
 | |
|   case Attribute::StackProtectReq:
 | |
|   case Attribute::StackProtectStrong:
 | |
|   case Attribute::SafeStack:
 | |
|   case Attribute::NoRedZone:
 | |
|   case Attribute::NoImplicitFloat:
 | |
|   case Attribute::Naked:
 | |
|   case Attribute::InlineHint:
 | |
|   case Attribute::StackAlignment:
 | |
|   case Attribute::UWTable:
 | |
|   case Attribute::NonLazyBind:
 | |
|   case Attribute::ReturnsTwice:
 | |
|   case Attribute::SanitizeAddress:
 | |
|   case Attribute::SanitizeThread:
 | |
|   case Attribute::SanitizeMemory:
 | |
|   case Attribute::MinSize:
 | |
|   case Attribute::NoDuplicate:
 | |
|   case Attribute::Builtin:
 | |
|   case Attribute::NoBuiltin:
 | |
|   case Attribute::Cold:
 | |
|   case Attribute::OptimizeNone:
 | |
|   case Attribute::JumpTable:
 | |
|   case Attribute::Convergent:
 | |
|   case Attribute::ArgMemOnly:
 | |
|   case Attribute::NoRecurse:
 | |
|   case Attribute::InaccessibleMemOnly:
 | |
|   case Attribute::InaccessibleMemOrArgMemOnly:
 | |
|   case Attribute::AllocSize:
 | |
|   case Attribute::Speculatable:
 | |
|   case Attribute::StrictFP:
 | |
|     return true;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if this is a function attribute that can also appear on
 | |
| /// arguments.
 | |
| static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
 | |
|   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
 | |
|          Kind == Attribute::ReadNone;
 | |
| }
 | |
| 
 | |
| void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
 | |
|                                     const Value *V) {
 | |
|   for (Attribute A : Attrs) {
 | |
|     if (A.isStringAttribute())
 | |
|       continue;
 | |
| 
 | |
|     if (isFuncOnlyAttr(A.getKindAsEnum())) {
 | |
|       if (!IsFunction) {
 | |
|         CheckFailed("Attribute '" + A.getAsString() +
 | |
|                         "' only applies to functions!",
 | |
|                     V);
 | |
|         return;
 | |
|       }
 | |
|     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
 | |
|       CheckFailed("Attribute '" + A.getAsString() +
 | |
|                       "' does not apply to functions!",
 | |
|                   V);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // VerifyParameterAttrs - Check the given attributes for an argument or return
 | |
| // value of the specified type.  The value V is printed in error messages.
 | |
| void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
 | |
|                                     const Value *V) {
 | |
|   if (!Attrs.hasAttributes())
 | |
|     return;
 | |
| 
 | |
|   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
 | |
| 
 | |
|   // Check for mutually incompatible attributes.  Only inreg is compatible with
 | |
|   // sret.
 | |
|   unsigned AttrCount = 0;
 | |
|   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
 | |
|   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
 | |
|   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
 | |
|                Attrs.hasAttribute(Attribute::InReg);
 | |
|   AttrCount += Attrs.hasAttribute(Attribute::Nest);
 | |
|   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
 | |
|                          "and 'sret' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
 | |
|            Attrs.hasAttribute(Attribute::ReadOnly)),
 | |
|          "Attributes "
 | |
|          "'inalloca and readonly' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
 | |
|            Attrs.hasAttribute(Attribute::Returned)),
 | |
|          "Attributes "
 | |
|          "'sret and returned' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
 | |
|            Attrs.hasAttribute(Attribute::SExt)),
 | |
|          "Attributes "
 | |
|          "'zeroext and signext' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
 | |
|            Attrs.hasAttribute(Attribute::ReadOnly)),
 | |
|          "Attributes "
 | |
|          "'readnone and readonly' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
 | |
|            Attrs.hasAttribute(Attribute::WriteOnly)),
 | |
|          "Attributes "
 | |
|          "'readnone and writeonly' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
 | |
|            Attrs.hasAttribute(Attribute::WriteOnly)),
 | |
|          "Attributes "
 | |
|          "'readonly and writeonly' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
 | |
|            Attrs.hasAttribute(Attribute::AlwaysInline)),
 | |
|          "Attributes "
 | |
|          "'noinline and alwaysinline' are incompatible!",
 | |
|          V);
 | |
| 
 | |
|   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
 | |
|   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
 | |
|          "Wrong types for attribute: " +
 | |
|              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
 | |
|          V);
 | |
| 
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | |
|     SmallPtrSet<Type*, 4> Visited;
 | |
|     if (!PTy->getElementType()->isSized(&Visited)) {
 | |
|       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
 | |
|                  !Attrs.hasAttribute(Attribute::InAlloca),
 | |
|              "Attributes 'byval' and 'inalloca' do not support unsized types!",
 | |
|              V);
 | |
|     }
 | |
|     if (!isa<PointerType>(PTy->getElementType()))
 | |
|       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
 | |
|              "Attribute 'swifterror' only applies to parameters "
 | |
|              "with pointer to pointer type!",
 | |
|              V);
 | |
|   } else {
 | |
|     Assert(!Attrs.hasAttribute(Attribute::ByVal),
 | |
|            "Attribute 'byval' only applies to parameters with pointer type!",
 | |
|            V);
 | |
|     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
 | |
|            "Attribute 'swifterror' only applies to parameters "
 | |
|            "with pointer type!",
 | |
|            V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check parameter attributes against a function type.
 | |
| // The value V is printed in error messages.
 | |
| void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
 | |
|                                    const Value *V) {
 | |
|   if (Attrs.isEmpty())
 | |
|     return;
 | |
| 
 | |
|   bool SawNest = false;
 | |
|   bool SawReturned = false;
 | |
|   bool SawSRet = false;
 | |
|   bool SawSwiftSelf = false;
 | |
|   bool SawSwiftError = false;
 | |
| 
 | |
|   // Verify return value attributes.
 | |
|   AttributeSet RetAttrs = Attrs.getRetAttributes();
 | |
|   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::Nest) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::StructRet) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::Returned) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::SwiftError)),
 | |
|          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
 | |
|          "'returned', 'swiftself', and 'swifterror' do not apply to return "
 | |
|          "values!",
 | |
|          V);
 | |
|   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
 | |
|           !RetAttrs.hasAttribute(Attribute::ReadNone)),
 | |
|          "Attribute '" + RetAttrs.getAsString() +
 | |
|              "' does not apply to function returns",
 | |
|          V);
 | |
|   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
 | |
| 
 | |
|   // Verify parameter attributes.
 | |
|   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
 | |
|     Type *Ty = FT->getParamType(i);
 | |
|     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
 | |
| 
 | |
|     verifyParameterAttrs(ArgAttrs, Ty, V);
 | |
| 
 | |
|     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
 | |
|       Assert(!SawNest, "More than one parameter has attribute nest!", V);
 | |
|       SawNest = true;
 | |
|     }
 | |
| 
 | |
|     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
 | |
|       Assert(!SawReturned, "More than one parameter has attribute returned!",
 | |
|              V);
 | |
|       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
 | |
|              "Incompatible argument and return types for 'returned' attribute",
 | |
|              V);
 | |
|       SawReturned = true;
 | |
|     }
 | |
| 
 | |
|     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
 | |
|       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
 | |
|       Assert(i == 0 || i == 1,
 | |
|              "Attribute 'sret' is not on first or second parameter!", V);
 | |
|       SawSRet = true;
 | |
|     }
 | |
| 
 | |
|     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
 | |
|       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
 | |
|       SawSwiftSelf = true;
 | |
|     }
 | |
| 
 | |
|     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
 | |
|       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
 | |
|              V);
 | |
|       SawSwiftError = true;
 | |
|     }
 | |
| 
 | |
|     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
 | |
|       Assert(i == FT->getNumParams() - 1,
 | |
|              "inalloca isn't on the last parameter!", V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
 | |
|     return;
 | |
| 
 | |
|   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
 | |
| 
 | |
|   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
 | |
|            Attrs.hasFnAttribute(Attribute::ReadOnly)),
 | |
|          "Attributes 'readnone and readonly' are incompatible!", V);
 | |
| 
 | |
|   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
 | |
|            Attrs.hasFnAttribute(Attribute::WriteOnly)),
 | |
|          "Attributes 'readnone and writeonly' are incompatible!", V);
 | |
| 
 | |
|   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
 | |
|            Attrs.hasFnAttribute(Attribute::WriteOnly)),
 | |
|          "Attributes 'readonly and writeonly' are incompatible!", V);
 | |
| 
 | |
|   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
 | |
|            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
 | |
|          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
 | |
|          "incompatible!",
 | |
|          V);
 | |
| 
 | |
|   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
 | |
|            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
 | |
|          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
 | |
| 
 | |
|   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
 | |
|            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
 | |
|          "Attributes 'noinline and alwaysinline' are incompatible!", V);
 | |
| 
 | |
|   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
 | |
|     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
 | |
|            "Attribute 'optnone' requires 'noinline'!", V);
 | |
| 
 | |
|     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
 | |
|            "Attributes 'optsize and optnone' are incompatible!", V);
 | |
| 
 | |
|     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
 | |
|            "Attributes 'minsize and optnone' are incompatible!", V);
 | |
|   }
 | |
| 
 | |
|   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
 | |
|     const GlobalValue *GV = cast<GlobalValue>(V);
 | |
|     Assert(GV->hasGlobalUnnamedAddr(),
 | |
|            "Attribute 'jumptable' requires 'unnamed_addr'", V);
 | |
|   }
 | |
| 
 | |
|   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
 | |
|     std::pair<unsigned, Optional<unsigned>> Args =
 | |
|         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
 | |
| 
 | |
|     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
 | |
|       if (ParamNo >= FT->getNumParams()) {
 | |
|         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
 | |
|         CheckFailed("'allocsize' " + Name +
 | |
|                         " argument must refer to an integer parameter",
 | |
|                     V);
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     };
 | |
| 
 | |
|     if (!CheckParam("element size", Args.first))
 | |
|       return;
 | |
| 
 | |
|     if (Args.second && !CheckParam("number of elements", *Args.second))
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::verifyFunctionMetadata(
 | |
|     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
 | |
|   for (const auto &Pair : MDs) {
 | |
|     if (Pair.first == LLVMContext::MD_prof) {
 | |
|       MDNode *MD = Pair.second;
 | |
|       Assert(MD->getNumOperands() >= 2,
 | |
|              "!prof annotations should have no less than 2 operands", MD);
 | |
| 
 | |
|       // Check first operand.
 | |
|       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
 | |
|              MD);
 | |
|       Assert(isa<MDString>(MD->getOperand(0)),
 | |
|              "expected string with name of the !prof annotation", MD);
 | |
|       MDString *MDS = cast<MDString>(MD->getOperand(0));
 | |
|       StringRef ProfName = MDS->getString();
 | |
|       Assert(ProfName.equals("function_entry_count"),
 | |
|              "first operand should be 'function_entry_count'", MD);
 | |
| 
 | |
|       // Check second operand.
 | |
|       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
 | |
|              MD);
 | |
|       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
 | |
|              "expected integer argument to function_entry_count", MD);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
 | |
|   if (!ConstantExprVisited.insert(EntryC).second)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<const Constant *, 16> Stack;
 | |
|   Stack.push_back(EntryC);
 | |
| 
 | |
|   while (!Stack.empty()) {
 | |
|     const Constant *C = Stack.pop_back_val();
 | |
| 
 | |
|     // Check this constant expression.
 | |
|     if (const auto *CE = dyn_cast<ConstantExpr>(C))
 | |
|       visitConstantExpr(CE);
 | |
| 
 | |
|     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
 | |
|       // Global Values get visited separately, but we do need to make sure
 | |
|       // that the global value is in the correct module
 | |
|       Assert(GV->getParent() == &M, "Referencing global in another module!",
 | |
|              EntryC, &M, GV, GV->getParent());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Visit all sub-expressions.
 | |
|     for (const Use &U : C->operands()) {
 | |
|       const auto *OpC = dyn_cast<Constant>(U);
 | |
|       if (!OpC)
 | |
|         continue;
 | |
|       if (!ConstantExprVisited.insert(OpC).second)
 | |
|         continue;
 | |
|       Stack.push_back(OpC);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitConstantExpr(const ConstantExpr *CE) {
 | |
|   if (CE->getOpcode() == Instruction::BitCast)
 | |
|     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
 | |
|                                  CE->getType()),
 | |
|            "Invalid bitcast", CE);
 | |
| 
 | |
|   if (CE->getOpcode() == Instruction::IntToPtr ||
 | |
|       CE->getOpcode() == Instruction::PtrToInt) {
 | |
|     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
 | |
|                       ? CE->getType()
 | |
|                       : CE->getOperand(0)->getType();
 | |
|     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
 | |
|                         ? "inttoptr not supported for non-integral pointers"
 | |
|                         : "ptrtoint not supported for non-integral pointers";
 | |
|     Assert(
 | |
|         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
 | |
|         Msg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
 | |
|   // There shouldn't be more attribute sets than there are parameters plus the
 | |
|   // function and return value.
 | |
|   return Attrs.getNumAttrSets() <= Params + 2;
 | |
| }
 | |
| 
 | |
| /// Verify that statepoint intrinsic is well formed.
 | |
| void Verifier::verifyStatepoint(ImmutableCallSite CS) {
 | |
|   assert(CS.getCalledFunction() &&
 | |
|          CS.getCalledFunction()->getIntrinsicID() ==
 | |
|            Intrinsic::experimental_gc_statepoint);
 | |
| 
 | |
|   const Instruction &CI = *CS.getInstruction();
 | |
| 
 | |
|   Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
 | |
|          !CS.onlyAccessesArgMemory(),
 | |
|          "gc.statepoint must read and write all memory to preserve "
 | |
|          "reordering restrictions required by safepoint semantics",
 | |
|          &CI);
 | |
| 
 | |
|   const Value *IDV = CS.getArgument(0);
 | |
|   Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
 | |
|          &CI);
 | |
| 
 | |
|   const Value *NumPatchBytesV = CS.getArgument(1);
 | |
|   Assert(isa<ConstantInt>(NumPatchBytesV),
 | |
|          "gc.statepoint number of patchable bytes must be a constant integer",
 | |
|          &CI);
 | |
|   const int64_t NumPatchBytes =
 | |
|       cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
 | |
|   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
 | |
|   Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
 | |
|                              "positive",
 | |
|          &CI);
 | |
| 
 | |
|   const Value *Target = CS.getArgument(2);
 | |
|   auto *PT = dyn_cast<PointerType>(Target->getType());
 | |
|   Assert(PT && PT->getElementType()->isFunctionTy(),
 | |
|          "gc.statepoint callee must be of function pointer type", &CI, Target);
 | |
|   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
 | |
| 
 | |
|   const Value *NumCallArgsV = CS.getArgument(3);
 | |
|   Assert(isa<ConstantInt>(NumCallArgsV),
 | |
|          "gc.statepoint number of arguments to underlying call "
 | |
|          "must be constant integer",
 | |
|          &CI);
 | |
|   const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
 | |
|   Assert(NumCallArgs >= 0,
 | |
|          "gc.statepoint number of arguments to underlying call "
 | |
|          "must be positive",
 | |
|          &CI);
 | |
|   const int NumParams = (int)TargetFuncType->getNumParams();
 | |
|   if (TargetFuncType->isVarArg()) {
 | |
|     Assert(NumCallArgs >= NumParams,
 | |
|            "gc.statepoint mismatch in number of vararg call args", &CI);
 | |
| 
 | |
|     // TODO: Remove this limitation
 | |
|     Assert(TargetFuncType->getReturnType()->isVoidTy(),
 | |
|            "gc.statepoint doesn't support wrapping non-void "
 | |
|            "vararg functions yet",
 | |
|            &CI);
 | |
|   } else
 | |
|     Assert(NumCallArgs == NumParams,
 | |
|            "gc.statepoint mismatch in number of call args", &CI);
 | |
| 
 | |
|   const Value *FlagsV = CS.getArgument(4);
 | |
|   Assert(isa<ConstantInt>(FlagsV),
 | |
|          "gc.statepoint flags must be constant integer", &CI);
 | |
|   const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
 | |
|   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
 | |
|          "unknown flag used in gc.statepoint flags argument", &CI);
 | |
| 
 | |
|   // Verify that the types of the call parameter arguments match
 | |
|   // the type of the wrapped callee.
