2229 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2229 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// \brief Custom DAG lowering for R600
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "R600ISelLowering.h"
 | |
| #include "AMDGPUFrameLowering.h"
 | |
| #include "AMDGPUIntrinsicInfo.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "R600Defines.h"
 | |
| #include "R600FrameLowering.h"
 | |
| #include "R600InstrInfo.h"
 | |
| #include "R600MachineFunctionInfo.h"
 | |
| #include "Utils/AMDGPUBaseInfo.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/DAGCombine.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineValueType.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
 | |
|                                        const R600Subtarget &STI)
 | |
|     : AMDGPUTargetLowering(TM, STI), Gen(STI.getGeneration()) {
 | |
|   addRegisterClass(MVT::f32, &AMDGPU::R600_Reg32RegClass);
 | |
|   addRegisterClass(MVT::i32, &AMDGPU::R600_Reg32RegClass);
 | |
|   addRegisterClass(MVT::v2f32, &AMDGPU::R600_Reg64RegClass);
 | |
|   addRegisterClass(MVT::v2i32, &AMDGPU::R600_Reg64RegClass);
 | |
|   addRegisterClass(MVT::v4f32, &AMDGPU::R600_Reg128RegClass);
 | |
|   addRegisterClass(MVT::v4i32, &AMDGPU::R600_Reg128RegClass);
 | |
| 
 | |
|   computeRegisterProperties(STI.getRegisterInfo());
 | |
| 
 | |
|   // Legalize loads and stores to the private address space.
 | |
|   setOperationAction(ISD::LOAD, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
 | |
|   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
 | |
| 
 | |
|   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
 | |
|   // spaces, so it is custom lowered to handle those where it isn't.
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
 | |
| 
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
 | |
| 
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
 | |
|   }
 | |
| 
 | |
|   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
 | |
|   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
 | |
| 
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
 | |
|   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::STORE, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::STORE, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
 | |
|   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
 | |
| 
 | |
|   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
 | |
|   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
 | |
|   // We need to include these since trunc STORES to PRIVATE need
 | |
|   // special handling to accommodate RMW
 | |
|   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
 | |
|   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
 | |
|   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
 | |
|   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
 | |
|   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
 | |
|   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
 | |
|   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
 | |
|   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
 | |
|   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
 | |
|   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
 | |
| 
 | |
|   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
 | |
|   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
 | |
|   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
 | |
| 
 | |
|   // Set condition code actions
 | |
|   setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
 | |
| 
 | |
|   setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
 | |
|   setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
 | |
|   setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
 | |
|   setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FCOS, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::FSIN, MVT::f32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
 | |
|   setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::FSUB, MVT::f32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SETCC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SETCC, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
 | |
| 
 | |
|   // ADD, SUB overflow.
 | |
|   // TODO: turn these into Legal?
 | |
|   if (Subtarget->hasCARRY())
 | |
|     setOperationAction(ISD::UADDO, MVT::i32, Custom);
 | |
| 
 | |
|   if (Subtarget->hasBORROW())
 | |
|     setOperationAction(ISD::USUBO, MVT::i32, Custom);
 | |
| 
 | |
|   // Expand sign extension of vectors
 | |
|   if (!Subtarget->hasBFE())
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
 | |
| 
 | |
|   if (!Subtarget->hasBFE())
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
 | |
| 
 | |
|   if (!Subtarget->hasBFE())
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
 | |
|   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
| 
 | |
|   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
 | |
|   //  to be Legal/Custom in order to avoid library calls.
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
| 
 | |
|   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
 | |
|   for (MVT VT : ScalarIntVTs) {
 | |
|     setOperationAction(ISD::ADDC, VT, Expand);
 | |
|     setOperationAction(ISD::SUBC, VT, Expand);
 | |
|     setOperationAction(ISD::ADDE, VT, Expand);
 | |
|     setOperationAction(ISD::SUBE, VT, Expand);
 | |
|   }
 | |
| 
 | |
|   // LLVM will expand these to atomic_cmp_swap(0)
 | |
|   // and atomic_swap, respectively.
 | |
|   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
 | |
| 
 | |
|   // We need to custom lower some of the intrinsics
 | |
|   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   setSchedulingPreference(Sched::Source);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::FP_ROUND);
 | |
|   setTargetDAGCombine(ISD::FP_TO_SINT);
 | |
|   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
 | |
|   setTargetDAGCombine(ISD::SELECT_CC);
 | |
|   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
 | |
|   setTargetDAGCombine(ISD::LOAD);
 | |
| }
 | |
| 
 | |
| const R600Subtarget *R600TargetLowering::getSubtarget() const {
 | |
|   return static_cast<const R600Subtarget *>(Subtarget);
 | |
| }
 | |
| 
 | |
| static inline bool isEOP(MachineBasicBlock::iterator I) {
 | |
|   if (std::next(I) == I->getParent()->end())
 | |
|     return false;
 | |
|   return std::next(I)->getOpcode() == AMDGPU::RETURN;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | |
|                                                 MachineBasicBlock *BB) const {
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   MachineBasicBlock::iterator I = MI;
 | |
|   const R600InstrInfo *TII = getSubtarget()->getInstrInfo();
 | |
| 
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     // Replace LDS_*_RET instruction that don't have any uses with the
 | |
|     // equivalent LDS_*_NORET instruction.
 | |
|     if (TII->isLDSRetInstr(MI.getOpcode())) {
 | |
|       int DstIdx = TII->getOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
 | |
|       assert(DstIdx != -1);
 | |
|       MachineInstrBuilder NewMI;
 | |
|       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
 | |
|       //        LDS_1A2D support and remove this special case.
 | |
|       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
 | |
|           MI.getOpcode() == AMDGPU::LDS_CMPST_RET)
 | |
|         return BB;
 | |
| 
 | |
|       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
 | |
|                       TII->get(AMDGPU::getLDSNoRetOp(MI.getOpcode())));
 | |
|       for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
 | |
|         NewMI.add(MI.getOperand(i));
 | |
|       }
 | |
|     } else {
 | |
|       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
 | |
|     }
 | |
|     break;
 | |
|   case AMDGPU::CLAMP_R600: {
 | |
|     MachineInstr *NewMI = TII->buildDefaultInstruction(
 | |
|         *BB, I, AMDGPU::MOV, MI.getOperand(0).getReg(),
 | |
|         MI.getOperand(1).getReg());
 | |
|     TII->addFlag(*NewMI, 0, MO_FLAG_CLAMP);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::FABS_R600: {
 | |
|     MachineInstr *NewMI = TII->buildDefaultInstruction(
 | |
|         *BB, I, AMDGPU::MOV, MI.getOperand(0).getReg(),
 | |
|         MI.getOperand(1).getReg());
 | |
|     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::FNEG_R600: {
 | |
|     MachineInstr *NewMI = TII->buildDefaultInstruction(
 | |
|         *BB, I, AMDGPU::MOV, MI.getOperand(0).getReg(),
 | |
|         MI.getOperand(1).getReg());
 | |
|     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::MASK_WRITE: {
 | |
|     unsigned maskedRegister = MI.getOperand(0).getReg();
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(maskedRegister));
 | |
|     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
 | |
|     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::MOV_IMM_F32:
 | |
|     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
 | |
|                                                             .getFPImm()
 | |
|                                                             ->getValueAPF()
 | |
|                                                             .bitcastToAPInt()
 | |
|                                                             .getZExtValue());
 | |
|     break;
 | |
| 
 | |
|   case AMDGPU::MOV_IMM_I32:
 | |
|     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
 | |
|                      MI.getOperand(1).getImm());
 | |
|     break;
 | |
| 
 | |
|   case AMDGPU::MOV_IMM_GLOBAL_ADDR: {
 | |
|     //TODO: Perhaps combine this instruction with the next if possible
 | |
|     auto MIB = TII->buildDefaultInstruction(
 | |
|         *BB, MI, AMDGPU::MOV, MI.getOperand(0).getReg(), AMDGPU::ALU_LITERAL_X);
 | |
|     int Idx = TII->getOperandIdx(*MIB, AMDGPU::OpName::literal);
 | |
|     //TODO: Ugh this is rather ugly
 | |
|     MIB->getOperand(Idx) = MI.getOperand(1);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::CONST_COPY: {
 | |
|     MachineInstr *NewMI = TII->buildDefaultInstruction(
 | |
|         *BB, MI, AMDGPU::MOV, MI.getOperand(0).getReg(), AMDGPU::ALU_CONST);
 | |
|     TII->setImmOperand(*NewMI, AMDGPU::OpName::src0_sel,
 | |
|                        MI.getOperand(1).getImm());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::RAT_WRITE_CACHELESS_32_eg:
 | |
|   case AMDGPU::RAT_WRITE_CACHELESS_64_eg:
 | |
|   case AMDGPU::RAT_WRITE_CACHELESS_128_eg:
 | |
