550 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			550 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This contains a MachineSchedStrategy implementation for maximizing wave
 | |
| /// occupancy on GCN hardware.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "GCNSchedStrategy.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "SIInstrInfo.h"
 | |
| #include "SIMachineFunctionInfo.h"
 | |
| #include "SIRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| 
 | |
| #define DEBUG_TYPE "machine-scheduler"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
 | |
|     const MachineSchedContext *C) :
 | |
|     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
 | |
| 
 | |
| static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
 | |
|                             const MachineFunction &MF) {
 | |
| 
 | |
|   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
 | |
|   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | |
|   unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
 | |
|                                       ST.getOccupancyWithNumVGPRs(VGPRs));
 | |
|   return std::min(MinRegOccupancy,
 | |
|                   ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
 | |
|                                                   *MF.getFunction()));
 | |
| }
 | |
| 
 | |
| void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
 | |
|   GenericScheduler::initialize(DAG);
 | |
| 
 | |
|   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
 | |
| 
 | |
|   MF = &DAG->MF;
 | |
| 
 | |
|   const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
 | |
| 
 | |
|   // FIXME: This is also necessary, because some passes that run after
 | |
|   // scheduling and before regalloc increase register pressure.
 | |
|   const int ErrorMargin = 3;
 | |
| 
 | |
|   SGPRExcessLimit = Context->RegClassInfo
 | |
|     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
 | |
|   VGPRExcessLimit = Context->RegClassInfo
 | |
|     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
 | |
|   if (TargetOccupancy) {
 | |
|     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
 | |
|     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
 | |
|   } else {
 | |
|     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
 | |
|                                                     SRI->getSGPRPressureSet());
 | |
|     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
 | |
|                                                     SRI->getVGPRPressureSet());
 | |
|   }
 | |
| 
 | |
|   SGPRCriticalLimit -= ErrorMargin;
 | |
|   VGPRCriticalLimit -= ErrorMargin;
 | |
| }
 | |
| 
 | |
| void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
 | |
|                                      bool AtTop, const RegPressureTracker &RPTracker,
 | |
|                                      const SIRegisterInfo *SRI,
 | |
|                                      unsigned SGPRPressure,
 | |
|                                      unsigned VGPRPressure) {
 | |
| 
 | |
|   Cand.SU = SU;
 | |
|   Cand.AtTop = AtTop;
 | |
| 
 | |
|   // getDownwardPressure() and getUpwardPressure() make temporary changes to
 | |
|   // the the tracker, so we need to pass those function a non-const copy.
 | |
|   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | |
| 
 | |
|   std::vector<unsigned> Pressure;
 | |
|   std::vector<unsigned> MaxPressure;
 | |
| 
 | |
|   if (AtTop)
 | |
|     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
 | |
|   else {
 | |
|     // FIXME: I think for bottom up scheduling, the register pressure is cached
 | |
|     // and can be retrieved by DAG->getPressureDif(SU).
 | |
|     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
 | |
|   }
 | |
| 
 | |
|   unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
 | |
|   unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
 | |
| 
 | |
|   // If two instructions increase the pressure of different register sets
 | |
|   // by the same amount, the generic scheduler will prefer to schedule the
 | |
|   // instruction that increases the set with the least amount of registers,
 | |
|   // which in our case would be SGPRs.  This is rarely what we want, so
 | |
|   // when we report excess/critical register pressure, we do it either
 | |
|   // only for VGPRs or only for SGPRs.
 | |
| 
 | |
|   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
 | |
|   const unsigned MaxVGPRPressureInc = 16;
 | |
|   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
 | |
|   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
 | |
| 
 | |
| 
 | |
|   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
 | |
|   // to increase the likelihood we don't go over the limits.  We should improve
 | |
|   // the analysis to look through dependencies to find the path with the least
 | |
|   // register pressure.
 | |
| 
 | |
|   // We only need to update the RPDelata for instructions that increase
 | |
|   // register pressure.  Instructions that decrease or keep reg pressure
 | |
|   // the same will be marked as RegExcess in tryCandidate() when they
 | |
|   // are compared with instructions that increase the register pressure.
