2017 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2017 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that AVR uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AVRISelLowering.h"
 | |
| 
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| 
 | |
| #include "AVR.h"
 | |
| #include "AVRMachineFunctionInfo.h"
 | |
| #include "AVRTargetMachine.h"
 | |
| #include "MCTargetDesc/AVRMCTargetDesc.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm)
 | |
|     : TargetLowering(tm) {
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
 | |
|   addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
 | |
| 
 | |
|   // Compute derived properties from the register classes.
 | |
|   computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo());
 | |
| 
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   setBooleanVectorContents(ZeroOrOneBooleanContent);
 | |
|   setSchedulingPreference(Sched::RegPressure);
 | |
|   setStackPointerRegisterToSaveRestore(AVR::SP);
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
 | |
| 
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
 | |
|       setLoadExtAction(N, VT, MVT::i1, Promote);
 | |
|       setLoadExtAction(N, VT, MVT::i8, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
 | |
| 
 | |
|   // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
 | |
|   // revert into a sub since we don't have an add with immediate instruction.
 | |
|   setOperationAction(ISD::ADD, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ADD, MVT::i64, Custom);
 | |
| 
 | |
|   // our shift instructions are only able to shift 1 bit at a time, so handle
 | |
|   // this in a custom way.
 | |
|   setOperationAction(ISD::SRA, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::SHL, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::SRL, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::SRA, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::SHL, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::SRL, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::ROTL, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::ROTL, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::ROTR, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::ROTR, MVT::i16, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::BR_CC, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SETCC, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SELECT, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::i16, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
 | |
| 
 | |
|   // Add support for postincrement and predecrement load/stores.
 | |
|   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
 | |
|   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
 | |
|   setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
 | |
|   setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAEND, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
 | |
| 
 | |
|   // Atomic operations which must be lowered to rtlib calls
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
 | |
|   }
 | |
| 
 | |
|   // Division/remainder
 | |
|   setOperationAction(ISD::UDIV, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::UDIV, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SDIV, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::SDIV, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i16, Expand);
 | |
| 
 | |
|   // Make division and modulus custom
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setOperationAction(ISD::UDIVREM, VT, Custom);
 | |
|     setOperationAction(ISD::SDIVREM, VT, Custom);
 | |
|   }
 | |
| 
 | |
|   // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
 | |
|   setOperationAction(ISD::MUL, MVT::i8, Expand);
 | |
|   setOperationAction(ISD::MUL, MVT::i16, Expand);
 | |
| 
 | |
|   // Expand 16 bit multiplications.
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
 | |
| 
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setOperationAction(ISD::MULHS, VT, Expand);
 | |
|     setOperationAction(ISD::MULHU, VT, Expand);
 | |
|   }
 | |
| 
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setOperationAction(ISD::CTPOP, VT, Expand);
 | |
|     setOperationAction(ISD::CTLZ, VT, Expand);
 | |
|     setOperationAction(ISD::CTTZ, VT, Expand);
 | |
|   }
 | |
| 
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | |
|     // TODO: The generated code is pretty poor. Investigate using the
 | |
|     // same "shift and subtract with carry" trick that we do for
 | |
|     // extending 8-bit to 16-bit. This may require infrastructure
 | |
|     // improvements in how we treat 16-bit "registers" to be feasible.
 | |
|   }
 | |
| 
 | |
|   // Division rtlib functions (not supported)
 | |
|   setLibcallName(RTLIB::SDIV_I8, nullptr);
 | |
|   setLibcallName(RTLIB::SDIV_I16, nullptr);
 | |
|   setLibcallName(RTLIB::SDIV_I32, nullptr);
 | |
|   setLibcallName(RTLIB::SDIV_I64, nullptr);
 | |
|   setLibcallName(RTLIB::SDIV_I128, nullptr);
 | |
|   setLibcallName(RTLIB::UDIV_I8, nullptr);
 | |
|   setLibcallName(RTLIB::UDIV_I16, nullptr);
 | |
|   setLibcallName(RTLIB::UDIV_I32, nullptr);
 | |
|   setLibcallName(RTLIB::UDIV_I64, nullptr);
 | |
|   setLibcallName(RTLIB::UDIV_I128, nullptr);
 | |
| 
 | |
|   // Modulus rtlib functions (not supported)
 | |
|   setLibcallName(RTLIB::SREM_I8, nullptr);
 | |
|   setLibcallName(RTLIB::SREM_I16, nullptr);
 | |
|   setLibcallName(RTLIB::SREM_I32, nullptr);
 | |
|   setLibcallName(RTLIB::SREM_I64, nullptr);
 | |
|   setLibcallName(RTLIB::SREM_I128, nullptr);
 | |
|   setLibcallName(RTLIB::UREM_I8, nullptr);
 | |
|   setLibcallName(RTLIB::UREM_I16, nullptr);
 | |
|   setLibcallName(RTLIB::UREM_I32, nullptr);
 | |
|   setLibcallName(RTLIB::UREM_I64, nullptr);
 | |
|   setLibcallName(RTLIB::UREM_I128, nullptr);
 | |
| 
 | |
|   // Division and modulus rtlib functions
 | |
|   setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
 | |
|   setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
 | |
|   setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
 | |
|   setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
 | |
|   setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
 | |
|   setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
 | |
|   setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
 | |
|   setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
 | |
|   setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
 | |
|   setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
 | |
| 
 | |
|   // Several of the runtime library functions use a special calling conv
 | |
|   setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
 | |
|   setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
 | |
|   setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
 | |
|   setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
 | |
| 
 | |
|   // Trigonometric rtlib functions
 | |
|   setLibcallName(RTLIB::SIN_F32, "sin");
 | |
|   setLibcallName(RTLIB::COS_F32, "cos");
 | |
| 
 | |
|   setMinFunctionAlignment(1);
 | |
|   setMinimumJumpTableEntries(INT_MAX);
 | |
| }
 | |
| 
 | |
| const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
| #define NODE(name)       \
 | |
|   case AVRISD::name:     \
 | |
|     return #name
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|     NODE(RET_FLAG);
 | |
|     NODE(RETI_FLAG);
 | |
|     NODE(CALL);
 | |
|     NODE(WRAPPER);
 | |
|     NODE(LSL);
 | |
|     NODE(LSR);
 | |
|     NODE(ROL);
 | |
|     NODE(ROR);
 | |
|     NODE(ASR);
 | |
|     NODE(LSLLOOP);
 | |
|     NODE(LSRLOOP);
 | |
|     NODE(ASRLOOP);
 | |
|     NODE(BRCOND);
 | |
|     NODE(CMP);
 | |
|     NODE(CMPC);
 | |
|     NODE(TST);
 | |
|     NODE(SELECT_CC);
 | |
| #undef NODE
 | |
|   }
 | |
| }
 | |
| 
 | |
| EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
 | |
|                                           EVT VT) const {
 | |
|   assert(!VT.isVector() && "No AVR SetCC type for vectors!");
 | |
|   return MVT::i8;
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
 | |
|   //:TODO: this function has to be completely rewritten to produce optimal
 | |
|   // code, for now it's producing very long but correct code.