|     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
 | |
|         .add(MI.getOperand(0))
 | |
|         .add(MI.getOperand(1))
 | |
|         .addImm(isEOP(I)); // Set End of program bit
 | |
|     break;
 | |
| 
 | |
|   case AMDGPU::RAT_STORE_TYPED_eg:
 | |
|     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
 | |
|         .add(MI.getOperand(0))
 | |
|         .add(MI.getOperand(1))
 | |
|         .add(MI.getOperand(2))
 | |
|         .addImm(isEOP(I)); // Set End of program bit
 | |
|     break;
 | |
| 
 | |
|   case AMDGPU::BRANCH:
 | |
|     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP))
 | |
|         .add(MI.getOperand(0));
 | |
|     break;
 | |
| 
 | |
|   case AMDGPU::BRANCH_COND_f32: {
 | |
|     MachineInstr *NewMI =
 | |
|         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
 | |
|                 AMDGPU::PREDICATE_BIT)
 | |
|             .add(MI.getOperand(1))
 | |
|             .addImm(AMDGPU::PRED_SETNE)
 | |
|             .addImm(0); // Flags
 | |
|     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
 | |
|     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
 | |
|         .add(MI.getOperand(0))
 | |
|         .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::BRANCH_COND_i32: {
 | |
|     MachineInstr *NewMI =
 | |
|         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
 | |
|                 AMDGPU::PREDICATE_BIT)
 | |
|             .add(MI.getOperand(1))
 | |
|             .addImm(AMDGPU::PRED_SETNE_INT)
 | |
|             .addImm(0); // Flags
 | |
|     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
 | |
|     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
 | |
|         .add(MI.getOperand(0))
 | |
|         .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case AMDGPU::EG_ExportSwz:
 | |
|   case AMDGPU::R600_ExportSwz: {
 | |
|     // Instruction is left unmodified if its not the last one of its type
 | |
|     bool isLastInstructionOfItsType = true;
 | |
|     unsigned InstExportType = MI.getOperand(1).getImm();
 | |
|     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
 | |
|          EndBlock = BB->end(); NextExportInst != EndBlock;
 | |
|          NextExportInst = std::next(NextExportInst)) {
 | |
|       if (NextExportInst->getOpcode() == AMDGPU::EG_ExportSwz ||
 | |
|           NextExportInst->getOpcode() == AMDGPU::R600_ExportSwz) {
 | |
|         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
 | |
|             .getImm();
 | |
|         if (CurrentInstExportType == InstExportType) {
 | |
|           isLastInstructionOfItsType = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     bool EOP = isEOP(I);
 | |
|     if (!EOP && !isLastInstructionOfItsType)
 | |
|       return BB;
 | |
|     unsigned CfInst = (MI.getOpcode() == AMDGPU::EG_ExportSwz) ? 84 : 40;
 | |
|     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
 | |
|         .add(MI.getOperand(0))
 | |
|         .add(MI.getOperand(1))
 | |
|         .add(MI.getOperand(2))
 | |
|         .add(MI.getOperand(3))
 | |
|         .add(MI.getOperand(4))
 | |
|         .add(MI.getOperand(5))
 | |
|         .add(MI.getOperand(6))
 | |
|         .addImm(CfInst)
 | |
|         .addImm(EOP);
 | |
|     break;
 | |
|   }
 | |
|   case AMDGPU::RETURN: {
 | |
|     return BB;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Custom DAG Lowering Operations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
 | |
|   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
 | |
|   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
 | |
|   case ISD::FCOS:
 | |
|   case ISD::FSIN: return LowerTrig(Op, DAG);
 | |
|   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::STORE: return LowerSTORE(Op, DAG);
 | |
|   case ISD::LOAD: {
 | |
|     SDValue Result = LowerLOAD(Op, DAG);
 | |
|     assert((!Result.getNode() ||
 | |
|             Result.getNode()->getNumValues() == 2) &&
 | |
|            "Load should return a value and a chain");
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
 | |
|   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
 | |
|   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
 | |
|   case ISD::INTRINSIC_VOID: {
 | |
|     SDValue Chain = Op.getOperand(0);
 | |
|     unsigned IntrinsicID =
 | |
|                          cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     switch (IntrinsicID) {
 | |
|     case AMDGPUIntrinsic::r600_store_swizzle: {
 | |
|       SDLoc DL(Op);
 | |
|       const SDValue Args[8] = {
 | |
|         Chain,
 | |
|         Op.getOperand(2), // Export Value
 | |
|         Op.getOperand(3), // ArrayBase
 | |
|         Op.getOperand(4), // Type
 | |
|         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
 | |
|         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
 | |
|         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
 | |
|         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
 | |
|       };
 | |
|       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
 | |
|     }
 | |
| 
 | |
|     // default for switch(IntrinsicID)
 | |
|     default: break;
 | |
|     }
 | |
|     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     unsigned IntrinsicID =
 | |
|                          cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|     EVT VT = Op.getValueType();
 | |
|     SDLoc DL(Op);
 | |
|     switch (IntrinsicID) {
 | |
|     case AMDGPUIntrinsic::r600_tex:
 | |
|     case AMDGPUIntrinsic::r600_texc: {
 | |
|       unsigned TextureOp;
 | |
|       switch (IntrinsicID) {
 | |
|       case AMDGPUIntrinsic::r600_tex:
 | |
|         TextureOp = 0;
 | |
|         break;
 | |
|       case AMDGPUIntrinsic::r600_texc:
 | |
|         TextureOp = 1;
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("unhandled texture operation");
 | |
|       }
 | |
| 
 | |
|       SDValue TexArgs[19] = {
 | |
|         DAG.getConstant(TextureOp, DL, MVT::i32),
 | |
|         Op.getOperand(1),
 | |
|         DAG.getConstant(0, DL, MVT::i32),
 | |
|         DAG.getConstant(1, DL, MVT::i32),
 | |
|         DAG.getConstant(2, DL, MVT::i32),
 | |
|         DAG.getConstant(3, DL, MVT::i32),
 | |
|         Op.getOperand(2),
 | |
|         Op.getOperand(3),
 | |
|         Op.getOperand(4),
 | |
|         DAG.getConstant(0, DL, MVT::i32),
 | |
|         DAG.getConstant(1, DL, MVT::i32),
 | |
|         DAG.getConstant(2, DL, MVT::i32),
 | |
|         DAG.getConstant(3, DL, MVT::i32),
 | |
|         Op.getOperand(5),
 | |
|         Op.getOperand(6),
 | |
|         Op.getOperand(7),
 | |
|         Op.getOperand(8),
 | |
|         Op.getOperand(9),
 | |
|         Op.getOperand(10)
 | |
|       };
 | |
|       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
 | |
|     }
 | |
|     case AMDGPUIntrinsic::r600_dot4: {
 | |
|       SDValue Args[8] = {
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
 | |
|           DAG.getConstant(0, DL, MVT::i32)),
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
 | |
|           DAG.getConstant(0, DL, MVT::i32)),
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
 | |
|           DAG.getConstant(1, DL, MVT::i32)),
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
 | |
|           DAG.getConstant(1, DL, MVT::i32)),
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
 | |
|           DAG.getConstant(2, DL, MVT::i32)),
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
 | |
|           DAG.getConstant(2, DL, MVT::i32)),
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
 | |
|           DAG.getConstant(3, DL, MVT::i32)),
 | |
|       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
 | |
|           DAG.getConstant(3, DL, MVT::i32))
 | |
|       };
 | |
|       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::r600_implicitarg_ptr: {
 | |
|       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUASI.PARAM_I_ADDRESS);
 | |
|       uint32_t ByteOffset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
 | |
|       return DAG.getConstant(ByteOffset, DL, PtrVT);
 | |
|     }
 | |
|     case Intrinsic::r600_read_ngroups_x:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 0);
 | |
|     case Intrinsic::r600_read_ngroups_y:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 1);
 | |
|     case Intrinsic::r600_read_ngroups_z:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 2);
 | |
|     case Intrinsic::r600_read_global_size_x:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 3);
 | |
|     case Intrinsic::r600_read_global_size_y:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 4);
 | |
|     case Intrinsic::r600_read_global_size_z:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 5);
 | |
|     case Intrinsic::r600_read_local_size_x:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 6);
 | |
|     case Intrinsic::r600_read_local_size_y:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 7);
 | |
|     case Intrinsic::r600_read_local_size_z:
 | |
|       return LowerImplicitParameter(DAG, VT, DL, 8);
 | |
| 
 | |
|     case Intrinsic::r600_read_tgid_x:
 | |
|       return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
 | |
|                                      AMDGPU::T1_X, VT);
 | |
|     case Intrinsic::r600_read_tgid_y:
 | |
|       return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
 | |
|                                      AMDGPU::T1_Y, VT);
 | |
|     case Intrinsic::r600_read_tgid_z:
 | |
|       return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
 | |
|                                      AMDGPU::T1_Z, VT);
 | |
|     case Intrinsic::r600_read_tidig_x:
 | |
|       return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
 | |
|                                      AMDGPU::T0_X, VT);
 | |
|     case Intrinsic::r600_read_tidig_y:
 | |
|       return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
 | |
|                                      AMDGPU::T0_Y, VT);
 | |
|     case Intrinsic::r600_read_tidig_z:
 | |
|       return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
 | |
|                                      AMDGPU::T0_Z, VT);
 | |
| 
 | |
|     case Intrinsic::r600_recipsqrt_ieee:
 | |
|       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
 | |
| 
 | |
|     case Intrinsic::r600_recipsqrt_clamped:
 | |
|       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
 | |
|     default:
 | |
|       return Op;
 | |
|     }
 | |
| 
 | |
|     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
 | |
|     break;
 | |
