2023 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2023 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the PowerPC implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPCInstrInfo.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPC.h"
 | |
| #include "PPCHazardRecognizers.h"
 | |
| #include "PPCInstrBuilder.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ppc-instr-info"
 | |
| 
 | |
| #define GET_INSTRMAP_INFO
 | |
| #define GET_INSTRINFO_CTOR_DTOR
 | |
| #include "PPCGenInstrInfo.inc"
 | |
| 
 | |
| static cl::
 | |
| opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
 | |
|             cl::desc("Disable analysis for CTR loops"));
 | |
| 
 | |
| static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
 | |
| cl::desc("Disable compare instruction optimization"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
 | |
| cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
 | |
| cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
 | |
|   cl::desc("Use the old (incorrect) instruction latency calculation"));
 | |
| 
 | |
| // Pin the vtable to this file.
 | |
| void PPCInstrInfo::anchor() {}
 | |
| 
 | |
| PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
 | |
|     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
 | |
|                       /* CatchRetOpcode */ -1,
 | |
|                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
 | |
|       Subtarget(STI), RI(STI.getTargetMachine()) {}
 | |
| 
 | |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
 | |
| /// this target when scheduling the DAG.
 | |
| ScheduleHazardRecognizer *
 | |
| PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
 | |
|                                            const ScheduleDAG *DAG) const {
 | |
|   unsigned Directive =
 | |
|       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
 | |
|   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
 | |
|       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
 | |
|     const InstrItineraryData *II =
 | |
|         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
 | |
|     return new ScoreboardHazardRecognizer(II, DAG);
 | |
|   }
 | |
| 
 | |
|   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
 | |
| }
 | |
| 
 | |
| /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
 | |
| /// to use for this target when scheduling the DAG.
 | |
| ScheduleHazardRecognizer *
 | |
| PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | |
|                                                  const ScheduleDAG *DAG) const {
 | |
|   unsigned Directive =
 | |
|       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
 | |
| 
 | |
|   // FIXME: Leaving this as-is until we have POWER9 scheduling info
 | |
|   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
 | |
|     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
 | |
| 
 | |
|   // Most subtargets use a PPC970 recognizer.
 | |
|   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
 | |
|       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
 | |
|     assert(DAG->TII && "No InstrInfo?");
 | |
| 
 | |
|     return new PPCHazardRecognizer970(*DAG);
 | |
|   }
 | |
| 
 | |
|   return new ScoreboardHazardRecognizer(II, DAG);
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                        const MachineInstr &MI,
 | |
|                                        unsigned *PredCost) const {
 | |
|   if (!ItinData || UseOldLatencyCalc)
 | |
|     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
 | |
| 
 | |
|   // The default implementation of getInstrLatency calls getStageLatency, but
 | |
|   // getStageLatency does not do the right thing for us. While we have
 | |
|   // itinerary, most cores are fully pipelined, and so the itineraries only
 | |
|   // express the first part of the pipeline, not every stage. Instead, we need
 | |
|   // to use the listed output operand cycle number (using operand 0 here, which
 | |
|   // is an output).
 | |
| 
 | |
|   unsigned Latency = 1;
 | |
|   unsigned DefClass = MI.getDesc().getSchedClass();
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
 | |
|       continue;
 | |
| 
 | |
|     int Cycle = ItinData->getOperandCycle(DefClass, i);
 | |
|     if (Cycle < 0)
 | |
|       continue;
 | |
| 
 | |
|     Latency = std::max(Latency, (unsigned) Cycle);
 | |
|   }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                     const MachineInstr &DefMI, unsigned DefIdx,
 | |
|                                     const MachineInstr &UseMI,
 | |
|                                     unsigned UseIdx) const {
 | |
|   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
 | |
|                                                    UseMI, UseIdx);
 | |
| 
 | |
|   if (!DefMI.getParent())
 | |
|     return Latency;
 | |
| 
 | |
|   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
 | |
|   unsigned Reg = DefMO.getReg();
 | |
| 
 | |
|   bool IsRegCR;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     const MachineRegisterInfo *MRI =
 | |
|         &DefMI.getParent()->getParent()->getRegInfo();
 | |
|     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
 | |
|               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
 | |
|   } else {
 | |
|     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
 | |
|               PPC::CRBITRCRegClass.contains(Reg);
 | |
|   }
 | |
| 
 | |
|   if (UseMI.isBranch() && IsRegCR) {
 | |
|     if (Latency < 0)
 | |
|       Latency = getInstrLatency(ItinData, DefMI);
 | |
| 
 | |
|     // On some cores, there is an additional delay between writing to a condition
 | |
|     // register, and using it from a branch.
 | |
|     unsigned Directive = Subtarget.getDarwinDirective();
 | |
|     switch (Directive) {
 | |
|     default: break;
 | |
|     case PPC::DIR_7400:
 | |
|     case PPC::DIR_750:
 | |
|     case PPC::DIR_970:
 | |
|     case PPC::DIR_E5500:
 | |
|     case PPC::DIR_PWR4:
 | |
|     case PPC::DIR_PWR5:
 | |
|     case PPC::DIR_PWR5X:
 | |
|     case PPC::DIR_PWR6:
 | |
|     case PPC::DIR_PWR6X:
 | |
|     case PPC::DIR_PWR7:
 | |
|     case PPC::DIR_PWR8:
 | |
|     // FIXME: Is this needed for POWER9?
 | |
|       Latency += 2;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Latency;
 | |
| }
 | |
| 
 | |
| // This function does not list all associative and commutative operations, but
 | |
| // only those worth feeding through the machine combiner in an attempt to
 | |
| // reduce the critical path. Mostly, this means floating-point operations,
 | |
| // because they have high latencies (compared to other operations, such and
 | |
| // and/or, which are also associative and commutative, but have low latencies).
 | |
| bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
 | |
|   switch (Inst.getOpcode()) {
 | |
|   // FP Add:
 | |
|   case PPC::FADD:
 | |
|   case PPC::FADDS:
 | |
|   // FP Multiply:
 | |
|   case PPC::FMUL:
 | |
|   case PPC::FMULS:
 | |
|   // Altivec Add:
 | |
|   case PPC::VADDFP:
 | |
|   // VSX Add:
 | |
|   case PPC::XSADDDP:
 | |
|   case PPC::XVADDDP:
 | |
|   case PPC::XVADDSP:
 | |
|   case PPC::XSADDSP:
 | |
|   // VSX Multiply:
 | |
|   case PPC::XSMULDP:
 | |
|   case PPC::XVMULDP:
 | |
|   case PPC::XVMULSP:
 | |
|   case PPC::XSMULSP:
 | |
|   // QPX Add:
 | |
|   case PPC::QVFADD:
 | |
|   case PPC::QVFADDS:
 | |
|   case PPC::QVFADDSs:
 | |
|   // QPX Multiply:
 | |
|   case PPC::QVFMUL:
 | |
|   case PPC::QVFMULS:
 | |
|   case PPC::QVFMULSs:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::getMachineCombinerPatterns(
 | |
|     MachineInstr &Root,
 | |
|     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
 | |
|   // Using the machine combiner in this way is potentially expensive, so
 | |
|   // restrict to when aggressive optimizations are desired.
 | |
|   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
 | |
|     return false;
 | |
| 
 | |
|   // FP reassociation is only legal when we don't need strict IEEE semantics.
 | |
|   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
 | |
|     return false;
 | |
| 
 | |
|   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
 | |
| }
 | |
| 
 | |
| // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
 | |
| bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 | |
|                                          unsigned &SrcReg, unsigned &DstReg,
 | |
|                                          unsigned &SubIdx) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: return false;
 | |
|   case PPC::EXTSW:
 | |
|   case PPC::EXTSW_32_64:
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SubIdx = PPC::sub_32;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
 | |
|                                            int &FrameIndex) const {
 | |
|   // Note: This list must be kept consistent with LoadRegFromStackSlot.