 | |
|   unsigned Opc8;
 | |
|   const SDNode *N = Op.getNode();
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // Expand non-constant shifts to loops.
 | |
|   if (!isa<ConstantSDNode>(N->getOperand(1))) {
 | |
|     switch (Op.getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable("Invalid shift opcode!");
 | |
|     case ISD::SHL:
 | |
|       return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
 | |
|                          N->getOperand(1));
 | |
|     case ISD::SRL:
 | |
|       return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
 | |
|                          N->getOperand(1));
 | |
|     case ISD::ROTL:
 | |
|       return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
 | |
|                          N->getOperand(1));
 | |
|     case ISD::ROTR:
 | |
|       return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
 | |
|                          N->getOperand(1));
 | |
|     case ISD::SRA:
 | |
|       return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
 | |
|                          N->getOperand(1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | |
|   SDValue Victim = N->getOperand(0);
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::SRA:
 | |
|     Opc8 = AVRISD::ASR;
 | |
|     break;
 | |
|   case ISD::ROTL:
 | |
|     Opc8 = AVRISD::ROL;
 | |
|     break;
 | |
|   case ISD::ROTR:
 | |
|     Opc8 = AVRISD::ROR;
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     Opc8 = AVRISD::LSR;
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     Opc8 = AVRISD::LSL;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid shift opcode");
 | |
|   }
 | |
| 
 | |
|   while (ShiftAmount--) {
 | |
|     Victim = DAG.getNode(Opc8, dl, VT, Victim);
 | |
|   }
 | |
| 
 | |
|   return Victim;
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
 | |
|   unsigned Opcode = Op->getOpcode();
 | |
|   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
 | |
|          "Invalid opcode for Div/Rem lowering");
 | |
|   bool IsSigned = (Opcode == ISD::SDIVREM);
 | |
|   EVT VT = Op->getValueType(0);
 | |
|   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
 | |
| 
 | |
|   RTLIB::Libcall LC;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected request for libcall!");
 | |
|   case MVT::i8:
 | |
|     LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SDValue InChain = DAG.getEntryNode();
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   for (SDValue const &Value : Op->op_values()) {
 | |
|     Entry.Node = Value;
 | |
|     Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
 | |
|     Entry.IsSExt = IsSigned;
 | |
|     Entry.IsZExt = !IsSigned;
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
 | |
|                                          getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   Type *RetTy = (Type *)StructType::get(Ty, Ty);
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl)
 | |
|       .setChain(InChain)
 | |
|       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
 | |
|       .setInRegister()
 | |
|       .setSExtResult(IsSigned)
 | |
|       .setZExtResult(!IsSigned);
 | |
| 
 | |
|   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
 | |
|   return CallInfo.first;
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   auto DL = DAG.getDataLayout();
 | |
| 
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
 | |
| 
 | |
|   // Create the TargetGlobalAddress node, folding in the constant offset.
 | |
|   SDValue Result =
 | |
|       DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
 | |
|   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   auto DL = DAG.getDataLayout();
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
| 
 | |
|   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
 | |
| 
 | |
|   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
 | |
| }
 | |
| 
 | |
| /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
 | |
| static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown condition code!");
 | |
|   case ISD::SETEQ:
 | |
|     return AVRCC::COND_EQ;
 | |
|   case ISD::SETNE:
 | |
|     return AVRCC::COND_NE;
 | |
|   case ISD::SETGE:
 | |
|     return AVRCC::COND_GE;
 | |
|   case ISD::SETLT:
 | |
|     return AVRCC::COND_LT;
 | |
|   case ISD::SETUGE:
 | |
|     return AVRCC::COND_SH;
 | |
|   case ISD::SETULT:
 | |
|     return AVRCC::COND_LO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
 | |
| /// the given operands.
 | |
| SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | |
|                                      SDValue &AVRcc, SelectionDAG &DAG,
 | |
|                                      SDLoc DL) const {
 | |
|   SDValue Cmp;
 | |
|   EVT VT = LHS.getValueType();
 | |
|   bool UseTest = false;
 | |
| 
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::SETLE: {
 | |
|     // Swap operands and reverse the branching condition.
 | |
|     std::swap(LHS, RHS);
 | |
|     CC = ISD::SETGE;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SETGT: {
 | |
|     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       switch (C->getSExtValue()) {
 | |
|       case -1: {
 | |
|         // When doing lhs > -1 use a tst instruction on the top part of lhs
 | |
|         // and use brpl instead of using a chain of cp/cpc.
 | |
|         UseTest = true;
 | |
|         AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
 | |
|         break;
 | |
|       }
 | |
|       case 0: {
 | |
|         // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
 | |
|         // __zero_reg__ in lhs.
 | |
|         RHS = LHS;
 | |
|         LHS = DAG.getConstant(0, DL, VT);
 | |
|         CC = ISD::SETLT;
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
 | |
|         // us to  fold the constant into the cmp instruction.
 | |
|         RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
 | |
|         CC = ISD::SETGE;
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     // Swap operands and reverse the branching condition.
 | |
|     std::swap(LHS, RHS);
 | |
|     CC = ISD::SETLT;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SETLT: {
 | |
|     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       switch (C->getSExtValue()) {
 | |
|       case 1: {
 | |
|         // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
 | |
|         // __zero_reg__ in lhs.
 | |
|         RHS = LHS;
 | |
|         LHS = DAG.getConstant(0, DL, VT);
 | |
|         CC = ISD::SETGE;
 | |
|         break;
 | |
|       }
 | |
|       case 0: {
 | |
|         // When doing lhs < 0 use a tst instruction on the top part of lhs
 | |
|         // and use brmi instead of using a chain of cp/cpc.
 | |
|         UseTest = true;
 | |
|         AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SETULE: {
 | |
|     // Swap operands and reverse the branching condition.
 | |
|     std::swap(LHS, RHS);
 | |
|     CC = ISD::SETUGE;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SETUGT: {
 | |
|     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
 | |
|     // fold the constant into the cmp instruction.
