1617 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1617 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- HexagonGenInsert.cpp -----------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "BitTracker.h"
 | 
						|
#include "HexagonBitTracker.h"
 | 
						|
#include "HexagonInstrInfo.h"
 | 
						|
#include "HexagonRegisterInfo.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Timer.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define DEBUG_TYPE "hexinsert"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<unsigned> VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U),
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg# cutoff for insert generation."));
 | 
						|
// The distance cutoff is selected based on the precheckin-perf results:
 | 
						|
// cutoffs 20, 25, 35, and 40 are worse than 30.
 | 
						|
static cl::opt<unsigned> VRegDistCutoff("insert-dist-cutoff", cl::init(30U),
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::desc("Vreg distance cutoff for insert "
 | 
						|
  "generation."));
 | 
						|
 | 
						|
static cl::opt<bool> OptTiming("insert-timing", cl::init(false), cl::Hidden,
 | 
						|
  cl::ZeroOrMore, cl::desc("Enable timing of insert generation"));
 | 
						|
static cl::opt<bool> OptTimingDetail("insert-timing-detail", cl::init(false),
 | 
						|
  cl::Hidden, cl::ZeroOrMore, cl::desc("Enable detailed timing of insert "
 | 
						|
  "generation"));
 | 
						|
 | 
						|
static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden,
 | 
						|
  cl::ZeroOrMore);
 | 
						|
static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden,
 | 
						|
  cl::ZeroOrMore);
 | 
						|
// Whether to construct constant values via "insert". Could eliminate constant
 | 
						|
// extenders, but often not practical.
 | 
						|
static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden,
 | 
						|
  cl::ZeroOrMore);
 | 
						|
 | 
						|
// The preprocessor gets confused when the DEBUG macro is passed larger
 | 
						|
// chunks of code. Use this function to detect debugging.
 | 
						|
inline static bool isDebug() {
 | 
						|
#ifndef NDEBUG
 | 
						|
  return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
 | 
						|
#else
 | 
						|
  return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  // Set of virtual registers, based on BitVector.
 | 
						|
  struct RegisterSet : private BitVector {
 | 
						|
    RegisterSet() = default;
 | 
						|
    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
 | 
						|
 | 
						|
    using BitVector::clear;
 | 
						|
 | 
						|
    unsigned find_first() const {
 | 
						|
      int First = BitVector::find_first();
 | 
						|
      if (First < 0)
 | 
						|
        return 0;
 | 
						|
      return x2v(First);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned find_next(unsigned Prev) const {
 | 
						|
      int Next = BitVector::find_next(v2x(Prev));
 | 
						|
      if (Next < 0)
 | 
						|
        return 0;
 | 
						|
      return x2v(Next);
 | 
						|
    }
 | 
						|
 | 
						|
    RegisterSet &insert(unsigned R) {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      ensure(Idx);
 | 
						|
      return static_cast<RegisterSet&>(BitVector::set(Idx));
 | 
						|
    }
 | 
						|
    RegisterSet &remove(unsigned R) {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      if (Idx >= size())
 | 
						|
        return *this;
 | 
						|
      return static_cast<RegisterSet&>(BitVector::reset(Idx));
 | 
						|
    }
 | 
						|
 | 
						|
    RegisterSet &insert(const RegisterSet &Rs) {
 | 
						|
      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
 | 
						|
    }
 | 
						|
    RegisterSet &remove(const RegisterSet &Rs) {
 | 
						|
      return static_cast<RegisterSet&>(BitVector::reset(Rs));
 | 
						|
    }
 | 
						|
 | 
						|
    reference operator[](unsigned R) {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      ensure(Idx);
 | 
						|
      return BitVector::operator[](Idx);
 | 
						|
    }
 | 
						|
    bool operator[](unsigned R) const {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      assert(Idx < size());
 | 
						|
      return BitVector::operator[](Idx);
 | 
						|
    }
 | 
						|
    bool has(unsigned R) const {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      if (Idx >= size())
 | 
						|
        return false;
 | 
						|
      return BitVector::test(Idx);
 | 
						|
    }
 | 
						|
 | 
						|
    bool empty() const {
 | 
						|
      return !BitVector::any();
 | 
						|
    }
 | 
						|
    bool includes(const RegisterSet &Rs) const {
 | 
						|
      // A.BitVector::test(B)  <=>  A-B != {}
 | 
						|
      return !Rs.BitVector::test(*this);
 | 
						|
    }
 | 
						|
    bool intersects(const RegisterSet &Rs) const {
 | 
						|
      return BitVector::anyCommon(Rs);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void ensure(unsigned Idx) {
 | 
						|
      if (size() <= Idx)
 | 
						|
        resize(std::max(Idx+1, 32U));
 | 
						|
    }
 | 
						|
 | 
						|
    static inline unsigned v2x(unsigned v) {
 | 
						|
      return TargetRegisterInfo::virtReg2Index(v);
 | 
						|
    }
 | 
						|
 | 
						|
    static inline unsigned x2v(unsigned x) {
 | 
						|
      return TargetRegisterInfo::index2VirtReg(x);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct PrintRegSet {
 | 
						|
    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
 | 
						|
      : RS(S), TRI(RI) {}
 | 
						|
 | 
						|
    friend raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
          const PrintRegSet &P);
 | 
						|
 | 
						|
  private:
 | 
						|
    const RegisterSet &RS;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
  };
 | 
						|
 | 
						|
  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
 | 
						|
    OS << '{';
 | 
						|
    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
 | 
						|
      OS << ' ' << PrintReg(R, P.TRI);
 | 
						|
    OS << " }";
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
  // A convenience class to associate unsigned numbers (such as virtual
 | 
						|
  // registers) with unsigned numbers.
 | 
						|
  struct UnsignedMap : public DenseMap<unsigned,unsigned> {
 | 
						|
    UnsignedMap() = default;
 | 
						|
 | 
						|
  private:
 | 
						|
    using BaseType = DenseMap<unsigned, unsigned>;
 | 
						|
  };
 | 
						|
 | 
						|
  // A utility to establish an ordering between virtual registers:
 | 
						|
  // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
 | 
						|
  // This is meant as a cache for the ordering of virtual registers defined
 | 
						|
  // by a potentially expensive comparison function, or obtained by a proce-
 | 
						|
  // dure that should not be repeated each time two registers are compared.
 | 
						|
  struct RegisterOrdering : public UnsignedMap {
 | 
						|
    RegisterOrdering() = default;
 | 
						|
 | 
						|
    unsigned operator[](unsigned VR) const {
 | 
						|
      const_iterator F = find(VR);
 | 
						|
      assert(F != end());
 | 
						|
      return F->second;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add operator(), so that objects of this class can be used as
 | 
						|
    // comparators in std::sort et al.
 | 
						|
    bool operator() (unsigned VR1, unsigned VR2) const {
 | 
						|
      return operator[](VR1) < operator[](VR2);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Ordering of bit values. This class does not have operator[], but
 | 
						|
  // is supplies a comparison operator() for use in std:: algorithms.
 | 
						|
  // The order is as follows:
 | 
						|
  // - 0 < 1 < ref
 | 
						|
  // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
 | 
						|
  //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
 | 
						|
  struct BitValueOrdering {
 | 
						|
    BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
 | 
						|
 | 
						|
    bool operator() (const BitTracker::BitValue &V1,
 | 
						|
          const BitTracker::BitValue &V2) const;
 | 
						|
 | 
						|
    const RegisterOrdering &BaseOrd;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
 | 
						|
      const BitTracker::BitValue &V2) const {
 | 
						|
  if (V1 == V2)
 | 
						|
    return false;
 | 
						|
  // V1==0 => true, V2==0 => false
 | 
						|
  if (V1.is(0) || V2.is(0))
 | 
						|
    return V1.is(0);
 | 
						|
  // Neither of V1,V2 is 0, and V1!=V2.