|   }
 | |
|   } // end switch(Op.getOpcode())
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| void R600TargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                             SmallVectorImpl<SDValue> &Results,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
 | |
|     return;
 | |
|   case ISD::FP_TO_UINT:
 | |
|     if (N->getValueType(0) == MVT::i1) {
 | |
|       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
 | |
|       return;
 | |
|     }
 | |
|     // Since we don't care about out of bounds values we can use FP_TO_SINT for
 | |
|     // uints too. The DAGLegalizer code for uint considers some extra cases
 | |
|     // which are not necessary here.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ISD::FP_TO_SINT: {
 | |
|     if (N->getValueType(0) == MVT::i1) {
 | |
|       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SDValue Result;
 | |
|     if (expandFP_TO_SINT(N, Result, DAG))
 | |
|       Results.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SDIVREM: {
 | |
|     SDValue Op = SDValue(N, 1);
 | |
|     SDValue RES = LowerSDIVREM(Op, DAG);
 | |
|     Results.push_back(RES);
 | |
|     Results.push_back(RES.getValue(1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UDIVREM: {
 | |
|     SDValue Op = SDValue(N, 0);
 | |
|     LowerUDIVREM64(Op, DAG, Results);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
 | |
|                                                    SDValue Vector) const {
 | |
|   SDLoc DL(Vector);
 | |
|   EVT VecVT = Vector.getValueType();
 | |
|   EVT EltVT = VecVT.getVectorElementType();
 | |
|   SmallVector<SDValue, 8> Args;
 | |
| 
 | |
|   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
 | |
|     Args.push_back(DAG.getNode(
 | |
|         ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
 | |
|         DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout()))));
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Vector = Op.getOperand(0);
 | |
|   SDValue Index = Op.getOperand(1);
 | |
| 
 | |
|   if (isa<ConstantSDNode>(Index) ||
 | |
|       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
 | |
|     return Op;
 | |
| 
 | |
|   Vector = vectorToVerticalVector(DAG, Vector);
 | |
|   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
 | |
|                      Vector, Index);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Vector = Op.getOperand(0);
 | |
|   SDValue Value = Op.getOperand(1);
 | |
|   SDValue Index = Op.getOperand(2);
 | |
| 
 | |
|   if (isa<ConstantSDNode>(Index) ||
 | |
|       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
 | |
|     return Op;
 | |
| 
 | |
|   Vector = vectorToVerticalVector(DAG, Vector);
 | |
|   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
 | |
|                                Vector, Value, Index);
 | |
|   return vectorToVerticalVector(DAG, Insert);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
 | |
|                                                SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
 | |
|   if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS)
 | |
|     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
 | |
| 
 | |
|   const DataLayout &DL = DAG.getDataLayout();
 | |
|   const GlobalValue *GV = GSD->getGlobal();
 | |
|   MVT ConstPtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
 | |
| 
 | |
|   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
 | |
|   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // On hw >= R700, COS/SIN input must be between -1. and 1.
 | |
|   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue Arg = Op.getOperand(0);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // TODO: Should this propagate fast-math-flags?
 | |
|   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
 | |
|       DAG.getNode(ISD::FADD, DL, VT,
 | |
|         DAG.getNode(ISD::FMUL, DL, VT, Arg,
 | |
|           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
 | |
|         DAG.getConstantFP(0.5, DL, MVT::f32)));
 | |
|   unsigned TrigNode;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::FCOS:
 | |
|     TrigNode = AMDGPUISD::COS_HW;
 | |
|     break;
 | |
|   case ISD::FSIN:
 | |
|     TrigNode = AMDGPUISD::SIN_HW;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Wrong trig opcode");
 | |
|   }
 | |
|   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
 | |
|       DAG.getNode(ISD::FADD, DL, VT, FractPart,
 | |
|         DAG.getConstantFP(-0.5, DL, MVT::f32)));
 | |
|   if (Gen >= R600Subtarget::R700)
 | |
|     return TrigVal;
 | |
|   // On R600 hw, COS/SIN input must be between -Pi and Pi.
 | |
|   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
 | |
|       DAG.getConstantFP(3.14159265359, DL, MVT::f32));
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Shift = Op.getOperand(2);
 | |
|   SDValue Zero = DAG.getConstant(0, DL, VT);
 | |
|   SDValue One  = DAG.getConstant(1, DL, VT);
 | |
| 
 | |
|   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
 | |
|   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
 | |
|   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
 | |
|   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
 | |
| 
 | |
|   // The dance around Width1 is necessary for 0 special case.
 | |
|   // Without it the CompShift might be 32, producing incorrect results in
 | |
|   // Overflow. So we do the shift in two steps, the alternative is to
 | |
|   // add a conditional to filter the special case.
 | |
| 
 | |
|   SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
 | |
|   Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
 | |
| 
 | |
|   SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
 | |
|   HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
 | |
|   SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
 | |
| 
 | |
|   SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
 | |
|   SDValue LoBig = Zero;
 | |
| 
 | |
|   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
 | |
|   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
 | |
| 
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Shift = Op.getOperand(2);
 | |
|   SDValue Zero = DAG.getConstant(0, DL, VT);
 | |
|   SDValue One  = DAG.getConstant(1, DL, VT);
 | |
| 
 | |
|   const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
 | |
| 
 | |
|   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
 | |
|   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
 | |
|   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
 | |
|   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
 | |
| 
 | |
|   // The dance around Width1 is necessary for 0 special case.
 | |
|   // Without it the CompShift might be 32, producing incorrect results in
 | |
|   // Overflow. So we do the shift in two steps, the alternative is to
 | |
|   // add a conditional to filter the special case.
 | |
| 
 | |
|   SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
 | |
|   Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
 | |
| 
 | |
|   SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
 | |
|   SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
 | |
|   LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
 | |
| 
 | |
|   SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
 | |
|   SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
 | |
| 
 | |
|   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
 | |
|   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
 | |
| 
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
 | |
|                                           unsigned mainop, unsigned ovf) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
| 
 | |
|   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
 | |
|   // Extend sign.
 | |
|   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
 | |
|                     DAG.getValueType(MVT::i1));
 | |
| 
 | |
|   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
 | |
| 
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(
 | |
|       ISD::SETCC,
 | |
|       DL,
 | |
|       MVT::i1,
 | |
|       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
 | |
|       DAG.getCondCode(ISD::SETEQ));
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(
 | |
|       ISD::SETCC,
 | |
|       DL,
 | |
|       MVT::i1,
 | |
|       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
 | |
|       DAG.getCondCode(ISD::SETEQ));
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
 | |
|                                                    const SDLoc &DL,
 | |
|                                                    unsigned DwordOffset) const {
 | |
|   unsigned ByteOffset = DwordOffset * 4;
 | |
|   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
 | |
|                                       AMDGPUASI.CONSTANT_BUFFER_0);
 | |
| 
 | |
|   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
 | |
|   assert(isInt<16>(ByteOffset));
 | |
| 
 | |
|   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
 | |
|                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
 | |
|                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
 | |
| }
 | |
| 
 | |
| bool R600TargetLowering::isZero(SDValue Op) const {
 | |
|   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
 | |
|     return Cst->isNullValue();
 | |
|   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
 | |
|     return CstFP->isZero();
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
 | |
|   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
 | |
|     return CFP->isExactlyValue(1.0);
 | |
|   }
 | |
|   return isAllOnesConstant(Op);
 | |
| }
 | |
| 
 | |
| bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
 | |
|   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
 | |
|     return CFP->getValueAPF().isZero();
 | |
|   }
 | |
|   return isNullConstant(Op);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDValue True = Op.getOperand(2);
 | |
|   SDValue False = Op.getOperand(3);
 | |
|   SDValue CC = Op.getOperand(4);
 | |
|   SDValue Temp;
 | |
| 
 | |
|   if (VT == MVT::f32) {
 | |
|     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
 | |
|     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
 | |
|     if (MinMax)
 | |
|       return MinMax;
 | |
|   }
 | |
| 
 | |
|   // LHS and RHS are guaranteed to be the same value type
 | |
|   EVT CompareVT = LHS.getValueType();
 | |
| 
 | |
|   // Check if we can lower this to a native operation.