 | |
|     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
 | |
|       CC = ISD::SETUGE;
 | |
|       break;
 | |
|     }
 | |
|     // Swap operands and reverse the branching condition.
 | |
|     std::swap(LHS, RHS);
 | |
|     CC = ISD::SETULT;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
 | |
|   // using the default and/or/xor expansion code which is much longer.
 | |
|   if (VT == MVT::i32) {
 | |
|     SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
 | |
|                                 DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
 | |
|                                 DAG.getIntPtrConstant(1, DL));
 | |
|     SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
 | |
|                                 DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
 | |
|                                 DAG.getIntPtrConstant(1, DL));
 | |
| 
 | |
|     if (UseTest) {
 | |
|       // When using tst we only care about the highest part.
 | |
|       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
 | |
|                                 DAG.getIntPtrConstant(1, DL));
 | |
|       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
 | |
|     } else {
 | |
|       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
 | |
|       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
 | |
|     }
 | |
|   } else if (VT == MVT::i64) {
 | |
|     SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
 | |
|                                 DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
 | |
|                                 DAG.getIntPtrConstant(1, DL));
 | |
| 
 | |
|     SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
 | |
|                                DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
 | |
|                                DAG.getIntPtrConstant(1, DL));
 | |
|     SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
 | |
|                                DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
 | |
|                                DAG.getIntPtrConstant(1, DL));
 | |
| 
 | |
|     SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
 | |
|                                 DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
 | |
|                                 DAG.getIntPtrConstant(1, DL));
 | |
| 
 | |
|     SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
 | |
|                                DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
 | |
|                                DAG.getIntPtrConstant(1, DL));
 | |
|     SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
 | |
|                                DAG.getIntPtrConstant(0, DL));
 | |
|     SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
 | |
|                                DAG.getIntPtrConstant(1, DL));
 | |
| 
 | |
|     if (UseTest) {
 | |
|       // When using tst we only care about the highest part.
 | |
|       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
 | |
|                                 DAG.getIntPtrConstant(1, DL));
 | |
|       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
 | |
|     } else {
 | |
|       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
 | |
|       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
 | |
|       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
 | |
|       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
 | |
|     }
 | |
|   } else if (VT == MVT::i8 || VT == MVT::i16) {
 | |
|     if (UseTest) {
 | |
|       // When using tst we only care about the highest part.
 | |
|       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
 | |
|                         (VT == MVT::i8)
 | |
|                             ? LHS
 | |
|                             : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
 | |
|                                           LHS, DAG.getIntPtrConstant(1, DL)));
 | |
|     } else {
 | |
|       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
 | |
|     }
 | |
|   } else {
 | |
|     llvm_unreachable("Invalid comparison size");
 | |
|   }
 | |
| 
 | |
|   // When using a test instruction AVRcc is already set.
 | |
|   if (!UseTest) {
 | |
|     AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
 | |
|   }
 | |
| 
 | |
|   return Cmp;
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   SDValue TargetCC;
 | |
|   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
 | |
| 
 | |
|   return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
 | |
|                      Cmp);
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDValue TrueV = Op.getOperand(2);
 | |
|   SDValue FalseV = Op.getOperand(3);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   SDValue TargetCC;
 | |
|   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
 | |
|   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
 | |
| 
 | |
|   return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   SDValue TargetCC;
 | |
|   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
 | |
| 
 | |
|   SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
 | |
|   SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
 | |
|   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
 | |
| 
 | |
|   return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   auto DL = DAG.getDataLayout();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
 | |
| 
 | |
|   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
 | |
|                       MachinePointerInfo(SV), 0);
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Don't know how to custom lower this!");
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     return LowerShifts(Op, DAG);
 | |
|   case ISD::GlobalAddress:
 | |
|     return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::BlockAddress:
 | |
|     return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::BR_CC:
 | |
|     return LowerBR_CC(Op, DAG);
 | |
|   case ISD::SELECT_CC:
 | |
|     return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::SETCC:
 | |
|     return LowerSETCC(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return LowerVASTART(Op, DAG);
 | |
|   case ISD::SDIVREM:
 | |
|   case ISD::UDIVREM:
 | |
|     return LowerDivRem(Op, DAG);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Replace a node with an illegal result type
 | |
| /// with a new node built out of custom code.
 | |
| void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue> &Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::ADD: {
 | |
|     // Convert add (x, imm) into sub (x, -imm).
 | |
|     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|       SDValue Sub = DAG.getNode(
 | |
|           ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
 | |
|           DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
 | |
|       Results.push_back(Sub);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default: {
 | |
|     SDValue Res = LowerOperation(SDValue(N, 0), DAG);
 | |
| 
 | |
|     for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
 | |
|       Results.push_back(Res.getValue(I));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | |
|                                               const AddrMode &AM, Type *Ty,
 | |
|                                               unsigned AS, Instruction *I) const {
 | |
|   int64_t Offs = AM.BaseOffs;
 | |
| 
 | |
|   // Allow absolute addresses.
 | |
|   if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Flash memory instructions only allow zero offsets.
 | |
|   if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Allow reg+<6bit> offset.
 | |
|   if (Offs < 0)
 | |
|     Offs = -Offs;
 | |
|   if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if the node's address
 | |
| /// can be legally represented as pre-indexed load / store address.
 | |
| bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                                   SDValue &Offset,
 | |
|                                                   ISD::MemIndexedMode &AM,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   EVT VT;
 | |
|   const SDNode *Op;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT = LD->getMemoryVT();
 | |
|     Op = LD->getBasePtr().getNode();
 | |
|     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
 | |
|       return false;
 | |
|     if (AVR::isProgramMemoryAccess(LD)) {
 | |
|       return false;
 | |
|     }
 | |
|   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT = ST->getMemoryVT();
 | |
|     Op = ST->getBasePtr().getNode();
 | |
|     if (AVR::isProgramMemoryAccess(ST)) {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (VT != MVT::i8 && VT != MVT::i16) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
 | |
|     int RHSC = RHS->getSExtValue();
 | |
|     if (Op->getOpcode() == ISD::SUB)
 | |
|       RHSC = -RHSC;
 | |
| 
 | |
|     if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Base = Op->getOperand(0);
 | |
|     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
 | |
|     AM = ISD::PRE_DEC;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if this node can be
 | |
| /// combined with a load / store to form a post-indexed load / store.