 | 
						|
  // V2==1 => false, V1==1 => true
 | 
						|
  if (V2.is(1) || V1.is(1))
 | 
						|
    return !V2.is(1);
 | 
						|
  // Both V1,V2 are refs.
 | 
						|
  unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
 | 
						|
  if (Ind1 != Ind2)
 | 
						|
    return Ind1 < Ind2;
 | 
						|
  // If V1.Pos==V2.Pos
 | 
						|
  assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
 | 
						|
  return V1.RefI.Pos < V2.RefI.Pos;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  // Cache for the BitTracker's cell map. Map lookup has a logarithmic
 | 
						|
  // complexity, this class will memoize the lookup results to reduce
 | 
						|
  // the access time for repeated lookups of the same cell.
 | 
						|
  struct CellMapShadow {
 | 
						|
    CellMapShadow(const BitTracker &T) : BT(T) {}
 | 
						|
 | 
						|
    const BitTracker::RegisterCell &lookup(unsigned VR) {
 | 
						|
      unsigned RInd = TargetRegisterInfo::virtReg2Index(VR);
 | 
						|
      // Grow the vector to at least 32 elements.
 | 
						|
      if (RInd >= CVect.size())
 | 
						|
        CVect.resize(std::max(RInd+16, 32U), nullptr);
 | 
						|
      const BitTracker::RegisterCell *CP = CVect[RInd];
 | 
						|
      if (CP == nullptr)
 | 
						|
        CP = CVect[RInd] = &BT.lookup(VR);
 | 
						|
      return *CP;
 | 
						|
    }
 | 
						|
 | 
						|
    const BitTracker &BT;
 | 
						|
 | 
						|
  private:
 | 
						|
    using CellVectType = std::vector<const BitTracker::RegisterCell *>;
 | 
						|
 | 
						|
    CellVectType CVect;
 | 
						|
  };
 | 
						|
 | 
						|
  // Comparator class for lexicographic ordering of virtual registers
 | 
						|
  // according to the corresponding BitTracker::RegisterCell objects.
 | 
						|
  struct RegisterCellLexCompare {
 | 
						|
    RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
 | 
						|
      : BitOrd(BO), CM(M) {}
 | 
						|
 | 
						|
    bool operator() (unsigned VR1, unsigned VR2) const;
 | 
						|
 | 
						|
  private:
 | 
						|
    const BitValueOrdering &BitOrd;
 | 
						|
    CellMapShadow &CM;
 | 
						|
  };
 | 
						|
 | 
						|
  // Comparator class for lexicographic ordering of virtual registers
 | 
						|
  // according to the specified bits of the corresponding BitTracker::
 | 
						|
  // RegisterCell objects.
 | 
						|
  // Specifically, this class will be used to compare bit B of a register
 | 
						|
  // cell for a selected virtual register R with bit N of any register
 | 
						|
  // other than R.
 | 
						|
  struct RegisterCellBitCompareSel {
 | 
						|
    RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
 | 
						|
          const BitValueOrdering &BO, CellMapShadow &M)
 | 
						|
      : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
 | 
						|
 | 
						|
    bool operator() (unsigned VR1, unsigned VR2) const;
 | 
						|
 | 
						|
  private:
 | 
						|
    const unsigned SelR, SelB;
 | 
						|
    const unsigned BitN;
 | 
						|
    const BitValueOrdering &BitOrd;
 | 
						|
    CellMapShadow &CM;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
 | 
						|
  // Ordering of registers, made up from two given orderings:
 | 
						|
  // - the ordering of the register numbers, and
 | 
						|
  // - the ordering of register cells.
 | 
						|
  // Def. R1 < R2 if:
 | 
						|
  // - cell(R1) < cell(R2), or
 | 
						|
  // - cell(R1) == cell(R2), and index(R1) < index(R2).
 | 
						|
  //
 | 
						|
  // For register cells, the ordering is lexicographic, with index 0 being
 | 
						|
  // the most significant.
 | 
						|
  if (VR1 == VR2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
 | 
						|
  uint16_t W1 = RC1.width(), W2 = RC2.width();
 | 
						|
  for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
 | 
						|
    const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
 | 
						|
    if (V1 != V2)
 | 
						|
      return BitOrd(V1, V2);
 | 
						|
  }
 | 
						|
  // Cells are equal up until the common length.
 | 
						|
  if (W1 != W2)
 | 
						|
    return W1 < W2;
 | 
						|
 | 
						|
  return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
 | 
						|
}
 | 
						|
 | 
						|
bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
 | 
						|
  if (VR1 == VR2)
 | 
						|
    return false;
 | 
						|
  const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
 | 
						|
  const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
 | 
						|
  uint16_t W1 = RC1.width(), W2 = RC2.width();
 | 
						|
  uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
 | 
						|
  uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
 | 
						|
  // If Bit1 exceeds the width of VR1, then:
 | 
						|
  // - return false, if at the same time Bit2 exceeds VR2, or
 | 
						|
  // - return true, otherwise.
 | 
						|
  // (I.e. "a bit value that does not exist is less than any bit value
 | 
						|
  // that does exist".)
 | 
						|
  if (W1 <= Bit1)
 | 
						|
    return Bit2 < W2;
 | 
						|
  // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
 | 
						|
  if (W2 <= Bit2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
 | 
						|
  if (V1 != V2)
 | 
						|
    return BitOrd(V1, V2);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class OrderedRegisterList {
 | 
						|
    using ListType = std::vector<unsigned>;
 | 
						|
 | 
						|
  public:
 | 
						|
    OrderedRegisterList(const RegisterOrdering &RO) : Ord(RO) {}
 | 
						|
 | 
						|
    void insert(unsigned VR);
 | 
						|
    void remove(unsigned VR);
 | 
						|
 | 
						|
    unsigned operator[](unsigned Idx) const {
 | 
						|
      assert(Idx < Seq.size());
 | 
						|
      return Seq[Idx];
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned size() const {
 | 
						|
      return Seq.size();
 | 
						|
    }
 | 
						|
 | 
						|
    using iterator = ListType::iterator;
 | 
						|
    using const_iterator = ListType::const_iterator;
 | 
						|
 | 
						|
    iterator begin() { return Seq.begin(); }
 | 
						|
    iterator end() { return Seq.end(); }
 | 
						|
    const_iterator begin() const { return Seq.begin(); }
 | 
						|
    const_iterator end() const { return Seq.end(); }
 | 
						|
 | 
						|
    // Convenience function to convert an iterator to the corresponding index.