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: break;
 | |
|   case PPC::LD:
 | |
|   case PPC::LWZ:
 | |
|   case PPC::LFS:
 | |
|   case PPC::LFD:
 | |
|   case PPC::RESTORE_CR:
 | |
|   case PPC::RESTORE_CRBIT:
 | |
|   case PPC::LVX:
 | |
|   case PPC::LXVD2X:
 | |
|   case PPC::LXVX:
 | |
|   case PPC::QVLFDX:
 | |
|   case PPC::QVLFSXs:
 | |
|   case PPC::QVLFDXb:
 | |
|   case PPC::RESTORE_VRSAVE:
 | |
|     // Check for the operands added by addFrameReference (the immediate is the
 | |
|     // offset which defaults to 0).
 | |
|     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
 | |
|         MI.getOperand(2).isFI()) {
 | |
|       FrameIndex = MI.getOperand(2).getIndex();
 | |
|       return MI.getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // For opcodes with the ReMaterializable flag set, this function is called to
 | |
| // verify the instruction is really rematable.  
 | |
| bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
 | |
|                                                      AliasAnalysis *AA) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: 
 | |
|     // This function should only be called for opcodes with the ReMaterializable
 | |
|     // flag set.
 | |
|     llvm_unreachable("Unknown rematerializable operation!");
 | |
|     break;
 | |
|   case PPC::LI:
 | |
|   case PPC::LI8:
 | |
|   case PPC::LIS:
 | |
|   case PPC::LIS8:
 | |
|   case PPC::QVGPCI:
 | |
|   case PPC::ADDIStocHA:
 | |
|   case PPC::ADDItocL:
 | |
|   case PPC::LOAD_STACK_GUARD:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
 | |
|                                           int &FrameIndex) const {
 | |
|   // Note: This list must be kept consistent with StoreRegToStackSlot.
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: break;
 | |
|   case PPC::STD:
 | |
|   case PPC::STW:
 | |
|   case PPC::STFS:
 | |
|   case PPC::STFD:
 | |
|   case PPC::SPILL_CR:
 | |
|   case PPC::SPILL_CRBIT:
 | |
|   case PPC::STVX:
 | |
|   case PPC::STXVD2X:
 | |
|   case PPC::STXVX:
 | |
|   case PPC::QVSTFDX:
 | |
|   case PPC::QVSTFSXs:
 | |
|   case PPC::QVSTFDXb:
 | |
|   case PPC::SPILL_VRSAVE:
 | |
|     // Check for the operands added by addFrameReference (the immediate is the
 | |
|     // offset which defaults to 0).
 | |
|     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
 | |
|         MI.getOperand(2).isFI()) {
 | |
|       FrameIndex = MI.getOperand(2).getIndex();
 | |
|       return MI.getOperand(0).getReg();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
 | |
|                                                    unsigned OpIdx1,
 | |
|                                                    unsigned OpIdx2) const {
 | |
|   MachineFunction &MF = *MI.getParent()->getParent();
 | |
| 
 | |
|   // Normal instructions can be commuted the obvious way.
 | |
|   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMIo)
 | |
|     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
 | |
|   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
 | |
|   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
 | |
|   // changing the relative order of the mask operands might change what happens
 | |
|   // to the high-bits of the mask (and, thus, the result).
 | |
| 
 | |
|   // Cannot commute if it has a non-zero rotate count.
 | |
|   if (MI.getOperand(3).getImm() != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we have a zero rotate count, we have:
 | |
|   //   M = mask(MB,ME)
 | |
|   //   Op0 = (Op1 & ~M) | (Op2 & M)
 | |
|   // Change this to:
 | |
|   //   M = mask((ME+1)&31, (MB-1)&31)
 | |
|   //   Op0 = (Op2 & ~M) | (Op1 & M)
 | |
| 
 | |
|   // Swap op1/op2
 | |
|   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
 | |
|          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
 | |
|   unsigned Reg0 = MI.getOperand(0).getReg();
 | |
|   unsigned Reg1 = MI.getOperand(1).getReg();
 | |
|   unsigned Reg2 = MI.getOperand(2).getReg();
 | |
|   unsigned SubReg1 = MI.getOperand(1).getSubReg();
 | |
|   unsigned SubReg2 = MI.getOperand(2).getSubReg();
 | |
|   bool Reg1IsKill = MI.getOperand(1).isKill();
 | |
|   bool Reg2IsKill = MI.getOperand(2).isKill();
 | |
|   bool ChangeReg0 = false;
 | |
|   // If machine instrs are no longer in two-address forms, update
 | |
|   // destination register as well.
 | |
|   if (Reg0 == Reg1) {
 | |
|     // Must be two address instruction!
 | |
|     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
 | |
|            "Expecting a two-address instruction!");
 | |
|     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
 | |
|     Reg2IsKill = false;
 | |
|     ChangeReg0 = true;
 | |
|   }
 | |
| 
 | |
|   // Masks.
 | |
|   unsigned MB = MI.getOperand(4).getImm();
 | |
|   unsigned ME = MI.getOperand(5).getImm();
 | |
| 
 | |
|   // We can't commute a trivial mask (there is no way to represent an all-zero
 | |
|   // mask).
 | |
|   if (MB == 0 && ME == 31)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (NewMI) {
 | |
|     // Create a new instruction.
 | |
|     unsigned Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
 | |
|     bool Reg0IsDead = MI.getOperand(0).isDead();
 | |
|     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
 | |
|         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
 | |
|         .addReg(Reg2, getKillRegState(Reg2IsKill))
 | |
|         .addReg(Reg1, getKillRegState(Reg1IsKill))
 | |
|         .addImm((ME + 1) & 31)
 | |
|         .addImm((MB - 1) & 31);
 | |
|   }
 | |
| 
 | |
|   if (ChangeReg0) {
 | |
|     MI.getOperand(0).setReg(Reg2);
 | |
|     MI.getOperand(0).setSubReg(SubReg2);
 | |
|   }
 | |
|   MI.getOperand(2).setReg(Reg1);
 | |
|   MI.getOperand(1).setReg(Reg2);
 | |
|   MI.getOperand(2).setSubReg(SubReg1);
 | |
|   MI.getOperand(1).setSubReg(SubReg2);
 | |
|   MI.getOperand(2).setIsKill(Reg1IsKill);
 | |
|   MI.getOperand(1).setIsKill(Reg2IsKill);
 | |
| 
 | |
|   // Swap the mask around.
 | |
|   MI.getOperand(4).setImm((ME + 1) & 31);
 | |
|   MI.getOperand(5).setImm((MB - 1) & 31);
 | |
|   return &MI;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
 | |
|                                          unsigned &SrcOpIdx2) const {
 | |
|   // For VSX A-Type FMA instructions, it is the first two operands that can be
 | |
|   // commuted, however, because the non-encoded tied input operand is listed
 | |
|   // first, the operands to swap are actually the second and third.
 | |
| 
 | |
|   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
 | |
|   if (AltOpc == -1)
 | |
|     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
 | |
| 
 | |
|   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
 | |
|   // and SrcOpIdx2.
 | |
|   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
 | |
|                               MachineBasicBlock::iterator MI) const {
 | |
|   // This function is used for scheduling, and the nop wanted here is the type
 | |
|   // that terminates dispatch groups on the POWER cores.
 | |
|   unsigned Directive = Subtarget.getDarwinDirective();
 | |
|   unsigned Opcode;
 | |
|   switch (Directive) {
 | |
|   default:            Opcode = PPC::NOP; break;
 | |
|   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
 | |
|   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
 | |
|   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
 | |
|   // FIXME: Update when POWER9 scheduling model is ready.
 | |
|   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
 | |
|   }
 | |
| 
 | |
|   DebugLoc DL;
 | |
|   BuildMI(MBB, MI, DL, get(Opcode));
 | |
| }
 | |
| 
 | |
| /// Return the noop instruction to use for a noop.
 | |
| void PPCInstrInfo::getNoop(MCInst &NopInst) const {
 | |
|   NopInst.setOpcode(PPC::NOP);
 | |
| }
 | |
| 
 | |
| // Branch analysis.
 | |
| // Note: If the condition register is set to CTR or CTR8 then this is a
 | |
| // BDNZ (imm == 1) or BDZ (imm == 0) branch.
 | |
| bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  bool AllowModify) const {
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|   // If the block has no terminators, it just falls into the block after it.
