626 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			626 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
| //====-- X86CmovConversion.cpp - Convert Cmov to Branch -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements a pass that converts X86 cmov instructions into branch
 | |
| /// when profitable. This pass is conservative, i.e., it applies transformation
 | |
| /// if and only if it can gaurantee a gain with high confidence.
 | |
| ///
 | |
| /// Thus, the optimization applies under the following conditions:
 | |
| ///   1. Consider as a candidate only CMOV in most inner loop, assuming that
 | |
| ///       most hotspots are represented by these loops.
 | |
| ///   2. Given a group of CMOV instructions, that are using same EFLAGS def
 | |
| ///      instruction:
 | |
| ///      a. Consider them as candidates only if all have same code condition or
 | |
| ///         opposite one, to prevent generating more than one conditional jump
 | |
| ///         per EFLAGS def instruction.
 | |
| ///      b. Consider them as candidates only if all are profitable to be
 | |
| ///         converted, assuming that one bad conversion may casue a degradation.
 | |
| ///   3. Apply conversion only for loop that are found profitable and only for
 | |
| ///      CMOV candidates that were found profitable.
 | |
| ///      a. Loop is considered profitable only if conversion will reduce its
 | |
| ///         depth cost by some thrishold.
 | |
| ///      b. CMOV is considered profitable if the cost of its condition is higher
 | |
| ///         than the average cost of its true-value and false-value by 25% of
 | |
| ///         branch-misprediction-penalty, this to assure no degredassion even
 | |
| ///         with 25% branch misprediction.
 | |
| ///
 | |
| /// Note: This pass is assumed to run on SSA machine code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  External interfaces:
 | |
| //      FunctionPass *llvm::createX86CmovConverterPass();
 | |
| //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
 | |
| //
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-cmov-converter"
 | |
| 
 | |
| STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
 | |
| STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
 | |
| STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
 | |
| STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
 | |
| 
 | |
| namespace {
 | |
| // This internal switch can be used to turn off the cmov/branch optimization.
 | |
| static cl::opt<bool>
 | |
|     EnableCmovConverter("x86-cmov-converter",
 | |
|                         cl::desc("Enable the X86 cmov-to-branch optimization."),
 | |
|                         cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     GainCycleThreshold("x86-cmov-converter-threshold",
 | |
|                        cl::desc("Minimum gain per loop (in cycles) threshold."),
 | |
|                        cl::init(4), cl::Hidden);
 | |
| 
 | |
| /// Converts X86 cmov instructions into branches when profitable.
 | |
| class X86CmovConverterPass : public MachineFunctionPass {
 | |
| public:
 | |
|   X86CmovConverterPass() : MachineFunctionPass(ID) {}
 | |
|   ~X86CmovConverterPass() {}
 | |
| 
 | |
|   StringRef getPassName() const override { return "X86 cmov Conversion"; }
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
| private:
 | |
|   /// Pass identification, replacement for typeid.
 | |
|   static char ID;
 | |
| 
 | |
|   const MachineRegisterInfo *MRI;
 | |
|   const TargetInstrInfo *TII;
 | |
|   TargetSchedModel TSchedModel;
 | |
| 
 | |
|   /// List of consecutive CMOV instructions.
 | |
|   typedef SmallVector<MachineInstr *, 2> CmovGroup;
 | |
|   typedef SmallVector<CmovGroup, 2> CmovGroups;
 | |
| 
 | |
|   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
 | |
|   /// CmovInstGroups accordingly.
 | |
|   ///
 | |
|   /// \param CurrLoop Loop being processed.
 | |
|   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
 | |
|   /// \returns true iff it found any CMOV-group-candidate.
 | |
|   bool collectCmovCandidates(MachineLoop *CurrLoop, CmovGroups &CmovInstGroups);
 | |
| 
 | |
|   /// Check if it is profitable to transform each CMOV-group-candidates into
 | |
|   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
 | |
|   ///
 | |
|   /// \param CurrLoop Loop being processed.
 | |
|   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
 | |
|   /// \returns true iff any CMOV-group-candidate remain.
 | |
|   bool checkForProfitableCmovCandidates(MachineLoop *CurrLoop,
 | |
|                                         CmovGroups &CmovInstGroups);
 | |
| 
 | |
|   /// Convert the given list of consecutive CMOV instructions into a branch.