 | |
|   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
 | |
|     Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
 | |
|     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
 | |
|   }
 | |
| 
 | |
|   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
 | |
|     Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
 | |
|     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
 | |
|   }
 | |
| 
 | |
|   // Register pressure is considered 'CRITICAL' if it is approaching a value
 | |
|   // that would reduce the wave occupancy for the execution unit.  When
 | |
|   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
 | |
|   // has the same cost, so we don't need to prefer one over the other.
 | |
| 
 | |
|   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
 | |
|   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
 | |
| 
 | |
|   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
 | |
|     if (SGPRDelta > VGPRDelta) {
 | |
|       Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
 | |
|       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
 | |
|     } else {
 | |
|       Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
 | |
|       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function is mostly cut and pasted from
 | |
| // GenericScheduler::pickNodeFromQueue()
 | |
| void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
 | |
|                                          const CandPolicy &ZonePolicy,
 | |
|                                          const RegPressureTracker &RPTracker,
 | |
|                                          SchedCandidate &Cand) {
 | |
|   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
 | |
|   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
 | |
|   unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
 | |
|   unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
 | |
|   ReadyQueue &Q = Zone.Available;
 | |
|   for (SUnit *SU : Q) {
 | |
| 
 | |
|     SchedCandidate TryCand(ZonePolicy);
 | |
|     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
 | |
|                   SGPRPressure, VGPRPressure);
 | |
|     // Pass SchedBoundary only when comparing nodes from the same boundary.
 | |
|     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
 | |
|     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
 | |
|     if (TryCand.Reason != NoCand) {
 | |
|       // Initialize resource delta if needed in case future heuristics query it.
 | |
|       if (TryCand.ResDelta == SchedResourceDelta())
 | |
|         TryCand.initResourceDelta(Zone.DAG, SchedModel);
 | |
|       Cand.setBest(TryCand);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function is mostly cut and pasted from
 | |
| // GenericScheduler::pickNodeBidirectional()
 | |
| SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
 | |
|   // Schedule as far as possible in the direction of no choice. This is most
 | |
|   // efficient, but also provides the best heuristics for CriticalPSets.
 | |
|   if (SUnit *SU = Bot.pickOnlyChoice()) {
 | |
|     IsTopNode = false;
 | |
|     return SU;
 | |
|   }
 | |
|   if (SUnit *SU = Top.pickOnlyChoice()) {
 | |
|     IsTopNode = true;
 | |
|     return SU;
 | |
|   }
 | |
|   // Set the bottom-up policy based on the state of the current bottom zone and
 | |
|   // the instructions outside the zone, including the top zone.
 | |
|   CandPolicy BotPolicy;
 | |
|   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
 | |
|   // Set the top-down policy based on the state of the current top zone and
 | |
|   // the instructions outside the zone, including the bottom zone.
 | |
|   CandPolicy TopPolicy;
 | |
|   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
 | |
| 
 | |
|   // See if BotCand is still valid (because we previously scheduled from Top).
 | |
|   DEBUG(dbgs() << "Picking from Bot:\n");
 | |
|   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
 | |
|       BotCand.Policy != BotPolicy) {
 | |
|     BotCand.reset(CandPolicy());
 | |
|     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
 | |
|     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | |
|   } else {
 | |
|     DEBUG(traceCandidate(BotCand));
 | |
|   }
 | |
| 
 | |
|   // Check if the top Q has a better candidate.
 | |
|   DEBUG(dbgs() << "Picking from Top:\n");
 | |
|   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
 | |
|       TopCand.Policy != TopPolicy) {
 | |
|     TopCand.reset(CandPolicy());
 | |
|     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
 | |
|     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | |
|   } else {
 | |
|     DEBUG(traceCandidate(TopCand));
 | |
|   }
 | |
| 
 | |
|   // Pick best from BotCand and TopCand.