 | |
| bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                                    SDValue &Base,
 | |
|                                                    SDValue &Offset,
 | |
|                                                    ISD::MemIndexedMode &AM,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   EVT VT;
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT = LD->getMemoryVT();
 | |
|     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
 | |
|       return false;
 | |
|   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT = ST->getMemoryVT();
 | |
|     if (AVR::isProgramMemoryAccess(ST)) {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (VT != MVT::i8 && VT != MVT::i16) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
 | |
|     int RHSC = RHS->getSExtValue();
 | |
|     if (Op->getOpcode() == ISD::SUB)
 | |
|       RHSC = -RHSC;
 | |
|     if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Base = Op->getOperand(0);
 | |
|     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
 | |
|     AM = ISD::POST_INC;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AVRTargetLowering::isOffsetFoldingLegal(
 | |
|     const GlobalAddressSDNode *GA) const {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //             Formal Arguments Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AVRGenCallingConv.inc"
 | |
| 
 | |
| /// For each argument in a function store the number of pieces it is composed
 | |
| /// of.
 | |
| static void parseFunctionArgs(const Function *F, const DataLayout *TD,
 | |
|                               SmallVectorImpl<unsigned> &Out) {
 | |
|   for (Argument const &Arg : F->args()) {
 | |
|     unsigned Bytes = (TD->getTypeSizeInBits(Arg.getType()) + 7) / 8;
 | |
|     Out.push_back((Bytes + 1) / 2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For external symbols there is no function prototype information so we
 | |
| /// have to rely directly on argument sizes.
 | |
| static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
 | |
|                                     SmallVectorImpl<unsigned> &Out) {
 | |
|   for (unsigned i = 0, e = In.size(); i != e;) {
 | |
|     unsigned Size = 0;
 | |
|     unsigned Offset = 0;
 | |
|     while ((i != e) && (In[i].PartOffset == Offset)) {
 | |
|       Offset += In[i].VT.getStoreSize();
 | |
|       ++i;
 | |
|       ++Size;
 | |
|     }
 | |
|     Out.push_back(Size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
 | |
|   SDValue Callee = CLI.Callee;
 | |
| 
 | |
|   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     return G->getSymbol();
 | |
|   }
 | |
| 
 | |
|   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     return G->getGlobal()->getName();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("don't know how to get the name for this callee");
 | |
| }
 | |
| 
 | |
| /// Analyze incoming and outgoing function arguments. We need custom C++ code
 | |
| /// to handle special constraints in the ABI like reversing the order of the
 | |
| /// pieces of splitted arguments. In addition, all pieces of a certain argument
 | |
| /// have to be passed either using registers or the stack but never mixing both.
 | |
| static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
 | |
|                                      const Function *F, const DataLayout *TD,
 | |
|                                      const SmallVectorImpl<ISD::OutputArg> *Outs,
 | |
|                                      const SmallVectorImpl<ISD::InputArg> *Ins,
 | |
|                                      CallingConv::ID CallConv,
 | |
|                                      SmallVectorImpl<CCValAssign> &ArgLocs,
 | |
|                                      CCState &CCInfo, bool IsCall, bool IsVarArg) {
 | |
|   static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
 | |
|                                        AVR::R18, AVR::R16, AVR::R14,
 | |
|                                        AVR::R12, AVR::R10, AVR::R8};
 | |
|   static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
 | |
|                                         AVR::R19R18, AVR::R17R16, AVR::R15R14,
 | |
|                                         AVR::R13R12, AVR::R11R10, AVR::R9R8};
 | |
|   if (IsVarArg) {
 | |
|     // Variadic functions do not need all the analisys below.
 | |
|     if (IsCall) {
 | |
|       CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
 | |
|     } else {
 | |
|       CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Fill in the Args array which will contain original argument sizes.
 | |
|   SmallVector<unsigned, 8> Args;
 | |
|   if (IsCall) {
 | |
|     parseExternFuncCallArgs(*Outs, Args);
 | |
|   } else {
 | |
|     assert(F != nullptr && "function should not be null");
 | |
|     parseFunctionArgs(F, TD, Args);
 | |
|   }
 | |
| 
 | |
|   unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
 | |
|   // Variadic functions always use the stack.
 | |
|   bool UsesStack = false;
 | |
|   for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
 | |
|     unsigned Size = Args[i];
 | |
| 
 | |
|     // If we have a zero-sized argument, don't attempt to lower it.
 | |
|     // AVR-GCC does not support zero-sized arguments and so we need not
 | |
|     // worry about ABI compatibility.
 | |
|     if (Size == 0) continue;
 | |
| 
 | |
|     MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
 | |
| 
 | |
|     // If we have plenty of regs to pass the whole argument do it.
 | |
|     if (!UsesStack && (Size <= RegsLeft)) {
 | |
|       const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
 | |
| 
 | |
|       for (unsigned j = 0; j != Size; ++j) {
 | |
|         unsigned Reg = CCInfo.AllocateReg(
 | |
|             ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
 | |
|         CCInfo.addLoc(
 | |
|             CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
 | |
|         --RegsLeft;
 | |
|       }
 | |
| 
 | |
|       // Reverse the order of the pieces to agree with the "big endian" format
 | |
|       // required in the calling convention ABI.
 | |
|       std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
 | |
|     } else {
 | |
|       // Pass the rest of arguments using the stack.
 | |
|       UsesStack = true;
 | |
|       for (unsigned j = 0; j != Size; ++j) {
 | |
|         unsigned Offset = CCInfo.AllocateStack(
 | |
|             TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
 | |
|             TD->getABITypeAlignment(
 | |
|                 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
 | |
|         CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
 | |
|                                           CCValAssign::Full));
 | |
|       }
 | |
|     }
 | |
|     pos += Size;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
 | |
|                                     const Function *F, const DataLayout *TD,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> *Outs,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> *Ins,
 | |
|                                     CallingConv::ID CallConv,
 | |
|                                     SmallVectorImpl<CCValAssign> &ArgLocs,
 | |
|                                     CCState &CCInfo, bool IsCall, bool IsVarArg) {
 | |
|   StringRef FuncName = getFunctionName(CLI);
 | |
| 
 | |
|   if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
 | |
|     CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
 | |
|   } else {
 | |
|     analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
 | |
|                              CallConv, ArgLocs, CCInfo,
 | |
|                              IsCall, IsVarArg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
 | |
|                              const Function *F, const DataLayout *TD,
 | |
|                              const SmallVectorImpl<ISD::OutputArg> *Outs,
 | |
|                              const SmallVectorImpl<ISD::InputArg> *Ins,
 | |
|                              CallingConv::ID CallConv,
 | |
|                              SmallVectorImpl<CCValAssign> &ArgLocs,
 | |
|                              CCState &CCInfo, bool IsCall, bool IsVarArg) {
 | |
|   switch (CallConv) {
 | |
|     case CallingConv::AVR_BUILTIN: {
 | |
|       analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
 | |
|                               CallConv, ArgLocs, CCInfo,
 | |
|                               IsCall, IsVarArg);
 | |
|       return;
 | |
|     }
 | |
|     default: {
 | |
|       analyzeStandardArguments(CLI, F, TD, Outs, Ins,
 | |
|                                CallConv, ArgLocs, CCInfo,
 | |
|                                IsCall, IsVarArg);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
 | |
|     SmallVectorImpl<SDValue> &InVals) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   auto DL = DAG.getDataLayout();
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   analyzeArguments(nullptr, MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
 | |
|                    false, isVarArg);
 | |
| 
 | |
|   SDValue ArgValue;
 | |
|   for (CCValAssign &VA : ArgLocs) {
 | |
| 
 | |
|     // Arguments stored on registers.