 | |
|   ///
 | |
|   /// \param Group Consecutive CMOV instructions to be converted into branch.
 | |
|   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
 | |
| };
 | |
| 
 | |
| char X86CmovConverterPass::ID = 0;
 | |
| 
 | |
| void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
| }
 | |
| 
 | |
| bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(*MF.getFunction()))
 | |
|     return false;
 | |
|   if (!EnableCmovConverter)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
 | |
|                << "**********\n");
 | |
| 
 | |
|   bool Changed = false;
 | |
|   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | |
|   const TargetSubtargetInfo &STI = MF.getSubtarget();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = STI.getInstrInfo();
 | |
|   TSchedModel.init(STI.getSchedModel(), &STI, TII);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Algorithm
 | |
|   // ---------
 | |
|   //   For each inner most loop
 | |
|   //     collectCmovCandidates() {
 | |
|   //       Find all CMOV-group-candidates.
 | |
|   //     }
 | |
|   //
 | |
|   //     checkForProfitableCmovCandidates() {
 | |
|   //       * Calculate both loop-depth and optimized-loop-depth.
 | |
|   //       * Use these depth to check for loop transformation profitability.
 | |
|   //       * Check for CMOV-group-candidate transformation profitability.
 | |
|   //     }
 | |
|   //
 | |
|   //     For each profitable CMOV-group-candidate
 | |
|   //       convertCmovInstsToBranches() {
 | |
|   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
 | |
|   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
 | |
|   //       }
 | |
|   //
 | |
|   // Note: For more details, see each function description.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     MachineLoop *CurrLoop = MLI.getLoopFor(&MBB);
 | |
| 
 | |
|     // Optimize only inner most loops.
 | |
|     if (!CurrLoop || CurrLoop->getHeader() != &MBB ||
 | |
|         !CurrLoop->getSubLoops().empty())
 | |
|       continue;
 | |
| 
 | |
|     // List of consecutive CMOV instructions to be processed.
 | |
|     CmovGroups CmovInstGroups;
 | |
| 
 | |
|     if (!collectCmovCandidates(CurrLoop, CmovInstGroups))
 | |
|       continue;
 | |
| 
 | |
|     if (!checkForProfitableCmovCandidates(CurrLoop, CmovInstGroups))
 | |
|       continue;
 | |
| 
 | |
|     Changed = true;
 | |
|     for (auto &Group : CmovInstGroups)
 | |
|       convertCmovInstsToBranches(Group);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool X86CmovConverterPass::collectCmovCandidates(MachineLoop *CurrLoop,
 | |
|                                                  CmovGroups &CmovInstGroups) {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
 | |
|   //
 | |
|   // CMOV-group:
 | |
|   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
 | |
|   //
 | |
|   // CMOV-group-candidate:
 | |
|   //   CMOV-group where all the CMOV instructions are
 | |
|   //     1. consecutive.
 | |
|   //     2. have same condition code or opposite one.
 | |
|   //     3. have only operand registers (X86::CMOVrr).
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // List of possible improvement (TODO's):
 | |
|   // --------------------------------------
 | |
|   //   TODO: Add support for X86::CMOVrm instructions.
 | |
|   //   TODO: Add support for X86::SETcc instructions.
 | |
|   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   // Current processed CMOV-Group.
 | |
|   CmovGroup Group;
 | |
|   for (auto *MBB : CurrLoop->getBlocks()) {
 | |
|     Group.clear();
 | |
|     // Condition code of first CMOV instruction current processed range and its
 | |
|     // opposite condition code.
 | |
|     X86::CondCode FirstCC, FirstOppCC;
 | |
|     // Indicator of a non CMOVrr instruction in the current processed range.
 | |
|     bool FoundNonCMOVInst = false;
 | |
|     // Indicator for current processed CMOV-group if it should be skipped.
 | |
|     bool SkipGroup = false;
 | |
| 
 | |
|     for (auto &I : *MBB) {
 | |
|       X86::CondCode CC = X86::getCondFromCMovOpc(I.getOpcode());
 | |
|       // Check if we found a X86::CMOVrr instruction.
 | |
|       if (CC != X86::COND_INVALID && !I.mayLoad()) {
 | |
|         if (Group.empty()) {
 | |
|           // We found first CMOV in the range, reset flags.