 | |
|   DEBUG(
 | |
|     dbgs() << "Top Cand: ";
 | |
|     traceCandidate(TopCand);
 | |
|     dbgs() << "Bot Cand: ";
 | |
|     traceCandidate(BotCand);
 | |
|   );
 | |
|   SchedCandidate Cand;
 | |
|   if (TopCand.Reason == BotCand.Reason) {
 | |
|     Cand = BotCand;
 | |
|     GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
 | |
|     TopCand.Reason = NoCand;
 | |
|     GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
 | |
|     if (TopCand.Reason != NoCand) {
 | |
|       Cand.setBest(TopCand);
 | |
|     } else {
 | |
|       TopCand.Reason = TopReason;
 | |
|     }
 | |
|   } else {
 | |
|     if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
 | |
|       Cand = TopCand;
 | |
|     } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
 | |
|       Cand = BotCand;
 | |
|     } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
 | |
|       Cand = TopCand;
 | |
|     } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
 | |
|       Cand = BotCand;
 | |
|     } else {
 | |
|       if (BotCand.Reason > TopCand.Reason) {
 | |
|         Cand = TopCand;
 | |
|       } else {
 | |
|         Cand = BotCand;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   DEBUG(
 | |
|     dbgs() << "Picking: ";
 | |
|     traceCandidate(Cand);
 | |
|   );
 | |
| 
 | |
|   IsTopNode = Cand.AtTop;
 | |
|   return Cand.SU;
 | |
| }
 | |
| 
 | |
| // This function is mostly cut and pasted from
 | |
| // GenericScheduler::pickNode()
 | |
| SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
 | |
|   if (DAG->top() == DAG->bottom()) {
 | |
|     assert(Top.Available.empty() && Top.Pending.empty() &&
 | |
|            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | |
|     return nullptr;
 | |
|   }
 | |
|   SUnit *SU;
 | |
|   do {
 | |
|     if (RegionPolicy.OnlyTopDown) {
 | |
|       SU = Top.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         TopCand.reset(NoPolicy);
 | |
|         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
 | |
|         assert(TopCand.Reason != NoCand && "failed to find a candidate");
 | |
|         SU = TopCand.SU;
 | |
|       }
 | |
|       IsTopNode = true;
 | |
|     } else if (RegionPolicy.OnlyBottomUp) {
 | |
|       SU = Bot.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         BotCand.reset(NoPolicy);
 | |
|         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
 | |
|         assert(BotCand.Reason != NoCand && "failed to find a candidate");
 | |
|         SU = BotCand.SU;
 | |
|       }
 | |
|       IsTopNode = false;
 | |
|     } else {
 | |
|       SU = pickNodeBidirectional(IsTopNode);
 | |
|     }
 | |
|   } while (SU->isScheduled);
 | |
| 
 | |
|   if (SU->isTopReady())
 | |
|     Top.removeReady(SU);
 | |
|   if (SU->isBottomReady())
 | |
|     Bot.removeReady(SU);
 | |
| 
 | |
|   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
 | |
|                         std::unique_ptr<MachineSchedStrategy> S) :
 | |
|   ScheduleDAGMILive(C, std::move(S)),
 | |
|   ST(MF.getSubtarget<SISubtarget>()),
 | |
|   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
 | |
|   StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(),
 | |
|                                                     *MF.getFunction())),
 | |
|   MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) {
 | |
| 
 | |
|   DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
 | |
| }
 | |
| 
 | |
| void GCNScheduleDAGMILive::schedule() {
 | |
|   if (Stage == 0) {
 | |
|     // Just record regions at the first pass.
 | |
|     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::vector<MachineInstr*> Unsched;
 | |
|   Unsched.reserve(NumRegionInstrs);
 | |
|   for (auto &I : *this)
 | |
|     Unsched.push_back(&I);
 | |
| 
 | |
|   GCNRegPressure PressureBefore;
 | |
|   if (LIS) {
 | |
|     PressureBefore = Pressure[RegionIdx];
 | |
| 
 | |
|     DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
 | |
|           GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
 | |
|           dbgs() << "Region live-in pressure:  ";
 | |
|           llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
 | |
|           dbgs() << "Region register pressure: ";
 | |
|           PressureBefore.print(dbgs()));
 | |
|   }
 | |
| 
 | |
|   ScheduleDAGMILive::schedule();
 | |
|   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
 | |
| 
 | |
|   if (!LIS)
 | |
|     return;
 | |
| 
 | |
|   // Check the results of scheduling.