 | 
						|
    unsigned idx(iterator It) const { return It-begin(); }
 | 
						|
 | 
						|
  private:
 | 
						|
    ListType Seq;
 | 
						|
    const RegisterOrdering &Ord;
 | 
						|
  };
 | 
						|
 | 
						|
  struct PrintORL {
 | 
						|
    PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
 | 
						|
      : RL(L), TRI(RI) {}
 | 
						|
 | 
						|
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
 | 
						|
 | 
						|
  private:
 | 
						|
    const OrderedRegisterList &RL;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
  };
 | 
						|
 | 
						|
  raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
 | 
						|
    OS << '(';
 | 
						|
    OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
 | 
						|
    for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
 | 
						|
      if (I != B)
 | 
						|
        OS << ", ";
 | 
						|
      OS << PrintReg(*I, P.TRI);
 | 
						|
    }
 | 
						|
    OS << ')';
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void OrderedRegisterList::insert(unsigned VR) {
 | 
						|
  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
 | 
						|
  if (L == Seq.end())
 | 
						|
    Seq.push_back(VR);
 | 
						|
  else
 | 
						|
    Seq.insert(L, VR);
 | 
						|
}
 | 
						|
 | 
						|
void OrderedRegisterList::remove(unsigned VR) {
 | 
						|
  iterator L = std::lower_bound(Seq.begin(), Seq.end(), VR, Ord);
 | 
						|
  assert(L != Seq.end());
 | 
						|
  Seq.erase(L);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  // A record of the insert form. The fields correspond to the operands
 | 
						|
  // of the "insert" instruction:
 | 
						|
  // ... = insert(SrcR, InsR, #Wdh, #Off)
 | 
						|
  struct IFRecord {
 | 
						|
    IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
 | 
						|
      : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
 | 
						|
 | 
						|
    unsigned SrcR, InsR;
 | 
						|
    uint16_t Wdh, Off;
 | 
						|
  };
 | 
						|
 | 
						|
  struct PrintIFR {
 | 
						|
    PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
 | 
						|
      : IFR(R), TRI(RI) {}
 | 
						|
 | 
						|
  private:
 | 
						|
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
 | 
						|
 | 
						|
    const IFRecord &IFR;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
  };
 | 
						|
 | 
						|
  raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
 | 
						|
    unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
 | 
						|
    OS << '(' << PrintReg(SrcR, P.TRI) << ',' << PrintReg(InsR, P.TRI)
 | 
						|
       << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
  using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  void initializeHexagonGenInsertPass(PassRegistry&);
 | 
						|
  FunctionPass *createHexagonGenInsert();
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class HexagonGenInsert : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    HexagonGenInsert() : MachineFunctionPass(ID) {
 | 
						|
      initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    StringRef getPassName() const override {
 | 
						|
      return "Hexagon generate \"insert\" instructions";
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  private:
 | 
						|
    using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
 | 
						|
 | 
						|
    void buildOrderingMF(RegisterOrdering &RO) const;
 | 
						|
    void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
 | 
						|
    bool isIntClass(const TargetRegisterClass *RC) const;
 | 
						|
    bool isConstant(unsigned VR) const;
 | 
						|
    bool isSmallConstant(unsigned VR) const;
 | 
						|
    bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
 | 
						|
          uint16_t L, uint16_t S) const;
 | 
						|
    bool findSelfReference(unsigned VR) const;
 | 
						|
    bool findNonSelfReference(unsigned VR) const;
 | 
						|
    void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
 | 
						|
    void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
 | 
						|
    unsigned distance(const MachineBasicBlock *FromB,
 | 
						|
          const MachineBasicBlock *ToB, const UnsignedMap &RPO,
 | 
						|
          PairMapType &M) const;
 | 
						|
    unsigned distance(MachineBasicBlock::const_iterator FromI,
 | 
						|
          MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
 | 
						|
          PairMapType &M) const;
 | 
						|
    bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
 | 
						|
    void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
 | 
						|
    void findRemovableRegisters(unsigned VR, IFRecord IF,
 | 
						|
          RegisterSet &RMs) const;
 | 
						|
    void computeRemovableRegisters();
 | 
						|
 | 
						|
    void pruneEmptyLists();
 | 
						|
    void pruneCoveredSets(unsigned VR);
 | 
						|
    void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
 | 
						|
    void pruneRegCopies(unsigned VR);
 | 
						|
    void pruneCandidates();
 | 
						|
    void selectCandidates();
 | 
						|
    bool generateInserts();
 | 
						|
 | 
						|
    bool removeDeadCode(MachineDomTreeNode *N);
 | 
						|
 | 
						|
    // IFRecord coupled with a set of potentially removable registers:
 | 
						|
    using IFListType = std::vector<IFRecordWithRegSet>;
 | 
						|
    using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
 | 
						|
 | 
						|
    void dump_map() const;
 | 
						|
 | 
						|
    const HexagonInstrInfo *HII = nullptr;
 | 
						|
    const HexagonRegisterInfo *HRI = nullptr;
 | 
						|
 | 
						|
    MachineFunction *MFN;
 | 
						|
    MachineRegisterInfo *MRI;
 | 
						|
    MachineDominatorTree *MDT;
 | 
						|
    CellMapShadow *CMS;
 | 
						|
 | 
						|
    RegisterOrdering BaseOrd;
 | 
						|
    RegisterOrdering CellOrd;
 | 
						|
    IFMapType IFMap;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char HexagonGenInsert::ID = 0;
 | 
						|
 | 
						|
void HexagonGenInsert::dump_map() const {
 | 
						|
  using iterator = IFMapType::const_iterator;
 | 
						|
 | 
						|
  for (iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
 | 
						|
    dbgs() << "  " << PrintReg(I->first, HRI) << ":\n";
 | 
						|
    const IFListType &LL = I->second;
 | 
						|
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
 | 
						|
      dbgs() << "    " << PrintIFR(LL[i].first, HRI) << ", "
 | 
						|
             << PrintRegSet(LL[i].second, HRI) << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
 | 
						|
  unsigned Index = 0;
 | 
						|
 | 
						|
  using mf_iterator = MachineFunction::const_iterator;
 | 
						|
 | 
						|
  for (mf_iterator A = MFN->begin(), Z = MFN->end(); A != Z; ++A) {
 | 
						|
    const MachineBasicBlock &B = *A;
 | 
						|
    if (!CMS->BT.reached(&B))
 | 
						|
      continue;
 | 
						|
 | 
						|
    using mb_iterator = MachineBasicBlock::const_iterator;
 | 
						|
 | 
						|
    for (mb_iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
      const MachineInstr *MI = &*I;
 | 
						|
      for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
 | 
						|
        const MachineOperand &MO = MI->getOperand(i);
 | 
						|
        if (MO.isReg() && MO.isDef()) {
 | 
						|
          unsigned R = MO.getReg();
 | 
						|
          assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
 | 
						|
          if (TargetRegisterInfo::isVirtualRegister(R))
 | 
						|
            RO.insert(std::make_pair(R, Index++));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Since some virtual registers may have had their def and uses eliminated,
 | 
						|
  // they are no longer referenced in the code, and so they will not appear
 | 
						|
  // in the map.
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
 | 
						|
      RegisterOrdering &RO) const {
 | 
						|
  // Create a vector of all virtual registers (collect them from the base
 | 
						|
  // ordering RB), and then sort it using the RegisterCell comparator.
 | 
						|
  BitValueOrdering BVO(RB);
 | 
						|
  RegisterCellLexCompare LexCmp(BVO, *CMS);
 | 
						|
 | 
						|
  using SortableVectorType = std::vector<unsigned>;
 | 
						|
 | 
						|
  SortableVectorType VRs;
 | 
						|
  for (RegisterOrdering::iterator I = RB.begin(), E = RB.end(); I != E; ++I)
 | 
						|
    VRs.push_back(I->first);
 | 
						|
  std::sort(VRs.begin(), VRs.end(), LexCmp);
 | 
						|
  // Transfer the results to the outgoing register ordering.
 | 
						|
  for (unsigned i = 0, n = VRs.size(); i < n; ++i)
 | 
						|
    RO.insert(std::make_pair(VRs[i], i));
 | 
						|
}
 | 
						|
 | 
						|
inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
 | 
						|
  return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::isConstant(unsigned VR) const {
 | 
						|
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
 | 
						|
  uint16_t W = RC.width();
 | 
						|
  for (uint16_t i = 0; i < W; ++i) {
 | 
						|
    const BitTracker::BitValue &BV = RC[i];
 | 
						|
    if (BV.is(0) || BV.is(1))
 | 
						|
      continue;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
 | 
						|
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
 | 
						|
  uint16_t W = RC.width();
 | 
						|
  if (W > 64)
 | 
						|
    return false;
 | 
						|
  uint64_t V = 0, B = 1;
 | 
						|
  for (uint16_t i = 0; i < W; ++i) {
 | 
						|
    const BitTracker::BitValue &BV = RC[i];
 | 
						|
    if (BV.is(1))
 | 
						|
      V |= B;
 | 
						|
    else if (!BV.is(0))
 | 
						|
      return false;
 | 
						|
    B <<= 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // For 32-bit registers, consider: Rd = #s16.