 | |
| 
 | |
|   // Try to lower to a SET* instruction:
 | |
|   //
 | |
|   // SET* can match the following patterns:
 | |
|   //
 | |
|   // select_cc f32, f32, -1,  0, cc_supported
 | |
|   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
 | |
|   // select_cc i32, i32, -1,  0, cc_supported
 | |
|   //
 | |
| 
 | |
|   // Move hardware True/False values to the correct operand.
 | |
|   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|   ISD::CondCode InverseCC =
 | |
|      ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
 | |
|   if (isHWTrueValue(False) && isHWFalseValue(True)) {
 | |
|     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
 | |
|       std::swap(False, True);
 | |
|       CC = DAG.getCondCode(InverseCC);
 | |
|     } else {
 | |
|       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
 | |
|       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
 | |
|         std::swap(False, True);
 | |
|         std::swap(LHS, RHS);
 | |
|         CC = DAG.getCondCode(SwapInvCC);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isHWTrueValue(True) && isHWFalseValue(False) &&
 | |
|       (CompareVT == VT || VT == MVT::i32)) {
 | |
|     // This can be matched by a SET* instruction.
 | |
|     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
 | |
|   }
 | |
| 
 | |
|   // Try to lower to a CND* instruction:
 | |
|   //
 | |
|   // CND* can match the following patterns:
 | |
|   //
 | |
|   // select_cc f32, 0.0, f32, f32, cc_supported
 | |
|   // select_cc f32, 0.0, i32, i32, cc_supported
 | |
|   // select_cc i32, 0,   f32, f32, cc_supported
 | |
|   // select_cc i32, 0,   i32, i32, cc_supported
 | |
|   //
 | |
| 
 | |
|   // Try to move the zero value to the RHS
 | |
|   if (isZero(LHS)) {
 | |
|     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|     // Try swapping the operands
 | |
|     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
 | |
|     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
 | |
|       std::swap(LHS, RHS);
 | |
|       CC = DAG.getCondCode(CCSwapped);
 | |
|     } else {
 | |
|       // Try inverting the conditon and then swapping the operands
 | |
|       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
 | |
|       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
 | |
|       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
 | |
|         std::swap(True, False);
 | |
|         std::swap(LHS, RHS);
 | |
|         CC = DAG.getCondCode(CCSwapped);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (isZero(RHS)) {
 | |
|     SDValue Cond = LHS;
 | |
|     SDValue Zero = RHS;
 | |
|     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|     if (CompareVT != VT) {
 | |
|       // Bitcast True / False to the correct types.  This will end up being
 | |
|       // a nop, but it allows us to define only a single pattern in the
 | |
|       // .TD files for each CND* instruction rather than having to have
 | |
|       // one pattern for integer True/False and one for fp True/False
 | |
|       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
 | |
|       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
 | |
|     }
 | |
| 
 | |
|     switch (CCOpcode) {
 | |
|     case ISD::SETONE:
 | |
|     case ISD::SETUNE:
 | |
|     case ISD::SETNE:
 | |
|       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
 | |
|       Temp = True;
 | |
|       True = False;
 | |
|       False = Temp;
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
 | |
|         Cond, Zero,
 | |
|         True, False,
 | |
|         DAG.getCondCode(CCOpcode));
 | |
|     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
 | |
|   }
 | |
| 
 | |
|   // If we make it this for it means we have no native instructions to handle
 | |
|   // this SELECT_CC, so we must lower it.
 | |
|   SDValue HWTrue, HWFalse;
 | |
| 
 | |
|   if (CompareVT == MVT::f32) {
 | |
|     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
 | |
|     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
 | |
|   } else if (CompareVT == MVT::i32) {
 | |
|     HWTrue = DAG.getConstant(-1, DL, CompareVT);
 | |
|     HWFalse = DAG.getConstant(0, DL, CompareVT);
 | |
|   }
 | |
|   else {
 | |
|     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
 | |
|   }
 | |
| 
 | |
|   // Lower this unsupported SELECT_CC into a combination of two supported
 | |
|   // SELECT_CC operations.
 | |
|   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
 | |
| 
 | |
|   return DAG.getNode(ISD::SELECT_CC, DL, VT,
 | |
|       Cond, HWFalse,
 | |
|       True, False,
 | |
|       DAG.getCondCode(ISD::SETNE));
 | |
| }
 | |
| 
 | |
| /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
 | |
| /// convert these pointers to a register index.  Each register holds
 | |
| /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
 | |
| /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
 | |
| /// for indirect addressing.
 | |
| SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
 | |
|                                                unsigned StackWidth,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   unsigned SRLPad;
 | |
|   switch(StackWidth) {
 | |
|   case 1:
 | |
|     SRLPad = 2;
 | |
|     break;
 | |
|   case 2:
 | |
|     SRLPad = 3;
 | |
|     break;
 | |
|   case 4:
 | |
|     SRLPad = 4;
 | |
|     break;
 | |
|   default: llvm_unreachable("Invalid stack width");
 | |
|   }
 | |
| 
 | |
|   SDLoc DL(Ptr);
 | |
|   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
 | |
|                      DAG.getConstant(SRLPad, DL, MVT::i32));
 | |
| }
 | |
| 
 | |
| void R600TargetLowering::getStackAddress(unsigned StackWidth,
 | |
|                                          unsigned ElemIdx,
 | |
|                                          unsigned &Channel,
 | |
|                                          unsigned &PtrIncr) const {
 | |
|   switch (StackWidth) {
 | |
|   default:
 | |
|   case 1:
 | |
|     Channel = 0;
 | |
|     if (ElemIdx > 0) {
 | |
|       PtrIncr = 1;
 | |
|     } else {
 | |
|       PtrIncr = 0;
 | |
|     }
 | |
|     break;
 | |
|   case 2:
 | |
|     Channel = ElemIdx % 2;
 | |
|     if (ElemIdx == 2) {
 | |
|       PtrIncr = 1;
 | |
|     } else {
 | |
|       PtrIncr = 0;
 | |
|     }
 | |
|     break;
 | |
|   case 4:
 | |
|     Channel = ElemIdx;
 | |
|     PtrIncr = 0;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Store);
 | |
|   //TODO: Who creates the i8 stores?
 | |
|   assert(Store->isTruncatingStore()
 | |
|          || Store->getValue().getValueType() == MVT::i8);
 | |
|   assert(Store->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS);
 | |
| 
 | |
|   SDValue Mask;
 | |
|   if (Store->getMemoryVT() == MVT::i8) {
 | |
|     assert(Store->getAlignment() >= 1);
 | |
|     Mask = DAG.getConstant(0xff, DL, MVT::i32);
 | |
|   } else if (Store->getMemoryVT() == MVT::i16) {
 | |
|     assert(Store->getAlignment() >= 2);
 | |
|     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
 | |
|   } else {
 | |
|     llvm_unreachable("Unsupported private trunc store");
 | |
|   }
 | |
| 
 | |
|   SDValue OldChain = Store->getChain();
 | |
|   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
 | |
|   // Skip dummy
 | |
|   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
 | |
|   SDValue BasePtr = Store->getBasePtr();
 | |
|   SDValue Offset = Store->getOffset();
 | |
|   EVT MemVT = Store->getMemoryVT();
 | |
| 
 | |
|   SDValue LoadPtr = BasePtr;
 | |
|   if (!Offset.isUndef()) {
 | |
|     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
 | |
|   }
 | |
| 
 | |
|   // Get dword location
 | |
|   // TODO: this should be eliminated by the future SHR ptr, 2
 | |
|   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
 | |
|                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
 | |
| 
 | |
|   // Load dword
 | |
|   // TODO: can we be smarter about machine pointer info?
 | |
|   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo());
 | |
| 
 | |
|   Chain = Dst.getValue(1);
 | |
| 
 | |
|   // Get offset in dword
 | |
|   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
 | |
|                                 DAG.getConstant(0x3, DL, MVT::i32));
 | |
| 
 | |
|   // Convert byte offset to bit shift
 | |
|   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
 | |
|                                  DAG.getConstant(3, DL, MVT::i32));
 | |
| 
 | |
|   // TODO: Contrary to the name of the functiom,
 | |
|   // it also handles sub i32 non-truncating stores (like i1)
 | |
|   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
 | |
|                                   Store->getValue());
 | |
| 
 | |
|   // Mask the value to the right type
 | |
|   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
 | |
| 
 | |
|   // Shift the value in place
 | |
|   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
 | |
|                                      MaskedValue, ShiftAmt);
 | |
| 
 | |
|   // Shift the mask in place
 | |
|   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
 | |
| 
 | |
|   // Invert the mask. NOTE: if we had native ROL instructions we could
 | |
|   // use inverted mask
 | |
|   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
 | |
| 
 | |
|   // Cleanup the target bits
 | |
|   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
 | |
| 
 | |
|   // Add the new bits
 | |
|   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
 | |
| 
 | |
|   // Store dword
 | |
|   // TODO: Can we be smarter about MachinePointerInfo?