 | |
|   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
 | |
|   if (I == MBB.end())
 | |
|     return false;
 | |
| 
 | |
|   if (!isUnpredicatedTerminator(*I))
 | |
|     return false;
 | |
| 
 | |
|   // Get the last instruction in the block.
 | |
|   MachineInstr &LastInst = *I;
 | |
| 
 | |
|   // If there is only one terminator instruction, process it.
 | |
|   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
 | |
|     if (LastInst.getOpcode() == PPC::B) {
 | |
|       if (!LastInst.getOperand(0).isMBB())
 | |
|         return true;
 | |
|       TBB = LastInst.getOperand(0).getMBB();
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BCC) {
 | |
|       if (!LastInst.getOperand(2).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst.getOperand(2).getMBB();
 | |
|       Cond.push_back(LastInst.getOperand(0));
 | |
|       Cond.push_back(LastInst.getOperand(1));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BC) {
 | |
|       if (!LastInst.getOperand(1).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst.getOperand(1).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|       Cond.push_back(LastInst.getOperand(0));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BCn) {
 | |
|       if (!LastInst.getOperand(1).isMBB())
 | |
|         return true;
 | |
|       // Block ends with fall-through condbranch.
 | |
|       TBB = LastInst.getOperand(1).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | |
|       Cond.push_back(LastInst.getOperand(0));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
 | |
|                LastInst.getOpcode() == PPC::BDNZ) {
 | |
|       if (!LastInst.getOperand(0).isMBB())
 | |
|         return true;
 | |
|       if (DisableCTRLoopAnal)
 | |
|         return true;
 | |
|       TBB = LastInst.getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(1));
 | |
|       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                                true));
 | |
|       return false;
 | |
|     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
 | |
|                LastInst.getOpcode() == PPC::BDZ) {
 | |
|       if (!LastInst.getOperand(0).isMBB())
 | |
|         return true;
 | |
|       if (DisableCTRLoopAnal)
 | |
|         return true;
 | |
|       TBB = LastInst.getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(0));
 | |
|       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                                true));
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, don't know what this is.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Get the instruction before it if it's a terminator.
 | |
|   MachineInstr &SecondLastInst = *I;
 | |
| 
 | |
|   // If there are three terminators, we don't know what sort of block this is.
 | |
|   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
 | |
|     return true;
 | |
| 
 | |
|   // If the block ends with PPC::B and PPC:BCC, handle it.
 | |
|   if (SecondLastInst.getOpcode() == PPC::BCC &&
 | |
|       LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(2).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(2).getMBB();
 | |
|     Cond.push_back(SecondLastInst.getOperand(0));
 | |
|     Cond.push_back(SecondLastInst.getOperand(1));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if (SecondLastInst.getOpcode() == PPC::BC &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(1).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(1).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|     Cond.push_back(SecondLastInst.getOperand(0));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(1).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(1).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | |
|     Cond.push_back(SecondLastInst.getOperand(0));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
 | |
|               SecondLastInst.getOpcode() == PPC::BDNZ) &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(0).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     if (DisableCTRLoopAnal)
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(0).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(1));
 | |
|     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                              true));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
 | |
|               SecondLastInst.getOpcode() == PPC::BDZ) &&
 | |
|              LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(0).isMBB() ||
 | |
|         !LastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     if (DisableCTRLoopAnal)
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(0).getMBB();
 | |
|     Cond.push_back(MachineOperand::CreateImm(0));
 | |
|     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | |
|                                              true));
 | |
|     FBB = LastInst.getOperand(0).getMBB();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If the block ends with two PPC:Bs, handle it.  The second one is not
 | |
|   // executed, so remove it.
 | |
|   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
 | |
|     if (!SecondLastInst.getOperand(0).isMBB())
 | |
|       return true;
 | |
|     TBB = SecondLastInst.getOperand(0).getMBB();
 | |
|     I = LastInst;
 | |
|     if (AllowModify)
 | |
|       I->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, can't handle this.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
 | |
|                                     int *BytesRemoved) const {
 | |
|   assert(!BytesRemoved && "code size not handled");
 | |
| 
 | |
|   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
 | |
|   if (I == MBB.end())
 | |
|     return 0;
 | |
| 
 | |
|   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
 | |
|       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | |
|       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | |
|       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | |
|     return 0;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
| 
 | |
|   I = MBB.end();
 | |
| 
 | |
|   if (I == MBB.begin()) return 1;
 | |
|   --I;
 | |
|   if (I->getOpcode() != PPC::BCC &&
 | |
|       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | |
|       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | |
|       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | |
|     return 1;
 | |
| 
 | |
|   // Remove the branch.
 | |
|   I->eraseFromParent();
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock *TBB,
 | |
|                                     MachineBasicBlock *FBB,
 | |
|                                     ArrayRef<MachineOperand> Cond,
 | |
|                                     const DebugLoc &DL,
 | |
|                                     int *BytesAdded) const {
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "insertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 2 || Cond.size() == 0) &&
 | |
|          "PPC branch conditions have two components!");
 | |
|   assert(!BytesAdded && "code size not handled");
 | |
| 
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|   // One-way branch.
 | |
|   if (!FBB) {
 | |
|     if (Cond.empty())   // Unconditional branch
 | |
|       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
 | |
|     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | |
|                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | |
|     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | |
|       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
 | |
|     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | |
|       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
 | |
|     else                // Conditional branch
 | |
|       BuildMI(&MBB, DL, get(PPC::BCC))
 | |
|           .addImm(Cond[0].getImm())
 | |
|           .add(Cond[1])
 | |
|           .addMBB(TBB);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Two-way Conditional Branch.
 | |
|   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | |
|                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | |
|                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | |
|   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | |
|     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
 | |
|   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | |
|     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
 | |
|   else
 | |
|     BuildMI(&MBB, DL, get(PPC::BCC))
 | |
|         .addImm(Cond[0].getImm())
 | |
|         .add(Cond[1])
 | |
|         .addMBB(TBB);
 | |
|   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| // Select analysis.
 | |
| bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
 | |
|                 ArrayRef<MachineOperand> Cond,
 | |
|                 unsigned TrueReg, unsigned FalseReg,
 | |
|                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
 | |
|   if (Cond.size() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // If this is really a bdnz-like condition, then it cannot be turned into a
 | |
|   // select.
 | |
|   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | |
|     return false;
 | |
| 
 | |
|   // Check register classes.
 | |
|   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   if (!RC)
 | |
|     return false;
 | |
| 
 | |
|   // isel is for regular integer GPRs only.
 | |
|   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
 | |
|       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: These numbers are for the A2, how well they work for other cores is
 | |
|   // an open question. On the A2, the isel instruction has a 2-cycle latency
 | |
|   // but single-cycle throughput. These numbers are used in combination with
 | |
|   // the MispredictPenalty setting from the active SchedMachineModel.
 | |
|   CondCycles = 1;
 | |
|   TrueCycles = 1;
 | |
|   FalseCycles = 1;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
 | |
|                                 MachineBasicBlock::iterator MI,
 | |
|                                 const DebugLoc &dl, unsigned DestReg,
 | |
|                                 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
 | |
|                                 unsigned FalseReg) const {
 | |
|   assert(Cond.size() == 2 &&
 | |
|          "PPC branch conditions have two components!");
 | |
| 
 | |
|   // Get the register classes.