 | 
						|
  if (W == 32)
 | 
						|
    return isInt<16>(V);
 | 
						|
 | 
						|
  // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
 | 
						|
  return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
 | 
						|
      unsigned InsR, uint16_t L, uint16_t S) const {
 | 
						|
  const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
 | 
						|
  const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
 | 
						|
  const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
 | 
						|
  // Only integet (32-/64-bit) register classes.
 | 
						|
  if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
 | 
						|
    return false;
 | 
						|
  // The "source" register must be of the same class as DstR.
 | 
						|
  if (DstRC != SrcRC)
 | 
						|
    return false;
 | 
						|
  if (DstRC == InsRC)
 | 
						|
    return true;
 | 
						|
  // A 64-bit register can only be generated from other 64-bit registers.
 | 
						|
  if (DstRC == &Hexagon::DoubleRegsRegClass)
 | 
						|
    return false;
 | 
						|
  // Otherwise, the L and S cannot span 32-bit word boundary.
 | 
						|
  if (S < 32 && S+L > 32)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::findSelfReference(unsigned VR) const {
 | 
						|
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
 | 
						|
  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
 | 
						|
    const BitTracker::BitValue &V = RC[i];
 | 
						|
    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
 | 
						|
  BitTracker::RegisterCell RC = CMS->lookup(VR);
 | 
						|
  for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
 | 
						|
    const BitTracker::BitValue &V = RC[i];
 | 
						|
    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
 | 
						|
      RegisterSet &Defs) const {
 | 
						|
  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned R = MO.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(R))
 | 
						|
      continue;
 | 
						|
    Defs.insert(R);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
 | 
						|
      RegisterSet &Uses) const {
 | 
						|
  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned R = MO.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(R))
 | 
						|
      continue;
 | 
						|
    Uses.insert(R);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
 | 
						|
      const MachineBasicBlock *ToB, const UnsignedMap &RPO,
 | 
						|
      PairMapType &M) const {
 | 
						|
  // Forward distance from the end of a block to the beginning of it does
 | 
						|
  // not make sense. This function should not be called with FromB == ToB.
 | 
						|
  assert(FromB != ToB);
 | 
						|
 | 
						|
  unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
 | 
						|
  // If we have already computed it, return the cached result.
 | 
						|
  PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
 | 
						|
  if (F != M.end())
 | 
						|
    return F->second;
 | 
						|
  unsigned ToRPO = RPO.lookup(ToN);
 | 
						|
 | 
						|
  unsigned MaxD = 0;
 | 
						|
 | 
						|
  using pred_iterator = MachineBasicBlock::const_pred_iterator;
 | 
						|
 | 
						|
  for (pred_iterator I = ToB->pred_begin(), E = ToB->pred_end(); I != E; ++I) {
 | 
						|
    const MachineBasicBlock *PB = *I;
 | 
						|
    // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
 | 
						|
    // along that path will be 0, and we don't need to do any calculations
 | 
						|
    // on it.
 | 
						|
    if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
 | 
						|
      continue;
 | 
						|
    unsigned D = PB->size() + distance(FromB, PB, RPO, M);
 | 
						|
    if (D > MaxD)
 | 
						|
      MaxD = D;
 | 
						|
  }
 | 
						|
 | 
						|
  // Memoize the result for later lookup.
 | 
						|
  M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
 | 
						|
  return MaxD;
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
 | 
						|
      MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
 | 
						|
      PairMapType &M) const {
 | 
						|
  const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
 | 
						|
  if (FB == TB)
 | 
						|
    return std::distance(FromI, ToI);
 | 
						|
  unsigned D1 = std::distance(TB->begin(), ToI);
 | 
						|
  unsigned D2 = distance(FB, TB, RPO, M);
 | 
						|
  unsigned D3 = std::distance(FromI, FB->end());
 | 
						|
  return D1+D2+D3;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
 | 
						|
      OrderedRegisterList &AVs) {
 | 
						|
  if (isDebug()) {
 | 
						|
    dbgs() << __func__ << ": " << PrintReg(VR, HRI)
 | 
						|
           << "  AVs: " << PrintORL(AVs, HRI) << "\n";
 | 
						|
  }
 | 
						|
  if (AVs.size() == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  using iterator = OrderedRegisterList::iterator;
 | 
						|
 | 
						|
  BitValueOrdering BVO(BaseOrd);
 | 
						|
  const BitTracker::RegisterCell &RC = CMS->lookup(VR);
 | 
						|
  uint16_t W = RC.width();
 | 
						|
 | 
						|
  using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
 | 
						|
  using RSListType = std::vector<RSRecord>;
 | 
						|
  // Have a map, with key being the matching prefix length, and the value
 | 
						|
  // being the list of pairs (R,S), where R's prefix matches VR at S.
 | 
						|
  // (DenseMap<uint16_t,RSListType> fails to instantiate.)
 | 
						|
  using LRSMapType = DenseMap<unsigned, RSListType>;
 | 
						|
  LRSMapType LM;
 | 
						|
 | 
						|
  // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
 | 
						|
  // and find matching prefixes from AVs with the rotated RC. Such a prefix
 | 
						|
  // would match a string of bits (of length L) in RC starting at S.
 | 
						|
  for (uint16_t S = 0; S < W; ++S) {
 | 
						|
    iterator B = AVs.begin(), E = AVs.end();
 | 
						|
    // The registers in AVs are ordered according to the lexical order of
 | 
						|
    // the corresponding register cells. This means that the range of regis-
 | 
						|
    // ters in AVs that match a prefix of length L+1 will be contained in
 | 
						|
    // the range that matches a prefix of length L. This means that we can
 | 
						|
    // keep narrowing the search space as the prefix length goes up. This
 | 
						|
    // helps reduce the overall complexity of the search.
 | 
						|
    uint16_t L;
 | 
						|
    for (L = 0; L < W-S; ++L) {
 | 
						|
      // Compare against VR's bits starting at S, which emulates rotation
 | 
						|
      // of VR by S.
 | 
						|
      RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
 | 
						|
      iterator NewB = std::lower_bound(B, E, VR, RCB);
 | 
						|
      iterator NewE = std::upper_bound(NewB, E, VR, RCB);
 | 
						|
      // For the registers that are eliminated from the next range, L is
 | 
						|
      // the longest prefix matching VR at position S (their prefixes
 | 
						|
      // differ from VR at S+L). If L>0, record this information for later
 | 
						|
      // use.
 | 
						|
      if (L > 0) {
 | 
						|
        for (iterator I = B; I != NewB; ++I)
 | 
						|
          LM[L].push_back(std::make_pair(*I, S));
 | 
						|
        for (iterator I = NewE; I != E; ++I)
 | 
						|
          LM[L].push_back(std::make_pair(*I, S));
 | 
						|
      }
 | 
						|
      B = NewB, E = NewE;
 | 
						|
      if (B == E)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    // Record the final register range. If this range is non-empty, then
 | 
						|
    // L=W-S.
 | 
						|
    assert(B == E || L == W-S);
 | 
						|
    if (B != E) {
 | 
						|
      for (iterator I = B; I != E; ++I)
 | 
						|
        LM[L].push_back(std::make_pair(*I, S));
 | 
						|
      // If B!=E, then we found a range of registers whose prefixes cover the
 | 
						|
      // rest of VR from position S. There is no need to further advance S.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDebug()) {
 | 
						|
    dbgs() << "Prefixes matching register " << PrintReg(VR, HRI) << "\n";
 | 
						|
    for (LRSMapType::iterator I = LM.begin(), E = LM.end(); I != E; ++I) {
 | 
						|
      dbgs() << "  L=" << I->first << ':';
 | 
						|
      const RSListType &LL = I->second;
 | 
						|
      for (unsigned i = 0, n = LL.size(); i < n; ++i)
 | 
						|
        dbgs() << " (" << PrintReg(LL[i].first, HRI) << ",@"
 | 
						|
               << LL[i].second << ')';
 | 
						|
      dbgs() << '\n';
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Recorded = false;
 | 
						|
 | 
						|
  for (iterator I = AVs.begin(), E = AVs.end(); I != E; ++I) {
 | 
						|
    unsigned SrcR = *I;
 | 
						|
    int FDi = -1, LDi = -1;   // First/last different bit.