 | |
|   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, MachinePointerInfo());
 | |
| 
 | |
|   // If we are part of expanded vector, make our neighbors depend on this store
 | |
|   if (VectorTrunc) {
 | |
|     // Make all other vector elements depend on this store
 | |
|     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
 | |
|     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
 | |
|   }
 | |
|   return NewStore;
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
 | |
|   unsigned AS = StoreNode->getAddressSpace();
 | |
| 
 | |
|   SDValue Chain = StoreNode->getChain();
 | |
|   SDValue Ptr = StoreNode->getBasePtr();
 | |
|   SDValue Value = StoreNode->getValue();
 | |
| 
 | |
|   EVT VT = Value.getValueType();
 | |
|   EVT MemVT = StoreNode->getMemoryVT();
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // Neither LOCAL nor PRIVATE can do vectors at the moment
 | |
|   if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS) &&
 | |
|       VT.isVector()) {
 | |
|     if ((AS == AMDGPUASI.PRIVATE_ADDRESS) &&
 | |
|          StoreNode->isTruncatingStore()) {
 | |
|       // Add an extra level of chain to isolate this vector
 | |
|       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
 | |
|       // TODO: can the chain be replaced without creating a new store?
 | |
|       SDValue NewStore = DAG.getTruncStore(
 | |
|           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
 | |
|           MemVT, StoreNode->getAlignment(),
 | |
|           StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
 | |
|       StoreNode = cast<StoreSDNode>(NewStore);
 | |
|     }
 | |
| 
 | |
|     return scalarizeVectorStore(StoreNode, DAG);
 | |
|   }
 | |
| 
 | |
|   unsigned Align = StoreNode->getAlignment();
 | |
|   if (Align < MemVT.getStoreSize() &&
 | |
|       !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
 | |
|     return expandUnalignedStore(StoreNode, DAG);
 | |
|   }
 | |
| 
 | |
|   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
 | |
|                                   DAG.getConstant(2, DL, PtrVT));
 | |
| 
 | |
|   if (AS == AMDGPUASI.GLOBAL_ADDRESS) {
 | |
|     // It is beneficial to create MSKOR here instead of combiner to avoid
 | |
|     // artificial dependencies introduced by RMW
 | |
|     if (StoreNode->isTruncatingStore()) {
 | |
|       assert(VT.bitsLE(MVT::i32));
 | |
|       SDValue MaskConstant;
 | |
|       if (MemVT == MVT::i8) {
 | |
|         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
 | |
|       } else {
 | |
|         assert(MemVT == MVT::i16);
 | |
|         assert(StoreNode->getAlignment() >= 2);
 | |
|         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
 | |
|       }
 | |
| 
 | |
|       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
 | |
|                                       DAG.getConstant(0x00000003, DL, PtrVT));
 | |
|       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
 | |
|                                      DAG.getConstant(3, DL, VT));
 | |
| 
 | |
|       // Put the mask in correct place
 | |
|       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
 | |
| 
 | |
|       // Put the value bits in correct place
 | |
|       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
 | |
|       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
 | |
| 
 | |
|       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
 | |
|       // vector instead.
 | |
|       SDValue Src[4] = {
 | |
|         ShiftedValue,
 | |
|         DAG.getConstant(0, DL, MVT::i32),
 | |
|         DAG.getConstant(0, DL, MVT::i32),
 | |
|         Mask
 | |
|       };
 | |
|       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
 | |
|       SDValue Args[3] = { Chain, Input, DWordAddr };
 | |
|       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
 | |
|                                      Op->getVTList(), Args, MemVT,
 | |
|                                      StoreNode->getMemOperand());
 | |
|     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
 | |
|       // Convert pointer from byte address to dword address.
 | |
|       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
 | |
| 
 | |
|       if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) {
 | |
|         llvm_unreachable("Truncated and indexed stores not supported yet");
 | |
|       } else {
 | |
|         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
 | |
|       }
 | |
|       return Chain;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
 | |
|   if (AS != AMDGPUASI.PRIVATE_ADDRESS)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (MemVT.bitsLT(MVT::i32))
 | |
|     return lowerPrivateTruncStore(StoreNode, DAG);
 | |
| 
 | |
|   // Standard i32+ store, tag it with DWORDADDR to note that the address
 | |
|   // has been shifted
 | |
|   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
 | |
|     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
 | |
|     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
 | |
|   }
 | |
| 
 | |
|   // Tagged i32+ stores will be matched by patterns
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // return (512 + (kc_bank << 12)
 | |
| static int
 | |
| ConstantAddressBlock(unsigned AddressSpace, AMDGPUAS AMDGPUASI) {
 | |
|   switch (AddressSpace) {
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_0:
 | |
|     return 512;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_1:
 | |
|     return 512 + 4096;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_2:
 | |
|     return 512 + 4096 * 2;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_3:
 | |
|     return 512 + 4096 * 3;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_4:
 | |
|     return 512 + 4096 * 4;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_5:
 | |
|     return 512 + 4096 * 5;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_6:
 | |
|     return 512 + 4096 * 6;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_7:
 | |
|     return 512 + 4096 * 7;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_8:
 | |
|     return 512 + 4096 * 8;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_9:
 | |
|     return 512 + 4096 * 9;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_10:
 | |
|     return 512 + 4096 * 10;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_11:
 | |
|     return 512 + 4096 * 11;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_12:
 | |
|     return 512 + 4096 * 12;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_13:
 | |
|     return 512 + 4096 * 13;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_14:
 | |
|     return 512 + 4096 * 14;
 | |
|   case AMDGPUASI.CONSTANT_BUFFER_15:
 | |
|     return 512 + 4096 * 15;
 | |
|   default:
 | |
|     return -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   LoadSDNode *Load = cast<LoadSDNode>(Op);
 | |
|   ISD::LoadExtType ExtType = Load->getExtensionType();
 | |
|   EVT MemVT = Load->getMemoryVT();
 | |
|   assert(Load->getAlignment() >= MemVT.getStoreSize());
 | |
| 
 | |
|   SDValue BasePtr = Load->getBasePtr();
 | |
|   SDValue Chain = Load->getChain();
 | |
|   SDValue Offset = Load->getOffset();
 | |
| 
 | |
|   SDValue LoadPtr = BasePtr;
 | |
|   if (!Offset.isUndef()) {
 | |
|     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
 | |
|   }
 | |
| 
 | |
|   // Get dword location
 | |
|   // NOTE: this should be eliminated by the future SHR ptr, 2
 | |
|   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
 | |
|                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
 | |
| 
 | |
|   // Load dword
 | |
|   // TODO: can we be smarter about machine pointer info?
 | |
|   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo());
 | |
| 
 | |
|   // Get offset within the register.
 | |
|   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
 | |
|                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
 | |
| 
 | |
|   // Bit offset of target byte (byteIdx * 8).
 | |
|   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
 | |
|                                  DAG.getConstant(3, DL, MVT::i32));
 | |
| 
 | |
|   // Shift to the right.
 | |
|   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
 | |
| 
 | |
|   // Eliminate the upper bits by setting them to ...
 | |
|   EVT MemEltVT = MemVT.getScalarType();
 | |
| 
 | |
|   if (ExtType == ISD::SEXTLOAD) { // ... ones.
 | |
|     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
 | |
|     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
 | |
|   } else { // ... or zeros.
 | |
|     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[] = {
 | |
|     Ret,
 | |
|     Read.getValue(1) // This should be our output chain
 | |
|   };
 | |
| 
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | |
|   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
 | |
|   unsigned AS = LoadNode->getAddressSpace();
 | |
|   EVT MemVT = LoadNode->getMemoryVT();
 | |
|   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
 | |
| 
 | |
|   if (AS == AMDGPUASI.PRIVATE_ADDRESS &&
 | |
|       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
 | |
|     return lowerPrivateExtLoad(Op, DAG);
 | |
|   }
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue Chain = LoadNode->getChain();
 | |
|   SDValue Ptr = LoadNode->getBasePtr();
 | |
| 
 | |
|   if ((LoadNode->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS ||
 | |
|       LoadNode->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS) &&
 | |
|       VT.isVector()) {
 | |
|       return scalarizeVectorLoad(LoadNode, DAG);
 | |
|   }
 | |
| 
 | |
|   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace(),
 | |
|       AMDGPUASI);
 | |
|   if (ConstantBlock > -1 &&
 | |
|       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
 | |
|        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
 | |
|     SDValue Result;
 | |
|     if (isa<ConstantExpr>(LoadNode->getMemOperand()->getValue()) ||
 | |
|         isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
 | |
|         isa<ConstantSDNode>(Ptr)) {
 | |
|       SDValue Slots[4];
 | |
|       for (unsigned i = 0; i < 4; i++) {
 | |
|         // We want Const position encoded with the following formula :
 | |
|         // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
 | |
|         // const_index is Ptr computed by llvm using an alignment of 16.