 | |
|     if (VA.isRegLoc()) {
 | |
|       EVT RegVT = VA.getLocVT();
 | |
|       const TargetRegisterClass *RC;
 | |
|       if (RegVT == MVT::i8) {
 | |
|         RC = &AVR::GPR8RegClass;
 | |
|       } else if (RegVT == MVT::i16) {
 | |
|         RC = &AVR::DREGSRegClass;
 | |
|       } else {
 | |
|         llvm_unreachable("Unknown argument type!");
 | |
|       }
 | |
| 
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | |
| 
 | |
|       // :NOTE: Clang should not promote any i8 into i16 but for safety the
 | |
|       // following code will handle zexts or sexts generated by other
 | |
|       // front ends. Otherwise:
 | |
|       // If this is an 8 bit value, it is really passed promoted
 | |
|       // to 16 bits. Insert an assert[sz]ext to capture this, then
 | |
|       // truncate to the right size.
 | |
|       switch (VA.getLocInfo()) {
 | |
|       default:
 | |
|         llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::Full:
 | |
|         break;
 | |
|       case CCValAssign::BCvt:
 | |
|         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::SExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
|     } else {
 | |
|       // Sanity check.
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       EVT LocVT = VA.getLocVT();
 | |
| 
 | |
|       // Create the frame index object for this incoming parameter.
 | |
|       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
 | |
|                                      VA.getLocMemOffset(), true);
 | |
| 
 | |
|       // Create the SelectionDAG nodes corresponding to a load
 | |
|       // from this parameter.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
 | |
|       InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
 | |
|                                    MachinePointerInfo::getFixedStack(MF, FI),
 | |
|                                    0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     unsigned StackSize = CCInfo.getNextStackOffset();
 | |
|     AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
 | |
| 
 | |
|     AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                  Call Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | |
|                                      SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG = CLI.DAG;
 | |
|   SDLoc &DL = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
 | |
|   SDValue Chain = CLI.Chain;
 | |
|   SDValue Callee = CLI.Callee;
 | |
|   bool &isTailCall = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv = CLI.CallConv;
 | |
|   bool isVarArg = CLI.IsVarArg;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // AVR does not yet support tail call optimization.
 | |
|   isTailCall = false;
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   const Function *F = nullptr;
 | |
|   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
| 
 | |
|     F = cast<Function>(GV);
 | |
|     Callee =
 | |
|         DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
 | |
|   } else if (const ExternalSymbolSDNode *ES =
 | |
|                  dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
 | |
|                                          getPointerTy(DAG.getDataLayout()));
 | |
|   }
 | |
| 
 | |
|   analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
 | |
|                    true, isVarArg);
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
| 
 | |
|   // First, walk the register assignments, inserting copies.
 | |
|   unsigned AI, AE;
 | |
|   bool HasStackArgs = false;
 | |
|   for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
 | |
|     CCValAssign &VA = ArgLocs[AI];
 | |
|     EVT RegVT = VA.getLocVT();
 | |
|     SDValue Arg = OutVals[AI];
 | |
| 
 | |
|     // Promote the value if needed. With Clang this should not happen.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full:
 | |
|       break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Stop when we encounter a stack argument, we need to process them
 | |
|     // in reverse order in the loop below.
 | |
|     if (VA.isMemLoc()) {
 | |
|       HasStackArgs = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Arguments that can be passed on registers must be kept in the RegsToPass
 | |
|     // vector.
 | |
|     RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|   }
 | |
| 
 | |
|   // Second, stack arguments have to walked in reverse order by inserting
 | |
|   // chained stores, this ensures their order is not changed by the scheduler
 | |
|   // and that the push instruction sequence generated is correct, otherwise they
 | |
|   // can be freely intermixed.
 | |
|   if (HasStackArgs) {
 | |
|     for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
 | |
|       unsigned Loc = AI - 1;
 | |
|       CCValAssign &VA = ArgLocs[Loc];
 | |
|       SDValue Arg = OutVals[Loc];
 | |
| 
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       // SP points to one stack slot further so add one to adjust it.
 | |
|       SDValue PtrOff = DAG.getNode(
 | |
|           ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
 | |
|           DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
 | |
|           DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
 | |
| 
 | |
|       Chain =
 | |
|           DAG.getStore(Chain, DL, Arg, PtrOff,
 | |
|                        MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
 | |
|                        0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain and
 | |
|   // flag operands which copy the outgoing args into registers.  The InFlag in
 | |
|   // necessary since all emited instructions must be stuck together.
 | |
|   SDValue InFlag;
 | |
|   for (auto Reg : RegsToPass) {
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (auto Reg : RegsToPass) {
 | |
|     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
 | |
|   }
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
 | |
|   const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
 | |
|   const uint32_t *Mask =
 | |
|       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
 | |
|   assert(Mask && "Missing call preserved mask for calling convention");
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
| 
 | |
|   if (InFlag.getNode()) {
 | |
|     Ops.push_back(InFlag);
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Create the CALLSEQ_END node.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
 | |
|                              DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
 | |
| 
 | |
|   if (!Ins.empty()) {
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
 | |
|                          InVals);
 | |
| }
 | |
| 
 | |
| /// Lower the result values of a call into the
 | |
| /// appropriate copies out of appropriate physical registers.
 | |
| ///
 | |
| SDValue AVRTargetLowering::LowerCallResult(
 | |
|     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
 | |
|     SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Handle runtime calling convs.
 | |
|   auto CCFunction = CCAssignFnForReturn(CallConv);
 | |
|   CCInfo.AnalyzeCallResult(Ins, CCFunction);
 | |
| 
 | |
|   if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
 | |
|     // Reverse splitted return values to get the "big endian" format required
 | |
|     // to agree with the calling convention ABI.