 | 
						|
    const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
 | 
						|
    uint16_t AW = AC.width();
 | 
						|
    for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
 | 
						|
      if (RC[i] == AC[i])
 | 
						|
        continue;
 | 
						|
      if (FDi == -1)
 | 
						|
        FDi = i;
 | 
						|
      LDi = i;
 | 
						|
    }
 | 
						|
    if (FDi == -1)
 | 
						|
      continue;  // TODO (future): Record identical registers.
 | 
						|
    // Look for a register whose prefix could patch the range [FD..LD]
 | 
						|
    // where VR and SrcR differ.
 | 
						|
    uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type.
 | 
						|
    uint16_t MinL = LD-FD+1;
 | 
						|
    for (uint16_t L = MinL; L < W; ++L) {
 | 
						|
      LRSMapType::iterator F = LM.find(L);
 | 
						|
      if (F == LM.end())
 | 
						|
        continue;
 | 
						|
      RSListType &LL = F->second;
 | 
						|
      for (unsigned i = 0, n = LL.size(); i < n; ++i) {
 | 
						|
        uint16_t S = LL[i].second;
 | 
						|
        // MinL is the minimum length of the prefix. Any length above MinL
 | 
						|
        // allows some flexibility as to where the prefix can start:
 | 
						|
        // given the extra length EL=L-MinL, the prefix must start between
 | 
						|
        // max(0,FD-EL) and FD.
 | 
						|
        if (S > FD)   // Starts too late.
 | 
						|
          continue;
 | 
						|
        uint16_t EL = L-MinL;
 | 
						|
        uint16_t LowS = (EL < FD) ? FD-EL : 0;
 | 
						|
        if (S < LowS) // Starts too early.
 | 
						|
          continue;
 | 
						|
        unsigned InsR = LL[i].first;
 | 
						|
        if (!isValidInsertForm(VR, SrcR, InsR, L, S))
 | 
						|
          continue;
 | 
						|
        if (isDebug()) {
 | 
						|
          dbgs() << PrintReg(VR, HRI) << " = insert(" << PrintReg(SrcR, HRI)
 | 
						|
                 << ',' << PrintReg(InsR, HRI) << ",#" << L << ",#"
 | 
						|
                 << S << ")\n";
 | 
						|
        }
 | 
						|
        IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
 | 
						|
        IFMap[VR].push_back(RR);
 | 
						|
        Recorded = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Recorded;
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
 | 
						|
      OrderedRegisterList &AVs) {
 | 
						|
  if (isDebug())
 | 
						|
    dbgs() << "visiting block BB#" << B->getNumber() << "\n";
 | 
						|
 | 
						|
  // First, check if this block is reachable at all. If not, the bit tracker
 | 
						|
  // will not have any information about registers in it.
 | 
						|
  if (!CMS->BT.reached(B))
 | 
						|
    return;
 | 
						|
 | 
						|
  bool DoConst = OptConst;
 | 
						|
  // Keep a separate set of registers defined in this block, so that we
 | 
						|
  // can remove them from the list of available registers once all DT
 | 
						|
  // successors have been processed.
 | 
						|
  RegisterSet BlockDefs, InsDefs;
 | 
						|
  for (MachineBasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    InsDefs.clear();
 | 
						|
    getInstrDefs(MI, InsDefs);
 | 
						|
    // Leave those alone. They are more transparent than "insert".
 | 
						|
    bool Skip = MI->isCopy() || MI->isRegSequence();
 | 
						|
 | 
						|
    if (!Skip) {
 | 
						|
      // Visit all defined registers, and attempt to find the corresponding
 | 
						|
      // "insert" representations.
 | 
						|
      for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
 | 
						|
        // Do not collect registers that are known to be compile-time cons-
 | 
						|
        // tants, unless requested.
 | 
						|
        if (!DoConst && isConstant(VR))
 | 
						|
          continue;
 | 
						|
        // If VR's cell contains a reference to VR, then VR cannot be defined
 | 
						|
        // via "insert". If VR is a constant that can be generated in a single
 | 
						|
        // instruction (without constant extenders), generating it via insert
 | 
						|
        // makes no sense.
 | 
						|
        if (findSelfReference(VR) || isSmallConstant(VR))
 | 
						|
          continue;
 | 
						|
 | 
						|
        findRecordInsertForms(VR, AVs);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert the defined registers into the list of available registers
 | 
						|
    // after they have been processed.
 | 
						|
    for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
 | 
						|
      AVs.insert(VR);
 | 
						|
    BlockDefs.insert(InsDefs);
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
 | 
						|
    MachineBasicBlock *SB = DTN->getBlock();
 | 
						|
    collectInBlock(SB, AVs);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
 | 
						|
    AVs.remove(VR);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
 | 
						|
      RegisterSet &RMs) const {
 | 
						|
  // For a given register VR and a insert form, find the registers that are
 | 
						|
  // used by the current definition of VR, and which would no longer be
 | 
						|
  // needed for it after the definition of VR is replaced with the insert
 | 
						|
  // form. These are the registers that could potentially become dead.
 | 
						|
  RegisterSet Regs[2];
 | 
						|
 | 
						|
  unsigned S = 0;  // Register set selector.
 | 
						|
  Regs[S].insert(VR);
 | 
						|
 | 
						|
  while (!Regs[S].empty()) {
 | 
						|
    // Breadth-first search.
 | 
						|
    unsigned OtherS = 1-S;
 | 
						|
    Regs[OtherS].clear();
 | 
						|
    for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
 | 
						|
      Regs[S].remove(R);
 | 
						|
      if (R == IF.SrcR || R == IF.InsR)
 | 
						|
        continue;
 | 
						|
      // Check if a given register has bits that are references to any other
 | 
						|
      // registers. This is to detect situations where the instruction that
 | 
						|
      // defines register R takes register Q as an operand, but R itself does
 | 
						|
      // not contain any bits from Q. Loads are examples of how this could
 | 
						|
      // happen:
 | 
						|
      //   R = load Q
 | 
						|
      // In this case (assuming we do not have any knowledge about the loaded
 | 
						|
      // value), we must not treat R as a "conveyance" of the bits from Q.
 | 
						|
      // (The information in BT about R's bits would have them as constants,
 | 
						|
      // in case of zero-extending loads, or refs to R.)
 | 
						|
      if (!findNonSelfReference(R))
 | 
						|
        continue;
 | 
						|
      RMs.insert(R);
 | 
						|
      const MachineInstr *DefI = MRI->getVRegDef(R);
 | 
						|
      assert(DefI);
 | 
						|
      // Do not iterate past PHI nodes to avoid infinite loops. This can
 | 
						|
      // make the final set a bit less accurate, but the removable register
 | 
						|
      // sets are an approximation anyway.
 | 
						|
      if (DefI->isPHI())
 | 
						|
        continue;
 | 
						|
      getInstrUses(DefI, Regs[OtherS]);
 | 
						|
    }
 | 
						|
    S = OtherS;
 | 
						|
  }
 | 
						|
  // The register VR is added to the list as a side-effect of the algorithm,
 | 
						|
  // but it is not "potentially removable". A potentially removable register
 | 
						|
  // is one that may become unused (dead) after conversion to the insert form
 | 
						|
  // IF, and obviously VR (or its replacement) will not become dead by apply-
 | 
						|
  // ing IF.
 | 
						|
  RMs.remove(VR);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::computeRemovableRegisters() {
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
 | 
						|
    IFListType &LL = I->second;
 | 
						|
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
 | 
						|
      findRemovableRegisters(I->first, LL[i].first, LL[i].second);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::pruneEmptyLists() {
 | 
						|
  // Remove all entries from the map, where the register has no insert forms
 | 
						|
  // associated with it.