 | |
|         // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
 | |
|         // then div by 4 at the ISel step
 | |
|         SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
 | |
|             DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
 | |
|         Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
 | |
|       }
 | |
|       EVT NewVT = MVT::v4i32;
 | |
|       unsigned NumElements = 4;
 | |
|       if (VT.isVector()) {
 | |
|         NewVT = VT;
 | |
|         NumElements = VT.getVectorNumElements();
 | |
|       }
 | |
|       Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
 | |
|     } else {
 | |
|       // non-constant ptr can't be folded, keeps it as a v4f32 load
 | |
|       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
 | |
|           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
 | |
|                       DAG.getConstant(4, DL, MVT::i32)),
 | |
|                       DAG.getConstant(LoadNode->getAddressSpace() -
 | |
|                                       AMDGPUASI.CONSTANT_BUFFER_0, DL, MVT::i32)
 | |
|           );
 | |
|     }
 | |
| 
 | |
|     if (!VT.isVector()) {
 | |
|       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
 | |
|                            DAG.getConstant(0, DL, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     SDValue MergedValues[2] = {
 | |
|       Result,
 | |
|       Chain
 | |
|     };
 | |
|     return DAG.getMergeValues(MergedValues, DL);
 | |
|   }
 | |
| 
 | |
|   // For most operations returning SDValue() will result in the node being
 | |
|   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
 | |
|   // need to manually expand loads that may be legal in some address spaces and
 | |
|   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
 | |
|   // compute shaders, since the data is sign extended when it is uploaded to the
 | |
|   // buffer. However SEXT loads from other address spaces are not supported, so
 | |
|   // we need to expand them here.
 | |
|   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
 | |
|     EVT MemVT = LoadNode->getMemoryVT();
 | |
|     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
 | |
|     SDValue NewLoad = DAG.getExtLoad(
 | |
|         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
 | |
|         LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
 | |
|     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
 | |
|                               DAG.getValueType(MemVT));
 | |
| 
 | |
|     SDValue MergedValues[2] = { Res, Chain };
 | |
|     return DAG.getMergeValues(MergedValues, DL);
 | |
|   }
 | |
| 
 | |
|   if (LoadNode->getAddressSpace() != AMDGPUASI.PRIVATE_ADDRESS) {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // DWORDADDR ISD marks already shifted address
 | |
|   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
 | |
|     assert(VT == MVT::i32);
 | |
|     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
 | |
|     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
 | |
|     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Cond  = Op.getOperand(1);
 | |
|   SDValue Jump  = Op.getOperand(2);
 | |
| 
 | |
|   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
 | |
|                      Chain, Jump, Cond);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const R600FrameLowering *TFL = getSubtarget()->getFrameLowering();
 | |
| 
 | |
|   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
 | |
| 
 | |
|   unsigned FrameIndex = FIN->getIndex();
 | |
|   unsigned IgnoredFrameReg;
 | |
|   unsigned Offset =
 | |
|     TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
 | |
|   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
 | |
|                          Op.getValueType());
 | |
| }
 | |
| 
 | |
| /// XXX Only kernel functions are supported, so we can assume for now that
 | |
| /// every function is a kernel function, but in the future we should use
 | |
| /// separate calling conventions for kernel and non-kernel functions.
 | |
| SDValue R600TargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
 | |
| 
 | |
|   SmallVector<ISD::InputArg, 8> LocalIns;
 | |
| 
 | |
|   if (AMDGPU::isShader(CallConv)) {
 | |
|     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
 | |
|   } else {
 | |
|     analyzeFormalArgumentsCompute(CCInfo, Ins);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     const ISD::InputArg &In = Ins[i];
 | |
|     EVT VT = In.VT;
 | |
|     EVT MemVT = VA.getLocVT();
 | |
|     if (!VT.isVector() && MemVT.isVector()) {
 | |
|       // Get load source type if scalarized.
 | |
|       MemVT = MemVT.getVectorElementType();
 | |
|     }
 | |
| 
 | |
|     if (AMDGPU::isShader(CallConv)) {
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), &AMDGPU::R600_Reg128RegClass);
 | |
|       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
 | |
|       InVals.push_back(Register);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
 | |
|                                           AMDGPUASI.CONSTANT_BUFFER_0);
 | |
| 
 | |
|     // i64 isn't a legal type, so the register type used ends up as i32, which
 | |
|     // isn't expected here. It attempts to create this sextload, but it ends up
 | |
|     // being invalid. Somehow this seems to work with i64 arguments, but breaks
 | |
|     // for <1 x i64>.
 | |
| 
 | |
|     // The first 36 bytes of the input buffer contains information about
 | |
|     // thread group and global sizes.
 | |
|     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
 | |
|     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
 | |
|       // FIXME: This should really check the extload type, but the handling of
 | |
|       // extload vector parameters seems to be broken.
 | |
| 
 | |
|       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
 | |
|       Ext = ISD::SEXTLOAD;
 | |
|     }
 | |
| 
 | |
|     // Compute the offset from the value.
 | |
|     // XXX - I think PartOffset should give you this, but it seems to give the
 | |
|     // size of the register which isn't useful.
 | |
| 
 | |
|     unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset();
 | |
|     unsigned PartOffset = VA.getLocMemOffset();
 | |
|     unsigned Offset = Subtarget->getExplicitKernelArgOffset(MF) + VA.getLocMemOffset();
 | |
| 
 | |
|     MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
 | |
|     SDValue Arg = DAG.getLoad(
 | |
|         ISD::UNINDEXED, Ext, VT, DL, Chain,
 | |
|         DAG.getConstant(Offset, DL, MVT::i32), DAG.getUNDEF(MVT::i32), PtrInfo,
 | |
|         MemVT, /* Alignment = */ 4, MachineMemOperand::MONonTemporal |
 | |
|                                         MachineMemOperand::MODereferenceable |
 | |
|                                         MachineMemOperand::MOInvariant);
 | |
| 
 | |
|     // 4 is the preferred alignment for the CONSTANT memory space.
 | |
|     InVals.push_back(Arg);
 | |
|     MFI->setABIArgOffset(Offset + MemVT.getStoreSize());
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
 | |
|                                            EVT VT) const {
 | |
|    if (!VT.isVector())
 | |
|      return MVT::i32;
 | |
|    return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
 | |
|                                           const SelectionDAG &DAG) const {
 | |
|   // Local and Private addresses do not handle vectors. Limit to i32
 | |
|   if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS)) {
 | |
|     return (MemVT.getSizeInBits() <= 32);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool R600TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | |
|                                                         unsigned AddrSpace,
 | |
|                                                         unsigned Align,
 | |
|                                                         bool *IsFast) const {
 | |
|   if (IsFast)
 | |
|     *IsFast = false;
 | |
| 
 | |
|   if (!VT.isSimple() || VT == MVT::Other)
 | |
|     return false;
 | |
| 
 | |
|   if (VT.bitsLT(MVT::i32))
 | |
|     return false;
 | |
| 
 | |
|   // TODO: This is a rough estimate.
 | |
|   if (IsFast)
 | |
|     *IsFast = true;
 | |
| 
 | |
|   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
 | |
| }
 | |
| 
 | |
| static SDValue CompactSwizzlableVector(
 | |
|   SelectionDAG &DAG, SDValue VectorEntry,
 | |
|   DenseMap<unsigned, unsigned> &RemapSwizzle) {
 | |
|   assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
 | |
|   assert(RemapSwizzle.empty());
 | |
|   SDValue NewBldVec[4] = {
 | |
|     VectorEntry.getOperand(0),
 | |
|     VectorEntry.getOperand(1),
 | |
|     VectorEntry.getOperand(2),
 | |
|     VectorEntry.getOperand(3)
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0; i < 4; i++) {
 | |
|     if (NewBldVec[i].isUndef())
 | |
|       // We mask write here to teach later passes that the ith element of this
 | |
|       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
 | |
|       // break false dependencies and additionnaly make assembly easier to read.