 | |
|   for (int i = 0; i < NumParams; i++) {
 | |
|     Type *ParamType = TargetFuncType->getParamType(i);
 | |
|     Type *ArgType = CS.getArgument(5 + i)->getType();
 | |
|     Assert(ArgType == ParamType,
 | |
|            "gc.statepoint call argument does not match wrapped "
 | |
|            "function type",
 | |
|            &CI);
 | |
|   }
 | |
| 
 | |
|   const int EndCallArgsInx = 4 + NumCallArgs;
 | |
| 
 | |
|   const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
 | |
|   Assert(isa<ConstantInt>(NumTransitionArgsV),
 | |
|          "gc.statepoint number of transition arguments "
 | |
|          "must be constant integer",
 | |
|          &CI);
 | |
|   const int NumTransitionArgs =
 | |
|       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
 | |
|   Assert(NumTransitionArgs >= 0,
 | |
|          "gc.statepoint number of transition arguments must be positive", &CI);
 | |
|   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
 | |
| 
 | |
|   const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
 | |
|   Assert(isa<ConstantInt>(NumDeoptArgsV),
 | |
|          "gc.statepoint number of deoptimization arguments "
 | |
|          "must be constant integer",
 | |
|          &CI);
 | |
|   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
 | |
|   Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
 | |
|                             "must be positive",
 | |
|          &CI);
 | |
| 
 | |
|   const int ExpectedNumArgs =
 | |
|       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
 | |
|   Assert(ExpectedNumArgs <= (int)CS.arg_size(),
 | |
|          "gc.statepoint too few arguments according to length fields", &CI);
 | |
| 
 | |
|   // Check that the only uses of this gc.statepoint are gc.result or
 | |
|   // gc.relocate calls which are tied to this statepoint and thus part
 | |
|   // of the same statepoint sequence
 | |
|   for (const User *U : CI.users()) {
 | |
|     const CallInst *Call = dyn_cast<const CallInst>(U);
 | |
|     Assert(Call, "illegal use of statepoint token", &CI, U);
 | |
|     if (!Call) continue;
 | |
|     Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
 | |
|            "gc.result or gc.relocate are the only value uses "
 | |
|            "of a gc.statepoint",
 | |
|            &CI, U);
 | |
|     if (isa<GCResultInst>(Call)) {
 | |
|       Assert(Call->getArgOperand(0) == &CI,
 | |
|              "gc.result connected to wrong gc.statepoint", &CI, Call);
 | |
|     } else if (isa<GCRelocateInst>(Call)) {
 | |
|       Assert(Call->getArgOperand(0) == &CI,
 | |
|              "gc.relocate connected to wrong gc.statepoint", &CI, Call);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Note: It is legal for a single derived pointer to be listed multiple
 | |
|   // times.  It's non-optimal, but it is legal.  It can also happen after
 | |
|   // insertion if we strip a bitcast away.
 | |
|   // Note: It is really tempting to check that each base is relocated and
 | |
|   // that a derived pointer is never reused as a base pointer.  This turns
 | |
|   // out to be problematic since optimizations run after safepoint insertion
 | |
|   // can recognize equality properties that the insertion logic doesn't know
 | |
|   // about.  See example statepoint.ll in the verifier subdirectory
 | |
| }
 | |
| 
 | |
| void Verifier::verifyFrameRecoverIndices() {
 | |
|   for (auto &Counts : FrameEscapeInfo) {
 | |
|     Function *F = Counts.first;
 | |
|     unsigned EscapedObjectCount = Counts.second.first;
 | |
|     unsigned MaxRecoveredIndex = Counts.second.second;
 | |
|     Assert(MaxRecoveredIndex <= EscapedObjectCount,
 | |
|            "all indices passed to llvm.localrecover must be less than the "
 | |
|            "number of arguments passed ot llvm.localescape in the parent "
 | |
|            "function",
 | |
|            F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Instruction *getSuccPad(TerminatorInst *Terminator) {
 | |
|   BasicBlock *UnwindDest;
 | |
|   if (auto *II = dyn_cast<InvokeInst>(Terminator))
 | |
|     UnwindDest = II->getUnwindDest();
 | |
|   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
 | |
|     UnwindDest = CSI->getUnwindDest();
 | |
|   else
 | |
|     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
 | |
|   return UnwindDest->getFirstNonPHI();
 | |
| }
 | |
| 
 | |
| void Verifier::verifySiblingFuncletUnwinds() {
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   SmallPtrSet<Instruction *, 8> Active;
 | |
|   for (const auto &Pair : SiblingFuncletInfo) {
 | |
|     Instruction *PredPad = Pair.first;
 | |
|     if (Visited.count(PredPad))
 | |
|       continue;
 | |
|     Active.insert(PredPad);
 | |
|     TerminatorInst *Terminator = Pair.second;
 | |
|     do {
 | |
|       Instruction *SuccPad = getSuccPad(Terminator);
 | |
|       if (Active.count(SuccPad)) {
 | |
|         // Found a cycle; report error
 | |
|         Instruction *CyclePad = SuccPad;
 | |
|         SmallVector<Instruction *, 8> CycleNodes;
 | |
|         do {
 | |
|           CycleNodes.push_back(CyclePad);
 | |
|           TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
 | |
|           if (CycleTerminator != CyclePad)
 | |
|             CycleNodes.push_back(CycleTerminator);
 | |
|           CyclePad = getSuccPad(CycleTerminator);
 | |
|         } while (CyclePad != SuccPad);
 | |
|         Assert(false, "EH pads can't handle each other's exceptions",
 | |
|                ArrayRef<Instruction *>(CycleNodes));
 | |
|       }
 | |
|       // Don't re-walk a node we've already checked
 | |
|       if (!Visited.insert(SuccPad).second)
 | |
|         break;
 | |
|       // Walk to this successor if it has a map entry.
 | |
|       PredPad = SuccPad;
 | |
|       auto TermI = SiblingFuncletInfo.find(PredPad);
 | |
|       if (TermI == SiblingFuncletInfo.end())
 | |
|         break;
 | |
|       Terminator = TermI->second;
 | |
|       Active.insert(PredPad);
 | |
|     } while (true);
 | |
|     // Each node only has one successor, so we've walked all the active
 | |
|     // nodes' successors.
 | |
|     Active.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // visitFunction - Verify that a function is ok.
 | |
| //
 | |
| void Verifier::visitFunction(const Function &F) {
 | |
|   visitGlobalValue(F);
 | |
| 
 | |
|   // Check function arguments.
 | |
|   FunctionType *FT = F.getFunctionType();
 | |
|   unsigned NumArgs = F.arg_size();
 | |
| 
 | |
|   Assert(&Context == &F.getContext(),
 | |
|          "Function context does not match Module context!", &F);
 | |
| 
 | |
|   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
 | |
|   Assert(FT->getNumParams() == NumArgs,
 | |
|          "# formal arguments must match # of arguments for function type!", &F,
 | |
|          FT);
 | |
|   Assert(F.getReturnType()->isFirstClassType() ||
 | |
|              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
 | |
|          "Functions cannot return aggregate values!", &F);
 | |
| 
 | |
|   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
 | |
|          "Invalid struct return type!", &F);
 | |
| 
 | |
|   AttributeList Attrs = F.getAttributes();
 | |
| 
 | |
|   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
 | |
|          "Attribute after last parameter!", &F);
 | |
| 
 | |
|   // Check function attributes.
 | |
|   verifyFunctionAttrs(FT, Attrs, &F);
 | |
| 
 | |
|   // On function declarations/definitions, we do not support the builtin
 | |
|   // attribute. We do not check this in VerifyFunctionAttrs since that is
 | |
|   // checking for Attributes that can/can not ever be on functions.
 | |
|   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
 | |
|          "Attribute 'builtin' can only be applied to a callsite.", &F);
 | |
| 
 | |
|   // Check that this function meets the restrictions on this calling convention.
 | |
|   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
 | |
|   // restrictions can be lifted.
 | |
|   switch (F.getCallingConv()) {
 | |
|   default:
 | |
|   case CallingConv::C:
 | |
|     break;
 | |
|   case CallingConv::AMDGPU_KERNEL:
 | |
|   case CallingConv::SPIR_KERNEL:
 | |
|     Assert(F.getReturnType()->isVoidTy(),
 | |
|            "Calling convention requires void return type", &F);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case CallingConv::AMDGPU_VS:
 | |
|   case CallingConv::AMDGPU_HS:
 | |
|   case CallingConv::AMDGPU_GS:
 | |
|   case CallingConv::AMDGPU_PS:
 | |
|   case CallingConv::AMDGPU_CS:
 | |
|     Assert(!F.hasStructRetAttr(),
 | |
|            "Calling convention does not allow sret", &F);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::Cold:
 | |
|   case CallingConv::Intel_OCL_BI:
 | |
|   case CallingConv::PTX_Kernel:
 | |
|   case CallingConv::PTX_Device:
 | |
|     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
 | |
|                           "perfect forwarding!",
 | |
|            &F);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   bool isLLVMdotName = F.getName().size() >= 5 &&
 | |
|                        F.getName().substr(0, 5) == "llvm.";
 | |
| 
 | |
|   // Check that the argument values match the function type for this function...
 | |
|   unsigned i = 0;
 | |
|   for (const Argument &Arg : F.args()) {
 | |
|     Assert(Arg.getType() == FT->getParamType(i),
 | |
|            "Argument value does not match function argument type!", &Arg,
 | |
|            FT->getParamType(i));
 | |
|     Assert(Arg.getType()->isFirstClassType(),
 | |
|            "Function arguments must have first-class types!", &Arg);
 | |
|     if (!isLLVMdotName) {
 | |
|       Assert(!Arg.getType()->isMetadataTy(),
 | |
|              "Function takes metadata but isn't an intrinsic", &Arg, &F);
 | |
|       Assert(!Arg.getType()->isTokenTy(),
 | |
|              "Function takes token but isn't an intrinsic", &Arg, &F);
 | |
|     }
 | |
| 
 | |
|     // Check that swifterror argument is only used by loads and stores.
 | |
|     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
 | |
|       verifySwiftErrorValue(&Arg);
 | |
|     }
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   if (!isLLVMdotName)
 | |
|     Assert(!F.getReturnType()->isTokenTy(),
 | |
|            "Functions returns a token but isn't an intrinsic", &F);
 | |
| 
 | |
|   // Get the function metadata attachments.
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | |
|   F.getAllMetadata(MDs);
 | |
|   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
 | |
|   verifyFunctionMetadata(MDs);
 | |
| 
 | |
|   // Check validity of the personality function
 | |
|   if (F.hasPersonalityFn()) {
 | |
|     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
 | |
|     if (Per)
 | |
|       Assert(Per->getParent() == F.getParent(),
 | |
|              "Referencing personality function in another module!",
 | |
|              &F, F.getParent(), Per, Per->getParent());
 | |
|   }
 | |
| 
 | |
|   if (F.isMaterializable()) {
 | |
|     // Function has a body somewhere we can't see.
 | |
|     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
 | |
|            MDs.empty() ? nullptr : MDs.front().second);
 | |
|   } else if (F.isDeclaration()) {
 | |
|     for (const auto &I : MDs) {
 | |
|       AssertDI(I.first != LLVMContext::MD_dbg,
 | |
|                "function declaration may not have a !dbg attachment", &F);
 | |
|       Assert(I.first != LLVMContext::MD_prof,
 | |
|              "function declaration may not have a !prof attachment", &F);
 | |
| 
 | |
|       // Verify the metadata itself.
 | |
|       visitMDNode(*I.second);
 | |
|     }
 | |
|     Assert(!F.hasPersonalityFn(),
 | |
|            "Function declaration shouldn't have a personality routine", &F);
 | |
|   } else {
 | |
|     // Verify that this function (which has a body) is not named "llvm.*".  It
 | |
|     // is not legal to define intrinsics.
 | |
|     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
 | |
| 
 | |
|     // Check the entry node
 | |
|     const BasicBlock *Entry = &F.getEntryBlock();
 | |
|     Assert(pred_empty(Entry),
 | |
|            "Entry block to function must not have predecessors!", Entry);
 | |
| 
 | |
|     // The address of the entry block cannot be taken, unless it is dead.
 | |
|     if (Entry->hasAddressTaken()) {
 | |
|       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
 | |
|              "blockaddress may not be used with the entry block!", Entry);
 | |
|     }
 | |
| 
 | |
|     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
 | |
|     // Visit metadata attachments.
 | |
|     for (const auto &I : MDs) {
 | |
|       // Verify that the attachment is legal.
 | |
|       switch (I.first) {
 | |
|       default:
 | |
|         break;
 | |
|       case LLVMContext::MD_dbg: {
 | |
|         ++NumDebugAttachments;
 | |
|         AssertDI(NumDebugAttachments == 1,
 | |
|                  "function must have a single !dbg attachment", &F, I.second);
 | |
|         AssertDI(isa<DISubprogram>(I.second),
 | |
|                  "function !dbg attachment must be a subprogram", &F, I.second);
 | |
|         auto *SP = cast<DISubprogram>(I.second);
 | |
|         const Function *&AttachedTo = DISubprogramAttachments[SP];
 | |
|         AssertDI(!AttachedTo || AttachedTo == &F,
 | |
|                  "DISubprogram attached to more than one function", SP, &F);
 | |
|         AttachedTo = &F;
 | |
|         break;
 | |
|       }
 | |
|       case LLVMContext::MD_prof:
 | |
|         ++NumProfAttachments;
 | |
|         Assert(NumProfAttachments == 1,
 | |
|                "function must have a single !prof attachment", &F, I.second);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Verify the metadata itself.
 | |
|       visitMDNode(*I.second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this function is actually an intrinsic, verify that it is only used in
 | |
|   // direct call/invokes, never having its "address taken".
 | |
|   // Only do this if the module is materialized, otherwise we don't have all the
 | |
|   // uses.
 | |
|   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
 | |
|     const User *U;
 | |
|     if (F.hasAddressTaken(&U))
 | |
|       Assert(false, "Invalid user of intrinsic instruction!", U);
 | |
|   }
 | |
| 
 | |
|   Assert(!F.hasDLLImportStorageClass() ||
 | |
|              (F.isDeclaration() && F.hasExternalLinkage()) ||
 | |
|              F.hasAvailableExternallyLinkage(),
 | |
|          "Function is marked as dllimport, but not external.", &F);
 | |
| 
 | |
|   auto *N = F.getSubprogram();
 | |
|   HasDebugInfo = (N != nullptr);
 | |
|   if (!HasDebugInfo)
 | |
|     return;
 | |
| 
 | |
|   // Check that all !dbg attachments lead to back to N (or, at least, another
 | |
|   // subprogram that describes the same function).
 | |
|   //
 | |
|   // FIXME: Check this incrementally while visiting !dbg attachments.
 | |
|   // FIXME: Only check when N is the canonical subprogram for F.
 | |
|   SmallPtrSet<const MDNode *, 32> Seen;
 | |
|   for (auto &BB : F)
 | |
|     for (auto &I : BB) {
 | |
|       // Be careful about using DILocation here since we might be dealing with
 | |
|       // broken code (this is the Verifier after all).
 | |
|       DILocation *DL =
 | |
|           dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
 | |
|       if (!DL)
 | |
|         continue;
 | |
|       if (!Seen.insert(DL).second)
 | |
|         continue;
 | |
| 
 | |
|       DILocalScope *Scope = DL->getInlinedAtScope();
 | |
|       if (Scope && !Seen.insert(Scope).second)
 | |
|         continue;
 | |
| 
 | |
|       DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
 | |
| 
 | |
|       // Scope and SP could be the same MDNode and we don't want to skip
 | |
|       // validation in that case
 | |
|       if (SP && ((Scope != SP) && !Seen.insert(SP).second))
 | |
|         continue;
 | |
| 
 | |
|       // FIXME: Once N is canonical, check "SP == &N".
 | |
|       AssertDI(SP->describes(&F),
 | |
|                "!dbg attachment points at wrong subprogram for function", N, &F,
 | |
|                &I, DL, Scope, SP);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // verifyBasicBlock - Verify that a basic block is well formed...
 | |
| //
 | |
| void Verifier::visitBasicBlock(BasicBlock &BB) {
 | |
|   InstsInThisBlock.clear();
 | |
| 
 | |
|   // Ensure that basic blocks have terminators!
 | |
|   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | |
| 
 | |
|   // Check constraints that this basic block imposes on all of the PHI nodes in
 | |
|   // it.
 | |
|   if (isa<PHINode>(BB.front())) {
 | |
|     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
 | |
|     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
 | |
|     std::sort(Preds.begin(), Preds.end());
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
 | |
|       // Ensure that PHI nodes have at least one entry!
 | |
|       Assert(PN->getNumIncomingValues() != 0,
 | |
|              "PHI nodes must have at least one entry.  If the block is dead, "
 | |
|              "the PHI should be removed!",
 | |
|              PN);
 | |
|       Assert(PN->getNumIncomingValues() == Preds.size(),
 | |
|              "PHINode should have one entry for each predecessor of its "
 | |
|              "parent basic block!",
 | |
|              PN);
 | |
| 
 | |
|       // Get and sort all incoming values in the PHI node...
 | |
|       Values.clear();
 | |
|       Values.reserve(PN->getNumIncomingValues());
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
 | |
|                                         PN->getIncomingValue(i)));
 | |
|       std::sort(Values.begin(), Values.end());
 | |
| 
 | |
|       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | |
|         // Check to make sure that if there is more than one entry for a
 | |
|         // particular basic block in this PHI node, that the incoming values are
 | |
|         // all identical.