 | |
|           FirstCC = CC;
 | |
|           FirstOppCC = X86::GetOppositeBranchCondition(CC);
 | |
|           FoundNonCMOVInst = false;
 | |
|           SkipGroup = false;
 | |
|         }
 | |
|         Group.push_back(&I);
 | |
|         // Check if it is a non-consecutive CMOV instruction or it has different
 | |
|         // condition code than FirstCC or FirstOppCC.
 | |
|         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
 | |
|           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
 | |
|           SkipGroup = true;
 | |
|         continue;
 | |
|       }
 | |
|       // If Group is empty, keep looking for first CMOV in the range.
 | |
|       if (Group.empty())
 | |
|         continue;
 | |
| 
 | |
|       // We found a non X86::CMOVrr instruction.
 | |
|       FoundNonCMOVInst = true;
 | |
|       // Check if this instruction define EFLAGS, to determine end of processed
 | |
|       // range, as there would be no more instructions using current EFLAGS def.
 | |
|       if (I.definesRegister(X86::EFLAGS)) {
 | |
|         // Check if current processed CMOV-group should not be skipped and add
 | |
|         // it as a CMOV-group-candidate.
 | |
|         if (!SkipGroup)
 | |
|           CmovInstGroups.push_back(Group);
 | |
|         else
 | |
|           ++NumOfSkippedCmovGroups;
 | |
|         Group.clear();
 | |
|       }
 | |
|     }
 | |
|     // End of basic block is considered end of range, check if current processed
 | |
|     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
 | |
|     if (Group.empty())
 | |
|       continue;
 | |
|     if (!SkipGroup)
 | |
|       CmovInstGroups.push_back(Group);
 | |
|     else
 | |
|       ++NumOfSkippedCmovGroups;
 | |
|   }
 | |
| 
 | |
|   NumOfCmovGroupCandidate += CmovInstGroups.size();
 | |
|   return !CmovInstGroups.empty();
 | |
| }
 | |
| 
 | |
| /// \returns Depth of CMOV instruction as if it was converted into branch.
 | |
| /// \param TrueOpDepth depth cost of CMOV true value operand.
 | |
| /// \param FalseOpDepth depth cost of CMOV false value operand.
 | |
| static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // With no info about branch weight, we assume 50% for each value operand.
 | |
|   // Thus, depth of optimized CMOV instruction is the rounded up average of
 | |
|   // its True-Operand-Value-Depth and False-Operand-Value-Depth.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   return (TrueOpDepth + FalseOpDepth + 1) / 2;
 | |
| }
 | |
| 
 | |
| bool X86CmovConverterPass::checkForProfitableCmovCandidates(
 | |
|     MachineLoop *CurrLoop, CmovGroups &CmovInstGroups) {
 | |
|   struct DepthInfo {
 | |
|     /// Depth of original loop.
 | |
|     unsigned Depth;
 | |
|     /// Depth of optimized loop.
 | |
|     unsigned OptDepth;
 | |
|   };
 | |
|   /// Number of loop iterations to calculate depth for ?!
 | |
|   static const unsigned LoopIterations = 2;
 | |
|   DenseMap<MachineInstr *, DepthInfo> DepthMap;
 | |
|   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
 | |
|   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
 | |
|   /// For each register type maps the register to its last def instruction.
 | |
|   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
 | |
|   /// Maps register operand to its def instruction, which can be nullptr if it
 | |
|   /// is unknown (e.g., operand is defined outside the loop).
 | |
|   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
 | |
| 
 | |
|   // Set depth of unknown instruction (i.e., nullptr) to zero.
 | |
|   DepthMap[nullptr] = {0, 0};
 | |
| 
 | |
|   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
 | |
|   for (auto &Group : CmovInstGroups)
 | |
|     CmovInstructions.insert(Group.begin(), Group.end());
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Step 1: Calculate instruction depth and loop depth.
 | |
|   // Optimized-Loop:
 | |
|   //   loop with CMOV-group-candidates converted into branches.
 | |
|   //
 | |
|   // Instruction-Depth:
 | |
|   //   instruction latency + max operand depth.
 | |
|   //     * For CMOV instruction in optimized loop the depth is calculated as:
 | |
|   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
 | |
|   // TODO: Find a better way to estimate the latency of the branch instruction
 | |
|   //       rather than using the CMOV latency.