 | 
						|
  using IterListType = SmallVector<IFMapType::iterator, 16>;
 | 
						|
  IterListType Prune;
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
 | 
						|
    if (I->second.empty())
 | 
						|
      Prune.push_back(I);
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, n = Prune.size(); i < n; ++i)
 | 
						|
    IFMap.erase(Prune[i]);
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
 | 
						|
  IFMapType::iterator F = IFMap.find(VR);
 | 
						|
  assert(F != IFMap.end());
 | 
						|
  IFListType &LL = F->second;
 | 
						|
 | 
						|
  // First, examine the IF candidates for register VR whose removable-regis-
 | 
						|
  // ter sets are empty. This means that a given candidate will not help eli-
 | 
						|
  // minate any registers, but since "insert" is not a constant-extendable
 | 
						|
  // instruction, using such a candidate may reduce code size if the defini-
 | 
						|
  // tion of VR is constant-extended.
 | 
						|
  // If there exists a candidate with a non-empty set, the ones with empty
 | 
						|
  // sets will not be used and can be removed.
 | 
						|
  MachineInstr *DefVR = MRI->getVRegDef(VR);
 | 
						|
  bool DefEx = HII->isConstExtended(*DefVR);
 | 
						|
  bool HasNE = false;
 | 
						|
  for (unsigned i = 0, n = LL.size(); i < n; ++i) {
 | 
						|
    if (LL[i].second.empty())
 | 
						|
      continue;
 | 
						|
    HasNE = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (!DefEx || HasNE) {
 | 
						|
    // The definition of VR is not constant-extended, or there is a candidate
 | 
						|
    // with a non-empty set. Remove all candidates with empty sets.
 | 
						|
    auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
 | 
						|
      return IR.second.empty();
 | 
						|
    };
 | 
						|
    auto End = llvm::remove_if(LL, IsEmpty);
 | 
						|
    if (End != LL.end())
 | 
						|
      LL.erase(End, LL.end());
 | 
						|
  } else {
 | 
						|
    // The definition of VR is constant-extended, and all candidates have
 | 
						|
    // empty removable-register sets. Pick the maximum candidate, and remove
 | 
						|
    // all others. The "maximum" does not have any special meaning here, it
 | 
						|
    // is only so that the candidate that will remain on the list is selec-
 | 
						|
    // ted deterministically.
 | 
						|
    IFRecord MaxIF = LL[0].first;
 | 
						|
    for (unsigned i = 1, n = LL.size(); i < n; ++i) {
 | 
						|
      // If LL[MaxI] < LL[i], then MaxI = i.
 | 
						|
      const IFRecord &IF = LL[i].first;
 | 
						|
      unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
 | 
						|
      unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
 | 
						|
      if (M0 > R0)
 | 
						|
        continue;
 | 
						|
      if (M0 == R0) {
 | 
						|
        if (M1 > R1)
 | 
						|
          continue;
 | 
						|
        if (M1 == R1) {
 | 
						|
          if (MaxIF.Wdh > IF.Wdh)
 | 
						|
            continue;
 | 
						|
          if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // MaxIF < IF.
 | 
						|
      MaxIF = IF;
 | 
						|
    }
 | 
						|
    // Remove everything except the maximum candidate. All register sets
 | 
						|
    // are empty, so no need to preserve anything.
 | 
						|
    LL.clear();
 | 
						|
    LL.push_back(std::make_pair(MaxIF, RegisterSet()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now, remove those whose sets of potentially removable registers are
 | 
						|
  // contained in another IF candidate for VR. For example, given these
 | 
						|
  // candidates for vreg45,
 | 
						|
  //   %vreg45:
 | 
						|
  //     (%vreg44,%vreg41,#9,#8), { %vreg42 }
 | 
						|
  //     (%vreg43,%vreg41,#9,#8), { %vreg42 %vreg44 }
 | 
						|
  // remove the first one, since it is contained in the second one.
 | 
						|
  for (unsigned i = 0, n = LL.size(); i < n; ) {
 | 
						|
    const RegisterSet &RMi = LL[i].second;
 | 
						|
    unsigned j = 0;
 | 
						|
    while (j < n) {
 | 
						|
      if (j != i && LL[j].second.includes(RMi))
 | 
						|
        break;
 | 
						|
      j++;
 | 
						|
    }
 | 
						|
    if (j == n) {   // RMi not contained in anything else.
 | 
						|
      i++;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    LL.erase(LL.begin()+i);
 | 
						|
    n = LL.size();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
 | 
						|
      PairMapType &M) {
 | 
						|
  IFMapType::iterator F = IFMap.find(VR);
 | 
						|
  assert(F != IFMap.end());
 | 
						|
  IFListType &LL = F->second;
 | 
						|
  unsigned Cutoff = VRegDistCutoff;
 | 
						|
  const MachineInstr *DefV = MRI->getVRegDef(VR);
 | 
						|
 | 
						|
  for (unsigned i = LL.size(); i > 0; --i) {
 | 
						|
    unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
 | 
						|
    const MachineInstr *DefS = MRI->getVRegDef(SR);
 | 
						|
    const MachineInstr *DefI = MRI->getVRegDef(IR);
 | 
						|
    unsigned DSV = distance(DefS, DefV, RPO, M);
 | 
						|
    if (DSV < Cutoff) {
 | 
						|
      unsigned DIV = distance(DefI, DefV, RPO, M);
 | 
						|
      if (DIV < Cutoff)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    LL.erase(LL.begin()+(i-1));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::pruneRegCopies(unsigned VR) {
 | 
						|
  IFMapType::iterator F = IFMap.find(VR);
 | 
						|
  assert(F != IFMap.end());
 | 
						|
  IFListType &LL = F->second;
 | 
						|
 | 
						|
  auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
 | 
						|
    return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
 | 
						|
  };
 | 
						|
  auto End = llvm::remove_if(LL, IsCopy);
 | 
						|
  if (End != LL.end())
 | 
						|
    LL.erase(End, LL.end());
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::pruneCandidates() {
 | 
						|
  // Remove candidates that are not beneficial, regardless of the final
 | 
						|
  // selection method.
 | 
						|
  // First, remove candidates whose potentially removable set is a subset
 | 
						|
  // of another candidate's set.
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
 | 
						|
    pruneCoveredSets(I->first);
 | 
						|
 | 
						|
  UnsignedMap RPO;
 | 
						|
 | 
						|
  using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
 | 
						|
 | 
						|
  RPOTType RPOT(MFN);
 | 
						|
  unsigned RPON = 0;
 | 
						|
  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
 | 
						|
    RPO[(*I)->getNumber()] = RPON++;
 | 
						|
 | 
						|
  PairMapType Memo; // Memoization map for distance calculation.
 | 
						|
  // Remove candidates that would use registers defined too far away.