 | |
|         //
 | |
|         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
 | |
|                    Values[i].second == Values[i - 1].second,
 | |
|                "PHI node has multiple entries for the same basic block with "
 | |
|                "different incoming values!",
 | |
|                PN, Values[i].first, Values[i].second, Values[i - 1].second);
 | |
| 
 | |
|         // Check to make sure that the predecessors and PHI node entries are
 | |
|         // matched up.
 | |
|         Assert(Values[i].first == Preds[i],
 | |
|                "PHI node entries do not match predecessors!", PN,
 | |
|                Values[i].first, Preds[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that all instructions have their parent pointers set up correctly.
 | |
|   for (auto &I : BB)
 | |
|   {
 | |
|     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | |
|   // Ensure that terminators only exist at the end of the basic block.
 | |
|   Assert(&I == I.getParent()->getTerminator(),
 | |
|          "Terminator found in the middle of a basic block!", I.getParent());
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBranchInst(BranchInst &BI) {
 | |
|   if (BI.isConditional()) {
 | |
|     Assert(BI.getCondition()->getType()->isIntegerTy(1),
 | |
|            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
 | |
|   }
 | |
|   visitTerminatorInst(BI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitReturnInst(ReturnInst &RI) {
 | |
|   Function *F = RI.getParent()->getParent();
 | |
|   unsigned N = RI.getNumOperands();
 | |
|   if (F->getReturnType()->isVoidTy())
 | |
|     Assert(N == 0,
 | |
|            "Found return instr that returns non-void in Function of void "
 | |
|            "return type!",
 | |
|            &RI, F->getReturnType());
 | |
|   else
 | |
|     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
 | |
|            "Function return type does not match operand "
 | |
|            "type of return inst!",
 | |
|            &RI, F->getReturnType());
 | |
| 
 | |
|   // Check to make sure that the return value has necessary properties for
 | |
|   // terminators...
 | |
|   visitTerminatorInst(RI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSwitchInst(SwitchInst &SI) {
 | |
|   // Check to make sure that all of the constants in the switch instruction
 | |
|   // have the same type as the switched-on value.
 | |
|   Type *SwitchTy = SI.getCondition()->getType();
 | |
|   SmallPtrSet<ConstantInt*, 32> Constants;
 | |
|   for (auto &Case : SI.cases()) {
 | |
|     Assert(Case.getCaseValue()->getType() == SwitchTy,
 | |
|            "Switch constants must all be same type as switch value!", &SI);
 | |
|     Assert(Constants.insert(Case.getCaseValue()).second,
 | |
|            "Duplicate integer as switch case", &SI, Case.getCaseValue());
 | |
|   }
 | |
| 
 | |
|   visitTerminatorInst(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
 | |
|   Assert(BI.getAddress()->getType()->isPointerTy(),
 | |
|          "Indirectbr operand must have pointer type!", &BI);
 | |
|   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
 | |
|     Assert(BI.getDestination(i)->getType()->isLabelTy(),
 | |
|            "Indirectbr destinations must all have pointer type!", &BI);
 | |
| 
 | |
|   visitTerminatorInst(BI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSelectInst(SelectInst &SI) {
 | |
|   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
 | |
|                                          SI.getOperand(2)),
 | |
|          "Invalid operands for select instruction!", &SI);
 | |
| 
 | |
|   Assert(SI.getTrueValue()->getType() == SI.getType(),
 | |
|          "Select values must have same type as select instruction!", &SI);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
 | |
| /// a pass, if any exist, it's an error.
 | |
| ///
 | |
| void Verifier::visitUserOp1(Instruction &I) {
 | |
|   Assert(false, "User-defined operators should not live outside of a pass!", &I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitTruncInst(TruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "trunc source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitZExtInst(ZExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "zext source and destination must both be a vector or neither", &I);
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSExtInst(SExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "sext source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPTruncInst(FPTruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "fptrunc source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPExtInst(FPExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|          "fpext source and destination must both be a vector or neither", &I);
 | |
|   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitUIToFPInst(UIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "UIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(),
 | |
|          "UIToFP source must be integer or integer vector", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
 | |
|          &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "UIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSIToFPInst(SIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "SIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(),
 | |
|          "SIToFP source must be integer or integer vector", &I);
 | |
|   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
 | |
|          &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "SIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToUIInst(FPToUIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "FPToUI source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
 | |
|          &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(),
 | |
|          "FPToUI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "FPToUI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToSIInst(FPToSIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert(SrcVec == DstVec,
 | |
|          "FPToSI source and dest must both be vector or scalar", &I);
 | |
|   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
 | |
|          &I);
 | |
|   Assert(DestTy->isIntOrIntVectorTy(),
 | |
|          "FPToSI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|                cast<VectorType>(DestTy)->getNumElements(),
 | |
|            "FPToSI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
 | |
| 
 | |
|   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
 | |
|     Assert(!DL.isNonIntegralPointerType(PTy),
 | |
|            "ptrtoint not supported for non-integral pointers");
 | |
| 
 | |
|   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
 | |
|          &I);
 | |
| 
 | |
|   if (SrcTy->isVectorTy()) {
 | |
|     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
 | |
|     VectorType *VDest = dyn_cast<VectorType>(DestTy);
 | |
|     Assert(VSrc->getNumElements() == VDest->getNumElements(),
 | |
|            "PtrToInt Vector width mismatch", &I);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
 | |
|   // Get the source and destination types
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert(SrcTy->isIntOrIntVectorTy(),
 | |
|          "IntToPtr source must be an integral", &I);
 | |
|   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
 | |
| 
 | |
|   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
 | |
|     Assert(!DL.isNonIntegralPointerType(PTy),
 | |
|            "inttoptr not supported for non-integral pointers");
 | |
| 
 | |
|   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
 | |
|          &I);
 | |
|   if (SrcTy->isVectorTy()) {
 | |
|     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
 | |
|     VectorType *VDest = dyn_cast<VectorType>(DestTy);
 | |
|     Assert(VSrc->getNumElements() == VDest->getNumElements(),
 | |
|            "IntToPtr Vector width mismatch", &I);
 | |
|   }
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBitCastInst(BitCastInst &I) {
 | |
|   Assert(
 | |
|       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
 | |
|       "Invalid bitcast", &I);
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
 | |
|   Type *SrcTy = I.getOperand(0)->getType();
 | |
|   Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
 | |
|          &I);
 | |
|   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
 | |
|          &I);
 | |
|   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
 | |
|          "AddrSpaceCast must be between different address spaces", &I);
 | |
|   if (SrcTy->isVectorTy())
 | |
|     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
 | |
|            "AddrSpaceCast vector pointer number of elements mismatch", &I);
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| /// visitPHINode - Ensure that a PHI node is well formed.
 | |
| ///
 | |
| void Verifier::visitPHINode(PHINode &PN) {
 | |
|   // Ensure that the PHI nodes are all grouped together at the top of the block.
 | |
|   // This can be tested by checking whether the instruction before this is
 | |
|   // either nonexistent (because this is begin()) or is a PHI node.  If not,
 | |
|   // then there is some other instruction before a PHI.
 | |
|   Assert(&PN == &PN.getParent()->front() ||
 | |
|              isa<PHINode>(--BasicBlock::iterator(&PN)),
 | |
|          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
 | |
| 
 | |
|   // Check that a PHI doesn't yield a Token.
 | |
|   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
 | |
| 
 | |
|   // Check that all of the values of the PHI node have the same type as the
 | |
|   // result, and that the incoming blocks are really basic blocks.
 | |
|   for (Value *IncValue : PN.incoming_values()) {
 | |
|     Assert(PN.getType() == IncValue->getType(),
 | |
|            "PHI node operands are not the same type as the result!", &PN);
 | |
|   }
 | |
| 
 | |
|   // All other PHI node constraints are checked in the visitBasicBlock method.
 | |
| 
 | |
|   visitInstruction(PN);
 | |
| }
 | |
| 
 | |
| void Verifier::verifyCallSite(CallSite CS) {
 | |
|   Instruction *I = CS.getInstruction();
 | |
| 
 | |
|   Assert(CS.getCalledValue()->getType()->isPointerTy(),
 | |
|          "Called function must be a pointer!", I);
 | |
|   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
 | |
| 
 | |
|   Assert(FPTy->getElementType()->isFunctionTy(),
 | |
|          "Called function is not pointer to function type!", I);
 | |
| 
 | |
|   Assert(FPTy->getElementType() == CS.getFunctionType(),
 | |
|          "Called function is not the same type as the call!", I);
 | |
| 
 | |
|   FunctionType *FTy = CS.getFunctionType();
 | |
| 
 | |
|   // Verify that the correct number of arguments are being passed
 | |
|   if (FTy->isVarArg())
 | |
|     Assert(CS.arg_size() >= FTy->getNumParams(),
 | |
|            "Called function requires more parameters than were provided!", I);
 | |
|   else
 | |
|     Assert(CS.arg_size() == FTy->getNumParams(),
 | |
|            "Incorrect number of arguments passed to called function!", I);
 | |
| 
 | |
|   // Verify that all arguments to the call match the function type.
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
 | |
|            "Call parameter type does not match function signature!",
 | |
|            CS.getArgument(i), FTy->getParamType(i), I);
 | |
| 
 | |
|   AttributeList Attrs = CS.getAttributes();
 | |
| 
 | |
|   Assert(verifyAttributeCount(Attrs, CS.arg_size()),
 | |
|          "Attribute after last parameter!", I);
 | |
| 
 | |
|   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
 | |
|     // Don't allow speculatable on call sites, unless the underlying function
 | |
|     // declaration is also speculatable.
 | |
|     Function *Callee
 | |
|       = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
 | |
|     Assert(Callee && Callee->isSpeculatable(),
 | |
|            "speculatable attribute may not apply to call sites", I);
 | |
|   }
 | |
| 
 | |
|   // Verify call attributes.
 | |
|   verifyFunctionAttrs(FTy, Attrs, I);
 | |
| 
 | |
|   // Conservatively check the inalloca argument.
 | |
|   // We have a bug if we can find that there is an underlying alloca without
 | |
|   // inalloca.
 | |
|   if (CS.hasInAllocaArgument()) {
 | |
|     Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
 | |
|     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
 | |
|       Assert(AI->isUsedWithInAlloca(),
 | |
|              "inalloca argument for call has mismatched alloca", AI, I);
 | |
|   }
 | |
| 
 | |
|   // For each argument of the callsite, if it has the swifterror argument,
 | |
|   // make sure the underlying alloca/parameter it comes from has a swifterror as
 | |
|   // well.
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     if (CS.paramHasAttr(i, Attribute::SwiftError)) {
 | |
|       Value *SwiftErrorArg = CS.getArgument(i);
 | |
|       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
 | |
|         Assert(AI->isSwiftError(),
 | |
|                "swifterror argument for call has mismatched alloca", AI, I);
 | |
|         continue;
 | |
|       }
 | |
|       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
 | |
|       Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
 | |
|       Assert(ArgI->hasSwiftErrorAttr(),
 | |
|              "swifterror argument for call has mismatched parameter", ArgI, I);
 | |
|     }
 | |
| 
 | |
|   if (FTy->isVarArg()) {
 | |
|     // FIXME? is 'nest' even legal here?
 | |
|     bool SawNest = false;
 | |
|     bool SawReturned = false;
 | |
| 
 | |
|     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
 | |
|       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
 | |
|         SawNest = true;
 | |
|       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
 | |
|         SawReturned = true;
 | |
|     }
 | |
| 
 | |
|     // Check attributes on the varargs part.
 | |
|     for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
 | |
|       Type *Ty = CS.getArgument(Idx)->getType();
 | |
|       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
 | |
|       verifyParameterAttrs(ArgAttrs, Ty, I);
 | |
| 
 | |
|       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
 | |
|         Assert(!SawNest, "More than one parameter has attribute nest!", I);
 | |
|         SawNest = true;
 | |
|       }
 | |
| 
 | |
|       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
 | |
|         Assert(!SawReturned, "More than one parameter has attribute returned!",
 | |
|                I);
 | |
|         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
 | |
|                "Incompatible argument and return types for 'returned' "
 | |
|                "attribute",
 | |
|                I);
 | |
|         SawReturned = true;
 | |
|       }
 | |
| 
 | |
|       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
 | |
|              "Attribute 'sret' cannot be used for vararg call arguments!", I);
 | |
| 
 | |
|       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
 | |
|         Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
 | |
|                I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify that there's no metadata unless it's a direct call to an intrinsic.
 | |
|   if (CS.getCalledFunction() == nullptr ||
 | |
|       !CS.getCalledFunction()->getName().startswith("llvm.")) {
 | |
|     for (Type *ParamTy : FTy->params()) {
 | |
|       Assert(!ParamTy->isMetadataTy(),
 | |
|              "Function has metadata parameter but isn't an intrinsic", I);
 | |
|       Assert(!ParamTy->isTokenTy(),
 | |
|              "Function has token parameter but isn't an intrinsic", I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify that indirect calls don't return tokens.
 | |
|   if (CS.getCalledFunction() == nullptr)
 | |
|     Assert(!FTy->getReturnType()->isTokenTy(),
 | |
|            "Return type cannot be token for indirect call!");
 | |
| 
 | |
|   if (Function *F = CS.getCalledFunction())
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | |
|       visitIntrinsicCallSite(ID, CS);
 | |
| 
 | |
|   // Verify that a callsite has at most one "deopt", at most one "funclet" and
 | |
|   // at most one "gc-transition" operand bundle.
 | |
|   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
 | |
|        FoundGCTransitionBundle = false;
 | |
|   for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
 | |
|     OperandBundleUse BU = CS.getOperandBundleAt(i);
 | |
|     uint32_t Tag = BU.getTagID();
 | |
|     if (Tag == LLVMContext::OB_deopt) {
 | |
|       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
 | |
|       FoundDeoptBundle = true;
 | |
|     } else if (Tag == LLVMContext::OB_gc_transition) {
 | |
|       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
 | |
|              I);
 | |
|       FoundGCTransitionBundle = true;
 | |
|     } else if (Tag == LLVMContext::OB_funclet) {
 | |
|       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
 | |
|       FoundFuncletBundle = true;
 | |
|       Assert(BU.Inputs.size() == 1,
 | |
|              "Expected exactly one funclet bundle operand", I);
 | |
|       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
 | |
|              "Funclet bundle operands should correspond to a FuncletPadInst",
 | |
|              I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Verify that each inlinable callsite of a debug-info-bearing function in a
 | |
|   // debug-info-bearing function has a debug location attached to it. Failure to
 | |
|   // do so causes assertion failures when the inliner sets up inline scope info.
 | |
|   if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
 | |
|       CS.getCalledFunction()->getSubprogram())
 | |
|     AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
 | |
|                                "debug info must have a !dbg location",
 | |
|              I);
 | |
| 
 | |
|   visitInstruction(*I);
 | |
| }
 | |
| 
 | |
| /// Two types are "congruent" if they are identical, or if they are both pointer
 | |
| /// types with different pointee types and the same address space.
 | |
| static bool isTypeCongruent(Type *L, Type *R) {
 | |
|   if (L == R)
 | |
|     return true;
 | |
|   PointerType *PL = dyn_cast<PointerType>(L);
 | |
|   PointerType *PR = dyn_cast<PointerType>(R);
 | |
|   if (!PL || !PR)
 | |
|     return false;
 | |
|   return PL->getAddressSpace() == PR->getAddressSpace();
 | |
| }
 | |
| 
 | |
| static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
 | |
|   static const Attribute::AttrKind ABIAttrs[] = {
 | |
|       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
 | |
|       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
 | |
|       Attribute::SwiftError};
 | |
|   AttrBuilder Copy;
 | |
|   for (auto AK : ABIAttrs) {
 | |
|     if (Attrs.hasParamAttribute(I, AK))
 | |
|       Copy.addAttribute(AK);
 | |
|   }
 | |
|   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
 | |
|     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
 | |
|   return Copy;
 | |
| }
 | |
| 
 | |
| void Verifier::verifyMustTailCall(CallInst &CI) {
 | |
|   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
 | |
| 
 | |
|   // - The caller and callee prototypes must match.  Pointer types of
 | |
|   //   parameters or return types may differ in pointee type, but not
 | |
|   //   address space.
 | |
|   Function *F = CI.getParent()->getParent();
 | |
|   FunctionType *CallerTy = F->getFunctionType();
 | |
|   FunctionType *CalleeTy = CI.getFunctionType();
 | |
|   Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
 | |
|          "cannot guarantee tail call due to mismatched parameter counts", &CI);
 | |
|   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
 | |
|          "cannot guarantee tail call due to mismatched varargs", &CI);
 | |
|   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
 | |
|          "cannot guarantee tail call due to mismatched return types", &CI);
 | |
|   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
 | |
|     Assert(
 | |
|         isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
 | |
|         "cannot guarantee tail call due to mismatched parameter types", &CI);
 | |
|   }
 | |
| 
 | |
|   // - The calling conventions of the caller and callee must match.