 | |
|   //
 | |
|   // Loop-Depth:
 | |
|   //   max instruction depth of all instructions in the loop.
 | |
|   // Note: instruction with max depth represents the critical-path in the loop.
 | |
|   //
 | |
|   // Loop-Depth[i]:
 | |
|   //   Loop-Depth calculated for first `i` iterations.
 | |
|   //   Note: it is enough to calculate depth for up to two iterations.
 | |
|   //
 | |
|   // Depth-Diff[i]:
 | |
|   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   for (unsigned I = 0; I < LoopIterations; ++I) {
 | |
|     DepthInfo &MaxDepth = LoopDepth[I];
 | |
|     for (auto *MBB : CurrLoop->getBlocks()) {
 | |
|       // Clear physical registers Def map.
 | |
|       RegDefMaps[PhyRegType].clear();
 | |
|       for (MachineInstr &MI : *MBB) {
 | |
|         unsigned MIDepth = 0;
 | |
|         unsigned MIDepthOpt = 0;
 | |
|         bool IsCMOV = CmovInstructions.count(&MI);
 | |
|         for (auto &MO : MI.uses()) {
 | |
|           // Checks for "isUse()" as "uses()" returns also implicit definitions.
 | |
|           if (!MO.isReg() || !MO.isUse())
 | |
|             continue;
 | |
|           unsigned Reg = MO.getReg();
 | |
|           auto &RDM = RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)];
 | |
|           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
 | |
|             OperandToDefMap[&MO] = DefMI;
 | |
|             DepthInfo Info = DepthMap.lookup(DefMI);
 | |
|             MIDepth = std::max(MIDepth, Info.Depth);
 | |
|             if (!IsCMOV)
 | |
|               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (IsCMOV)
 | |
|           MIDepthOpt = getDepthOfOptCmov(
 | |
|               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
 | |
|               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
 | |
| 
 | |
|         // Iterates over all operands to handle implicit definitions as well.
 | |
|         for (auto &MO : MI.operands()) {
 | |
|           if (!MO.isReg() || !MO.isDef())
 | |
|             continue;
 | |
|           unsigned Reg = MO.getReg();
 | |
|           RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)][Reg] = &MI;
 | |
|         }
 | |
| 
 | |
|         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
 | |
|         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
 | |
|         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
 | |
|         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
 | |
|                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Step 2: Check if Loop worth to be optimized.
 | |
|   // Worth-Optimize-Loop:
 | |
|   //   case 1: Diff[1] == Diff[0]
 | |
|   //           Critical-path is iteration independent - there is no dependency
 | |
|   //           of critical-path instructions on critical-path instructions of
 | |
|   //           previous iteration.
 | |
|   //           Thus, it is enough to check gain percent of 1st iteration -
 | |
|   //           To be conservative, the optimized loop need to have a depth of
 | |
|   //           12.5% cycles less than original loop, per iteration.
 | |
|   //
 | |
|   //   case 2: Diff[1] > Diff[0]
 | |
|   //           Critical-path is iteration dependent - there is dependency of
 | |
|   //           critical-path instructions on critical-path instructions of
 | |
|   //           previous iteration.
 | |
|   //           Thus, check the gain percent of the 2nd iteration (similar to the
 | |
|   //           previous case), but it is also required to check the gradient of
 | |
|   //           the gain - the change in Depth-Diff compared to the change in
 | |
|   //           Loop-Depth between 1st and 2nd iterations.
 | |
|   //           To be conservative, the gradient need to be at least 50%.
 | |
|   //
 | |
|   //   In addition, In order not to optimize loops with very small gain, the
 | |
|   //   gain (in cycles) after 2nd iteration should not be less than a given
 | |
|   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
 | |
|   //
 | |
|   // If loop is not worth optimizing, remove all CMOV-group-candidates.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   if (Diff[1] < GainCycleThreshold)
 | |
|     return false;
 | |
| 
 | |
|   bool WorthOptLoop = false;
 | |
|   if (Diff[1] == Diff[0])
 | |
|     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
 | |
|   else if (Diff[1] > Diff[0])
 | |
|     WorthOptLoop =
 | |
|         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
 | |
|         (Diff[1] * 8 >= LoopDepth[1].Depth);
 | |
| 
 | |
|   if (!WorthOptLoop)
 | |
|     return false;
 | |
| 
 | |
|   ++NumOfLoopCandidate;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
 | |
|   // Worth-Optimize-Group:
 | |
|   //   Iff it worths to optimize all CMOV instructions in the group.