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
 | 
						|
    pruneUsesTooFar(I->first, RPO, Memo);
 | 
						|
 | 
						|
  pruneEmptyLists();
 | 
						|
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I)
 | 
						|
    pruneRegCopies(I->first);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  // Class for comparing IF candidates for registers that have multiple of
 | 
						|
  // them. The smaller the candidate, according to this ordering, the better.
 | 
						|
  // First, compare the number of zeros in the associated potentially remova-
 | 
						|
  // ble register sets. "Zero" indicates that the register is very likely to
 | 
						|
  // become dead after this transformation.
 | 
						|
  // Second, compare "averages", i.e. use-count per size. The lower wins.
 | 
						|
  // After that, it does not really matter which one is smaller. Resolve
 | 
						|
  // the tie in some deterministic way.
 | 
						|
  struct IFOrdering {
 | 
						|
    IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
 | 
						|
      : UseC(UC), BaseOrd(BO) {}
 | 
						|
 | 
						|
    bool operator() (const IFRecordWithRegSet &A,
 | 
						|
                     const IFRecordWithRegSet &B) const;
 | 
						|
 | 
						|
  private:
 | 
						|
    void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
 | 
						|
          unsigned &Sum) const;
 | 
						|
 | 
						|
    const UnsignedMap &UseC;
 | 
						|
    const RegisterOrdering &BaseOrd;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool IFOrdering::operator() (const IFRecordWithRegSet &A,
 | 
						|
      const IFRecordWithRegSet &B) const {
 | 
						|
  unsigned SizeA = 0, ZeroA = 0, SumA = 0;
 | 
						|
  unsigned SizeB = 0, ZeroB = 0, SumB = 0;
 | 
						|
  stats(A.second, SizeA, ZeroA, SumA);
 | 
						|
  stats(B.second, SizeB, ZeroB, SumB);
 | 
						|
 | 
						|
  // We will pick the minimum element. The more zeros, the better.
 | 
						|
  if (ZeroA != ZeroB)
 | 
						|
    return ZeroA > ZeroB;
 | 
						|
  // Compare SumA/SizeA with SumB/SizeB, lower is better.
 | 
						|
  uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
 | 
						|
  if (AvgA != AvgB)
 | 
						|
    return AvgA < AvgB;
 | 
						|
 | 
						|
  // The sets compare identical so far. Resort to comparing the IF records.
 | 
						|
  // The actual values don't matter, this is only for determinism.
 | 
						|
  unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
 | 
						|
  if (OSA != OSB)
 | 
						|
    return OSA < OSB;
 | 
						|
  unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
 | 
						|
  if (OIA != OIB)
 | 
						|
    return OIA < OIB;
 | 
						|
  if (A.first.Wdh != B.first.Wdh)
 | 
						|
    return A.first.Wdh < B.first.Wdh;
 | 
						|
  return A.first.Off < B.first.Off;
 | 
						|
}
 | 
						|
 | 
						|
void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
 | 
						|
      unsigned &Sum) const {
 | 
						|
  for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
 | 
						|
    UnsignedMap::const_iterator F = UseC.find(R);
 | 
						|
    assert(F != UseC.end());
 | 
						|
    unsigned UC = F->second;
 | 
						|
    if (UC == 0)
 | 
						|
      Zero++;
 | 
						|
    Sum += UC;
 | 
						|
    Size++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HexagonGenInsert::selectCandidates() {
 | 
						|
  // Some registers may have multiple valid candidates. Pick the best one
 | 
						|
  // (or decide not to use any).
 | 
						|
 | 
						|
  // Compute the "removability" measure of R:
 | 
						|
  // For each potentially removable register R, record the number of regis-
 | 
						|
  // ters with IF candidates, where R appears in at least one set.
 | 
						|
  RegisterSet AllRMs;
 | 
						|
  UnsignedMap UseC, RemC;
 | 
						|
  IFMapType::iterator End = IFMap.end();
 | 
						|
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
 | 
						|
    const IFListType &LL = I->second;
 | 
						|
    RegisterSet TT;
 | 
						|
    for (unsigned i = 0, n = LL.size(); i < n; ++i)
 | 
						|
      TT.insert(LL[i].second);
 | 
						|
    for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
 | 
						|
      RemC[R]++;
 | 
						|
    AllRMs.insert(TT);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
 | 
						|
    using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
 | 
						|
    using InstrSet = SmallSet<const MachineInstr *, 16>;
 | 
						|
 | 
						|
    InstrSet UIs;
 | 
						|
    // Count as the number of instructions in which R is used, not the
 | 
						|
    // number of operands.
 | 
						|
    use_iterator E = MRI->use_nodbg_end();
 | 
						|
    for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
 | 
						|
      UIs.insert(I->getParent());
 | 
						|
    unsigned C = UIs.size();
 | 
						|
    // Calculate a measure, which is the number of instructions using R,
 | 
						|
    // minus the "removability" count computed earlier.
 | 
						|
    unsigned D = RemC[R];
 | 
						|
    UseC[R] = (C > D) ? C-D : 0;  // doz
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
 | 
						|
  if (!SelectAll0 && !SelectHas0)
 | 
						|
    SelectAll0 = true;
 | 
						|
 | 
						|
  // The smaller the number UseC for a given register R, the "less used"
 | 
						|
  // R is aside from the opportunities for removal offered by generating
 | 
						|
  // "insert" instructions.
 | 
						|
  // Iterate over the IF map, and for those registers that have multiple
 | 
						|
  // candidates, pick the minimum one according to IFOrdering.
 | 
						|
  IFOrdering IFO(UseC, BaseOrd);
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
 | 
						|
    IFListType &LL = I->second;
 | 
						|
    if (LL.empty())
 | 
						|
      continue;
 | 
						|
    // Get the minimum element, remember it and clear the list. If the
 | 
						|
    // element found is adequate, we will put it back on the list, other-
 | 
						|
    // wise the list will remain empty, and the entry for this register
 | 
						|
    // will be removed (i.e. this register will not be replaced by insert).
 | 
						|
    IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO);
 | 
						|
    assert(MinI != LL.end());
 | 
						|
    IFRecordWithRegSet M = *MinI;
 | 
						|
    LL.clear();
 | 
						|
 | 
						|
    // We want to make sure that this replacement will have a chance to be
 | 
						|
    // beneficial, and that means that we want to have indication that some
 | 
						|
    // register will be removed. The most likely registers to be eliminated
 | 
						|
    // are the use operands in the definition of I->first. Accept/reject a
 | 
						|
    // candidate based on how many of its uses it can potentially eliminate.
 | 
						|
 | 
						|
    RegisterSet Us;
 | 
						|
    const MachineInstr *DefI = MRI->getVRegDef(I->first);
 | 
						|
    getInstrUses(DefI, Us);
 | 
						|
    bool Accept = false;
 | 
						|
 | 
						|
    if (SelectAll0) {
 | 
						|
      bool All0 = true;
 | 
						|
      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
 | 
						|
        if (UseC[R] == 0)
 | 
						|
          continue;
 | 
						|
        All0 = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      Accept = All0;
 | 
						|
    } else if (SelectHas0) {
 | 
						|
      bool Has0 = false;
 | 
						|
      for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
 | 
						|
        if (UseC[R] != 0)
 | 
						|
          continue;
 | 
						|
        Has0 = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      Accept = Has0;
 | 
						|
    }
 | 
						|
    if (Accept)
 | 
						|
      LL.push_back(M);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove candidates that add uses of removable registers, unless the
 | 
						|
  // removable registers are among replacement candidates.
 | 
						|
  // Recompute the removable registers, since some candidates may have
 | 
						|
  // been eliminated.
 | 
						|
  AllRMs.clear();
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
 | 
						|
    const IFListType &LL = I->second;
 | 
						|
    if (!LL.empty())
 | 
						|
      AllRMs.insert(LL[0].second);
 | 
						|
  }
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
 | 
						|
    IFListType &LL = I->second;
 | 
						|
    if (LL.empty())
 | 
						|
      continue;
 | 
						|
    unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
 | 
						|
    if (AllRMs[SR] || AllRMs[IR])
 | 
						|
      LL.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  pruneEmptyLists();
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::generateInserts() {
 | 
						|
  // Create a new register for each one from IFMap, and store them in the
 | 
						|
  // map.
 | 
						|
  UnsignedMap RegMap;
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
 | 
						|
    unsigned VR = I->first;
 | 
						|
    const TargetRegisterClass *RC = MRI->getRegClass(VR);
 | 
						|
    unsigned NewVR = MRI->createVirtualRegister(RC);
 | 
						|
    RegMap[VR] = NewVR;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can generate the "insert" instructions using potentially stale re-
 | 
						|
  // gisters: SrcR and InsR for a given VR may be among other registers that
 | 
						|
  // are also replaced. This is fine, we will do the mass "rauw" a bit later.