 | |
|     std::reverse(RVLocs.begin(), RVLocs.end());
 | |
|   }
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (CCValAssign const &RVLoc : RVLocs) {
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
 | |
|                                InFlag)
 | |
|                 .getValue(1);
 | |
|     InFlag = Chain.getValue(2);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Return Value Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
 | |
|   switch (CC) {
 | |
|   case CallingConv::AVR_BUILTIN:
 | |
|     return RetCC_AVR_BUILTIN;
 | |
|   default:
 | |
|     return RetCC_AVR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
 | |
|                                   MachineFunction &MF, bool isVarArg,
 | |
|                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                   LLVMContext &Context) const
 | |
| {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
 | |
| 
 | |
|   auto CCFunction = CCAssignFnForReturn(CallConv);
 | |
|   return CCInfo.CheckReturn(Outs, CCFunction);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | |
|                                bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                const SDLoc &dl, SelectionDAG &DAG) const {
 | |
|   // CCValAssign - represent the assignment of the return value to locations.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   // CCState - Info about the registers and stack slot.
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Analyze return values.
 | |
|   auto CCFunction = CCAssignFnForReturn(CallConv);
 | |
|   CCInfo.AnalyzeReturn(Outs, CCFunction);
 | |
| 
 | |
|   // If this is the first return lowered for this function, add the regs to
 | |
|   // the liveout set for the function.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   unsigned e = RVLocs.size();
 | |
| 
 | |
|   // Reverse splitted return values to get the "big endian" format required
 | |
|   // to agree with the calling convention ABI.
 | |
|   if (e > 1) {
 | |
|     std::reverse(RVLocs.begin(), RVLocs.end());
 | |
|   }
 | |
| 
 | |
|   SDValue Flag;
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != e; ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
 | |
| 
 | |
|     // Guarantee that all emitted copies are stuck together with flags.
 | |
|     Flag = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   // Don't emit the ret/reti instruction when the naked attribute is present in
 | |
|   // the function being compiled.
 | |
|   if (MF.getFunction()->getAttributes().hasAttribute(
 | |
|           AttributeList::FunctionIndex, Attribute::Naked)) {
 | |
|     return Chain;
 | |
|   }
 | |
| 
 | |
|   unsigned RetOpc =
 | |
|       (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
 | |
|           ? AVRISD::RETI_FLAG
 | |
|           : AVRISD::RET_FLAG;
 | |
| 
 | |
|   RetOps[0] = Chain; // Update chain.
 | |
| 
 | |
|   if (Flag.getNode()) {
 | |
|     RetOps.push_back(Flag);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Custom Inserters
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
 | |
|                                                   MachineBasicBlock *BB) const {
 | |
|   unsigned Opc;
 | |
|   const TargetRegisterClass *RC;
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineRegisterInfo &RI = F->getRegInfo();
 | |
|   const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
 | |
|   const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid shift opcode!");
 | |
|   case AVR::Lsl8:
 | |
|     Opc = AVR::LSLRd;
 | |
|     RC = &AVR::GPR8RegClass;
 | |
|     break;
 | |
|   case AVR::Lsl16:
 | |
|     Opc = AVR::LSLWRd;
 | |
|     RC = &AVR::DREGSRegClass;
 | |
|     break;
 | |
|   case AVR::Asr8:
 | |
|     Opc = AVR::ASRRd;
 | |
|     RC = &AVR::GPR8RegClass;
 | |
|     break;
 | |
|   case AVR::Asr16:
 | |
|     Opc = AVR::ASRWRd;
 | |
|     RC = &AVR::DREGSRegClass;
 | |
|     break;
 | |
|   case AVR::Lsr8:
 | |
|     Opc = AVR::LSRRd;
 | |
|     RC = &AVR::GPR8RegClass;
 | |
|     break;
 | |
|   case AVR::Lsr16:
 | |
|     Opc = AVR::LSRWRd;
 | |
|     RC = &AVR::DREGSRegClass;
 | |
|     break;
 | |
|   case AVR::Rol8:
 | |
|     Opc = AVR::ROLRd;
 | |
|     RC = &AVR::GPR8RegClass;
 | |
|     break;
 | |
|   case AVR::Rol16:
 | |
|     Opc = AVR::ROLWRd;
 | |
|     RC = &AVR::DREGSRegClass;
 | |
|     break;
 | |
|   case AVR::Ror8:
 | |
|     Opc = AVR::RORRd;
 | |
|     RC = &AVR::GPR8RegClass;
 | |
|     break;
 | |
|   case AVR::Ror16:
 | |
|     Opc = AVR::RORWRd;
 | |
|     RC = &AVR::DREGSRegClass;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator I = BB->getParent()->begin();
 | |
|   ++I;
 | |
| 
 | |
|   // Create loop block.
 | |
|   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
| 
 | |
|   F->insert(I, LoopBB);
 | |
|   F->insert(I, RemBB);
 | |
| 
 | |
|   // Update machine-CFG edges by transferring all successors of the current
 | |
|   // block to the block containing instructions after shift.
 | |
|   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
 | |
|                 BB->end());
 | |
|   RemBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
 | |
|   BB->addSuccessor(LoopBB);
 | |
|   BB->addSuccessor(RemBB);
 | |
|   LoopBB->addSuccessor(RemBB);
 | |
|   LoopBB->addSuccessor(LoopBB);
 | |
| 
 | |
|   unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
 | |
|   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
 | |
|   unsigned ShiftReg = RI.createVirtualRegister(RC);
 | |
|   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
 | |
|   unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
 | |
|   unsigned SrcReg = MI.getOperand(1).getReg();
 | |
|   unsigned DstReg = MI.getOperand(0).getReg();
 | |
| 
 | |
|   // BB:
 | |
|   // cpi N, 0
 | |
|   // breq RemBB
 | |
|   BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
 | |
|   BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
 | |
| 
 | |
|   // LoopBB:
 | |
|   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
 | |
|   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
 | |
|   // ShiftReg2 = shift ShiftReg
 | |
|   // ShiftAmt2 = ShiftAmt - 1;
 | |
|   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
 | |
|       .addReg(SrcReg)
 | |
|       .addMBB(BB)
 | |
|       .addReg(ShiftReg2)
 | |
|       .addMBB(LoopBB);
 | |
|   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
 | |
|       .addReg(ShiftAmtSrcReg)
 | |
|       .addMBB(BB)
 | |
|       .addReg(ShiftAmtReg2)
 | |
|       .addMBB(LoopBB);
 | |
|   BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
 | |
|   BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
 | |
|       .addReg(ShiftAmtReg)
 | |
|       .addImm(1);
 | |
|   BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
 | |
| 
 | |
|   // RemBB:
 | |
|   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
 | |
|   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
 | |
|       .addReg(SrcReg)
 | |
|       .addMBB(BB)
 | |
|       .addReg(ShiftReg2)
 | |
|       .addMBB(LoopBB);
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return RemBB;
 | |
| }
 | |
| 
 | |
| static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
 | |
|   if (I->getOpcode() == AVR::COPY) {
 | |
|     unsigned SrcReg = I->getOperand(1).getReg();
 | |
|     return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The mul instructions wreak havock on our zero_reg R1. We need to clear it
 | |
| // after the result has been evacuated. This is probably not the best way to do
 | |
| // it, but it works for now.