 | |
|   //
 | |
|   // Worth-Optimize-CMOV:
 | |
|   //   Predicted branch is faster than CMOV by the difference between depth of
 | |
|   //   condition operand and depth of taken (predicted) value operand.
 | |
|   //   To be conservative, the gain of such CMOV transformation should cover at
 | |
|   //   at least 25% of branch-misprediction-penalty.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
 | |
|   CmovGroups TempGroups;
 | |
|   std::swap(TempGroups, CmovInstGroups);
 | |
|   for (auto &Group : TempGroups) {
 | |
|     bool WorthOpGroup = true;
 | |
|     for (auto *MI : Group) {
 | |
|       // Avoid CMOV instruction which value is used as a pointer to load from.
 | |
|       // This is another conservative check to avoid converting CMOV instruction
 | |
|       // used with tree-search like algorithm, where the branch is unpredicted.
 | |
|       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
 | |
|       if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) {
 | |
|         unsigned Op = UIs.begin()->getOpcode();
 | |
|         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
 | |
|           WorthOpGroup = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       unsigned CondCost =
 | |
|           DepthMap[OperandToDefMap.lookup(&MI->getOperand(3))].Depth;
 | |
|       unsigned ValCost = getDepthOfOptCmov(
 | |
|           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
 | |
|           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
 | |
|       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
 | |
|         WorthOpGroup = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (WorthOpGroup)
 | |
|       CmovInstGroups.push_back(Group);
 | |
|   }
 | |
| 
 | |
|   return !CmovInstGroups.empty();
 | |
| }
 | |
| 
 | |
| static bool checkEFLAGSLive(MachineInstr *MI) {
 | |
|   if (MI->killsRegister(X86::EFLAGS))
 | |
|     return false;
 | |
| 
 | |
|   // The EFLAGS operand of MI might be missing a kill marker.
 | |
|   // Figure out whether EFLAGS operand should LIVE after MI instruction.
 | |
|   MachineBasicBlock *BB = MI->getParent();
 | |
|   MachineBasicBlock::iterator ItrMI = MI;
 | |
| 
 | |
|   // Scan forward through BB for a use/def of EFLAGS.
 | |
|   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
 | |
|     if (I->readsRegister(X86::EFLAGS))
 | |
|       return true;
 | |
|     if (I->definesRegister(X86::EFLAGS))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We hit the end of the block, check whether EFLAGS is live into a successor.
 | |
|   for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) {
 | |
|     if ((*I)->isLiveIn(X86::EFLAGS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86CmovConverterPass::convertCmovInstsToBranches(
 | |
|     SmallVectorImpl<MachineInstr *> &Group) const {
 | |
|   assert(!Group.empty() && "No CMOV instructions to convert");
 | |
|   ++NumOfOptimizedCmovGroups;
 | |
| 
 | |
|   // To convert a CMOVcc instruction, we actually have to insert the diamond
 | |
|   // control-flow pattern.  The incoming instruction knows the destination vreg
 | |
|   // to set, the condition code register to branch on, the true/false values to
 | |
|   // select between, and a branch opcode to use.
 | |
| 
 | |
|   // Before
 | |
|   // -----
 | |
|   // MBB:
 | |
|   //   cond = cmp ...
 | |
|   //   v1 = CMOVge t1, f1, cond
 | |
|   //   v2 = CMOVlt t2, f2, cond
 | |
|   //   v3 = CMOVge v1, f3, cond
 | |
|   //
 | |
|   // After
 | |
|   // -----
 | |
|   // MBB:
 | |
|   //   cond = cmp ...