 | |
|       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
 | |
|     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
 | |
|       if (C->isZero()) {
 | |
|         RemapSwizzle[i] = 4; // SEL_0
 | |
|         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
 | |
|       } else if (C->isExactlyValue(1.0)) {
 | |
|         RemapSwizzle[i] = 5; // SEL_1
 | |
|         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NewBldVec[i].isUndef())
 | |
|       continue;
 | |
|     for (unsigned j = 0; j < i; j++) {
 | |
|       if (NewBldVec[i] == NewBldVec[j]) {
 | |
|         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
 | |
|         RemapSwizzle[i] = j;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
 | |
|                             NewBldVec);
 | |
| }
 | |
| 
 | |
| static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
 | |
|                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
 | |
|   assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
 | |
|   assert(RemapSwizzle.empty());
 | |
|   SDValue NewBldVec[4] = {
 | |
|       VectorEntry.getOperand(0),
 | |
|       VectorEntry.getOperand(1),
 | |
|       VectorEntry.getOperand(2),
 | |
|       VectorEntry.getOperand(3)
 | |
|   };
 | |
|   bool isUnmovable[4] = { false, false, false, false };
 | |
|   for (unsigned i = 0; i < 4; i++) {
 | |
|     RemapSwizzle[i] = i;
 | |
|     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
 | |
|           ->getZExtValue();
 | |
|       if (i == Idx)
 | |
|         isUnmovable[Idx] = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0; i < 4; i++) {
 | |
|     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
 | |
|           ->getZExtValue();
 | |
|       if (isUnmovable[Idx])
 | |
|         continue;
 | |
|       // Swap i and Idx
 | |
|       std::swap(NewBldVec[Idx], NewBldVec[i]);
 | |
|       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
 | |
|                             NewBldVec);
 | |
| }
 | |
| 
 | |
| SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
 | |
|                                             SelectionDAG &DAG,
 | |
|                                             const SDLoc &DL) const {
 | |
|   assert(BuildVector.getOpcode() == ISD::BUILD_VECTOR);
 | |
|   // Old -> New swizzle values
 | |
|   DenseMap<unsigned, unsigned> SwizzleRemap;
 | |
| 
 | |
|   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
 | |
|   for (unsigned i = 0; i < 4; i++) {
 | |
|     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
 | |
|     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
 | |
|       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   SwizzleRemap.clear();
 | |
|   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
 | |
|   for (unsigned i = 0; i < 4; i++) {
 | |
|     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
 | |
|     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
 | |
|       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   return BuildVector;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Custom DAG Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                               DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
 | |
|   case ISD::FP_ROUND: {
 | |
|       SDValue Arg = N->getOperand(0);
 | |
|       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
 | |
|         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
 | |
|                            Arg.getOperand(0));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
 | |
|   // (i32 select_cc f32, f32, -1, 0 cc)
 | |
|   //
 | |
|   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
 | |
|   // this to one of the SET*_DX10 instructions.
 | |
|   case ISD::FP_TO_SINT: {
 | |
|     SDValue FNeg = N->getOperand(0);
 | |
|     if (FNeg.getOpcode() != ISD::FNEG) {
 | |
|       return SDValue();
 | |
|     }
 | |
|     SDValue SelectCC = FNeg.getOperand(0);
 | |
|     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
 | |
|         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
 | |
|         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
 | |
|         !isHWTrueValue(SelectCC.getOperand(2)) ||
 | |
|         !isHWFalseValue(SelectCC.getOperand(3))) {
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
 | |
|                            SelectCC.getOperand(0), // LHS
 | |
|                            SelectCC.getOperand(1), // RHS
 | |
|                            DAG.getConstant(-1, DL, MVT::i32), // True
 | |
|                            DAG.getConstant(0, DL, MVT::i32),  // False
 | |
|                            SelectCC.getOperand(4)); // CC
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
 | |
|   // => build_vector elt0, ... , NewEltIdx, ... , eltN
 | |
|   case ISD::INSERT_VECTOR_ELT: {
 | |
|     SDValue InVec = N->getOperand(0);
 | |
|     SDValue InVal = N->getOperand(1);
 | |
|     SDValue EltNo = N->getOperand(2);
 | |
| 
 | |
|     // If the inserted element is an UNDEF, just use the input vector.
 | |
|     if (InVal.isUndef())
 | |
|       return InVec;
 | |
| 
 | |
|     EVT VT = InVec.getValueType();
 | |
| 
 | |
|     // If we can't generate a legal BUILD_VECTOR, exit
 | |
|     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
 | |
|       return SDValue();
 | |
| 
 | |
|     // Check that we know which element is being inserted
 | |
|     if (!isa<ConstantSDNode>(EltNo))
 | |
|       return SDValue();
 | |
|     unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
 | |
| 
 | |
|     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
 | |
|     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
 | |
|     // vector elements.
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       Ops.append(InVec.getNode()->op_begin(),
 | |
|                  InVec.getNode()->op_end());
 | |
|     } else if (InVec.isUndef()) {
 | |
|       unsigned NElts = VT.getVectorNumElements();
 | |
|       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
 | |
|     } else {
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // Insert the element
 | |
|     if (Elt < Ops.size()) {
 | |
|       // All the operands of BUILD_VECTOR must have the same type;
 | |
|       // we enforce that here.
 | |
|       EVT OpVT = Ops[0].getValueType();
 | |
|       if (InVal.getValueType() != OpVT)
 | |
|         InVal = OpVT.bitsGT(InVal.getValueType()) ?
 | |
|           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
 | |
|           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
 | |
|       Ops[Elt] = InVal;
 | |
|     }
 | |
| 
 | |
|     // Return the new vector
 | |
|     return DAG.getBuildVector(VT, DL, Ops);
 | |
|   }
 | |
| 
 | |
|   // Extract_vec (Build_vector) generated by custom lowering
 | |
|   // also needs to be customly combined
 | |
|   case ISD::EXTRACT_VECTOR_ELT: {
 | |
|     SDValue Arg = N->getOperand(0);
 | |
|     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|         unsigned Element = Const->getZExtValue();
 | |
|         return Arg->getOperand(Element);
 | |
|       }
 | |
|     }
 | |
|     if (Arg.getOpcode() == ISD::BITCAST &&
 | |
|         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
 | |
|          Arg.getValueType().getVectorNumElements())) {
 | |
|       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|         unsigned Element = Const->getZExtValue();
 | |
|         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
 | |
|                            Arg->getOperand(0).getOperand(Element));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::SELECT_CC: {
 | |
|     // Try common optimizations
 | |
|     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
 | |
|       return Ret;
 | |
| 
 | |
|     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
 | |
|     //      selectcc x, y, a, b, inv(cc)
 | |
|     //
 | |
|     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
 | |
|     //      selectcc x, y, a, b, cc
 | |
|     SDValue LHS = N->getOperand(0);
 | |
|     if (LHS.getOpcode() != ISD::SELECT_CC) {
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     SDValue RHS = N->getOperand(1);
 | |
|     SDValue True = N->getOperand(2);
 | |
|     SDValue False = N->getOperand(3);
 | |
|     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | |
| 
 | |
|     if (LHS.getOperand(2).getNode() != True.getNode() ||
 | |
|         LHS.getOperand(3).getNode() != False.getNode() ||
 | |
|         RHS.getNode() != False.getNode()) {
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     switch (NCC) {
 | |
|     default: return SDValue();
 | |
|     case ISD::SETNE: return LHS;
 | |
|     case ISD::SETEQ: {
 | |
|       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
 | |
|       LHSCC = ISD::getSetCCInverse(LHSCC,
 | |
|                                   LHS.getOperand(0).getValueType().isInteger());
 | |
|       if (DCI.isBeforeLegalizeOps() ||
 | |
|           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
 | |
|         return DAG.getSelectCC(DL,
 | |
|                                LHS.getOperand(0),
 | |
|                                LHS.getOperand(1),
 | |
|                                LHS.getOperand(2),
 | |
|                                LHS.getOperand(3),
 | |
|                                LHSCC);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   case AMDGPUISD::R600_EXPORT: {
 | |
|     SDValue Arg = N->getOperand(1);
 | |
|     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
 | |
|       break;
 | |
| 
 | |
|     SDValue NewArgs[8] = {
 | |
|       N->getOperand(0), // Chain
 | |
|       SDValue(),
 | |
|       N->getOperand(2), // ArrayBase
 | |
|       N->getOperand(3), // Type
 | |
|       N->getOperand(4), // SWZ_X
 | |
|       N->getOperand(5), // SWZ_Y
 | |