 | |
|   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
 | |
| 
 | |
|   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
 | |
|   assert((Is64Bit ||
 | |
|           PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
 | |
|          "isel is for regular integer GPRs only");
 | |
| 
 | |
|   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
 | |
|   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
 | |
| 
 | |
|   unsigned SubIdx = 0;
 | |
|   bool SwapOps = false;
 | |
|   switch (SelectPred) {
 | |
|   case PPC::PRED_EQ:
 | |
|   case PPC::PRED_EQ_MINUS:
 | |
|   case PPC::PRED_EQ_PLUS:
 | |
|       SubIdx = PPC::sub_eq; SwapOps = false; break;
 | |
|   case PPC::PRED_NE:
 | |
|   case PPC::PRED_NE_MINUS:
 | |
|   case PPC::PRED_NE_PLUS:
 | |
|       SubIdx = PPC::sub_eq; SwapOps = true; break;
 | |
|   case PPC::PRED_LT:
 | |
|   case PPC::PRED_LT_MINUS:
 | |
|   case PPC::PRED_LT_PLUS:
 | |
|       SubIdx = PPC::sub_lt; SwapOps = false; break;
 | |
|   case PPC::PRED_GE:
 | |
|   case PPC::PRED_GE_MINUS:
 | |
|   case PPC::PRED_GE_PLUS:
 | |
|       SubIdx = PPC::sub_lt; SwapOps = true; break;
 | |
|   case PPC::PRED_GT:
 | |
|   case PPC::PRED_GT_MINUS:
 | |
|   case PPC::PRED_GT_PLUS:
 | |
|       SubIdx = PPC::sub_gt; SwapOps = false; break;
 | |
|   case PPC::PRED_LE:
 | |
|   case PPC::PRED_LE_MINUS:
 | |
|   case PPC::PRED_LE_PLUS:
 | |
|       SubIdx = PPC::sub_gt; SwapOps = true; break;
 | |
|   case PPC::PRED_UN:
 | |
|   case PPC::PRED_UN_MINUS:
 | |
|   case PPC::PRED_UN_PLUS:
 | |
|       SubIdx = PPC::sub_un; SwapOps = false; break;
 | |
|   case PPC::PRED_NU:
 | |
|   case PPC::PRED_NU_MINUS:
 | |
|   case PPC::PRED_NU_PLUS:
 | |
|       SubIdx = PPC::sub_un; SwapOps = true; break;
 | |
|   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
 | |
|   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
 | |
|   }
 | |
| 
 | |
|   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
 | |
|            SecondReg = SwapOps ? TrueReg  : FalseReg;
 | |
| 
 | |
|   // The first input register of isel cannot be r0. If it is a member
 | |
|   // of a register class that can be r0, then copy it first (the
 | |
|   // register allocator should eliminate the copy).
 | |
|   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
 | |
|       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
 | |
|     const TargetRegisterClass *FirstRC =
 | |
|       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
 | |
|         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
 | |
|     unsigned OldFirstReg = FirstReg;
 | |
|     FirstReg = MRI.createVirtualRegister(FirstRC);
 | |
|     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
 | |
|       .addReg(OldFirstReg);
 | |
|   }
 | |
| 
 | |
|   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
 | |
|     .addReg(FirstReg).addReg(SecondReg)
 | |
|     .addReg(Cond[1].getReg(), 0, SubIdx);
 | |
| }
 | |
| 
 | |
| static unsigned getCRBitValue(unsigned CRBit) {
 | |
|   unsigned Ret = 4;
 | |
|   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
 | |
|       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
 | |
|       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
 | |
|       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
 | |
|     Ret = 3;
 | |
|   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
 | |
|       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
 | |
|       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
 | |
|       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
 | |
|     Ret = 2;
 | |
|   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
 | |
|       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
 | |
|       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
 | |
|       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
 | |
|     Ret = 1;
 | |
|   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
 | |
|       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
 | |
|       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
 | |
|       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
 | |
|     Ret = 0;
 | |
| 
 | |
|   assert(Ret != 4 && "Invalid CR bit register");
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                MachineBasicBlock::iterator I,
 | |
|                                const DebugLoc &DL, unsigned DestReg,
 | |
|                                unsigned SrcReg, bool KillSrc) const {
 | |
|   // We can end up with self copies and similar things as a result of VSX copy
 | |
|   // legalization. Promote them here.
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   if (PPC::F8RCRegClass.contains(DestReg) &&
 | |
|       PPC::VSRCRegClass.contains(SrcReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && SrcReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     DestReg = SuperReg;
 | |
|   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
 | |
|              PPC::VSRCRegClass.contains(DestReg)) {
 | |
|     unsigned SuperReg =
 | |
|       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
 | |
| 
 | |
|     if (VSXSelfCopyCrash && DestReg == SuperReg)
 | |
|       llvm_unreachable("nop VSX copy");
 | |
| 
 | |
|     SrcReg = SuperReg;
 | |
|   }
 | |
| 
 | |
|   // Different class register copy
 | |
|   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
 | |
|       PPC::GPRCRegClass.contains(DestReg)) {
 | |
|     unsigned CRReg = getCRFromCRBit(SrcReg);
 | |
|     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     // Rotate the CR bit in the CR fields to be the least significant bit and
 | |
|     // then mask with 0x1 (MB = ME = 31).
 | |
|     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
 | |
|        .addReg(DestReg, RegState::Kill)
 | |
|        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
 | |
|        .addImm(31)
 | |
|        .addImm(31);
 | |
|     return;
 | |
|   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
 | |
|       PPC::G8RCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg).addReg(SrcReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
 | |
|       PPC::GPRCRegClass.contains(DestReg)) {
 | |
|     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(SrcReg);
 | |
|     getKillRegState(KillSrc);
 | |
|     return;
 | |
|    }
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::OR;
 | |
|   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::OR8;
 | |
|   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::FMR;
 | |
|   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::MCRF;
 | |
|   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::VOR;
 | |
|   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
 | |
|     // There are two different ways this can be done:
 | |
|     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
 | |
|     //      issue in VSU pipeline 0.
 | |
|     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
 | |
|     //      can go to either pipeline.
 | |
|     // We'll always use xxlor here, because in practically all cases where
 | |
|     // copies are generated, they are close enough to some use that the
 | |
|     // lower-latency form is preferable.
 | |
|     Opc = PPC::XXLOR;
 | |
|   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
 | |
|            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::XXLORf;
 | |
|   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::QVFMR;
 | |
|   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::QVFMRs;
 | |
|   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::QVFMRb;
 | |
|   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
 | |
|     Opc = PPC::CROR;
 | |
|   else
 | |
|     llvm_unreachable("Impossible reg-to-reg copy");
 | |
| 
 | |
|   const MCInstrDesc &MCID = get(Opc);
 | |
|   if (MCID.getNumOperands() == 3)
 | |
|     BuildMI(MBB, I, DL, MCID, DestReg)
 | |
|       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
 | |
|   else
 | |
|     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
 | |
| }
 | |
| 
 | |
| // This function returns true if a CR spill is necessary and false otherwise.
 | |
| bool
 | |
| PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
 | |
|                                   unsigned SrcReg, bool isKill,
 | |
|                                   int FrameIdx,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   SmallVectorImpl<MachineInstr*> &NewMIs,
 | |
|                                   bool &NonRI, bool &SpillsVRS) const{
 | |
|   // Note: If additional store instructions are added here,
 | |
|   // update isStoreToStackSlot.
 | |
| 
 | |
|   DebugLoc DL;
 | |
|   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
 | |
|     unsigned Op = Subtarget.hasP9Vector() ? PPC::STXVX : PPC::STXVD2X;
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
 | |
|     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf64 : PPC::STXSDX;
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
 | |
|     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFSTOREf32 : PPC::STXSSPX;
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
 | |
|     assert(Subtarget.isDarwin() &&
 | |
|            "VRSAVE only needs spill/restore on Darwin");
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     SpillsVRS = true;
 | |
|   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
 | |
|                                        .addReg(SrcReg,
 | |
|                                                getKillRegState(isKill)),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown regclass!");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator MI,
 | |
|                                   unsigned SrcReg, bool isKill, int FrameIdx,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   const TargetRegisterInfo *TRI) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   SmallVector<MachineInstr*, 4> NewMIs;
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasSpills();
 | |
| 
 | |
|   // We need to avoid a situation in which the value from a VRRC register is
 | |
|   // spilled using an Altivec instruction and reloaded into a VSRC register
 | |
|   // using a VSX instruction. The issue with this is that the VSX
 | |
|   // load/store instructions swap the doublewords in the vector and the Altivec
 | |
|   // ones don't. The register classes on the spill/reload may be different if
 | |
|   // the register is defined using an Altivec instruction and is then used by a
 | |
|   // VSX instruction.