 | |
|   //   jge %SinkMBB
 | |
|   //
 | |
|   // FalseMBB:
 | |
|   //   jmp %SinkMBB
 | |
|   //
 | |
|   // SinkMBB:
 | |
|   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
 | |
|   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
 | |
|   //                                          ; true-value with false-value
 | |
|   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
 | |
|   //                                          ; previous Phi instruction result
 | |
| 
 | |
|   MachineInstr &MI = *Group.front();
 | |
|   MachineInstr *LastCMOV = Group.back();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   X86::CondCode CC = X86::CondCode(X86::getCondFromCMovOpc(MI.getOpcode()));
 | |
|   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
 | |
|   MachineBasicBlock *MBB = MI.getParent();
 | |
|   MachineFunction::iterator It = ++MBB->getIterator();
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   const BasicBlock *BB = MBB->getBasicBlock();
 | |
| 
 | |
|   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
 | |
|   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
 | |
|   F->insert(It, FalseMBB);
 | |
|   F->insert(It, SinkMBB);
 | |
| 
 | |
|   // If the EFLAGS register isn't dead in the terminator, then claim that it's
 | |
|   // live into the sink and copy blocks.
 | |
|   if (checkEFLAGSLive(LastCMOV)) {
 | |
|     FalseMBB->addLiveIn(X86::EFLAGS);
 | |
|     SinkMBB->addLiveIn(X86::EFLAGS);
 | |
|   }
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to SinkMBB.
 | |
|   SinkMBB->splice(SinkMBB->begin(), MBB,
 | |
|                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
 | |
|   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
| 
 | |
|   // Add the false and sink blocks as its successors.
 | |
|   MBB->addSuccessor(FalseMBB);
 | |
|   MBB->addSuccessor(SinkMBB);
 | |
| 
 | |
|   // Create the conditional branch instruction.
 | |
|   BuildMI(MBB, DL, TII->get(X86::GetCondBranchFromCond(CC))).addMBB(SinkMBB);
 | |
| 
 | |
|   // Add the sink block to the false block successors.
 | |
|   FalseMBB->addSuccessor(SinkMBB);
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
|   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
 | |
|   MachineBasicBlock::iterator MIItEnd =
 | |
|       std::next(MachineBasicBlock::iterator(LastCMOV));
 | |
|   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
 | |
|   // As we are creating the PHIs, we have to be careful if there is more than
 | |
|   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
 | |
|   // PHIs have to reference the individual true/false inputs from earlier PHIs.
 | |
|   // That also means that PHI construction must work forward from earlier to
 | |
|   // later, and that the code must maintain a mapping from earlier PHI's
 | |
|   // destination registers, and the registers that went into the PHI.
 | |
|   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
 | |
|     unsigned DestReg = MIIt->getOperand(0).getReg();
 | |
|     unsigned Op1Reg = MIIt->getOperand(1).getReg();
 | |
|     unsigned Op2Reg = MIIt->getOperand(2).getReg();
 | |
| 
 | |
|     // If this CMOV we are processing is the opposite condition from the jump we
 | |
|     // generated, then we have to swap the operands for the PHI that is going to
 | |
|     // be generated.
 | |
|     if (X86::getCondFromCMovOpc(MIIt->getOpcode()) == OppCC)
 | |
|       std::swap(Op1Reg, Op2Reg);
 | |
| 
 | |
|     auto Op1Itr = RegRewriteTable.find(Op1Reg);
 | |
|     if (Op1Itr != RegRewriteTable.end())
 | |
|       Op1Reg = Op1Itr->second.first;
 | |
| 
 | |
|     auto Op2Itr = RegRewriteTable.find(Op2Reg);
 | |
|     if (Op2Itr != RegRewriteTable.end())
 | |
|       Op2Reg = Op2Itr->second.second;
 | |
| 
 | |
|     //  SinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
 | |
|     //  ...
 | |
|     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
 | |
|               .addReg(Op1Reg)
 | |
|               .addMBB(FalseMBB)
 | |
|               .addReg(Op2Reg)
 | |
|               .addMBB(MBB);
 | |
|     (void)MIB;
 | |
|     DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
 | |
|     DEBUG(dbgs() << "\tTo: "; MIB->dump());
 | |
| 
 | |
|     // Add this PHI to the rewrite table.
 | |
|     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
 | |
|   }
 | |
| 
 | |
|   // Now remove the CMOV(s).
 | |
|   MBB->erase(MIItBegin, MIItEnd);
 | |
| }
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| FunctionPass *llvm::createX86CmovConverterPass() {
 | |
|   return new X86CmovConverterPass();
 | |
| }
 |