|       N->getOperand(6), // SWZ_Z
 | |
|       N->getOperand(7) // SWZ_W
 | |
|     };
 | |
|     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
 | |
|     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
 | |
|   }
 | |
|   case AMDGPUISD::TEXTURE_FETCH: {
 | |
|     SDValue Arg = N->getOperand(1);
 | |
|     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
 | |
|       break;
 | |
| 
 | |
|     SDValue NewArgs[19] = {
 | |
|       N->getOperand(0),
 | |
|       N->getOperand(1),
 | |
|       N->getOperand(2),
 | |
|       N->getOperand(3),
 | |
|       N->getOperand(4),
 | |
|       N->getOperand(5),
 | |
|       N->getOperand(6),
 | |
|       N->getOperand(7),
 | |
|       N->getOperand(8),
 | |
|       N->getOperand(9),
 | |
|       N->getOperand(10),
 | |
|       N->getOperand(11),
 | |
|       N->getOperand(12),
 | |
|       N->getOperand(13),
 | |
|       N->getOperand(14),
 | |
|       N->getOperand(15),
 | |
|       N->getOperand(16),
 | |
|       N->getOperand(17),
 | |
|       N->getOperand(18),
 | |
|     };
 | |
|     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
 | |
|     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
 | |
|   }
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
 | |
| }
 | |
| 
 | |
| bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
 | |
|                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
 | |
|                                      SDValue &Sel, SDValue &Imm,
 | |
|                                      SelectionDAG &DAG) const {
 | |
|   const R600InstrInfo *TII = getSubtarget()->getInstrInfo();
 | |
|   if (!Src.isMachineOpcode())
 | |
|     return false;
 | |
| 
 | |
|   switch (Src.getMachineOpcode()) {
 | |
|   case AMDGPU::FNEG_R600:
 | |
|     if (!Neg.getNode())
 | |
|       return false;
 | |
|     Src = Src.getOperand(0);
 | |
|     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
 | |
|     return true;
 | |
|   case AMDGPU::FABS_R600:
 | |
|     if (!Abs.getNode())
 | |
|       return false;
 | |
|     Src = Src.getOperand(0);
 | |
|     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
 | |
|     return true;
 | |
|   case AMDGPU::CONST_COPY: {
 | |
|     unsigned Opcode = ParentNode->getMachineOpcode();
 | |
|     bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
 | |
| 
 | |
|     if (!Sel.getNode())
 | |
|       return false;
 | |
| 
 | |
|     SDValue CstOffset = Src.getOperand(0);
 | |
|     if (ParentNode->getValueType(0).isVector())
 | |
|       return false;
 | |
| 
 | |
|     // Gather constants values
 | |
|     int SrcIndices[] = {
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src2),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
 | |
|     };
 | |
|     std::vector<unsigned> Consts;
 | |
|     for (int OtherSrcIdx : SrcIndices) {
 | |
|       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
 | |
|       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
 | |
|         continue;
 | |
|       if (HasDst) {
 | |
|         OtherSrcIdx--;
 | |
|         OtherSelIdx--;
 | |
|       }
 | |
|       if (RegisterSDNode *Reg =
 | |
|           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
 | |
|         if (Reg->getReg() == AMDGPU::ALU_CONST) {
 | |
|           ConstantSDNode *Cst
 | |
|             = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
 | |
|           Consts.push_back(Cst->getZExtValue());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
 | |
|     Consts.push_back(Cst->getZExtValue());
 | |
|     if (!TII->fitsConstReadLimitations(Consts)) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Sel = CstOffset;
 | |
|     Src = DAG.getRegister(AMDGPU::ALU_CONST, MVT::f32);
 | |
|     return true;
 | |
|   }
 | |
|   case AMDGPU::MOV_IMM_GLOBAL_ADDR:
 | |
|     // Check if the Imm slot is used. Taken from below.
 | |
|     if (cast<ConstantSDNode>(Imm)->getZExtValue())
 | |
|       return false;
 | |
|     Imm = Src.getOperand(0);
 | |
|     Src = DAG.getRegister(AMDGPU::ALU_LITERAL_X, MVT::i32);
 | |
|     return true;
 | |
|   case AMDGPU::MOV_IMM_I32:
 | |
|   case AMDGPU::MOV_IMM_F32: {
 | |
|     unsigned ImmReg = AMDGPU::ALU_LITERAL_X;
 | |
|     uint64_t ImmValue = 0;
 | |
| 
 | |
|     if (Src.getMachineOpcode() == AMDGPU::MOV_IMM_F32) {
 | |
|       ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
 | |
|       float FloatValue = FPC->getValueAPF().convertToFloat();
 | |
|       if (FloatValue == 0.0) {
 | |
|         ImmReg = AMDGPU::ZERO;
 | |
|       } else if (FloatValue == 0.5) {
 | |
|         ImmReg = AMDGPU::HALF;
 | |
|       } else if (FloatValue == 1.0) {
 | |
|         ImmReg = AMDGPU::ONE;
 | |
|       } else {
 | |
|         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
 | |
|       }
 | |
|     } else {
 | |
|       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
 | |
|       uint64_t Value = C->getZExtValue();
 | |
|       if (Value == 0) {
 | |
|         ImmReg = AMDGPU::ZERO;
 | |
|       } else if (Value == 1) {
 | |
|         ImmReg = AMDGPU::ONE_INT;
 | |
|       } else {
 | |
|         ImmValue = Value;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check that we aren't already using an immediate.
 | |
|     // XXX: It's possible for an instruction to have more than one
 | |
|     // immediate operand, but this is not supported yet.
 | |
|     if (ImmReg == AMDGPU::ALU_LITERAL_X) {
 | |
|       if (!Imm.getNode())
 | |
|         return false;
 | |
|       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
 | |
|       assert(C);
 | |
|       if (C->getZExtValue())
 | |
|         return false;
 | |
|       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
 | |
|     }
 | |
|     Src = DAG.getRegister(ImmReg, MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Fold the instructions after selecting them
 | |
| SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   const R600InstrInfo *TII = getSubtarget()->getInstrInfo();
 | |
|   if (!Node->isMachineOpcode())
 | |
|     return Node;
 | |
| 
 | |
|   unsigned Opcode = Node->getMachineOpcode();
 | |
|   SDValue FakeOp;
 | |
| 
 | |
|   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
 | |
| 
 | |
|   if (Opcode == AMDGPU::DOT_4) {
 | |
|     int OperandIdx[] = {
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
 | |
|         };
 | |
|     int NegIdx[] = {
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_W),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_W)
 | |
|     };
 | |
|     int AbsIdx[] = {
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_W),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_X),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Y),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Z),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_W)
 | |
|     };
 | |
|     for (unsigned i = 0; i < 8; i++) {
 | |
|       if (OperandIdx[i] < 0)
 | |
|         return Node;
 | |
|       SDValue &Src = Ops[OperandIdx[i] - 1];
 | |
|       SDValue &Neg = Ops[NegIdx[i] - 1];
 | |
|       SDValue &Abs = Ops[AbsIdx[i] - 1];
 | |
|       bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
 | |
|       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
 | |
|       if (HasDst)
 | |
|         SelIdx--;
 | |
|       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
 | |
|       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
 | |
|         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
 | |
|     }
 | |
|   } else if (Opcode == AMDGPU::REG_SEQUENCE) {
 | |
|     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
 | |
|       SDValue &Src = Ops[i];
 | |
|       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
 | |
|         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
 | |
|     }
 | |
|   } else if (Opcode == AMDGPU::CLAMP_R600) {
 | |
|     SDValue Src = Node->getOperand(0);
 | |
|     if (!Src.isMachineOpcode() ||
 | |
|         !TII->hasInstrModifiers(Src.getMachineOpcode()))
 | |
|       return Node;
 | |
|     int ClampIdx = TII->getOperandIdx(Src.getMachineOpcode(),
 | |
|         AMDGPU::OpName::clamp);
 | |
|     if (ClampIdx < 0)
 | |
|       return Node;
 | |
|     SDLoc DL(Node);
 | |
|     std::vector<SDValue> Ops(Src->op_begin(), Src->op_end());
 | |
|     Ops[ClampIdx - 1] = DAG.getTargetConstant(1, DL, MVT::i32);
 | |
|     return DAG.getMachineNode(Src.getMachineOpcode(), DL,
 | |
|                               Node->getVTList(), Ops);
 | |
|   } else {
 | |
|     if (!TII->hasInstrModifiers(Opcode))
 | |
|       return Node;
 | |
|     int OperandIdx[] = {
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src2)
 | |
|     };
 | |
|     int NegIdx[] = {
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src2_neg)
 | |
|     };
 | |
|     int AbsIdx[] = {
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs),
 | |
|       TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs),
 | |
|       -1
 | |
|     };
 | |
|     for (unsigned i = 0; i < 3; i++) {
 | |
|       if (OperandIdx[i] < 0)
 | |
|         return Node;
 | |
|       SDValue &Src = Ops[OperandIdx[i] - 1];
 | |
|       SDValue &Neg = Ops[NegIdx[i] - 1];
 | |
|       SDValue FakeAbs;
 | |
|       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
 | |
|       bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
 | |
|       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
 | |
|       int ImmIdx = TII->getOperandIdx(Opcode, AMDGPU::OpName::literal);
 | |
|       if (HasDst) {
 | |
|         SelIdx--;
 | |
|         ImmIdx--;
 | |
|       }
 | |
|       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
 | |
|       SDValue &Imm = Ops[ImmIdx];
 | |
|       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
 | |
|         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Node;
 | |
| }
 |