 | |
| MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
 | |
|                                                 MachineBasicBlock *BB) const {
 | |
|   const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
 | |
|   const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
 | |
|   MachineBasicBlock::iterator I(MI);
 | |
|   ++I; // in any case insert *after* the mul instruction
 | |
|   if (isCopyMulResult(I))
 | |
|     ++I;
 | |
|   if (isCopyMulResult(I))
 | |
|     ++I;
 | |
|   BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
 | |
|       .addReg(AVR::R1)
 | |
|       .addReg(AVR::R1);
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | |
|                                                MachineBasicBlock *MBB) const {
 | |
|   int Opc = MI.getOpcode();
 | |
| 
 | |
|   // Pseudo shift instructions with a non constant shift amount are expanded
 | |
|   // into a loop.
 | |
|   switch (Opc) {
 | |
|   case AVR::Lsl8:
 | |
|   case AVR::Lsl16:
 | |
|   case AVR::Lsr8:
 | |
|   case AVR::Lsr16:
 | |
|   case AVR::Rol8:
 | |
|   case AVR::Rol16:
 | |
|   case AVR::Ror8:
 | |
|   case AVR::Ror16:
 | |
|   case AVR::Asr8:
 | |
|   case AVR::Asr16:
 | |
|     return insertShift(MI, MBB);
 | |
|   case AVR::MULRdRr:
 | |
|   case AVR::MULSRdRr:
 | |
|     return insertMul(MI, MBB);
 | |
|   }
 | |
| 
 | |
|   assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
 | |
|          "Unexpected instr type to insert");
 | |
| 
 | |
|   const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
 | |
|                                 ->getParent()
 | |
|                                 ->getSubtarget()
 | |
|                                 .getInstrInfo();
 | |
|   DebugLoc dl = MI.getDebugLoc();
 | |
| 
 | |
|   // To "insert" a SELECT instruction, we insert the diamond
 | |
|   // control-flow pattern. The incoming instruction knows the
 | |
|   // destination vreg to set, the condition code register to branch
 | |
|   // on, the true/false values to select between, and a branch opcode
 | |
|   // to use.
 | |
| 
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
| 
 | |
|   MachineFunction::iterator I;
 | |
|   for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
 | |
|   if (I != MF->end()) ++I;
 | |
|   MF->insert(I, trueMBB);
 | |
|   MF->insert(I, falseMBB);
 | |
| 
 | |
|   // Transfer remaining instructions and all successors of the current
 | |
|   // block to the block which will contain the Phi node for the
 | |
|   // select.
 | |
|   trueMBB->splice(trueMBB->begin(), MBB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | |
|   trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
| 
 | |
|   AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
 | |
|   BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
 | |
|   BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
 | |
|   MBB->addSuccessor(falseMBB);
 | |
|   MBB->addSuccessor(trueMBB);
 | |
| 
 | |
|   // Unconditionally flow back to the true block
 | |
|   BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
 | |
|   falseMBB->addSuccessor(trueMBB);
 | |
| 
 | |
|   // Set up the Phi node to determine where we came from
 | |
|   BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
 | |
|     .addReg(MI.getOperand(1).getReg())
 | |
|     .addMBB(MBB)
 | |
|     .addReg(MI.getOperand(2).getReg())
 | |
|     .addMBB(falseMBB) ;
 | |
| 
 | |
|   MI.eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return trueMBB;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Inline Asm Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AVRTargetLowering::ConstraintType
 | |
| AVRTargetLowering::getConstraintType(StringRef Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
 | |
|     switch (Constraint[0]) {
 | |
|     case 'a': // Simple upper registers
 | |
|     case 'b': // Base pointer registers pairs
 | |
|     case 'd': // Upper register
 | |
|     case 'l': // Lower registers
 | |
|     case 'e': // Pointer register pairs
 | |
|     case 'q': // Stack pointer register
 | |
|     case 'r': // Any register
 | |
|     case 'w': // Special upper register pairs
 | |
|       return C_RegisterClass;
 | |
|     case 't': // Temporary register
 | |
|     case 'x': case 'X': // Pointer register pair X
 | |
|     case 'y': case 'Y': // Pointer register pair Y
 | |
|     case 'z': case 'Z': // Pointer register pair Z
 | |
|       return C_Register;
 | |
|     case 'Q': // A memory address based on Y or Z pointer with displacement.
 | |
|       return C_Memory;
 | |
|     case 'G': // Floating point constant
 | |
|     case 'I': // 6-bit positive integer constant
 | |
|     case 'J': // 6-bit negative integer constant
 | |
|     case 'K': // Integer constant (Range: 2)
 | |
|     case 'L': // Integer constant (Range: 0)
 | |
|     case 'M': // 8-bit integer constant
 | |
|     case 'N': // Integer constant (Range: -1)
 | |
|     case 'O': // Integer constant (Range: 8, 16, 24)
 | |
|     case 'P': // Integer constant (Range: 1)
 | |
|     case 'R': // Integer constant (Range: -6 to 5)x
 | |
|       return C_Other;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
 | |
|   // Not sure if this is actually the right thing to do, but we got to do
 | |
|   // *something* [agnat]
 | |
|   switch (ConstraintCode[0]) {
 | |
|   case 'Q':
 | |
|     return InlineAsm::Constraint_Q;
 | |
|   }
 | |
|   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
 | |
| }
 | |
| 
 | |
| AVRTargetLowering::ConstraintWeight
 | |
| AVRTargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
| 
 | |
|   // If we don't have a value, we can't do a match,
 | |
|   // but allow it at the lowest weight.