 | |
|   Assert(F->getCallingConv() == CI.getCallingConv(),
 | |
|          "cannot guarantee tail call due to mismatched calling conv", &CI);
 | |
| 
 | |
|   // - All ABI-impacting function attributes, such as sret, byval, inreg,
 | |
|   //   returned, and inalloca, must match.
 | |
|   AttributeList CallerAttrs = F->getAttributes();
 | |
|   AttributeList CalleeAttrs = CI.getAttributes();
 | |
|   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
 | |
|     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
 | |
|     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
 | |
|     Assert(CallerABIAttrs == CalleeABIAttrs,
 | |
|            "cannot guarantee tail call due to mismatched ABI impacting "
 | |
|            "function attributes",
 | |
|            &CI, CI.getOperand(I));
 | |
|   }
 | |
| 
 | |
|   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
 | |
|   //   or a pointer bitcast followed by a ret instruction.
 | |
|   // - The ret instruction must return the (possibly bitcasted) value
 | |
|   //   produced by the call or void.
 | |
|   Value *RetVal = &CI;
 | |
|   Instruction *Next = CI.getNextNode();
 | |
| 
 | |
|   // Handle the optional bitcast.
 | |
|   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
 | |
|     Assert(BI->getOperand(0) == RetVal,
 | |
|            "bitcast following musttail call must use the call", BI);
 | |
|     RetVal = BI;
 | |
|     Next = BI->getNextNode();
 | |
|   }
 | |
| 
 | |
|   // Check the return.
 | |
|   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
 | |
|   Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
 | |
|          &CI);
 | |
|   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
 | |
|          "musttail call result must be returned", Ret);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCallInst(CallInst &CI) {
 | |
|   verifyCallSite(&CI);
 | |
| 
 | |
|   if (CI.isMustTailCall())
 | |
|     verifyMustTailCall(CI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInvokeInst(InvokeInst &II) {
 | |
|   verifyCallSite(&II);
 | |
| 
 | |
|   // Verify that the first non-PHI instruction of the unwind destination is an
 | |
|   // exception handling instruction.
 | |
|   Assert(
 | |
|       II.getUnwindDest()->isEHPad(),
 | |
|       "The unwind destination does not have an exception handling instruction!",
 | |
|       &II);
 | |
| 
 | |
|   visitTerminatorInst(II);
 | |
| }
 | |
| 
 | |
| /// visitBinaryOperator - Check that both arguments to the binary operator are
 | |
| /// of the same type!
 | |
| ///
 | |
| void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | |
|   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | |
|          "Both operands to a binary operator are not of the same type!", &B);
 | |
| 
 | |
|   switch (B.getOpcode()) {
 | |
|   // Check that integer arithmetic operators are only used with
 | |
|   // integral operands.
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::URem:
 | |
|     Assert(B.getType()->isIntOrIntVectorTy(),
 | |
|            "Integer arithmetic operators only work with integral types!", &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Integer arithmetic operators must have same type "
 | |
|            "for operands and result!",
 | |
|            &B);
 | |
|     break;
 | |
|   // Check that floating-point arithmetic operators are only used with
 | |
|   // floating-point operands.
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::FRem:
 | |
|     Assert(B.getType()->isFPOrFPVectorTy(),
 | |
|            "Floating-point arithmetic operators only work with "
 | |
|            "floating-point types!",
 | |
|            &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Floating-point arithmetic operators must have same type "
 | |
|            "for operands and result!",
 | |
|            &B);
 | |
|     break;
 | |
|   // Check that logical operators are only used with integral operands.
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     Assert(B.getType()->isIntOrIntVectorTy(),
 | |
|            "Logical operators only work with integral types!", &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Logical operators must have same type for operands and result!",
 | |
|            &B);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     Assert(B.getType()->isIntOrIntVectorTy(),
 | |
|            "Shifts only work with integral types!", &B);
 | |
|     Assert(B.getType() == B.getOperand(0)->getType(),
 | |
|            "Shift return type must be same as operands!", &B);
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unknown BinaryOperator opcode!");
 | |
|   }
 | |
| 
 | |
|   visitInstruction(B);
 | |
| }
 | |
| 
 | |
| void Verifier::visitICmpInst(ICmpInst &IC) {
 | |
|   // Check that the operands are the same type
 | |
|   Type *Op0Ty = IC.getOperand(0)->getType();
 | |
|   Type *Op1Ty = IC.getOperand(1)->getType();
 | |
|   Assert(Op0Ty == Op1Ty,
 | |
|          "Both operands to ICmp instruction are not of the same type!", &IC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
 | |
|          "Invalid operand types for ICmp instruction", &IC);
 | |
|   // Check that the predicate is valid.
 | |
|   Assert(IC.isIntPredicate(),
 | |
|          "Invalid predicate in ICmp instruction!", &IC);
 | |
| 
 | |
|   visitInstruction(IC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFCmpInst(FCmpInst &FC) {
 | |
|   // Check that the operands are the same type
 | |
|   Type *Op0Ty = FC.getOperand(0)->getType();
 | |
|   Type *Op1Ty = FC.getOperand(1)->getType();
 | |
|   Assert(Op0Ty == Op1Ty,
 | |
|          "Both operands to FCmp instruction are not of the same type!", &FC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert(Op0Ty->isFPOrFPVectorTy(),
 | |
|          "Invalid operand types for FCmp instruction", &FC);
 | |
|   // Check that the predicate is valid.
 | |
|   Assert(FC.isFPPredicate(),
 | |
|          "Invalid predicate in FCmp instruction!", &FC);
 | |
| 
 | |
|   visitInstruction(FC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   Assert(
 | |
|       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
 | |
|       "Invalid extractelement operands!", &EI);
 | |
|   visitInstruction(EI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
 | |
|                                             IE.getOperand(2)),
 | |
|          "Invalid insertelement operands!", &IE);
 | |
|   visitInstruction(IE);
 | |
| }
 | |
| 
 | |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
 | |
|   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
 | |
|                                             SV.getOperand(2)),
 | |
|          "Invalid shufflevector operands!", &SV);
 | |
|   visitInstruction(SV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
 | |
| 
 | |
|   Assert(isa<PointerType>(TargetTy),
 | |
|          "GEP base pointer is not a vector or a vector of pointers", &GEP);
 | |
|   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
 | |
|   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
 | |
|   Type *ElTy =
 | |
|       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
 | |
|   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | |
| 
 | |
|   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
 | |
|              GEP.getResultElementType() == ElTy,
 | |
|          "GEP is not of right type for indices!", &GEP, ElTy);
 | |
| 
 | |
|   if (GEP.getType()->isVectorTy()) {
 | |
|     // Additional checks for vector GEPs.
 | |
|     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
 | |
|     if (GEP.getPointerOperandType()->isVectorTy())
 | |
|       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
 | |
|              "Vector GEP result width doesn't match operand's", &GEP);
 | |
|     for (Value *Idx : Idxs) {
 | |
|       Type *IndexTy = Idx->getType();
 | |
|       if (IndexTy->isVectorTy()) {
 | |
|         unsigned IndexWidth = IndexTy->getVectorNumElements();
 | |
|         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
 | |
|       }
 | |
|       Assert(IndexTy->isIntOrIntVectorTy(),
 | |
|              "All GEP indices should be of integer type");
 | |
|     }
 | |
|   }
 | |
|   visitInstruction(GEP);
 | |
| }
 | |
| 
 | |
| static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
 | |
|   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
 | |
| }
 | |
| 
 | |
| void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
 | |
|   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
 | |
|          "precondition violation");
 | |
| 
 | |
|   unsigned NumOperands = Range->getNumOperands();
 | |
|   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
 | |
|   unsigned NumRanges = NumOperands / 2;
 | |
|   Assert(NumRanges >= 1, "It should have at least one range!", Range);
 | |
| 
 | |
|   ConstantRange LastRange(1); // Dummy initial value
 | |
|   for (unsigned i = 0; i < NumRanges; ++i) {
 | |
|     ConstantInt *Low =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
 | |
|     Assert(Low, "The lower limit must be an integer!", Low);
 | |
|     ConstantInt *High =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
 | |
|     Assert(High, "The upper limit must be an integer!", High);
 | |
|     Assert(High->getType() == Low->getType() && High->getType() == Ty,
 | |
|            "Range types must match instruction type!", &I);
 | |
| 
 | |
|     APInt HighV = High->getValue();
 | |
|     APInt LowV = Low->getValue();
 | |
|     ConstantRange CurRange(LowV, HighV);
 | |
|     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
 | |
|            "Range must not be empty!", Range);
 | |
|     if (i != 0) {
 | |
|       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
 | |
|              "Intervals are overlapping", Range);
 | |
|       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
 | |
|              Range);
 | |
|       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
 | |
|              Range);
 | |
|     }
 | |
|     LastRange = ConstantRange(LowV, HighV);
 | |
|   }
 | |
|   if (NumRanges > 2) {
 | |
|     APInt FirstLow =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
 | |
|     APInt FirstHigh =
 | |
|         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
 | |
|     ConstantRange FirstRange(FirstLow, FirstHigh);
 | |
|     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
 | |
|            "Intervals are overlapping", Range);
 | |
|     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
 | |
|            Range);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
 | |
|   unsigned Size = DL.getTypeSizeInBits(Ty);
 | |
|   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
 | |
|   Assert(!(Size & (Size - 1)),
 | |
|          "atomic memory access' operand must have a power-of-two size", Ty, I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitLoadInst(LoadInst &LI) {
 | |
|   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
 | |
|   Assert(PTy, "Load operand must be a pointer.", &LI);
 | |
|   Type *ElTy = LI.getType();
 | |
|   Assert(LI.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &LI);
 | |
|   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
 | |
|   if (LI.isAtomic()) {
 | |
|     Assert(LI.getOrdering() != AtomicOrdering::Release &&
 | |
|                LI.getOrdering() != AtomicOrdering::AcquireRelease,
 | |
|            "Load cannot have Release ordering", &LI);
 | |
|     Assert(LI.getAlignment() != 0,
 | |
|            "Atomic load must specify explicit alignment", &LI);
 | |
|     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
 | |
|                ElTy->isFloatingPointTy(),
 | |
|            "atomic load operand must have integer, pointer, or floating point "
 | |
|            "type!",
 | |
|            ElTy, &LI);
 | |
|     checkAtomicMemAccessSize(ElTy, &LI);
 | |
|   } else {
 | |
|     Assert(LI.getSyncScopeID() == SyncScope::System,
 | |
|            "Non-atomic load cannot have SynchronizationScope specified", &LI);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(LI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitStoreInst(StoreInst &SI) {
 | |
|   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
 | |
|   Assert(PTy, "Store operand must be a pointer.", &SI);
 | |
|   Type *ElTy = PTy->getElementType();
 | |
|   Assert(ElTy == SI.getOperand(0)->getType(),
 | |
|          "Stored value type does not match pointer operand type!", &SI, ElTy);
 | |
|   Assert(SI.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &SI);
 | |
|   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
 | |
|   if (SI.isAtomic()) {
 | |
|     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
 | |
|                SI.getOrdering() != AtomicOrdering::AcquireRelease,
 | |
|            "Store cannot have Acquire ordering", &SI);
 | |
|     Assert(SI.getAlignment() != 0,
 | |
|            "Atomic store must specify explicit alignment", &SI);
 | |
|     Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
 | |
|                ElTy->isFloatingPointTy(),
 | |
|            "atomic store operand must have integer, pointer, or floating point "
 | |
|            "type!",
 | |
|            ElTy, &SI);
 | |
|     checkAtomicMemAccessSize(ElTy, &SI);
 | |
|   } else {
 | |
|     Assert(SI.getSyncScopeID() == SyncScope::System,
 | |
|            "Non-atomic store cannot have SynchronizationScope specified", &SI);
 | |
|   }
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| /// Check that SwiftErrorVal is used as a swifterror argument in CS.
 | |
| void Verifier::verifySwiftErrorCallSite(CallSite CS,
 | |
|                                         const Value *SwiftErrorVal) {
 | |
|   unsigned Idx = 0;
 | |
|   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     if (*I == SwiftErrorVal) {
 | |
|       Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
 | |
|              "swifterror value when used in a callsite should be marked "
 | |
|              "with swifterror attribute",
 | |
|               SwiftErrorVal, CS);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
 | |
|   // Check that swifterror value is only used by loads, stores, or as
 | |
|   // a swifterror argument.
 | |
|   for (const User *U : SwiftErrorVal->users()) {
 | |
|     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
 | |
|            isa<InvokeInst>(U),
 | |
|            "swifterror value can only be loaded and stored from, or "
 | |
|            "as a swifterror argument!",
 | |
|            SwiftErrorVal, U);
 | |
|     // If it is used by a store, check it is the second operand.
 | |
|     if (auto StoreI = dyn_cast<StoreInst>(U))
 | |
|       Assert(StoreI->getOperand(1) == SwiftErrorVal,
 | |
|              "swifterror value should be the second operand when used "
 | |
|              "by stores", SwiftErrorVal, U);
 | |
|     if (auto CallI = dyn_cast<CallInst>(U))
 | |
|       verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
 | |
|     if (auto II = dyn_cast<InvokeInst>(U))
 | |
|       verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitAllocaInst(AllocaInst &AI) {
 | |
|   SmallPtrSet<Type*, 4> Visited;
 | |
|   PointerType *PTy = AI.getType();
 | |
|   // TODO: Relax this restriction?
 | |
|   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
 | |
|          "Allocation instruction pointer not in the stack address space!",
 | |
|          &AI);
 | |
|   Assert(AI.getAllocatedType()->isSized(&Visited),
 | |
|          "Cannot allocate unsized type", &AI);
 | |
|   Assert(AI.getArraySize()->getType()->isIntegerTy(),
 | |
|          "Alloca array size must have integer type", &AI);
 | |
|   Assert(AI.getAlignment() <= Value::MaximumAlignment,
 | |
|          "huge alignment values are unsupported", &AI);
 | |
| 
 | |
|   if (AI.isSwiftError()) {
 | |
|     verifySwiftErrorValue(&AI);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(AI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
 | |
| 
 | |
|   // FIXME: more conditions???
 | |
|   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
 | |
|          "cmpxchg instructions must be atomic.", &CXI);
 | |
|   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
 | |
|          "cmpxchg instructions must be atomic.", &CXI);
 | |
|   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
 | |
|          "cmpxchg instructions cannot be unordered.", &CXI);
 | |
|   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
 | |
|          "cmpxchg instructions cannot be unordered.", &CXI);
 | |
|   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
 | |
|          "cmpxchg instructions failure argument shall be no stronger than the "
 | |
|          "success argument",
 | |
|          &CXI);
 | |
|   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
 | |
|              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
 | |
|          "cmpxchg failure ordering cannot include release semantics", &CXI);
 | |
| 
 | |
|   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
 | |
|   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
 | |
|   Type *ElTy = PTy->getElementType();
 | |
|   Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
 | |
|         "cmpxchg operand must have integer or pointer type",
 | |
|          ElTy, &CXI);
 | |
|   checkAtomicMemAccessSize(ElTy, &CXI);
 | |
|   Assert(ElTy == CXI.getOperand(1)->getType(),
 | |
|          "Expected value type does not match pointer operand type!", &CXI,
 | |
|          ElTy);
 | |
|   Assert(ElTy == CXI.getOperand(2)->getType(),
 | |
|          "Stored value type does not match pointer operand type!", &CXI, ElTy);
 | |
|   visitInstruction(CXI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
 | |
|   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
 | |
|          "atomicrmw instructions must be atomic.", &RMWI);
 | |
|   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
 | |
|          "atomicrmw instructions cannot be unordered.", &RMWI);
 | |
|   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
 | |
|   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
 | |
|   Type *ElTy = PTy->getElementType();
 | |
|   Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
 | |
|          &RMWI, ElTy);
 | |
|   checkAtomicMemAccessSize(ElTy, &RMWI);
 | |
|   Assert(ElTy == RMWI.getOperand(1)->getType(),
 | |
|          "Argument value type does not match pointer operand type!", &RMWI,
 | |
|          ElTy);
 | |
|   Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
 | |
|              RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
 | |
|          "Invalid binary operation!", &RMWI);
 | |
|   visitInstruction(RMWI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFenceInst(FenceInst &FI) {
 | |
|   const AtomicOrdering Ordering = FI.getOrdering();
 | |
|   Assert(Ordering == AtomicOrdering::Acquire ||
 | |
|              Ordering == AtomicOrdering::Release ||
 | |
|              Ordering == AtomicOrdering::AcquireRelease ||
 | |
|              Ordering == AtomicOrdering::SequentiallyConsistent,
 | |
|          "fence instructions may only have acquire, release, acq_rel, or "
 | |
|          "seq_cst ordering.",
 | |
|          &FI);
 | |
|   visitInstruction(FI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
 | |
|   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
 | |
|                                           EVI.getIndices()) == EVI.getType(),
 | |
|          "Invalid ExtractValueInst operands!", &EVI);
 | |
| 
 | |
|   visitInstruction(EVI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
 | |
|   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
 | |
|                                           IVI.getIndices()) ==
 | |
|              IVI.getOperand(1)->getType(),
 | |
|          "Invalid InsertValueInst operands!", &IVI);
 | |
| 
 | |
|   visitInstruction(IVI);
 | |
| }
 | |
| 
 | |
| static Value *getParentPad(Value *EHPad) {
 | |
|   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
 | |
|     return FPI->getParentPad();
 | |
| 
 | |
|   return cast<CatchSwitchInst>(EHPad)->getParentPad();
 | |
| }
 | |
| 
 | |
| void Verifier::visitEHPadPredecessors(Instruction &I) {
 | |
|   assert(I.isEHPad());
 | |
| 
 | |
|   BasicBlock *BB = I.getParent();
 | |
|   Function *F = BB->getParent();
 | |
| 
 | |
|   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
 | |
| 
 | |
|   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
 | |
|     // The landingpad instruction defines its parent as a landing pad block. The
 | |
|     // landing pad block may be branched to only by the unwind edge of an
 | |
|     // invoke.