 | |
|   RC = updatedRC(RC);
 | |
| 
 | |
|   bool NonRI = false, SpillsVRS = false;
 | |
|   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
 | |
|                           NonRI, SpillsVRS))
 | |
|     FuncInfo->setSpillsCR();
 | |
| 
 | |
|   if (SpillsVRS)
 | |
|     FuncInfo->setSpillsVRSAVE();
 | |
| 
 | |
|   if (NonRI)
 | |
|     FuncInfo->setHasNonRISpills();
 | |
| 
 | |
|   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | |
|     MBB.insert(MI, NewMIs[i]);
 | |
| 
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo::getFixedStack(MF, FrameIdx),
 | |
|       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
 | |
|       MFI.getObjectAlignment(FrameIdx));
 | |
|   NewMIs.back()->addMemOperand(MF, MMO);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
 | |
|                                         unsigned DestReg, int FrameIdx,
 | |
|                                         const TargetRegisterClass *RC,
 | |
|                                         SmallVectorImpl<MachineInstr *> &NewMIs,
 | |
|                                         bool &NonRI, bool &SpillsVRS) const {
 | |
|   // Note: If additional load instructions are added here,
 | |
|   // update isLoadFromStackSlot.
 | |
| 
 | |
|   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | |
|       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
 | |
|                                                DestReg), FrameIdx));
 | |
|   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | |
|              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
 | |
|                                        FrameIdx));
 | |
|   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
 | |
|                                                get(PPC::RESTORE_CR), DestReg),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
 | |
|                                                get(PPC::RESTORE_CRBIT), DestReg),
 | |
|                                        FrameIdx));
 | |
|     return true;
 | |
|   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
 | |
|     unsigned Op = Subtarget.hasP9Vector() ? PPC::LXVX : PPC::LXVD2X;
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Op), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
 | |
|     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf64 : PPC::LXSDX;
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc),
 | |
|                                                DestReg), FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
 | |
|     unsigned Opc = Subtarget.hasP9Vector() ? PPC::DFLOADf32 : PPC::LXSSPX;
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opc),
 | |
|                                                DestReg), FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
 | |
|     assert(Subtarget.isDarwin() &&
 | |
|            "VRSAVE only needs spill/restore on Darwin");
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
 | |
|                                                get(PPC::RESTORE_VRSAVE),
 | |
|                                                DestReg),
 | |
|                                        FrameIdx));
 | |
|     SpillsVRS = true;
 | |
|   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
 | |
|     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
 | |
|                                        FrameIdx));
 | |
|     NonRI = true;
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown regclass!");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator MI,
 | |
|                                    unsigned DestReg, int FrameIdx,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    const TargetRegisterInfo *TRI) const {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   SmallVector<MachineInstr*, 4> NewMIs;
 | |
|   DebugLoc DL;
 | |
|   if (MI != MBB.end()) DL = MI->getDebugLoc();
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasSpills();
 | |
| 
 | |
|   // We need to avoid a situation in which the value from a VRRC register is
 | |
|   // spilled using an Altivec instruction and reloaded into a VSRC register
 | |
|   // using a VSX instruction. The issue with this is that the VSX
 | |
|   // load/store instructions swap the doublewords in the vector and the Altivec
 | |
|   // ones don't. The register classes on the spill/reload may be different if
 | |
|   // the register is defined using an Altivec instruction and is then used by a
 | |
|   // VSX instruction.
 | |
|   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
 | |
|     RC = &PPC::VSRCRegClass;
 | |
| 
 | |
|   bool NonRI = false, SpillsVRS = false;
 | |
|   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
 | |
|                            NonRI, SpillsVRS))
 | |
|     FuncInfo->setSpillsCR();
 | |
| 
 | |
|   if (SpillsVRS)
 | |
|     FuncInfo->setSpillsVRSAVE();
 | |
| 
 | |
|   if (NonRI)
 | |
|     FuncInfo->setHasNonRISpills();
 | |
| 
 | |
|   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | |
|     MBB.insert(MI, NewMIs[i]);
 | |
| 
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       MachinePointerInfo::getFixedStack(MF, FrameIdx),
 | |
|       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
 | |
|       MFI.getObjectAlignment(FrameIdx));
 | |
|   NewMIs.back()->addMemOperand(MF, MMO);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::
 | |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
 | |
|   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
 | |
|     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
 | |
|   else
 | |
|     // Leave the CR# the same, but invert the condition.
 | |
|     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
 | |
|                                  unsigned Reg, MachineRegisterInfo *MRI) const {
 | |
|   // For some instructions, it is legal to fold ZERO into the RA register field.
 | |
|   // A zero immediate should always be loaded with a single li.
 | |
|   unsigned DefOpc = DefMI.getOpcode();
 | |
|   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
 | |
|     return false;
 | |
|   if (!DefMI.getOperand(1).isImm())
 | |
|     return false;
 | |
|   if (DefMI.getOperand(1).getImm() != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Note that we cannot here invert the arguments of an isel in order to fold
 | |
|   // a ZERO into what is presented as the second argument. All we have here
 | |
|   // is the condition bit, and that might come from a CR-logical bit operation.
 | |
| 
 | |
|   const MCInstrDesc &UseMCID = UseMI.getDesc();
 | |
| 
 | |
|   // Only fold into real machine instructions.
 | |
|   if (UseMCID.isPseudo())
 | |
|     return false;
 | |
| 
 | |
|   unsigned UseIdx;
 | |
|   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
 | |
|     if (UseMI.getOperand(UseIdx).isReg() &&
 | |
|         UseMI.getOperand(UseIdx).getReg() == Reg)
 | |
|       break;
 | |
| 
 | |
|   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
 | |
|   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
 | |
| 
 | |
|   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
 | |
| 
 | |
|   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
 | |
|   // register (which might also be specified as a pointer class kind).
 | |
|   if (UseInfo->isLookupPtrRegClass()) {
 | |
|     if (UseInfo->RegClass /* Kind */ != 1)
 | |
|       return false;
 | |
|   } else {
 | |
|     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
 | |
|         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Make sure this is not tied to an output register (or otherwise
 | |
|   // constrained). This is true for ST?UX registers, for example, which
 | |
|   // are tied to their output registers.
 | |
|   if (UseInfo->Constraints != 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned ZeroReg;
 | |
|   if (UseInfo->isLookupPtrRegClass()) {
 | |
|     bool isPPC64 = Subtarget.isPPC64();
 | |
|     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
 | |
|   } else {
 | |
|     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
 | |
|               PPC::ZERO8 : PPC::ZERO;
 | |
|   }
 | |
| 
 | |
|   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
 | |
|   UseMI.getOperand(UseIdx).setReg(ZeroReg);
 | |
| 
 | |
|   if (DeleteDef)
 | |
|     DefMI.eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
 | |
|        I != IE; ++I)
 | |
|     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // We should make sure that, if we're going to predicate both sides of a
 | |
| // condition (a diamond), that both sides don't define the counter register. We
 | |
| // can predicate counter-decrement-based branches, but while that predicates
 | |
| // the branching, it does not predicate the counter decrement. If we tried to
 | |
| // merge the triangle into one predicated block, we'd decrement the counter
 | |
| // twice.
 | |
| bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | |
|                      unsigned NumT, unsigned ExtraT,
 | |
|                      MachineBasicBlock &FMBB,
 | |
|                      unsigned NumF, unsigned ExtraF,
 | |
|                      BranchProbability Probability) const {
 | |
|   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
 | |
| }
 | |
| 
 | |
| 
 | |
| bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
 | |
|   // The predicated branches are identified by their type, not really by the
 | |
|   // explicit presence of a predicate. Furthermore, some of them can be
 | |
|   // predicated more than once. Because if conversion won't try to predicate
 | |
|   // any instruction which already claims to be predicated (by returning true
 | |
|   // here), always return false. In doing so, we let isPredicable() be the
 | |
|   // final word on whether not the instruction can be (further) predicated.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
 | |
|   if (!MI.isTerminator())
 | |
|     return false;
 | |
| 
 | |
|   // Conditional branch is a special case.