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
 | 
						|
    MachineInstr *MI = MRI->getVRegDef(I->first);
 | 
						|
    MachineBasicBlock &B = *MI->getParent();
 | 
						|
    DebugLoc DL = MI->getDebugLoc();
 | 
						|
    unsigned NewR = RegMap[I->first];
 | 
						|
    bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
 | 
						|
    const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
 | 
						|
                               : HII->get(Hexagon::S2_insertp);
 | 
						|
    IFRecord IF = I->second[0].first;
 | 
						|
    unsigned Wdh = IF.Wdh, Off = IF.Off;
 | 
						|
    unsigned InsS = 0;
 | 
						|
    if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
 | 
						|
      InsS = Hexagon::isub_lo;
 | 
						|
      if (Off >= 32) {
 | 
						|
        InsS = Hexagon::isub_hi;
 | 
						|
        Off -= 32;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Advance to the proper location for inserting instructions. This could
 | 
						|
    // be B.end().
 | 
						|
    MachineBasicBlock::iterator At = MI;
 | 
						|
    if (MI->isPHI())
 | 
						|
      At = B.getFirstNonPHI();
 | 
						|
 | 
						|
    BuildMI(B, At, DL, D, NewR)
 | 
						|
      .addReg(IF.SrcR)
 | 
						|
      .addReg(IF.InsR, 0, InsS)
 | 
						|
      .addImm(Wdh)
 | 
						|
      .addImm(Off);
 | 
						|
 | 
						|
    MRI->clearKillFlags(IF.SrcR);
 | 
						|
    MRI->clearKillFlags(IF.InsR);
 | 
						|
  }
 | 
						|
 | 
						|
  for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
 | 
						|
    MachineInstr *DefI = MRI->getVRegDef(I->first);
 | 
						|
    MRI->replaceRegWith(I->first, RegMap[I->first]);
 | 
						|
    DefI->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (auto *DTN : children<MachineDomTreeNode*>(N))
 | 
						|
    Changed |= removeDeadCode(DTN);
 | 
						|
 | 
						|
  MachineBasicBlock *B = N->getBlock();
 | 
						|
  std::vector<MachineInstr*> Instrs;
 | 
						|
  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
 | 
						|
    Instrs.push_back(&*I);
 | 
						|
 | 
						|
  for (auto I = Instrs.begin(), E = Instrs.end(); I != E; ++I) {
 | 
						|
    MachineInstr *MI = *I;
 | 
						|
    unsigned Opc = MI->getOpcode();
 | 
						|
    // Do not touch lifetime markers. This is why the target-independent DCE
 | 
						|
    // cannot be used.
 | 
						|
    if (Opc == TargetOpcode::LIFETIME_START ||
 | 
						|
        Opc == TargetOpcode::LIFETIME_END)
 | 
						|
      continue;
 | 
						|
    bool Store = false;
 | 
						|
    if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool AllDead = true;
 | 
						|
    SmallVector<unsigned,2> Regs;
 | 
						|
    for (const MachineOperand &MO : MI->operands()) {
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
      unsigned R = MO.getReg();
 | 
						|
      if (!TargetRegisterInfo::isVirtualRegister(R) ||
 | 
						|
          !MRI->use_nodbg_empty(R)) {
 | 
						|
        AllDead = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      Regs.push_back(R);
 | 
						|
    }
 | 
						|
    if (!AllDead)
 | 
						|
      continue;
 | 
						|
 | 
						|
    B->erase(MI);
 | 
						|
    for (unsigned I = 0, N = Regs.size(); I != N; ++I)
 | 
						|
      MRI->markUsesInDebugValueAsUndef(Regs[I]);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipFunction(*MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Sanity check: one, but not both.
 | 
						|
  assert(!OptSelectAll0 || !OptSelectHas0);
 | 
						|
 | 
						|
  IFMap.clear();
 | 
						|
  BaseOrd.clear();
 | 
						|
  CellOrd.clear();
 | 
						|
 | 
						|
  const auto &ST = MF.getSubtarget<HexagonSubtarget>();
 | 
						|
  HII = ST.getInstrInfo();
 | 
						|
  HRI = ST.getRegisterInfo();
 | 
						|
  MFN = &MF;
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
 | 
						|
  // Clean up before any further processing, so that dead code does not
 | 
						|
  // get used in a newly generated "insert" instruction. Have a custom
 | 
						|
  // version of DCE that preserves lifetime markers. Without it, merging
 | 
						|
  // of stack objects can fail to recognize and merge disjoint objects
 | 
						|
  // leading to unnecessary stack growth.
 | 
						|
  Changed = removeDeadCode(MDT->getRootNode());
 | 
						|
 | 
						|
  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
 | 
						|
  BitTracker BTLoc(HE, MF);
 | 
						|
  BTLoc.trace(isDebug());
 | 
						|
  BTLoc.run();
 | 
						|
  CellMapShadow MS(BTLoc);
 | 
						|
  CMS = &MS;
 | 
						|
 | 
						|
  buildOrderingMF(BaseOrd);
 | 
						|
  buildOrderingBT(BaseOrd, CellOrd);
 | 
						|
 | 
						|
  if (isDebug()) {
 | 
						|
    dbgs() << "Cell ordering:\n";
 | 
						|
    for (RegisterOrdering::iterator I = CellOrd.begin(), E = CellOrd.end();
 | 
						|
        I != E; ++I) {
 | 
						|
      unsigned VR = I->first, Pos = I->second;
 | 
						|
      dbgs() << PrintReg(VR, HRI) << " -> " << Pos << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect candidates for conversion into the insert forms.
 | 
						|
  MachineBasicBlock *RootB = MDT->getRoot();
 | 
						|
  OrderedRegisterList AvailR(CellOrd);
 | 
						|
 | 
						|
  const char *const TGName = "hexinsert";
 | 
						|
  const char *const TGDesc = "Generate Insert Instructions";
 | 
						|
 | 
						|
  {
 | 
						|
    NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
 | 
						|
                        TimingDetail);
 | 
						|
    collectInBlock(RootB, AvailR);
 | 
						|
    // Complete the information gathered in IFMap.
 | 
						|
    computeRemovableRegisters();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDebug()) {
 | 
						|
    dbgs() << "Candidates after collection:\n";
 | 
						|
    dump_map();
 | 
						|
  }
 | 
						|
 | 
						|
  if (IFMap.empty())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  {
 | 
						|
    NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
 | 
						|
    pruneCandidates();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDebug()) {
 | 
						|
    dbgs() << "Candidates after pruning:\n";
 | 
						|
    dump_map();
 | 
						|
  }
 | 
						|
 | 
						|
  if (IFMap.empty())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  {
 | 
						|
    NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
 | 
						|
    selectCandidates();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDebug()) {
 | 
						|
    dbgs() << "Candidates after selection:\n";
 | 
						|
    dump_map();
 | 
						|
  }
 | 
						|
 | 
						|
  // Filter out vregs beyond the cutoff.
 | 
						|
  if (VRegIndexCutoff.getPosition()) {
 | 
						|
    unsigned Cutoff = VRegIndexCutoff;
 | 
						|
 | 
						|
    using IterListType = SmallVector<IFMapType::iterator, 16>;
 | 
						|
 | 
						|
    IterListType Out;
 | 
						|
    for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
 | 
						|
      unsigned Idx = TargetRegisterInfo::virtReg2Index(I->first);
 | 
						|
      if (Idx >= Cutoff)
 | 
						|
        Out.push_back(I);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, n = Out.size(); i < n; ++i)
 | 
						|
      IFMap.erase(Out[i]);
 | 
						|
  }
 | 
						|
  if (IFMap.empty())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  {
 | 
						|
    NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
 | 
						|
                        TimingDetail);
 | 
						|
    generateInserts();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createHexagonGenInsert() {
 | 
						|
  return new HexagonGenInsert();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
 | 
						|
  "Hexagon generate \"insert\" instructions", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
 | 
						|
  "Hexagon generate \"insert\" instructions", false, false)
 |