 | |
|     for (BasicBlock *PredBB : predecessors(BB)) {
 | |
|       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
 | |
|       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
 | |
|              "Block containing LandingPadInst must be jumped to "
 | |
|              "only by the unwind edge of an invoke.",
 | |
|              LPI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
 | |
|     if (!pred_empty(BB))
 | |
|       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
 | |
|              "Block containg CatchPadInst must be jumped to "
 | |
|              "only by its catchswitch.",
 | |
|              CPI);
 | |
|     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
 | |
|            "Catchswitch cannot unwind to one of its catchpads",
 | |
|            CPI->getCatchSwitch(), CPI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Verify that each pred has a legal terminator with a legal to/from EH
 | |
|   // pad relationship.
 | |
|   Instruction *ToPad = &I;
 | |
|   Value *ToPadParent = getParentPad(ToPad);
 | |
|   for (BasicBlock *PredBB : predecessors(BB)) {
 | |
|     TerminatorInst *TI = PredBB->getTerminator();
 | |
|     Value *FromPad;
 | |
|     if (auto *II = dyn_cast<InvokeInst>(TI)) {
 | |
|       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
 | |
|              "EH pad must be jumped to via an unwind edge", ToPad, II);
 | |
|       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
 | |
|         FromPad = Bundle->Inputs[0];
 | |
|       else
 | |
|         FromPad = ConstantTokenNone::get(II->getContext());
 | |
|     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
 | |
|       FromPad = CRI->getOperand(0);
 | |
|       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
 | |
|     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
 | |
|       FromPad = CSI;
 | |
|     } else {
 | |
|       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
 | |
|     }
 | |
| 
 | |
|     // The edge may exit from zero or more nested pads.
 | |
|     SmallSet<Value *, 8> Seen;
 | |
|     for (;; FromPad = getParentPad(FromPad)) {
 | |
|       Assert(FromPad != ToPad,
 | |
|              "EH pad cannot handle exceptions raised within it", FromPad, TI);
 | |
|       if (FromPad == ToPadParent) {
 | |
|         // This is a legal unwind edge.
 | |
|         break;
 | |
|       }
 | |
|       Assert(!isa<ConstantTokenNone>(FromPad),
 | |
|              "A single unwind edge may only enter one EH pad", TI);
 | |
|       Assert(Seen.insert(FromPad).second,
 | |
|              "EH pad jumps through a cycle of pads", FromPad);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
 | |
|   // The landingpad instruction is ill-formed if it doesn't have any clauses and
 | |
|   // isn't a cleanup.
 | |
|   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
 | |
|          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
 | |
| 
 | |
|   visitEHPadPredecessors(LPI);
 | |
| 
 | |
|   if (!LandingPadResultTy)
 | |
|     LandingPadResultTy = LPI.getType();
 | |
|   else
 | |
|     Assert(LandingPadResultTy == LPI.getType(),
 | |
|            "The landingpad instruction should have a consistent result type "
 | |
|            "inside a function.",
 | |
|            &LPI);
 | |
| 
 | |
|   Function *F = LPI.getParent()->getParent();
 | |
|   Assert(F->hasPersonalityFn(),
 | |
|          "LandingPadInst needs to be in a function with a personality.", &LPI);
 | |
| 
 | |
|   // The landingpad instruction must be the first non-PHI instruction in the
 | |
|   // block.
 | |
|   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
 | |
|          "LandingPadInst not the first non-PHI instruction in the block.",
 | |
|          &LPI);
 | |
| 
 | |
|   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
 | |
|     Constant *Clause = LPI.getClause(i);
 | |
|     if (LPI.isCatch(i)) {
 | |
|       Assert(isa<PointerType>(Clause->getType()),
 | |
|              "Catch operand does not have pointer type!", &LPI);
 | |
|     } else {
 | |
|       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
 | |
|       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
 | |
|              "Filter operand is not an array of constants!", &LPI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   visitInstruction(LPI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitResumeInst(ResumeInst &RI) {
 | |
|   Assert(RI.getFunction()->hasPersonalityFn(),
 | |
|          "ResumeInst needs to be in a function with a personality.", &RI);
 | |
| 
 | |
|   if (!LandingPadResultTy)
 | |
|     LandingPadResultTy = RI.getValue()->getType();
 | |
|   else
 | |
|     Assert(LandingPadResultTy == RI.getValue()->getType(),
 | |
|            "The resume instruction should have a consistent result type "
 | |
|            "inside a function.",
 | |
|            &RI);
 | |
| 
 | |
|   visitTerminatorInst(RI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
 | |
|   BasicBlock *BB = CPI.getParent();
 | |
| 
 | |
|   Function *F = BB->getParent();
 | |
|   Assert(F->hasPersonalityFn(),
 | |
|          "CatchPadInst needs to be in a function with a personality.", &CPI);
 | |
| 
 | |
|   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
 | |
|          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
 | |
|          CPI.getParentPad());
 | |
| 
 | |
|   // The catchpad instruction must be the first non-PHI instruction in the
 | |
|   // block.
 | |
|   Assert(BB->getFirstNonPHI() == &CPI,
 | |
|          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
 | |
| 
 | |
|   visitEHPadPredecessors(CPI);
 | |
|   visitFuncletPadInst(CPI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
 | |
|   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
 | |
|          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
 | |
|          CatchReturn.getOperand(0));
 | |
| 
 | |
|   visitTerminatorInst(CatchReturn);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
 | |
|   BasicBlock *BB = CPI.getParent();
 | |
| 
 | |
|   Function *F = BB->getParent();
 | |
|   Assert(F->hasPersonalityFn(),
 | |
|          "CleanupPadInst needs to be in a function with a personality.", &CPI);
 | |
| 
 | |
|   // The cleanuppad instruction must be the first non-PHI instruction in the
 | |
|   // block.
 | |
|   Assert(BB->getFirstNonPHI() == &CPI,
 | |
|          "CleanupPadInst not the first non-PHI instruction in the block.",
 | |
|          &CPI);
 | |
| 
 | |
|   auto *ParentPad = CPI.getParentPad();
 | |
|   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
 | |
|          "CleanupPadInst has an invalid parent.", &CPI);
 | |
| 
 | |
|   visitEHPadPredecessors(CPI);
 | |
|   visitFuncletPadInst(CPI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
 | |
|   User *FirstUser = nullptr;
 | |
|   Value *FirstUnwindPad = nullptr;
 | |
|   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
 | |
|   SmallSet<FuncletPadInst *, 8> Seen;
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
 | |
|     Assert(Seen.insert(CurrentPad).second,
 | |
|            "FuncletPadInst must not be nested within itself", CurrentPad);
 | |
|     Value *UnresolvedAncestorPad = nullptr;
 | |
|     for (User *U : CurrentPad->users()) {
 | |
|       BasicBlock *UnwindDest;
 | |
|       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
 | |
|         UnwindDest = CRI->getUnwindDest();
 | |
|       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
 | |
|         // We allow catchswitch unwind to caller to nest
 | |
|         // within an outer pad that unwinds somewhere else,
 | |
|         // because catchswitch doesn't have a nounwind variant.
 | |
|         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
 | |
|         if (CSI->unwindsToCaller())
 | |
|           continue;
 | |
|         UnwindDest = CSI->getUnwindDest();
 | |
|       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
 | |
|         UnwindDest = II->getUnwindDest();
 | |
|       } else if (isa<CallInst>(U)) {
 | |
|         // Calls which don't unwind may be found inside funclet
 | |
|         // pads that unwind somewhere else.  We don't *require*
 | |
|         // such calls to be annotated nounwind.
 | |
|         continue;
 | |
|       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
 | |
|         // The unwind dest for a cleanup can only be found by
 | |
|         // recursive search.  Add it to the worklist, and we'll
 | |
|         // search for its first use that determines where it unwinds.
 | |
|         Worklist.push_back(CPI);
 | |
|         continue;
 | |
|       } else {
 | |
|         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Value *UnwindPad;
 | |
|       bool ExitsFPI;
 | |
|       if (UnwindDest) {
 | |
|         UnwindPad = UnwindDest->getFirstNonPHI();
 | |
|         if (!cast<Instruction>(UnwindPad)->isEHPad())
 | |
|           continue;
 | |
|         Value *UnwindParent = getParentPad(UnwindPad);
 | |
|         // Ignore unwind edges that don't exit CurrentPad.
 | |
|         if (UnwindParent == CurrentPad)
 | |
|           continue;
 | |
|         // Determine whether the original funclet pad is exited,
 | |
|         // and if we are scanning nested pads determine how many
 | |
|         // of them are exited so we can stop searching their
 | |
|         // children.
 | |
|         Value *ExitedPad = CurrentPad;
 | |
|         ExitsFPI = false;
 | |
|         do {
 | |
|           if (ExitedPad == &FPI) {
 | |
|             ExitsFPI = true;
 | |
|             // Now we can resolve any ancestors of CurrentPad up to
 | |
|             // FPI, but not including FPI since we need to make sure
 | |
|             // to check all direct users of FPI for consistency.
 | |
|             UnresolvedAncestorPad = &FPI;
 | |
|             break;
 | |
|           }
 | |
|           Value *ExitedParent = getParentPad(ExitedPad);
 | |
|           if (ExitedParent == UnwindParent) {
 | |
|             // ExitedPad is the ancestor-most pad which this unwind
 | |
|             // edge exits, so we can resolve up to it, meaning that
 | |
|             // ExitedParent is the first ancestor still unresolved.
 | |
|             UnresolvedAncestorPad = ExitedParent;
 | |
|             break;
 | |
|           }
 | |
|           ExitedPad = ExitedParent;
 | |
|         } while (!isa<ConstantTokenNone>(ExitedPad));
 | |
|       } else {
 | |
|         // Unwinding to caller exits all pads.
 | |
|         UnwindPad = ConstantTokenNone::get(FPI.getContext());
 | |
|         ExitsFPI = true;
 | |
|         UnresolvedAncestorPad = &FPI;
 | |
|       }
 | |
| 
 | |
|       if (ExitsFPI) {
 | |
|         // This unwind edge exits FPI.  Make sure it agrees with other
 | |
|         // such edges.
 | |
|         if (FirstUser) {
 | |
|           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
 | |
|                                               "pad must have the same unwind "
 | |
|                                               "dest",
 | |
|                  &FPI, U, FirstUser);
 | |
|         } else {
 | |
|           FirstUser = U;
 | |
|           FirstUnwindPad = UnwindPad;
 | |
|           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
 | |
|           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
 | |
|               getParentPad(UnwindPad) == getParentPad(&FPI))
 | |
|             SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
 | |
|         }
 | |
|       }
 | |
|       // Make sure we visit all uses of FPI, but for nested pads stop as
 | |
|       // soon as we know where they unwind to.
 | |
|       if (CurrentPad != &FPI)
 | |
|         break;
 | |
|     }
 | |
|     if (UnresolvedAncestorPad) {
 | |
|       if (CurrentPad == UnresolvedAncestorPad) {
 | |
|         // When CurrentPad is FPI itself, we don't mark it as resolved even if
 | |
|         // we've found an unwind edge that exits it, because we need to verify
 | |
|         // all direct uses of FPI.
 | |
|         assert(CurrentPad == &FPI);
 | |
|         continue;
 | |
|       }
 | |
|       // Pop off the worklist any nested pads that we've found an unwind
 | |
|       // destination for.  The pads on the worklist are the uncles,
 | |
|       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
 | |
|       // for all ancestors of CurrentPad up to but not including
 | |
|       // UnresolvedAncestorPad.
 | |
|       Value *ResolvedPad = CurrentPad;
 | |
|       while (!Worklist.empty()) {
 | |
|         Value *UnclePad = Worklist.back();
 | |
|         Value *AncestorPad = getParentPad(UnclePad);
 | |
|         // Walk ResolvedPad up the ancestor list until we either find the
 | |
|         // uncle's parent or the last resolved ancestor.
 | |
|         while (ResolvedPad != AncestorPad) {
 | |
|           Value *ResolvedParent = getParentPad(ResolvedPad);
 | |
|           if (ResolvedParent == UnresolvedAncestorPad) {
 | |
|             break;
 | |
|           }
 | |
|           ResolvedPad = ResolvedParent;
 | |
|         }
 | |
|         // If the resolved ancestor search didn't find the uncle's parent,
 | |
|         // then the uncle is not yet resolved.
 | |
|         if (ResolvedPad != AncestorPad)
 | |
|           break;
 | |
|         // This uncle is resolved, so pop it from the worklist.
 | |
|         Worklist.pop_back();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FirstUnwindPad) {
 | |
|     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
 | |
|       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
 | |
|       Value *SwitchUnwindPad;
 | |
|       if (SwitchUnwindDest)
 | |
|         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
 | |
|       else
 | |
|         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
 | |
|       Assert(SwitchUnwindPad == FirstUnwindPad,
 | |
|              "Unwind edges out of a catch must have the same unwind dest as "
 | |
|              "the parent catchswitch",
 | |
|              &FPI, FirstUser, CatchSwitch);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   visitInstruction(FPI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
 | |
|   BasicBlock *BB = CatchSwitch.getParent();
 | |
| 
 | |
|   Function *F = BB->getParent();
 | |
|   Assert(F->hasPersonalityFn(),
 | |
|          "CatchSwitchInst needs to be in a function with a personality.",
 | |
|          &CatchSwitch);
 | |
| 
 | |
|   // The catchswitch instruction must be the first non-PHI instruction in the
 | |
|   // block.
 | |
|   Assert(BB->getFirstNonPHI() == &CatchSwitch,
 | |
|          "CatchSwitchInst not the first non-PHI instruction in the block.",
 | |
|          &CatchSwitch);
 | |
| 
 | |
|   auto *ParentPad = CatchSwitch.getParentPad();
 | |
|   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
 | |
|          "CatchSwitchInst has an invalid parent.", ParentPad);
 | |
| 
 | |
|   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
 | |
|     Instruction *I = UnwindDest->getFirstNonPHI();
 | |
|     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
 | |
|            "CatchSwitchInst must unwind to an EH block which is not a "
 | |
|            "landingpad.",
 | |
|            &CatchSwitch);
 | |
| 
 | |
|     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
 | |
|     if (getParentPad(I) == ParentPad)
 | |
|       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
 | |
|   }
 | |
| 
 | |
|   Assert(CatchSwitch.getNumHandlers() != 0,
 | |
|          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
 | |
| 
 | |
|   for (BasicBlock *Handler : CatchSwitch.handlers()) {
 | |
|     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
 | |
|            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
 | |
|   }
 | |
| 
 | |
|   visitEHPadPredecessors(CatchSwitch);
 | |
|   visitTerminatorInst(CatchSwitch);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
 | |
|   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
 | |
|          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
 | |
|          CRI.getOperand(0));
 | |
| 
 | |
|   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
 | |
|     Instruction *I = UnwindDest->getFirstNonPHI();
 | |
|     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
 | |
|            "CleanupReturnInst must unwind to an EH block which is not a "
 | |
|            "landingpad.",
 | |
|            &CRI);
 | |
|   }
 | |
| 
 | |
|   visitTerminatorInst(CRI);
 | |
| }
 | |
| 
 | |
| void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
 | |
|   Instruction *Op = cast<Instruction>(I.getOperand(i));
 | |
|   // If the we have an invalid invoke, don't try to compute the dominance.
 | |
|   // We already reject it in the invoke specific checks and the dominance
 | |
|   // computation doesn't handle multiple edges.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
 | |
|     if (II->getNormalDest() == II->getUnwindDest())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Quick check whether the def has already been encountered in the same block.
 | |
|   // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
 | |
|   // uses are defined to happen on the incoming edge, not at the instruction.