 | |
|   if (MI.isBranch() && !MI.isBarrier())
 | |
|     return true;
 | |
| 
 | |
|   return !isPredicated(MI);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
 | |
|                                         ArrayRef<MachineOperand> Pred) const {
 | |
|   unsigned OpC = MI.getOpcode();
 | |
|   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | |
|       bool isPPC64 = Subtarget.isPPC64();
 | |
|       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
 | |
|                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MI.setDesc(get(PPC::BCLR));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MI.setDesc(get(PPC::BCLRn));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|     } else {
 | |
|       MI.setDesc(get(PPC::BCCLR));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addImm(Pred[0].getImm())
 | |
|           .addReg(Pred[1].getReg());
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   } else if (OpC == PPC::B) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | |
|       bool isPPC64 = Subtarget.isPPC64();
 | |
|       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
 | |
|                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | |
|       MI.RemoveOperand(0);
 | |
| 
 | |
|       MI.setDesc(get(PPC::BC));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg())
 | |
|           .addMBB(MBB);
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | |
|       MI.RemoveOperand(0);
 | |
| 
 | |
|       MI.setDesc(get(PPC::BCn));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg())
 | |
|           .addMBB(MBB);
 | |
|     } else {
 | |
|       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | |
|       MI.RemoveOperand(0);
 | |
| 
 | |
|       MI.setDesc(get(PPC::BCC));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addImm(Pred[0].getImm())
 | |
|           .addReg(Pred[1].getReg())
 | |
|           .addMBB(MBB);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
 | |
|              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
 | |
|     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
 | |
|       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
 | |
| 
 | |
|     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
 | |
|     bool isPPC64 = Subtarget.isPPC64();
 | |
| 
 | |
|     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | |
|       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
 | |
|                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|       return true;
 | |
|     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | |
|       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
 | |
|                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
 | |
|       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|           .addReg(Pred[1].getReg());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
 | |
|                            : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|         .addImm(Pred[0].getImm())
 | |
|         .addReg(Pred[1].getReg());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
 | |
|                                      ArrayRef<MachineOperand> Pred2) const {
 | |
|   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
 | |
|   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
 | |
| 
 | |
|   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
 | |
|     return false;
 | |
|   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
 | |
|     return false;
 | |
| 
 | |
|   // P1 can only subsume P2 if they test the same condition register.
 | |
|   if (Pred1[1].getReg() != Pred2[1].getReg())
 | |
|     return false;
 | |
| 
 | |
|   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
 | |
|   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
 | |
| 
 | |
|   if (P1 == P2)
 | |
|     return true;
 | |
| 
 | |
|   // Does P1 subsume P2, e.g. GE subsumes GT.
 | |
|   if (P1 == PPC::PRED_LE &&
 | |
|       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
 | |
|     return true;
 | |
|   if (P1 == PPC::PRED_GE &&
 | |
|       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::DefinesPredicate(MachineInstr &MI,
 | |
|                                     std::vector<MachineOperand> &Pred) const {
 | |
|   // Note: At the present time, the contents of Pred from this function is
 | |
|   // unused by IfConversion. This implementation follows ARM by pushing the
 | |
|   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
 | |
|   // predicate, instructions defining CTR or CTR8 are also included as
 | |
|   // predicate-defining instructions.
 | |
| 
 | |
|   const TargetRegisterClass *RCs[] =
 | |
|     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
 | |
|       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
 | |
| 
 | |
|   bool Found = false;
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
 | |
|       const TargetRegisterClass *RC = RCs[c];
 | |
|       if (MO.isReg()) {
 | |
|         if (MO.isDef() && RC->contains(MO.getReg())) {
 | |
|           Pred.push_back(MO);
 | |
|           Found = true;
 | |
|         }
 | |
|       } else if (MO.isRegMask()) {
 | |
|         for (TargetRegisterClass::iterator I = RC->begin(),
 | |
|              IE = RC->end(); I != IE; ++I)
 | |
|           if (MO.clobbersPhysReg(*I)) {
 | |
|             Pred.push_back(MO);
 | |
|             Found = true;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::isPredicable(const MachineInstr &MI) const {
 | |
|   unsigned OpC = MI.getOpcode();
 | |
|   switch (OpC) {
 | |
|   default:
 | |
|     return false;
 | |
|   case PPC::B:
 | |
|   case PPC::BLR:
 | |
|   case PPC::BLR8:
 | |
|   case PPC::BCTR:
 | |
|   case PPC::BCTR8:
 | |
|   case PPC::BCTRL:
 | |
|   case PPC::BCTRL8:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
 | |
|                                   unsigned &SrcReg2, int &Mask,
 | |
|                                   int &Value) const {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
| 
 | |
|   switch (Opc) {
 | |
|   default: return false;
 | |
|   case PPC::CMPWI:
 | |
|   case PPC::CMPLWI:
 | |
|   case PPC::CMPDI:
 | |
|   case PPC::CMPLDI:
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     SrcReg2 = 0;
 | |
|     Value = MI.getOperand(2).getImm();
 | |
|     Mask = 0xFFFF;
 | |
|     return true;
 | |
|   case PPC::CMPW:
 | |
|   case PPC::CMPLW:
 | |
|   case PPC::CMPD:
 | |
|   case PPC::CMPLD:
 | |
|   case PPC::FCMPUS:
 | |
|   case PPC::FCMPUD:
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     SrcReg2 = MI.getOperand(2).getReg();
 | |
|     Value = 0;
 | |
|     Mask = 0;
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
 | |
|                                         unsigned SrcReg2, int Mask, int Value,
 | |
|                                         const MachineRegisterInfo *MRI) const {
 | |
|   if (DisableCmpOpt)
 | |
|     return false;
 | |
| 
 | |
|   int OpC = CmpInstr.getOpcode();
 | |
|   unsigned CRReg = CmpInstr.getOperand(0).getReg();
 | |
| 
 | |
|   // FP record forms set CR1 based on the execption status bits, not a
 | |
|   // comparison with zero.
 | |
|   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
 | |
|     return false;
 | |
| 
 | |
|   // The record forms set the condition register based on a signed comparison
 | |
|   // with zero (so says the ISA manual). This is not as straightforward as it
 | |
|   // seems, however, because this is always a 64-bit comparison on PPC64, even
 | |
|   // for instructions that are 32-bit in nature (like slw for example).
 | |
|   // So, on PPC32, for unsigned comparisons, we can use the record forms only
 | |
|   // for equality checks (as those don't depend on the sign). On PPC64,
 | |
|   // we are restricted to equality for unsigned 64-bit comparisons and for
 | |
|   // signed 32-bit comparisons the applicability is more restricted.
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
 | |
|   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
 | |
|   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
 | |
| 
 | |
|   // Get the unique definition of SrcReg.
 | |
|   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
 | |
|   if (!MI) return false;
 | |
|   int MIOpC = MI->getOpcode();
 | |
| 
 | |
|   bool equalityOnly = false;
 | |
|   bool noSub = false;
 | |
|   if (isPPC64) {
 | |
|     if (is32BitSignedCompare) {
 | |
|       // We can perform this optimization only if MI is sign-extending.
 | |
|       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
 | |
|           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
 | |
|           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
 | |
|           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
 | |
|           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
 | |
|         noSub = true;
 | |
|       } else
 | |
|         return false;
 | |
|     } else if (is32BitUnsignedCompare) {
 | |
|       // 32-bit rotate and mask instructions are zero extending only if MB <= ME
 | |
|       bool isZeroExtendingRotate  =
 | |
|           (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINMo ||
 | |
|            MIOpC == PPC::RLWNM || MIOpC == PPC::RLWNMo)
 | |
|           && MI->getOperand(3).getImm() <= MI->getOperand(4).getImm();
 | |
| 
 | |
|       // We can perform this optimization, equality only, if MI is
 | |
|       // zero-extending.
 | |
|       // FIXME: Other possible target instructions include ANDISo and
 | |
|       //        RLWINM aliases, such as ROTRWI, EXTLWI, SLWI and SRWI.