 | |
|   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
 | |
|   auto PressureAfter = getRealRegPressure();
 | |
| 
 | |
|   DEBUG(dbgs() << "Pressure after scheduling: "; PressureAfter.print(dbgs()));
 | |
| 
 | |
|   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
 | |
|       PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
 | |
|     Pressure[RegionIdx] = PressureAfter;
 | |
|     DEBUG(dbgs() << "Pressure in desired limits, done.\n");
 | |
|     return;
 | |
|   }
 | |
|   unsigned WavesAfter = getMaxWaves(PressureAfter.getSGPRNum(),
 | |
|                                     PressureAfter.getVGPRNum(), MF);
 | |
|   unsigned WavesBefore = getMaxWaves(PressureBefore.getSGPRNum(),
 | |
|                                      PressureBefore.getVGPRNum(), MF);
 | |
|   DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore <<
 | |
|                   ", after " << WavesAfter << ".\n");
 | |
| 
 | |
|   // We could not keep current target occupancy because of the just scheduled
 | |
|   // region. Record new occupancy for next scheduling cycle.
 | |
|   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
 | |
|   if (NewOccupancy < MinOccupancy) {
 | |
|     MinOccupancy = NewOccupancy;
 | |
|     DEBUG(dbgs() << "Occupancy lowered for the function to "
 | |
|                  << MinOccupancy << ".\n");
 | |
|   }
 | |
| 
 | |
|   if (WavesAfter >= WavesBefore) {
 | |
|     Pressure[RegionIdx] = PressureAfter;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Attempting to revert scheduling.\n");
 | |
|   RegionEnd = RegionBegin;
 | |
|   for (MachineInstr *MI : Unsched) {
 | |
|     if (MI->getIterator() != RegionEnd) {
 | |
|       BB->remove(MI);
 | |
|       BB->insert(RegionEnd, MI);
 | |
|       LIS->handleMove(*MI, true);
 | |
|     }
 | |
|     // Reset read-undef flags and update them later.
 | |
|     for (auto &Op : MI->operands())
 | |
|       if (Op.isReg() && Op.isDef())
 | |
|         Op.setIsUndef(false);
 | |
|     RegisterOperands RegOpers;
 | |
|     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
 | |
|     if (ShouldTrackLaneMasks) {
 | |
|       // Adjust liveness and add missing dead+read-undef flags.
 | |
|       SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
 | |
|       RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
 | |
|     } else {
 | |
|       // Adjust for missing dead-def flags.
 | |
|       RegOpers.detectDeadDefs(*MI, *LIS);
 | |
|     }
 | |
|     RegionEnd = MI->getIterator();
 | |
|     ++RegionEnd;
 | |
|     DEBUG(dbgs() << "Scheduling " << *MI);
 | |
|   }
 | |
|   RegionBegin = Unsched.front()->getIterator();
 | |
|   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
 | |
| 
 | |
|   placeDebugValues();
 | |
| }
 | |
| 
 | |
| GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
 | |
|   GCNDownwardRPTracker RPTracker(*LIS);
 | |
|   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
 | |
|   return RPTracker.moveMaxPressure();
 | |
| }
 | |
| 
 | |
| void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
 | |
|   GCNDownwardRPTracker RPTracker(*LIS);
 | |
| 
 | |
|   // If the block has the only successor then live-ins of that successor are
 | |
|   // live-outs of the current block. We can reuse calculated live set if the
 | |
|   // successor will be sent to scheduling past current block.
 | |
|   const MachineBasicBlock *OnlySucc = nullptr;
 | |
|   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
 | |
|     SlotIndexes *Ind = LIS->getSlotIndexes();
 | |
|     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
 | |
|       OnlySucc = *MBB->succ_begin();
 | |
|   }
 | |
| 
 | |
|   // Scheduler sends regions from the end of the block upwards.