 | |
|   //
 | |
|   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
 | |
|   // wrapping an SSA value, assert that we've already encountered it.  See
 | |
|   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
 | |
|   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
 | |
|     return;
 | |
| 
 | |
|   const Use &U = I.getOperandUse(i);
 | |
|   Assert(DT.dominates(Op, U),
 | |
|          "Instruction does not dominate all uses!", Op, &I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
 | |
|   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
 | |
|          "apply only to pointer types", &I);
 | |
|   Assert(isa<LoadInst>(I),
 | |
|          "dereferenceable, dereferenceable_or_null apply only to load"
 | |
|          " instructions, use attributes for calls or invokes", &I);
 | |
|   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
 | |
|          "take one operand!", &I);
 | |
|   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
 | |
|   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
 | |
|          "dereferenceable_or_null metadata value must be an i64!", &I);
 | |
| }
 | |
| 
 | |
| /// verifyInstruction - Verify that an instruction is well formed.
 | |
| ///
 | |
| void Verifier::visitInstruction(Instruction &I) {
 | |
|   BasicBlock *BB = I.getParent();
 | |
|   Assert(BB, "Instruction not embedded in basic block!", &I);
 | |
| 
 | |
|   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | |
|     for (User *U : I.users()) {
 | |
|       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
 | |
|              "Only PHI nodes may reference their own value!", &I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that void typed values don't have names
 | |
|   Assert(!I.getType()->isVoidTy() || !I.hasName(),
 | |
|          "Instruction has a name, but provides a void value!", &I);
 | |
| 
 | |
|   // Check that the return value of the instruction is either void or a legal
 | |
|   // value type.
 | |
|   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
 | |
|          "Instruction returns a non-scalar type!", &I);
 | |
| 
 | |
|   // Check that the instruction doesn't produce metadata. Calls are already
 | |
|   // checked against the callee type.
 | |
|   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
 | |
|          "Invalid use of metadata!", &I);
 | |
| 
 | |
|   // Check that all uses of the instruction, if they are instructions
 | |
|   // themselves, actually have parent basic blocks.  If the use is not an
 | |
|   // instruction, it is an error!
 | |
|   for (Use &U : I.uses()) {
 | |
|     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
 | |
|       Assert(Used->getParent() != nullptr,
 | |
|              "Instruction referencing"
 | |
|              " instruction not embedded in a basic block!",
 | |
|              &I, Used);
 | |
|     else {
 | |
|       CheckFailed("Use of instruction is not an instruction!", U);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
 | |
| 
 | |
|     // Check to make sure that only first-class-values are operands to
 | |
|     // instructions.
 | |
|     if (!I.getOperand(i)->getType()->isFirstClassType()) {
 | |
|       Assert(false, "Instruction operands must be first-class values!", &I);
 | |
|     }
 | |
| 
 | |
|     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
 | |
|       // Check to make sure that the "address of" an intrinsic function is never
 | |
|       // taken.
 | |
|       Assert(
 | |
|           !F->isIntrinsic() ||
 | |
|               i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
 | |
|           "Cannot take the address of an intrinsic!", &I);
 | |
|       Assert(
 | |
|           !F->isIntrinsic() || isa<CallInst>(I) ||
 | |
|               F->getIntrinsicID() == Intrinsic::donothing ||
 | |
|               F->getIntrinsicID() == Intrinsic::coro_resume ||
 | |
|               F->getIntrinsicID() == Intrinsic::coro_destroy ||
 | |
|               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
 | |
|               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
 | |
|               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
 | |
|           "Cannot invoke an intrinsic other than donothing, patchpoint, "
 | |
|           "statepoint, coro_resume or coro_destroy",
 | |
|           &I);
 | |
|       Assert(F->getParent() == &M, "Referencing function in another module!",
 | |
|              &I, &M, F, F->getParent());
 | |
|     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
 | |
|       Assert(OpBB->getParent() == BB->getParent(),
 | |
|              "Referring to a basic block in another function!", &I);
 | |
|     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
 | |
|       Assert(OpArg->getParent() == BB->getParent(),
 | |
|              "Referring to an argument in another function!", &I);
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
 | |
|       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
 | |
|              &M, GV, GV->getParent());
 | |
|     } else if (isa<Instruction>(I.getOperand(i))) {
 | |
|       verifyDominatesUse(I, i);
 | |
|     } else if (isa<InlineAsm>(I.getOperand(i))) {
 | |
|       Assert((i + 1 == e && isa<CallInst>(I)) ||
 | |
|                  (i + 3 == e && isa<InvokeInst>(I)),
 | |
|              "Cannot take the address of an inline asm!", &I);
 | |
|     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
 | |
|       if (CE->getType()->isPtrOrPtrVectorTy() ||
 | |
|           !DL.getNonIntegralAddressSpaces().empty()) {
 | |
|         // If we have a ConstantExpr pointer, we need to see if it came from an
 | |
|         // illegal bitcast.  If the datalayout string specifies non-integral
 | |
|         // address spaces then we also need to check for illegal ptrtoint and
 | |
|         // inttoptr expressions.
 | |
|         visitConstantExprsRecursively(CE);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
 | |
|     Assert(I.getType()->isFPOrFPVectorTy(),
 | |
|            "fpmath requires a floating point result!", &I);
 | |
|     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
 | |
|     if (ConstantFP *CFP0 =
 | |
|             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
 | |
|       const APFloat &Accuracy = CFP0->getValueAPF();
 | |
|       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
 | |
|              "fpmath accuracy must have float type", &I);
 | |
|       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
 | |
|              "fpmath accuracy not a positive number!", &I);
 | |
|     } else {
 | |
|       Assert(false, "invalid fpmath accuracy!", &I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
 | |
|     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
 | |
|            "Ranges are only for loads, calls and invokes!", &I);
 | |
|     visitRangeMetadata(I, Range, I.getType());
 | |
|   }
 | |
| 
 | |
|   if (I.getMetadata(LLVMContext::MD_nonnull)) {
 | |
|     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
 | |
|            &I);
 | |
|     Assert(isa<LoadInst>(I),
 | |
|            "nonnull applies only to load instructions, use attributes"
 | |
|            " for calls or invokes",
 | |
|            &I);
 | |
|   }
 | |
| 
 | |
|   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
 | |
|     visitDereferenceableMetadata(I, MD);
 | |
| 
 | |
|   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
 | |
|     visitDereferenceableMetadata(I, MD);
 | |
| 
 | |
|   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
 | |
|     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
 | |
| 
 | |
|   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
 | |
|     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
 | |
|            &I);
 | |
|     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
 | |
|            "use attributes for calls or invokes", &I);
 | |
|     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
 | |
|     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
 | |
|     Assert(CI && CI->getType()->isIntegerTy(64),
 | |
|            "align metadata value must be an i64!", &I);
 | |
|     uint64_t Align = CI->getZExtValue();
 | |
|     Assert(isPowerOf2_64(Align),
 | |
|            "align metadata value must be a power of 2!", &I);
 | |
|     Assert(Align <= Value::MaximumAlignment,
 | |
|            "alignment is larger that implementation defined limit", &I);
 | |
|   }
 | |
| 
 | |
|   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
 | |
|     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
 | |
|     visitMDNode(*N);
 | |
|   }
 | |
| 
 | |
|   if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
 | |
|     verifyFragmentExpression(*DII);
 | |
| 
 | |
|   InstsInThisBlock.insert(&I);
 | |
| }
 | |
| 
 | |
| /// Allow intrinsics to be verified in different ways.
 | |
| void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
 | |
|   Function *IF = CS.getCalledFunction();
 | |
|   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
 | |
|          IF);
 | |
| 
 | |
|   // Verify that the intrinsic prototype lines up with what the .td files
 | |
|   // describe.
 | |
|   FunctionType *IFTy = IF->getFunctionType();
 | |
|   bool IsVarArg = IFTy->isVarArg();
 | |
| 
 | |
|   SmallVector<Intrinsic::IITDescriptor, 8> Table;
 | |
|   getIntrinsicInfoTableEntries(ID, Table);
 | |
|   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
 | |
| 
 | |
|   SmallVector<Type *, 4> ArgTys;
 | |
|   Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
 | |
|                                         TableRef, ArgTys),
 | |
|          "Intrinsic has incorrect return type!", IF);
 | |
|   for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
 | |
|     Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
 | |
|                                           TableRef, ArgTys),
 | |
|            "Intrinsic has incorrect argument type!", IF);
 | |
| 
 | |
|   // Verify if the intrinsic call matches the vararg property.
 | |
|   if (IsVarArg)
 | |
|     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
 | |
|            "Intrinsic was not defined with variable arguments!", IF);
 | |
|   else
 | |
|     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
 | |
|            "Callsite was not defined with variable arguments!", IF);
 | |
| 
 | |
|   // All descriptors should be absorbed by now.
 | |
|   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
 | |
| 
 | |
|   // Now that we have the intrinsic ID and the actual argument types (and we
 | |
|   // know they are legal for the intrinsic!) get the intrinsic name through the
 | |
|   // usual means.  This allows us to verify the mangling of argument types into
 | |
|   // the name.
 | |
|   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
 | |
|   Assert(ExpectedName == IF->getName(),
 | |
|          "Intrinsic name not mangled correctly for type arguments! "
 | |
|          "Should be: " +
 | |
|              ExpectedName,
 | |
|          IF);
 | |
| 
 | |
|   // If the intrinsic takes MDNode arguments, verify that they are either global
 | |
|   // or are local to *this* function.
 | |
|   for (Value *V : CS.args())
 | |
|     if (auto *MD = dyn_cast<MetadataAsValue>(V))
 | |
|       visitMetadataAsValue(*MD, CS.getCaller());
 | |
| 
 | |
|   switch (ID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::coro_id: {
 | |
|     auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
 | |
|     if (isa<ConstantPointerNull>(InfoArg))
 | |
|       break;
 | |
|     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
 | |
|     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
 | |
|       "info argument of llvm.coro.begin must refer to an initialized "
 | |
|       "constant");
 | |
|     Constant *Init = GV->getInitializer();
 | |
|     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
 | |
|       "info argument of llvm.coro.begin must refer to either a struct or "
 | |
|       "an array");
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::ctlz:  // llvm.ctlz
 | |
|   case Intrinsic::cttz:  // llvm.cttz
 | |
|     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
 | |
|            "is_zero_undef argument of bit counting intrinsics must be a "
 | |
|            "constant int",
 | |
|            CS);
 | |
|     break;
 | |
|   case Intrinsic::experimental_constrained_fadd:
 | |
|   case Intrinsic::experimental_constrained_fsub:
 | |
|   case Intrinsic::experimental_constrained_fmul:
 | |
|   case Intrinsic::experimental_constrained_fdiv:
 | |
|   case Intrinsic::experimental_constrained_frem:
 | |
|   case Intrinsic::experimental_constrained_sqrt:
 | |
|   case Intrinsic::experimental_constrained_pow:
 | |
|   case Intrinsic::experimental_constrained_powi:
 | |
|   case Intrinsic::experimental_constrained_sin:
 | |
|   case Intrinsic::experimental_constrained_cos:
 | |
|   case Intrinsic::experimental_constrained_exp:
 | |
|   case Intrinsic::experimental_constrained_exp2:
 | |
|   case Intrinsic::experimental_constrained_log:
 | |
|   case Intrinsic::experimental_constrained_log10:
 | |
|   case Intrinsic::experimental_constrained_log2:
 | |
|   case Intrinsic::experimental_constrained_rint:
 | |
|   case Intrinsic::experimental_constrained_nearbyint:
 | |
|     visitConstrainedFPIntrinsic(
 | |
|         cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
 | |
|     break;
 | |
|   case Intrinsic::dbg_declare: // llvm.dbg.declare
 | |
|     Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
 | |
|            "invalid llvm.dbg.declare intrinsic call 1", CS);
 | |
|     visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
 | |
|     break;
 | |
|   case Intrinsic::dbg_value: // llvm.dbg.value
 | |
|     visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
 | |
|     break;
 | |
|   case Intrinsic::memcpy:
 | |
|   case Intrinsic::memmove:
 | |
|   case Intrinsic::memset: {
 | |
|     ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
 | |
|     Assert(AlignCI,
 | |
|            "alignment argument of memory intrinsics must be a constant int",
 | |
|            CS);
 | |
|     const APInt &AlignVal = AlignCI->getValue();
 | |
|     Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
 | |
|            "alignment argument of memory intrinsics must be a power of 2", CS);
 | |
|     Assert(isa<ConstantInt>(CS.getArgOperand(4)),
 | |
|            "isvolatile argument of memory intrinsics must be a constant int",
 | |
|            CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::memcpy_element_unordered_atomic: {
 | |
|     const ElementUnorderedAtomicMemCpyInst *MI =
 | |
|         cast<ElementUnorderedAtomicMemCpyInst>(CS.getInstruction());
 | |
|     ;
 | |
| 
 | |
|     ConstantInt *ElementSizeCI =
 | |
|         dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
 | |
|     Assert(ElementSizeCI,
 | |
|            "element size of the element-wise unordered atomic memory "
 | |
|            "intrinsic must be a constant int",
 | |
|            CS);
 | |
|     const APInt &ElementSizeVal = ElementSizeCI->getValue();
 | |
|     Assert(ElementSizeVal.isPowerOf2(),
 | |
|            "element size of the element-wise atomic memory intrinsic "
 | |
|            "must be a power of 2",
 | |
|            CS);
 | |
| 
 | |
|     if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
 | |
|       uint64_t Length = LengthCI->getZExtValue();
 | |
|       uint64_t ElementSize = MI->getElementSizeInBytes();
 | |
|       Assert((Length % ElementSize) == 0,
 | |
|              "constant length must be a multiple of the element size in the "
 | |
|              "element-wise atomic memory intrinsic",
 | |
|              CS);
 | |
|     }
 | |
| 
 | |
|     auto IsValidAlignment = [&](uint64_t Alignment) {
 | |
|       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
 | |
|     };
 | |
|     uint64_t DstAlignment = CS.getParamAlignment(0),
 | |
|              SrcAlignment = CS.getParamAlignment(1);
 | |
|     Assert(IsValidAlignment(DstAlignment),
 | |
|            "incorrect alignment of the destination argument", CS);
 | |
|     Assert(IsValidAlignment(SrcAlignment),
 | |
|            "incorrect alignment of the source argument", CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::memmove_element_unordered_atomic: {
 | |
|     auto *MI = cast<ElementUnorderedAtomicMemMoveInst>(CS.getInstruction());
 | |
| 
 | |
|     ConstantInt *ElementSizeCI =
 | |
|         dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
 | |
|     Assert(ElementSizeCI,
 | |
|            "element size of the element-wise unordered atomic memory "
 | |
|            "intrinsic must be a constant int",
 | |
|            CS);
 | |
|     const APInt &ElementSizeVal = ElementSizeCI->getValue();
 | |
|     Assert(ElementSizeVal.isPowerOf2(),
 | |
|            "element size of the element-wise atomic memory intrinsic "
 | |
|            "must be a power of 2",
 | |
|            CS);
 | |
| 
 | |
|     if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
 | |
|       uint64_t Length = LengthCI->getZExtValue();
 | |
|       uint64_t ElementSize = MI->getElementSizeInBytes();
 | |
|       Assert((Length % ElementSize) == 0,
 | |
|              "constant length must be a multiple of the element size in the "
 | |
|              "element-wise atomic memory intrinsic",
 | |
|              CS);
 | |
|     }
 | |
| 
 | |
|     auto IsValidAlignment = [&](uint64_t Alignment) {
 | |
|       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
 | |
|     };
 | |
|     uint64_t DstAlignment = CS.getParamAlignment(0),
 | |
|              SrcAlignment = CS.getParamAlignment(1);
 | |
|     Assert(IsValidAlignment(DstAlignment),
 | |
|            "incorrect alignment of the destination argument", CS);
 | |
|     Assert(IsValidAlignment(SrcAlignment),
 | |
|            "incorrect alignment of the source argument", CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::memset_element_unordered_atomic: {
 | |
|     auto *MI = cast<ElementUnorderedAtomicMemSetInst>(CS.getInstruction());
 | |
| 
 | |
|     ConstantInt *ElementSizeCI =
 | |
|         dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
 | |
|     Assert(ElementSizeCI,
 | |
|            "element size of the element-wise unordered atomic memory "
 | |
|            "intrinsic must be a constant int",
 | |
|            CS);
 | |
|     const APInt &ElementSizeVal = ElementSizeCI->getValue();
 | |
|     Assert(ElementSizeVal.isPowerOf2(),
 | |
|            "element size of the element-wise atomic memory intrinsic "
 | |
|            "must be a power of 2",
 | |
|            CS);
 | |
| 
 | |
|     if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
 | |
|       uint64_t Length = LengthCI->getZExtValue();
 | |
|       uint64_t ElementSize = MI->getElementSizeInBytes();
 | |
|       Assert((Length % ElementSize) == 0,
 | |
|              "constant length must be a multiple of the element size in the "
 | |
|              "element-wise atomic memory intrinsic",
 | |
|              CS);
 | |
|     }
 | |
| 
 | |
|     auto IsValidAlignment = [&](uint64_t Alignment) {
 | |
|       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
 | |
|     };
 | |
|     uint64_t DstAlignment = CS.getParamAlignment(0);
 | |
|     Assert(IsValidAlignment(DstAlignment),
 | |
|            "incorrect alignment of the destination argument", CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::gcroot:
 | |
|   case Intrinsic::gcwrite:
 | |
|   case Intrinsic::gcread:
 | |
|     if (ID == Intrinsic::gcroot) {
 | |
|       AllocaInst *AI =
 | |
|         dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
 | |
|       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
 | |
|       Assert(isa<Constant>(CS.getArgOperand(1)),
 | |
|              "llvm.gcroot parameter #2 must be a constant.", CS);
 | |
|       if (!AI->getAllocatedType()->isPointerTy()) {
 | |
|         Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
 | |
|                "llvm.gcroot parameter #1 must either be a pointer alloca, "
 | |
|                "or argument #2 must be a non-null constant.",
 | |
|                CS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Assert(CS.getParent()->getParent()->hasGC(),
 | |
|            "Enclosing function does not use GC.", CS);
 | |
|     break;
 | |
|   case Intrinsic::init_trampoline:
 | |
|     Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
 | |
|            "llvm.init_trampoline parameter #2 must resolve to a function.",
 | |
|            CS);
 | |
|     break;
 | |
|   case Intrinsic::prefetch:
 | |
|     Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
 | |
|                isa<ConstantInt>(CS.getArgOperand(2)) &&
 | |
|                cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
 | |
|                cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
 | |
|            "invalid arguments to llvm.prefetch", CS);
 | |
|     break;
 | |
|   case Intrinsic::stackprotector:
 | |
|     Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
 | |
|            "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
 | |
|     break;
 | |
|   case Intrinsic::lifetime_start:
 | |
|   case Intrinsic::lifetime_end:
 | |
|   case Intrinsic::invariant_start:
 | |
|     Assert(isa<ConstantInt>(CS.getArgOperand(0)),
 | |
|            "size argument of memory use markers must be a constant integer",
 | |
|            CS);
 | |
|     break;
 | |
|   case Intrinsic::invariant_end:
 | |
|     Assert(isa<ConstantInt>(CS.getArgOperand(1)),
 | |
|            "llvm.invariant.end parameter #2 must be a constant integer", CS);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::localescape: {
 | |
|     BasicBlock *BB = CS.getParent();
 | |
|     Assert(BB == &BB->getParent()->front(),
 | |
|            "llvm.localescape used outside of entry block", CS);
 | |
|     Assert(!SawFrameEscape,
 | |
|            "multiple calls to llvm.localescape in one function", CS);
 | |
|     for (Value *Arg : CS.args()) {
 | |
|       if (isa<ConstantPointerNull>(Arg))
 | |
|         continue; // Null values are allowed as placeholders.