 | |
|       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
 | |
|           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
 | |
|           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo ||
 | |
|           MIOpC == PPC::ANDIo  ||
 | |
|           isZeroExtendingRotate) {
 | |
|         noSub = true;
 | |
|         equalityOnly = true;
 | |
|       } else
 | |
|         return false;
 | |
|     } else
 | |
|       equalityOnly = is64BitUnsignedCompare;
 | |
|   } else
 | |
|     equalityOnly = is32BitUnsignedCompare;
 | |
| 
 | |
|   if (equalityOnly) {
 | |
|     // We need to check the uses of the condition register in order to reject
 | |
|     // non-equality comparisons.
 | |
|     for (MachineRegisterInfo::use_instr_iterator
 | |
|          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
 | |
|          I != IE; ++I) {
 | |
|       MachineInstr *UseMI = &*I;
 | |
|       if (UseMI->getOpcode() == PPC::BCC) {
 | |
|         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
 | |
|         unsigned PredCond = PPC::getPredicateCondition(Pred);
 | |
|         // We ignore hint bits when checking for non-equality comparisons.
 | |
|         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
 | |
|           return false;
 | |
|       } else if (UseMI->getOpcode() == PPC::ISEL ||
 | |
|                  UseMI->getOpcode() == PPC::ISEL8) {
 | |
|         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
 | |
|         if (SubIdx != PPC::sub_eq)
 | |
|           return false;
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator I = CmpInstr;
 | |
| 
 | |
|   // Scan forward to find the first use of the compare.
 | |
|   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
 | |
|        ++I) {
 | |
|     bool FoundUse = false;
 | |
|     for (MachineRegisterInfo::use_instr_iterator
 | |
|          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
 | |
|          J != JE; ++J)
 | |
|       if (&*J == &*I) {
 | |
|         FoundUse = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (FoundUse)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
 | |
|   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
 | |
| 
 | |
|   // There are two possible candidates which can be changed to set CR[01].
 | |
|   // One is MI, the other is a SUB instruction.
 | |
|   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
 | |
|   MachineInstr *Sub = nullptr;
 | |
|   if (SrcReg2 != 0)
 | |
|     // MI is not a candidate for CMPrr.
 | |
|     MI = nullptr;
 | |
|   // FIXME: Conservatively refuse to convert an instruction which isn't in the
 | |
|   // same BB as the comparison. This is to allow the check below to avoid calls
 | |
|   // (and other explicit clobbers); instead we should really check for these
 | |
|   // more explicitly (in at least a few predecessors).
 | |
|   else if (MI->getParent() != CmpInstr.getParent())
 | |
|     return false;
 | |
|   else if (Value != 0) {
 | |
|     // The record-form instructions set CR bit based on signed comparison against 0.
 | |
|     // We try to convert a compare against 1 or -1 into a compare against 0.
 | |
|     bool Success = false;
 | |
|     if (!equalityOnly && MRI->hasOneUse(CRReg)) {
 | |
|       MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
 | |
|       if (UseMI->getOpcode() == PPC::BCC) {
 | |
|         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
 | |
|         unsigned PredCond = PPC::getPredicateCondition(Pred);
 | |
|         unsigned PredHint = PPC::getPredicateHint(Pred);
 | |
|         int16_t Immed = (int16_t)Value;
 | |
| 
 | |
|         // When modyfing the condition in the predicate, we propagate hint bits
 | |
|         // from the original predicate to the new one.
 | |
|         if (Immed == -1 && PredCond == PPC::PRED_GT) {
 | |
|           // We convert "greater than -1" into "greater than or equal to 0",
 | |
|           // since we are assuming signed comparison by !equalityOnly
 | |
|           PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
 | |
|                                   PPC::getPredicate(PPC::PRED_GE, PredHint)));
 | |
|           Success = true;
 | |
|         }
 | |
|         else if (Immed == 1 && PredCond == PPC::PRED_LT) {
 | |
|           // We convert "less than 1" into "less than or equal to 0".
 | |
|           PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
 | |
|                                   PPC::getPredicate(PPC::PRED_LE, PredHint)));
 | |
|           Success = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // PPC does not have a record-form SUBri.
 | |
|     if (!Success)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Search for Sub.
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
|   --I;
 | |
| 
 | |
|   // Get ready to iterate backward from CmpInstr.
 | |
|   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
 | |
| 
 | |
|   for (; I != E && !noSub; --I) {
 | |
|     const MachineInstr &Instr = *I;
 | |
|     unsigned IOpC = Instr.getOpcode();
 | |
| 
 | |
|     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
 | |
|                              Instr.readsRegister(PPC::CR0, TRI)))
 | |
|       // This instruction modifies or uses the record condition register after
 | |
|       // the one we want to change. While we could do this transformation, it
 | |
|       // would likely not be profitable. This transformation removes one
 | |
|       // instruction, and so even forcing RA to generate one move probably
 | |
|       // makes it unprofitable.
 | |
|       return false;
 | |
| 
 | |
|     // Check whether CmpInstr can be made redundant by the current instruction.
 | |
|     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
 | |
|          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
 | |
|         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
 | |
|         ((Instr.getOperand(1).getReg() == SrcReg &&
 | |
|           Instr.getOperand(2).getReg() == SrcReg2) ||
 | |
|         (Instr.getOperand(1).getReg() == SrcReg2 &&
 | |
|          Instr.getOperand(2).getReg() == SrcReg))) {
 | |
|       Sub = &*I;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (I == B)
 | |
|       // The 'and' is below the comparison instruction.
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Return false if no candidates exist.
 | |
|   if (!MI && !Sub)
 | |
|     return false;
 | |
| 
 | |
|   // The single candidate is called MI.
 | |
|   if (!MI) MI = Sub;
 | |
| 
 | |
|   int NewOpC = -1;
 | |
|   MIOpC = MI->getOpcode();
 | |
|   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
 | |
|     NewOpC = MIOpC;
 | |
|   else {
 | |
|     NewOpC = PPC::getRecordFormOpcode(MIOpC);
 | |
|     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
 | |
|       NewOpC = MIOpC;
 | |
|   }
 | |
| 
 | |
|   // FIXME: On the non-embedded POWER architectures, only some of the record
 | |
|   // forms are fast, and we should use only the fast ones.
 | |
| 
 | |
|   // The defining instruction has a record form (or is already a record
 | |
|   // form). It is possible, however, that we'll need to reverse the condition
 | |
|   // code of the users.
 | |
|   if (NewOpC == -1)
 | |
|     return false;
 | |
| 
 | |
|   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
 | |
|   // needs to be updated to be based on SUB.  Push the condition code
 | |
|   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
 | |
|   // condition code of these operands will be modified.
 | |
|   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
 | |
|   // comparison against 0, which may modify predicate.
 | |
|   bool ShouldSwap = false;
 | |
|   if (Sub && Value == 0) {
 | |
|     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
 | |
|       Sub->getOperand(2).getReg() == SrcReg;
 | |
| 
 | |
|     // The operands to subf are the opposite of sub, so only in the fixed-point
 | |
|     // case, invert the order.
 | |
|     ShouldSwap = !ShouldSwap;
 | |
|   }
 | |
| 
 | |
|   if (ShouldSwap)
 | |
|     for (MachineRegisterInfo::use_instr_iterator
 | |
|          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
 | |
|          I != IE; ++I) {
 | |
|       MachineInstr *UseMI = &*I;
 | |
|       if (UseMI->getOpcode() == PPC::BCC) {
 | |
|         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
 | |
|         unsigned PredCond = PPC::getPredicateCondition(Pred);
 | |
|         assert((!equalityOnly ||
 | |
|                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
 | |
|                "Invalid predicate for equality-only optimization");
 | |
|         (void)PredCond; // To suppress warning in release build.
 | |
|         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
 | |
|                                 PPC::getSwappedPredicate(Pred)));
 | |
|       } else if (UseMI->getOpcode() == PPC::ISEL ||
 | |
|                  UseMI->getOpcode() == PPC::ISEL8) {
 | |
|         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
 | |
|         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
 | |
|                "Invalid CR bit for equality-only optimization");
 | |
| 
 | |
|         if (NewSubReg == PPC::sub_lt)
 | |
|           NewSubReg = PPC::sub_gt;
 | |
|         else if (NewSubReg == PPC::sub_gt)
 | |
|           NewSubReg = PPC::sub_lt;
 | |
| 
 | |
|         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
 | |
|                                                  NewSubReg));
 | |
|       } else // We need to abort on a user we don't understand.