 | |
|   size_t CurRegion = RegionIdx;
 | |
|   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
 | |
|     if (Regions[CurRegion].first->getParent() != MBB)
 | |
|       break;
 | |
|   --CurRegion;
 | |
| 
 | |
|   auto I = MBB->begin();
 | |
|   auto LiveInIt = MBBLiveIns.find(MBB);
 | |
|   if (LiveInIt != MBBLiveIns.end()) {
 | |
|     auto LiveIn = std::move(LiveInIt->second);
 | |
|     RPTracker.reset(*MBB->begin(), &LiveIn);
 | |
|     MBBLiveIns.erase(LiveInIt);
 | |
|   } else {
 | |
|     I = Regions[CurRegion].first;
 | |
|     RPTracker.reset(*I);
 | |
|   }
 | |
| 
 | |
|   for ( ; ; ) {
 | |
|     I = RPTracker.getNext();
 | |
| 
 | |
|     if (Regions[CurRegion].first == I) {
 | |
|       LiveIns[CurRegion] = RPTracker.getLiveRegs();
 | |
|       RPTracker.clearMaxPressure();
 | |
|     }
 | |
| 
 | |
|     if (Regions[CurRegion].second == I) {
 | |
|       Pressure[CurRegion] = RPTracker.moveMaxPressure();
 | |
|       if (CurRegion-- == RegionIdx)
 | |
|         break;
 | |
|     }
 | |
|     RPTracker.advanceToNext();
 | |
|     RPTracker.advanceBeforeNext();
 | |
|   }
 | |
| 
 | |
|   if (OnlySucc) {
 | |
|     if (I != MBB->end()) {
 | |
|       RPTracker.advanceToNext();
 | |
|       RPTracker.advance(MBB->end());
 | |
|     }
 | |
|     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
 | |
|     RPTracker.advanceBeforeNext();
 | |
|     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void GCNScheduleDAGMILive::finalizeSchedule() {
 | |
|   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
 | |
|   DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
 | |
| 
 | |
|   LiveIns.resize(Regions.size());
 | |
|   Pressure.resize(Regions.size());
 | |
| 
 | |
|   do {
 | |
|     Stage++;
 | |
|     RegionIdx = 0;
 | |
|     MachineBasicBlock *MBB = nullptr;
 | |
| 
 | |
|     if (Stage > 1) {
 | |
|       // Retry function scheduling if we found resulting occupancy and it is
 | |
|       // lower than used for first pass scheduling. This will give more freedom
 | |
|       // to schedule low register pressure blocks.
 | |
|       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
 | |
| 
 | |
|       if (!LIS || StartingOccupancy <= MinOccupancy)
 | |
|         break;
 | |
| 
 | |
|       DEBUG(dbgs()
 | |
|               << "Retrying function scheduling with lowest recorded occupancy "
 | |
|               << MinOccupancy << ".\n");
 | |
| 
 | |
|       S.setTargetOccupancy(MinOccupancy);
 | |
|     }
 | |
| 
 | |
|     for (auto Region : Regions) {
 | |
|       RegionBegin = Region.first;
 | |
|       RegionEnd = Region.second;
 | |
| 
 | |
|       if (RegionBegin->getParent() != MBB) {
 | |
|         if (MBB) finishBlock();
 | |
|         MBB = RegionBegin->getParent();
 | |
|         startBlock(MBB);
 | |
|         if (Stage == 1)
 | |
|           computeBlockPressure(MBB);
 | |
|       }
 | |
| 
 | |
|       unsigned NumRegionInstrs = std::distance(begin(), end());
 | |
|       enterRegion(MBB, begin(), end(), NumRegionInstrs);
 | |
| 
 | |
|       // Skip empty scheduling regions (0 or 1 schedulable instructions).
 | |
|       if (begin() == end() || begin() == std::prev(end())) {
 | |
|         exitRegion();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "********** MI Scheduling **********\n");
 | |
|       DEBUG(dbgs() << MF.getName()
 | |
|             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
 | |
|             << "\n  From: " << *begin() << "    To: ";
 | |
|             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
 | |
|             else dbgs() << "End";
 | |
|             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
 | |
| 
 | |
|       schedule();
 | |
| 
 | |
|       exitRegion();
 | |
|       ++RegionIdx;
 | |
|     }
 | |
|     finishBlock();
 | |
| 
 | |
|   } while (Stage < 2);
 | |
| }
 |