 | |
|       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
 | |
|       Assert(AI && AI->isStaticAlloca(),
 | |
|              "llvm.localescape only accepts static allocas", CS);
 | |
|     }
 | |
|     FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
 | |
|     SawFrameEscape = true;
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::localrecover: {
 | |
|     Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
 | |
|     Function *Fn = dyn_cast<Function>(FnArg);
 | |
|     Assert(Fn && !Fn->isDeclaration(),
 | |
|            "llvm.localrecover first "
 | |
|            "argument must be function defined in this module",
 | |
|            CS);
 | |
|     auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
 | |
|     Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
 | |
|            CS);
 | |
|     auto &Entry = FrameEscapeInfo[Fn];
 | |
|     Entry.second = unsigned(
 | |
|         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::experimental_gc_statepoint:
 | |
|     Assert(!CS.isInlineAsm(),
 | |
|            "gc.statepoint support for inline assembly unimplemented", CS);
 | |
|     Assert(CS.getParent()->getParent()->hasGC(),
 | |
|            "Enclosing function does not use GC.", CS);
 | |
| 
 | |
|     verifyStatepoint(CS);
 | |
|     break;
 | |
|   case Intrinsic::experimental_gc_result: {
 | |
|     Assert(CS.getParent()->getParent()->hasGC(),
 | |
|            "Enclosing function does not use GC.", CS);
 | |
|     // Are we tied to a statepoint properly?
 | |
|     CallSite StatepointCS(CS.getArgOperand(0));
 | |
|     const Function *StatepointFn =
 | |
|       StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
 | |
|     Assert(StatepointFn && StatepointFn->isDeclaration() &&
 | |
|                StatepointFn->getIntrinsicID() ==
 | |
|                    Intrinsic::experimental_gc_statepoint,
 | |
|            "gc.result operand #1 must be from a statepoint", CS,
 | |
|            CS.getArgOperand(0));
 | |
| 
 | |
|     // Assert that result type matches wrapped callee.
 | |
|     const Value *Target = StatepointCS.getArgument(2);
 | |
|     auto *PT = cast<PointerType>(Target->getType());
 | |
|     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
 | |
|     Assert(CS.getType() == TargetFuncType->getReturnType(),
 | |
|            "gc.result result type does not match wrapped callee", CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::experimental_gc_relocate: {
 | |
|     Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
 | |
| 
 | |
|     Assert(isa<PointerType>(CS.getType()->getScalarType()),
 | |
|            "gc.relocate must return a pointer or a vector of pointers", CS);
 | |
| 
 | |
|     // Check that this relocate is correctly tied to the statepoint
 | |
| 
 | |
|     // This is case for relocate on the unwinding path of an invoke statepoint
 | |
|     if (LandingPadInst *LandingPad =
 | |
|           dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
 | |
| 
 | |
|       const BasicBlock *InvokeBB =
 | |
|           LandingPad->getParent()->getUniquePredecessor();
 | |
| 
 | |
|       // Landingpad relocates should have only one predecessor with invoke
 | |
|       // statepoint terminator
 | |
|       Assert(InvokeBB, "safepoints should have unique landingpads",
 | |
|              LandingPad->getParent());
 | |
|       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
 | |
|              InvokeBB);
 | |
|       Assert(isStatepoint(InvokeBB->getTerminator()),
 | |
|              "gc relocate should be linked to a statepoint", InvokeBB);
 | |
|     }
 | |
|     else {
 | |
|       // In all other cases relocate should be tied to the statepoint directly.
 | |
|       // This covers relocates on a normal return path of invoke statepoint and
 | |
|       // relocates of a call statepoint.
 | |
|       auto Token = CS.getArgOperand(0);
 | |
|       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
 | |
|              "gc relocate is incorrectly tied to the statepoint", CS, Token);
 | |
|     }
 | |
| 
 | |
|     // Verify rest of the relocate arguments.
 | |
| 
 | |
|     ImmutableCallSite StatepointCS(
 | |
|         cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
 | |
| 
 | |
|     // Both the base and derived must be piped through the safepoint.
 | |
|     Value* Base = CS.getArgOperand(1);
 | |
|     Assert(isa<ConstantInt>(Base),
 | |
|            "gc.relocate operand #2 must be integer offset", CS);
 | |
| 
 | |
|     Value* Derived = CS.getArgOperand(2);
 | |
|     Assert(isa<ConstantInt>(Derived),
 | |
|            "gc.relocate operand #3 must be integer offset", CS);
 | |
| 
 | |
|     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
 | |
|     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
 | |
|     // Check the bounds
 | |
|     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
 | |
|            "gc.relocate: statepoint base index out of bounds", CS);
 | |
|     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
 | |
|            "gc.relocate: statepoint derived index out of bounds", CS);
 | |
| 
 | |
|     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
 | |
|     // section of the statepoint's argument.
 | |
|     Assert(StatepointCS.arg_size() > 0,
 | |
|            "gc.statepoint: insufficient arguments");
 | |
|     Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
 | |
|            "gc.statement: number of call arguments must be constant integer");
 | |
|     const unsigned NumCallArgs =
 | |
|         cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
 | |
|     Assert(StatepointCS.arg_size() > NumCallArgs + 5,
 | |
|            "gc.statepoint: mismatch in number of call arguments");
 | |
|     Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
 | |
|            "gc.statepoint: number of transition arguments must be "
 | |
|            "a constant integer");
 | |
|     const int NumTransitionArgs =
 | |
|         cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
 | |
|             ->getZExtValue();
 | |
|     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
 | |
|     Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
 | |
|            "gc.statepoint: number of deoptimization arguments must be "
 | |
|            "a constant integer");
 | |
|     const int NumDeoptArgs =
 | |
|         cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
 | |
|             ->getZExtValue();
 | |
|     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
 | |
|     const int GCParamArgsEnd = StatepointCS.arg_size();
 | |
|     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
 | |
|            "gc.relocate: statepoint base index doesn't fall within the "
 | |
|            "'gc parameters' section of the statepoint call",
 | |
|            CS);
 | |
|     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
 | |
|            "gc.relocate: statepoint derived index doesn't fall within the "
 | |
|            "'gc parameters' section of the statepoint call",
 | |
|            CS);
 | |
| 
 | |
|     // Relocated value must be either a pointer type or vector-of-pointer type,
 | |
|     // but gc_relocate does not need to return the same pointer type as the
 | |
|     // relocated pointer. It can be casted to the correct type later if it's
 | |
|     // desired. However, they must have the same address space and 'vectorness'
 | |
|     GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
 | |
|     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
 | |
|            "gc.relocate: relocated value must be a gc pointer", CS);
 | |
| 
 | |
|     auto ResultType = CS.getType();
 | |
|     auto DerivedType = Relocate.getDerivedPtr()->getType();
 | |
|     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
 | |
|            "gc.relocate: vector relocates to vector and pointer to pointer",
 | |
|            CS);
 | |
|     Assert(
 | |
|         ResultType->getPointerAddressSpace() ==
 | |
|             DerivedType->getPointerAddressSpace(),
 | |
|         "gc.relocate: relocating a pointer shouldn't change its address space",
 | |
|         CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::eh_exceptioncode:
 | |
|   case Intrinsic::eh_exceptionpointer: {
 | |
|     Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
 | |
|            "eh.exceptionpointer argument must be a catchpad", CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::masked_load: {
 | |
|     Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
 | |
| 
 | |
|     Value *Ptr = CS.getArgOperand(0);
 | |
|     //Value *Alignment = CS.getArgOperand(1);
 | |
|     Value *Mask = CS.getArgOperand(2);
 | |
|     Value *PassThru = CS.getArgOperand(3);
 | |
|     Assert(Mask->getType()->isVectorTy(),
 | |
|            "masked_load: mask must be vector", CS);
 | |
| 
 | |
|     // DataTy is the overloaded type
 | |
|     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
|     Assert(DataTy == CS.getType(),
 | |
|            "masked_load: return must match pointer type", CS);
 | |
|     Assert(PassThru->getType() == DataTy,
 | |
|            "masked_load: pass through and data type must match", CS);
 | |
|     Assert(Mask->getType()->getVectorNumElements() ==
 | |
|            DataTy->getVectorNumElements(),
 | |
|            "masked_load: vector mask must be same length as data", CS);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::masked_store: {
 | |
|     Value *Val = CS.getArgOperand(0);
 | |
|     Value *Ptr = CS.getArgOperand(1);
 | |
|     //Value *Alignment = CS.getArgOperand(2);
 | |
|     Value *Mask = CS.getArgOperand(3);
 | |
|     Assert(Mask->getType()->isVectorTy(),
 | |
|            "masked_store: mask must be vector", CS);
 | |
| 
 | |
|     // DataTy is the overloaded type
 | |
|     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
|     Assert(DataTy == Val->getType(),
 | |
|            "masked_store: storee must match pointer type", CS);
 | |
|     Assert(Mask->getType()->getVectorNumElements() ==
 | |
|            DataTy->getVectorNumElements(),
 | |
|            "masked_store: vector mask must be same length as data", CS);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::experimental_guard: {
 | |
|     Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
 | |
|     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
 | |
|            "experimental_guard must have exactly one "
 | |
|            "\"deopt\" operand bundle");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::experimental_deoptimize: {
 | |
|     Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
 | |
|     Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
 | |
|            "experimental_deoptimize must have exactly one "
 | |
|            "\"deopt\" operand bundle");
 | |
|     Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
 | |
|            "experimental_deoptimize return type must match caller return type");
 | |
| 
 | |
|     if (CS.isCall()) {
 | |
|       auto *DeoptCI = CS.getInstruction();
 | |
|       auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
 | |
|       Assert(RI,
 | |
|              "calls to experimental_deoptimize must be followed by a return");
 | |
| 
 | |
|       if (!CS.getType()->isVoidTy() && RI)
 | |
|         Assert(RI->getReturnValue() == DeoptCI,
 | |
|                "calls to experimental_deoptimize must be followed by a return "
 | |
|                "of the value computed by experimental_deoptimize");
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// \brief Carefully grab the subprogram from a local scope.
 | |
| ///
 | |
| /// This carefully grabs the subprogram from a local scope, avoiding the
 | |
| /// built-in assertions that would typically fire.
 | |
| static DISubprogram *getSubprogram(Metadata *LocalScope) {
 | |
|   if (!LocalScope)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
 | |
|     return SP;
 | |
| 
 | |
|   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
 | |
|     return getSubprogram(LB->getRawScope());
 | |
| 
 | |
|   // Just return null; broken scope chains are checked elsewhere.
 | |
|   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
 | |
|   unsigned NumOperands = FPI.getNumArgOperands();
 | |
|   Assert(((NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
 | |
|          "invalid arguments for constrained FP intrinsic", &FPI);
 | |
|   Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
 | |
|          "invalid exception behavior argument", &FPI);
 | |
|   Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
 | |
|          "invalid rounding mode argument", &FPI);
 | |
|   Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,
 | |
|          "invalid rounding mode argument", &FPI);
 | |
|   Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,
 | |
|          "invalid exception behavior argument", &FPI);
 | |
| }
 | |
| 
 | |
| template <class DbgIntrinsicTy>
 | |
| void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
 | |
|   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
 | |
|   AssertDI(isa<ValueAsMetadata>(MD) ||
 | |
|              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
 | |
|          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
 | |
|   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
 | |
|          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
 | |
|          DII.getRawVariable());
 | |
|   AssertDI(isa<DIExpression>(DII.getRawExpression()),
 | |
|          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
 | |
|          DII.getRawExpression());
 | |
| 
 | |
|   // Ignore broken !dbg attachments; they're checked elsewhere.
 | |
|   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
 | |
|     if (!isa<DILocation>(N))
 | |
|       return;
 | |
| 
 | |
|   BasicBlock *BB = DII.getParent();
 | |
|   Function *F = BB ? BB->getParent() : nullptr;
 | |
| 
 | |
|   // The scopes for variables and !dbg attachments must agree.
 | |
|   DILocalVariable *Var = DII.getVariable();
 | |
|   DILocation *Loc = DII.getDebugLoc();
 | |
|   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
 | |
|          &DII, BB, F);
 | |
| 
 | |
|   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
 | |
|   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
 | |
|   if (!VarSP || !LocSP)
 | |
|     return; // Broken scope chains are checked elsewhere.
 | |
| 
 | |
|   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
 | |
|                                " variable and !dbg attachment",
 | |
|            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
 | |
|            Loc->getScope()->getSubprogram());
 | |
| 
 | |
|   verifyFnArgs(DII);
 | |
| }
 | |
| 
 | |
| static uint64_t getVariableSize(const DILocalVariable &V) {
 | |
|   // Be careful of broken types (checked elsewhere).
 | |
|   const Metadata *RawType = V.getRawType();
 | |
|   while (RawType) {
 | |
|     // Try to get the size directly.
 | |
|     if (auto *T = dyn_cast<DIType>(RawType))
 | |
|       if (uint64_t Size = T->getSizeInBits())
 | |
|         return Size;
 | |
| 
 | |
|     if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
 | |
|       // Look at the base type.
 | |
|       RawType = DT->getRawBaseType();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Missing type or size.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Fail gracefully.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
 | |
|   DILocalVariable *V;
 | |
|   DIExpression *E;
 | |
|   if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
 | |
|     V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
 | |
|     E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
 | |
|   } else {
 | |
|     auto *DDI = cast<DbgDeclareInst>(&I);
 | |
|     V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
 | |
|     E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
 | |
|   }
 | |
| 
 | |
|   // We don't know whether this intrinsic verified correctly.
 | |
|   if (!V || !E || !E->isValid())
 | |
|     return;
 | |
| 
 | |
|   // Nothing to do if this isn't a bit piece expression.
 | |
|   auto Fragment = E->getFragmentInfo();
 | |
|   if (!Fragment)
 | |
|     return;
 | |
| 
 | |
|   // The frontend helps out GDB by emitting the members of local anonymous
 | |
|   // unions as artificial local variables with shared storage. When SROA splits
 | |
|   // the storage for artificial local variables that are smaller than the entire
 | |
|   // union, the overhang piece will be outside of the allotted space for the
 | |
|   // variable and this check fails.