 | |
|   // (this behaviour has been copied from the ARM backend)
 | |
|   if (!CallOperandVal) {
 | |
|     return CW_Default;
 | |
|   }
 | |
| 
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
|   case 'd':
 | |
|   case 'r':
 | |
|   case 'l':
 | |
|     weight = CW_Register;
 | |
|     break;
 | |
|   case 'a':
 | |
|   case 'b':
 | |
|   case 'e':
 | |
|   case 'q':
 | |
|   case 't':
 | |
|   case 'w':
 | |
|   case 'x': case 'X':
 | |
|   case 'y': case 'Y':
 | |
|   case 'z': case 'Z':
 | |
|     weight = CW_SpecificReg;
 | |
|     break;
 | |
|   case 'G':
 | |
|     if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
 | |
|       if (C->isZero()) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'I':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (isUInt<6>(C->getZExtValue())) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'J':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'K':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getZExtValue() == 2) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'L':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getZExtValue() == 0) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'M':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (isUInt<8>(C->getZExtValue())) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'N':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getSExtValue() == -1) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'O':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
 | |
|           (C->getZExtValue() == 24)) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'P':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getZExtValue() == 1) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'R':
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
 | |
|         weight = CW_Constant;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 'Q':
 | |
|     weight = CW_Memory;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
 | |
|                                                 StringRef Constraint,
 | |
|                                                 MVT VT) const {
 | |
|   auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine())
 | |
|                  .getSubtargetImpl();
 | |
| 
 | |
|   // We only support i8 and i16.
 | |
|   //
 | |
|   //:FIXME: remove this assert for now since it gets sometimes executed
 | |
|   // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
 | |
| 
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'a': // Simple upper registers r16..r23.
 | |
|       return std::make_pair(0U, &AVR::LD8loRegClass);
 | |
|     case 'b': // Base pointer registers: y, z.
 | |
|       return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
 | |
|     case 'd': // Upper registers r16..r31.
 | |
|       return std::make_pair(0U, &AVR::LD8RegClass);
 | |
|     case 'l': // Lower registers r0..r15.
 | |
|       return std::make_pair(0U, &AVR::GPR8loRegClass);
 | |
|     case 'e': // Pointer register pairs: x, y, z.
 | |
|       return std::make_pair(0U, &AVR::PTRREGSRegClass);
 | |
|     case 'q': // Stack pointer register: SPH:SPL.
 | |
|       return std::make_pair(0U, &AVR::GPRSPRegClass);
 | |
|     case 'r': // Any register: r0..r31.
 | |
|       if (VT == MVT::i8)
 | |
|         return std::make_pair(0U, &AVR::GPR8RegClass);
 | |
| 
 | |
|       assert(VT == MVT::i16 && "inline asm constraint too large");
 | |
|       return std::make_pair(0U, &AVR::DREGSRegClass);
 | |
|     case 't': // Temporary register: r0.
 | |
|       return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
 | |
|     case 'w': // Special upper register pairs: r24, r26, r28, r30.
 | |
|       return std::make_pair(0U, &AVR::IWREGSRegClass);
 | |
|     case 'x': // Pointer register pair X: r27:r26.
 | |
|     case 'X':
 | |
|       return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
 | |
|     case 'y': // Pointer register pair Y: r29:r28.
 | |
|     case 'Y':
 | |
|       return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
 | |
|     case 'z': // Pointer register pair Z: r31:r30.
 | |
|     case 'Z':
 | |
|       return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(),
 | |
|                                                       Constraint, VT);
 | |
| }
 | |
| 
 | |
| void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      std::string &Constraint,
 | |
|                                                      std::vector<SDValue> &Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result(0, 0);
 | |
|   SDLoc DL(Op);
 | |
|   EVT Ty = Op.getValueType();
 | |
| 
 | |
|   // Currently only support length 1 constraints.
 | |
|   if (Constraint.length() != 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   char ConstraintLetter = Constraint[0];
 | |
|   switch (ConstraintLetter) {
 | |
|   default:
 | |
|     break;
 | |
|   // Deal with integers first:
 | |
|   case 'I':
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|   case 'O':
 | |
|   case 'P':
 | |
|   case 'R': {
 | |
|     const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!C) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     int64_t CVal64 = C->getSExtValue();
 | |
|     uint64_t CUVal64 = C->getZExtValue();
 | |
|     switch (ConstraintLetter) {
 | |
|     case 'I': // 0..63
 | |
|       if (!isUInt<6>(CUVal64))
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'J': // -63..0
 | |
|       if (CVal64 < -63 || CVal64 > 0)
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'K': // 2
 | |
|       if (CUVal64 != 2)
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'L': // 0
 | |
|       if (CUVal64 != 0)
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'M': // 0..255
 | |
|       if (!isUInt<8>(CUVal64))
 | |
|         return;
 | |
|       // i8 type may be printed as a negative number,
 | |
|       // e.g. 254 would be printed as -2,
 | |
|       // so we force it to i16 at least.
 | |
|       if (Ty.getSimpleVT() == MVT::i8) {
 | |
|         Ty = MVT::i16;
 | |
|       }
 | |
|       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'N': // -1
 | |
|       if (CVal64 != -1)
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'O': // 8, 16, 24
 | |
|       if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'P': // 1
 | |
|       if (CUVal64 != 1)
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
 | |
|       break;
 | |
|     case 'R': // -6..5
 | |
|       if (CVal64 < -6 || CVal64 > 5)
 | |
|         return;
 | |
|       Result = DAG.getTargetConstant(CVal64, DL, Ty);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case 'G':
 | |
|     const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
 | |
|     if (!FC || !FC->isZero())
 | |
|       return;
 | |
|     // Soften float to i8 0
 | |
|     Result = DAG.getTargetConstant(0, DL, MVT::i8);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
 | |
|                                               EVT VT,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   unsigned Reg;
 | |
| 
 | |
|   if (VT == MVT::i8) {
 | |
|     Reg = StringSwitch<unsigned>(RegName)
 | |
|       .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
 | |
|       .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
 | |
|       .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
 | |
|       .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
 | |
|       .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
 | |
|       .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
 | |
|       .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
 | |
|       .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
 | |
|       .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
 | |
|       .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
 | |
|       .Case("r30", AVR::R30).Case("r31", AVR::R31)
 | |
|       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
 | |
|       .Default(0);
 | |
|   } else {
 | |
|     Reg = StringSwitch<unsigned>(RegName)
 | |
|       .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
 | |
|       .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
 | |
|       .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
 | |
|       .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
 | |
|       .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
 | |
|       .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
 | |
|       .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
 | |
|       .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
 | |
|       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
 | |
|       .Default(0);
 | |
|   }
 | |
| 
 | |
|   if (Reg)
 | |
|     return Reg;
 | |
| 
 | |
|   report_fatal_error("Invalid register name global variable");
 | |
| }
 | |
| 
 | |
| } // end of namespace llvm
 |