 | |
|         return false;
 | |
|     }
 | |
|   assert(!(Value != 0 && ShouldSwap) &&
 | |
|          "Non-zero immediate support and ShouldSwap"
 | |
|          "may conflict in updating predicate");
 | |
| 
 | |
|   // Create a new virtual register to hold the value of the CR set by the
 | |
|   // record-form instruction. If the instruction was not previously in
 | |
|   // record form, then set the kill flag on the CR.
 | |
|   CmpInstr.eraseFromParent();
 | |
| 
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
 | |
|           get(TargetOpcode::COPY), CRReg)
 | |
|     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
 | |
| 
 | |
|   // Even if CR0 register were dead before, it is alive now since the
 | |
|   // instruction we just built uses it.
 | |
|   MI->clearRegisterDeads(PPC::CR0);
 | |
| 
 | |
|   if (MIOpC != NewOpC) {
 | |
|     // We need to be careful here: we're replacing one instruction with
 | |
|     // another, and we need to make sure that we get all of the right
 | |
|     // implicit uses and defs. On the other hand, the caller may be holding
 | |
|     // an iterator to this instruction, and so we can't delete it (this is
 | |
|     // specifically the case if this is the instruction directly after the
 | |
|     // compare).
 | |
| 
 | |
|     const MCInstrDesc &NewDesc = get(NewOpC);
 | |
|     MI->setDesc(NewDesc);
 | |
| 
 | |
|     if (NewDesc.ImplicitDefs)
 | |
|       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
 | |
|            *ImpDefs; ++ImpDefs)
 | |
|         if (!MI->definesRegister(*ImpDefs))
 | |
|           MI->addOperand(*MI->getParent()->getParent(),
 | |
|                          MachineOperand::CreateReg(*ImpDefs, true, true));
 | |
|     if (NewDesc.ImplicitUses)
 | |
|       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
 | |
|            *ImpUses; ++ImpUses)
 | |
|         if (!MI->readsRegister(*ImpUses))
 | |
|           MI->addOperand(*MI->getParent()->getParent(),
 | |
|                          MachineOperand::CreateReg(*ImpUses, false, true));
 | |
|   }
 | |
|   assert(MI->definesRegister(PPC::CR0) &&
 | |
|          "Record-form instruction does not define cr0?");
 | |
| 
 | |
|   // Modify the condition code of operands in OperandsToUpdate.
 | |
|   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
 | |
|   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
 | |
|   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
 | |
|     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
 | |
| 
 | |
|   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
 | |
|     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetInstSize - Return the number of bytes of code the specified
 | |
| /// instruction may be.  This returns the maximum number of bytes.
 | |
| ///
 | |
| unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
| 
 | |
|   if (Opcode == PPC::INLINEASM) {
 | |
|     const MachineFunction *MF = MI.getParent()->getParent();
 | |
|     const char *AsmStr = MI.getOperand(0).getSymbolName();
 | |
|     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
 | |
|   } else if (Opcode == TargetOpcode::STACKMAP) {
 | |
|     StackMapOpers Opers(&MI);
 | |
|     return Opers.getNumPatchBytes();
 | |
|   } else if (Opcode == TargetOpcode::PATCHPOINT) {
 | |
|     PatchPointOpers Opers(&MI);
 | |
|     return Opers.getNumPatchBytes();
 | |
|   } else {
 | |
|     return get(Opcode).getSize();
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, unsigned>
 | |
| PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
 | |
|   const unsigned Mask = PPCII::MO_ACCESS_MASK;
 | |
|   return std::make_pair(TF & Mask, TF & ~Mask);
 | |
| }
 | |
| 
 | |
| ArrayRef<std::pair<unsigned, const char *>>
 | |
| PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
 | |
|   using namespace PPCII;
 | |
|   static const std::pair<unsigned, const char *> TargetFlags[] = {
 | |
|       {MO_LO, "ppc-lo"},
 | |
|       {MO_HA, "ppc-ha"},
 | |
|       {MO_TPREL_LO, "ppc-tprel-lo"},
 | |
|       {MO_TPREL_HA, "ppc-tprel-ha"},
 | |
|       {MO_DTPREL_LO, "ppc-dtprel-lo"},
 | |
|       {MO_TLSLD_LO, "ppc-tlsld-lo"},
 | |
|       {MO_TOC_LO, "ppc-toc-lo"},
 | |
|       {MO_TLS, "ppc-tls"}};
 | |
|   return makeArrayRef(TargetFlags);
 | |
| }
 | |
| 
 | |
| ArrayRef<std::pair<unsigned, const char *>>
 | |
| PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
 | |
|   using namespace PPCII;
 | |
|   static const std::pair<unsigned, const char *> TargetFlags[] = {
 | |
|       {MO_PLT, "ppc-plt"},
 | |
|       {MO_PIC_FLAG, "ppc-pic"},
 | |
|       {MO_NLP_FLAG, "ppc-nlp"},
 | |
|       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
 | |
|   return makeArrayRef(TargetFlags);
 | |
| }
 | |
| 
 | |
| bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
 | |
|   auto &MBB = *MI.getParent();
 | |
|   auto DL = MI.getDebugLoc();
 | |
|   switch (MI.getOpcode()) {
 | |
|   case TargetOpcode::LOAD_STACK_GUARD: {
 | |
|     assert(Subtarget.isTargetLinux() &&
 | |
|            "Only Linux target is expected to contain LOAD_STACK_GUARD");
 | |
|     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
 | |
|     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
 | |
|     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|         .addImm(Offset)
 | |
|         .addReg(Reg);
 | |
|     return true;
 | |
|   }
 | |
|   case PPC::DFLOADf32:
 | |
|   case PPC::DFLOADf64:
 | |
|   case PPC::DFSTOREf32:
 | |
|   case PPC::DFSTOREf64: {
 | |
|     assert(Subtarget.hasP9Vector() &&
 | |
|            "Invalid D-Form Pseudo-ops on non-P9 target.");
 | |
|     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isImm() &&
 | |
|            "D-form op must have register and immediate operands");
 | |
|     unsigned UpperOpcode, LowerOpcode;
 | |
|     switch (MI.getOpcode()) {
 | |
|     case PPC::DFLOADf32:
 | |
|       UpperOpcode = PPC::LXSSP;
 | |
|       LowerOpcode = PPC::LFS;
 | |
|       break;
 | |
|     case PPC::DFLOADf64:
 | |
|       UpperOpcode = PPC::LXSD;
 | |
|       LowerOpcode = PPC::LFD;
 | |
|       break;
 | |
|     case PPC::DFSTOREf32:
 | |
|       UpperOpcode = PPC::STXSSP;
 | |
|       LowerOpcode = PPC::STFS;
 | |
|       break;
 | |
|     case PPC::DFSTOREf64:
 | |
|       UpperOpcode = PPC::STXSD;
 | |
|       LowerOpcode = PPC::STFD;
 | |
|       break;
 | |
|     }
 | |
|     unsigned TargetReg = MI.getOperand(0).getReg();
 | |
|     unsigned Opcode;
 | |
|     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
 | |
|         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
 | |
|       Opcode = LowerOpcode;
 | |
|     else
 | |
|       Opcode = UpperOpcode;
 | |
|     MI.setDesc(get(Opcode));
 | |
|     return true;
 | |
|   }
 | |
|   case PPC::CFENCE8: {
 | |
|     auto Val = MI.getOperand(0).getReg();
 | |
|     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
 | |
|     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
 | |
|         .addImm(PPC::PRED_NE_MINUS)
 | |
|         .addReg(PPC::CR7)
 | |
|         .addImm(1);
 | |
|     MI.setDesc(get(PPC::ISYNC));
 | |
|     MI.RemoveOperand(0);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass *
 | |
| PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
 | |
|   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
 | |
|     return &PPC::VSRCRegClass;
 | |
|   return RC;
 | |
| }
 | |
| 
 | |
| int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
 | |
|   return PPC::getRecordFormOpcode(Opcode);
 | |
| }
 |