 | |
|   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
 | |
|   if (V->isArtificial())
 | |
|     return;
 | |
| 
 | |
|   // If there's no size, the type is broken, but that should be checked
 | |
|   // elsewhere.
 | |
|   uint64_t VarSize = getVariableSize(*V);
 | |
|   if (!VarSize)
 | |
|     return;
 | |
| 
 | |
|   unsigned FragSize = Fragment->SizeInBits;
 | |
|   unsigned FragOffset = Fragment->OffsetInBits;
 | |
|   AssertDI(FragSize + FragOffset <= VarSize,
 | |
|          "fragment is larger than or outside of variable", &I, V, E);
 | |
|   AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E);
 | |
| }
 | |
| 
 | |
| void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
 | |
|   // This function does not take the scope of noninlined function arguments into
 | |
|   // account. Don't run it if current function is nodebug, because it may
 | |
|   // contain inlined debug intrinsics.
 | |
|   if (!HasDebugInfo)
 | |
|     return;
 | |
| 
 | |
|   DILocalVariable *Var;
 | |
|   if (auto *DV = dyn_cast<DbgValueInst>(&I)) {
 | |
|     // For performance reasons only check non-inlined ones.
 | |
|     if (DV->getDebugLoc()->getInlinedAt())
 | |
|       return;
 | |
|     Var = DV->getVariable();
 | |
|   } else {
 | |
|     auto *DD = cast<DbgDeclareInst>(&I);
 | |
|     if (DD->getDebugLoc()->getInlinedAt())
 | |
|       return;
 | |
|     Var = DD->getVariable();
 | |
|   }
 | |
|   AssertDI(Var, "dbg intrinsic without variable");
 | |
| 
 | |
|   unsigned ArgNo = Var->getArg();
 | |
|   if (!ArgNo)
 | |
|     return;
 | |
| 
 | |
|   // Verify there are no duplicate function argument debug info entries.
 | |
|   // These will cause hard-to-debug assertions in the DWARF backend.
 | |
|   if (DebugFnArgs.size() < ArgNo)
 | |
|     DebugFnArgs.resize(ArgNo, nullptr);
 | |
| 
 | |
|   auto *Prev = DebugFnArgs[ArgNo - 1];
 | |
|   DebugFnArgs[ArgNo - 1] = Var;
 | |
|   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
 | |
|            Prev, Var);
 | |
| }
 | |
| 
 | |
| void Verifier::verifyCompileUnits() {
 | |
|   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
 | |
|   SmallPtrSet<const Metadata *, 2> Listed;
 | |
|   if (CUs)
 | |
|     Listed.insert(CUs->op_begin(), CUs->op_end());
 | |
|   for (auto *CU : CUVisited)
 | |
|     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
 | |
|   CUVisited.clear();
 | |
| }
 | |
| 
 | |
| void Verifier::verifyDeoptimizeCallingConvs() {
 | |
|   if (DeoptimizeDeclarations.empty())
 | |
|     return;
 | |
| 
 | |
|   const Function *First = DeoptimizeDeclarations[0];
 | |
|   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
 | |
|     Assert(First->getCallingConv() == F->getCallingConv(),
 | |
|            "All llvm.experimental.deoptimize declarations must have the same "
 | |
|            "calling convention",
 | |
|            First, F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
 | |
|   Function &F = const_cast<Function &>(f);
 | |
| 
 | |
|   // Don't use a raw_null_ostream.  Printing IR is expensive.
 | |
|   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
 | |
| 
 | |
|   // Note that this function's return value is inverted from what you would
 | |
|   // expect of a function called "verify".
 | |
|   return !V.verify(F);
 | |
| }
 | |
| 
 | |
| bool llvm::verifyModule(const Module &M, raw_ostream *OS,
 | |
|                         bool *BrokenDebugInfo) {
 | |
|   // Don't use a raw_null_ostream.  Printing IR is expensive.
 | |
|   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
 | |
| 
 | |
|   bool Broken = false;
 | |
|   for (const Function &F : M)
 | |
|     Broken |= !V.verify(F);
 | |
| 
 | |
|   Broken |= !V.verify();
 | |
|   if (BrokenDebugInfo)
 | |
|     *BrokenDebugInfo = V.hasBrokenDebugInfo();
 | |
|   // Note that this function's return value is inverted from what you would
 | |
|   // expect of a function called "verify".
 | |
|   return Broken;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct VerifierLegacyPass : public FunctionPass {
 | |
|   static char ID;
 | |
| 
 | |
|   std::unique_ptr<Verifier> V;
 | |
|   bool FatalErrors = true;
 | |
| 
 | |
|   VerifierLegacyPass() : FunctionPass(ID) {
 | |
|     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   explicit VerifierLegacyPass(bool FatalErrors)
 | |
|       : FunctionPass(ID),
 | |
|         FatalErrors(FatalErrors) {
 | |
|     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool doInitialization(Module &M) override {
 | |
|     V = llvm::make_unique<Verifier>(
 | |
|         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (!V->verify(F) && FatalErrors)
 | |
|       report_fatal_error("Broken function found, compilation aborted!");
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool doFinalization(Module &M) override {
 | |
|     bool HasErrors = false;
 | |
|     for (Function &F : M)
 | |
|       if (F.isDeclaration())
 | |
|         HasErrors |= !V->verify(F);
 | |
| 
 | |
|     HasErrors |= !V->verify();
 | |
|     if (FatalErrors) {
 | |
|       if (HasErrors)
 | |
|         report_fatal_error("Broken module found, compilation aborted!");
 | |
|       assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info");
 | |
|     }
 | |
| 
 | |
|     // Strip broken debug info.
 | |
|     if (V->hasBrokenDebugInfo()) {
 | |
|       DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
 | |
|       M.getContext().diagnose(DiagInvalid);
 | |
|       if (!StripDebugInfo(M))
 | |
|         report_fatal_error("Failed to strip malformed debug info");
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Helper to issue failure from the TBAA verification
 | |
| template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
 | |
|   if (Diagnostic)
 | |
|     return Diagnostic->CheckFailed(Args...);
 | |
| }
 | |
| 
 | |
| #define AssertTBAA(C, ...)                                                     \
 | |
|   do {                                                                         \
 | |
|     if (!(C)) {                                                                \
 | |
|       CheckFailed(__VA_ARGS__);                                                \
 | |
|       return false;                                                            \
 | |
|     }                                                                          \
 | |
|   } while (false)
 | |
| 
 | |
| /// Verify that \p BaseNode can be used as the "base type" in the struct-path
 | |
| /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
 | |
| /// struct-type node describing an aggregate data structure (like a struct).
 | |
| TBAAVerifier::TBAABaseNodeSummary
 | |
| TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
 | |
|   if (BaseNode->getNumOperands() < 2) {
 | |
|     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
 | |
|     return {true, ~0u};
 | |
|   }
 | |
| 
 | |
|   auto Itr = TBAABaseNodes.find(BaseNode);
 | |
|   if (Itr != TBAABaseNodes.end())
 | |
|     return Itr->second;
 | |
| 
 | |
|   auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
 | |
|   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
 | |
|   (void)InsertResult;
 | |
|   assert(InsertResult.second && "We just checked!");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| TBAAVerifier::TBAABaseNodeSummary
 | |
| TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
 | |
|   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
 | |
| 
 | |
|   if (BaseNode->getNumOperands() == 2) {
 | |
|     // Scalar nodes can only be accessed at offset 0.
 | |
|     return isValidScalarTBAANode(BaseNode)
 | |
|                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
 | |
|                : InvalidNode;
 | |
|   }
 | |
| 
 | |
|   if (BaseNode->getNumOperands() % 2 != 1) {
 | |
|     CheckFailed("Struct tag nodes must have an odd number of operands!",
 | |
|                 BaseNode);
 | |
|     return InvalidNode;
 | |
|   }
 | |
| 
 | |
|   if (!isa<MDString>(BaseNode->getOperand(0))) {
 | |
|     CheckFailed("Struct tag nodes have a string as their first operand",
 | |
|                 BaseNode);
 | |
|     return InvalidNode;
 | |
|   }
 | |
| 
 | |
|   bool Failed = false;
 | |
| 
 | |
|   Optional<APInt> PrevOffset;
 | |
|   unsigned BitWidth = ~0u;
 | |
| 
 | |
|   // We've already checked that BaseNode is not a degenerate root node with one
 | |
|   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
 | |
|   for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
 | |
|     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
 | |
|     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
 | |
|     if (!isa<MDNode>(FieldTy)) {
 | |
|       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
 | |
|       Failed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *OffsetEntryCI =
 | |
|         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
 | |
|     if (!OffsetEntryCI) {
 | |
|       CheckFailed("Offset entries must be constants!", &I, BaseNode);
 | |
|       Failed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (BitWidth == ~0u)
 | |
|       BitWidth = OffsetEntryCI->getBitWidth();
 | |
| 
 | |
|     if (OffsetEntryCI->getBitWidth() != BitWidth) {
 | |
|       CheckFailed(
 | |
|           "Bitwidth between the offsets and struct type entries must match", &I,
 | |
|           BaseNode);
 | |
|       Failed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // NB! As far as I can tell, we generate a non-strictly increasing offset
 | |
|     // sequence only from structs that have zero size bit fields.  When
 | |
|     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
 | |
|     // pick the field lexically the latest in struct type metadata node.  This
 | |
|     // mirrors the actual behavior of the alias analysis implementation.
 | |
|     bool IsAscending =
 | |
|         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
 | |
| 
 | |
|     if (!IsAscending) {
 | |
|       CheckFailed("Offsets must be increasing!", &I, BaseNode);
 | |
|       Failed = true;
 | |
|     }
 | |
| 
 | |
|     PrevOffset = OffsetEntryCI->getValue();
 | |
|   }
 | |
| 
 | |
|   return Failed ? InvalidNode
 | |
|                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
 | |
| }
 | |
| 
 | |
| static bool IsRootTBAANode(const MDNode *MD) {
 | |
|   return MD->getNumOperands() < 2;
 | |
| }
 | |
| 
 | |
| static bool IsScalarTBAANodeImpl(const MDNode *MD,
 | |
|                                  SmallPtrSetImpl<const MDNode *> &Visited) {
 | |
|   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
 | |
|     return false;
 | |
| 
 | |
|   if (!isa<MDString>(MD->getOperand(0)))
 | |
|     return false;
 | |
| 
 | |
|   if (MD->getNumOperands() == 3) {
 | |
|     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
 | |
|     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
 | |
|   return Parent && Visited.insert(Parent).second &&
 | |
|          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
 | |
| }
 | |
| 
 | |
| bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
 | |
|   auto ResultIt = TBAAScalarNodes.find(MD);
 | |
|   if (ResultIt != TBAAScalarNodes.end())
 | |
|     return ResultIt->second;
 | |
| 
 | |
|   SmallPtrSet<const MDNode *, 4> Visited;
 | |
|   bool Result = IsScalarTBAANodeImpl(MD, Visited);
 | |
|   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
 | |
|   (void)InsertResult;
 | |
|   assert(InsertResult.second && "Just checked!");
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
 | |
| /// Offset in place to be the offset within the field node returned.
 | |
| ///
 | |
| /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
 | |
| MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
 | |
|                                                    const MDNode *BaseNode,
 | |
|                                                    APInt &Offset) {
 | |
|   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
 | |
| 
 | |
|   // Scalar nodes have only one possible "field" -- their parent in the access
 | |
|   // hierarchy.  Offset must be zero at this point, but our caller is supposed
 | |
|   // to Assert that.
 | |
|   if (BaseNode->getNumOperands() == 2)
 | |
|     return cast<MDNode>(BaseNode->getOperand(1));
 | |
| 
 | |
|   for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
 | |
|     auto *OffsetEntryCI =
 | |
|         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
 | |
|     if (OffsetEntryCI->getValue().ugt(Offset)) {
 | |
|       if (Idx == 1) {
 | |
|         CheckFailed("Could not find TBAA parent in struct type node", &I,
 | |
|                     BaseNode, &Offset);
 | |
|         return nullptr;
 | |
|       }
 | |
| 
 | |
|       auto *PrevOffsetEntryCI =
 | |
|           mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
 | |
|       Offset -= PrevOffsetEntryCI->getValue();
 | |
|       return cast<MDNode>(BaseNode->getOperand(Idx - 2));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
 | |
|       BaseNode->getOperand(BaseNode->getNumOperands() - 1));
 | |
| 
 | |
|   Offset -= LastOffsetEntryCI->getValue();
 | |
|   return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
 | |
| }
 | |
| 
 | |
| bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
 | |
|   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
 | |
|                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
 | |
|                  isa<AtomicCmpXchgInst>(I),
 | |
|              "TBAA is only for loads, stores and calls!", &I);
 | |
| 
 | |
|   bool IsStructPathTBAA =
 | |
|       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
 | |
| 
 | |
|   AssertTBAA(
 | |
|       IsStructPathTBAA,
 | |
|       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
 | |
| 
 | |
|   AssertTBAA(MD->getNumOperands() < 5,
 | |
|              "Struct tag metadata must have either 3 or 4 operands", &I, MD);
 | |
| 
 | |
|   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
 | |
|   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
 | |
| 
 | |
|   if (MD->getNumOperands() == 4) {
 | |
|     auto *IsImmutableCI =
 | |
|         mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
 | |
|     AssertTBAA(IsImmutableCI,
 | |
|                "Immutability tag on struct tag metadata must be a constant", &I,
 | |
|                MD);
 | |
|     AssertTBAA(
 | |
|         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
 | |
|         "Immutability part of the struct tag metadata must be either 0 or 1",
 | |
|         &I, MD);
 | |
|   }
 | |
| 
 | |
|   AssertTBAA(BaseNode && AccessType,
 | |
|              "Malformed struct tag metadata:  base and access-type "
 | |
|              "should be non-null and point to Metadata nodes",
 | |
|              &I, MD, BaseNode, AccessType);
 | |
| 
 | |
|   AssertTBAA(isValidScalarTBAANode(AccessType),
 | |
|              "Access type node must be a valid scalar type", &I, MD,
 | |
|              AccessType);
 | |
| 
 | |
|   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
 | |
|   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
 | |
| 
 | |
|   APInt Offset = OffsetCI->getValue();
 | |
|   bool SeenAccessTypeInPath = false;
 | |
| 
 | |
|   SmallPtrSet<MDNode *, 4> StructPath;
 | |
| 
 | |
|   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
 | |
|        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
 | |
|     if (!StructPath.insert(BaseNode).second) {
 | |
|       CheckFailed("Cycle detected in struct path", &I, MD);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool Invalid;
 | |
|     unsigned BaseNodeBitWidth;
 | |
|     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
 | |
| 
 | |
|     // If the base node is invalid in itself, then we've already printed all the
 | |
|     // errors we wanted to print.
 | |
|     if (Invalid)
 | |
|       return false;
 | |
| 
 | |
|     SeenAccessTypeInPath |= BaseNode == AccessType;
 | |
| 
 | |
|     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
 | |
|       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
 | |
|                  &I, MD, &Offset);
 | |
| 
 | |
|     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
 | |
|                    (BaseNodeBitWidth == 0 && Offset == 0),
 | |
|                "Access bit-width not the same as description bit-width", &I, MD,
 | |
|                BaseNodeBitWidth, Offset.getBitWidth());
 | |
|   }
 | |
| 
 | |
|   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
 | |
|              &I, MD);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| char VerifierLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
 | |
|   return new VerifierLegacyPass(FatalErrors);
 | |
| }
 | |
| 
 | |
| AnalysisKey VerifierAnalysis::Key;
 | |
| VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
 | |
|                                                ModuleAnalysisManager &) {
 | |
|   Result Res;
 | |
|   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
 | |
|                                                FunctionAnalysisManager &) {
 | |
|   return { llvm::verifyFunction(F, &dbgs()), false };
 | |
| }
 | |
| 
 | |
| PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
 | |
|   auto Res = AM.getResult<VerifierAnalysis>(M);
 | |
|   if (FatalErrors) {
 | |
|     if (Res.IRBroken)
 | |
|       report_fatal_error("Broken module found, compilation aborted!");
 | |
|     assert(!Res.DebugInfoBroken && "Module contains invalid debug info");
 | |
|   }
 | |
| 
 | |
|   // Strip broken debug info.
 | |
|   if (Res.DebugInfoBroken) {
 | |
|     DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
 | |
|     M.getContext().diagnose(DiagInvalid);
 | |
|     if (!StripDebugInfo(M))
 | |
|       report_fatal_error("Failed to strip malformed debug info");
 | |
|   }
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   auto res = AM.getResult<VerifierAnalysis>(F);
 | |
|   if (res.IRBroken && FatalErrors)
 | |
|     report_fatal_error("Broken function found, compilation aborted!");
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |