3986 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3986 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the X86-specific support for the FastISel class. Much
 | |
| // of the target-specific code is generated by tablegen in the file
 | |
| // X86GenFastISel.inc, which is #included here.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86CallingConv.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class X86FastISel final : public FastISel {
 | |
|   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | |
|   /// make the right decision when generating code for different targets.
 | |
|   const X86Subtarget *Subtarget;
 | |
| 
 | |
|   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
 | |
|   /// floating point ops.
 | |
|   /// When SSE is available, use it for f32 operations.
 | |
|   /// When SSE2 is available, use it for f64 operations.
 | |
|   bool X86ScalarSSEf64;
 | |
|   bool X86ScalarSSEf32;
 | |
| 
 | |
| public:
 | |
|   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
 | |
|                        const TargetLibraryInfo *libInfo)
 | |
|       : FastISel(funcInfo, libInfo) {
 | |
|     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
 | |
|     X86ScalarSSEf64 = Subtarget->hasSSE2();
 | |
|     X86ScalarSSEf32 = Subtarget->hasSSE1();
 | |
|   }
 | |
| 
 | |
|   bool fastSelectInstruction(const Instruction *I) override;
 | |
| 
 | |
|   /// \brief The specified machine instr operand is a vreg, and that
 | |
|   /// vreg is being provided by the specified load instruction.  If possible,
 | |
|   /// try to fold the load as an operand to the instruction, returning true if
 | |
|   /// possible.
 | |
|   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                            const LoadInst *LI) override;
 | |
| 
 | |
|   bool fastLowerArguments() override;
 | |
|   bool fastLowerCall(CallLoweringInfo &CLI) override;
 | |
|   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
 | |
| 
 | |
| #include "X86GenFastISel.inc"
 | |
| 
 | |
| private:
 | |
|   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
 | |
|                           const DebugLoc &DL);
 | |
| 
 | |
|   bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
 | |
|                        unsigned &ResultReg, unsigned Alignment = 1);
 | |
| 
 | |
|   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
 | |
|                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
 | |
|   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
 | |
|                         X86AddressMode &AM,
 | |
|                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
 | |
| 
 | |
|   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
 | |
|                          unsigned &ResultReg);
 | |
| 
 | |
|   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
 | |
|   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
 | |
| 
 | |
|   bool X86SelectLoad(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectStore(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectRet(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectCmp(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectZExt(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectBranch(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectShift(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectDivRem(const Instruction *I);
 | |
| 
 | |
|   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
 | |
| 
 | |
|   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
 | |
| 
 | |
|   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
 | |
| 
 | |
|   bool X86SelectSelect(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectTrunc(const Instruction *I);
 | |
| 
 | |
|   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
 | |
|                                const TargetRegisterClass *RC);
 | |
| 
 | |
|   bool X86SelectFPExt(const Instruction *I);
 | |
|   bool X86SelectFPTrunc(const Instruction *I);
 | |
|   bool X86SelectSIToFP(const Instruction *I);
 | |
| 
 | |
|   const X86InstrInfo *getInstrInfo() const {
 | |
|     return Subtarget->getInstrInfo();
 | |
|   }
 | |
|   const X86TargetMachine *getTargetMachine() const {
 | |
|     return static_cast<const X86TargetMachine *>(&TM);
 | |
|   }
 | |
| 
 | |
|   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
 | |
| 
 | |
|   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
 | |
|   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
 | |
|   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
 | |
|   unsigned fastMaterializeConstant(const Constant *C) override;
 | |
| 
 | |
|   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
 | |
| 
 | |
|   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
 | |
| 
 | |
|   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
 | |
|   /// computed in an SSE register, not on the X87 floating point stack.
 | |
|   bool isScalarFPTypeInSSEReg(EVT VT) const {
 | |
|     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
 | |
|       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
 | |
|   }
 | |
| 
 | |
|   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
 | |
| 
 | |
|   bool IsMemcpySmall(uint64_t Len);
 | |
| 
 | |
|   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
 | |
|                           X86AddressMode SrcAM, uint64_t Len);
 | |
| 
 | |
|   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
 | |
|                             const Value *Cond);
 | |
| 
 | |
|   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
 | |
|                                             X86AddressMode &AM);
 | |
| 
 | |
|   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
 | |
|                              const TargetRegisterClass *RC, unsigned Op0,
 | |
|                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
 | |
|                              unsigned Op2, bool Op2IsKill, unsigned Op3,
 | |
|                              bool Op3IsKill);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| static std::pair<unsigned, bool>
 | |
| getX86SSEConditionCode(CmpInst::Predicate Predicate) {
 | |
|   unsigned CC;
 | |
|   bool NeedSwap = false;
 | |
| 
 | |
|   // SSE Condition code mapping:
 | |
|   //  0 - EQ
 | |
|   //  1 - LT
 | |
|   //  2 - LE
 | |
|   //  3 - UNORD
 | |
|   //  4 - NEQ
 | |
|   //  5 - NLT
 | |
|   //  6 - NLE
 | |
|   //  7 - ORD
 | |
|   switch (Predicate) {
 | |
|   default: llvm_unreachable("Unexpected predicate");
 | |
|   case CmpInst::FCMP_OEQ: CC = 0;          break;
 | |
|   case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
 | |
|   case CmpInst::FCMP_OLT: CC = 1;          break;
 | |
|   case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
 | |
|   case CmpInst::FCMP_OLE: CC = 2;          break;
 | |
|   case CmpInst::FCMP_UNO: CC = 3;          break;
 | |
|   case CmpInst::FCMP_UNE: CC = 4;          break;
 | |
|   case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
 | |
|   case CmpInst::FCMP_UGE: CC = 5;          break;
 | |
|   case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
 | |
|   case CmpInst::FCMP_UGT: CC = 6;          break;
 | |
|   case CmpInst::FCMP_ORD: CC = 7;          break;
 | |
|   case CmpInst::FCMP_UEQ:
 | |
|   case CmpInst::FCMP_ONE: CC = 8;          break;
 | |
|   }
 | |
| 
 | |
|   return std::make_pair(CC, NeedSwap);
 | |
| }
 | |
| 
 | |
| /// \brief Adds a complex addressing mode to the given machine instr builder.
 | |
| /// Note, this will constrain the index register.  If its not possible to
 | |
| /// constrain the given index register, then a new one will be created.  The
 | |
| /// IndexReg field of the addressing mode will be updated to match in this case.
 | |
| const MachineInstrBuilder &
 | |
| X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
 | |
|                             X86AddressMode &AM) {
 | |
|   // First constrain the index register.  It needs to be a GR64_NOSP.
 | |
|   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
 | |
|                                          MIB->getNumOperands() +
 | |
|                                          X86::AddrIndexReg);
 | |
|   return ::addFullAddress(MIB, AM);
 | |
| }
 | |
| 
 | |
| /// \brief Check if it is possible to fold the condition from the XALU intrinsic
 | |
| /// into the user. The condition code will only be updated on success.
 | |
| bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
 | |
|                                        const Value *Cond) {
 | |
|   if (!isa<ExtractValueInst>(Cond))
 | |
|     return false;
 | |
| 
 | |
|   const auto *EV = cast<ExtractValueInst>(Cond);
 | |
|   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
 | |
|     return false;
 | |
| 
 | |
|   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
 | |
|   MVT RetVT;
 | |
|   const Function *Callee = II->getCalledFunction();
 | |
|   Type *RetTy =
 | |
|     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
 | |
|   if (!isTypeLegal(RetTy, RetVT))
 | |
|     return false;
 | |
| 
 | |
|   if (RetVT != MVT::i32 && RetVT != MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   X86::CondCode TmpCC;
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: return false;
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
 | |
|   }
 | |
| 
 | |
|   // Check if both instructions are in the same basic block.
 | |
|   if (II->getParent() != I->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure nothing is in the way
 | |
|   BasicBlock::const_iterator Start(I);
 | |
|   BasicBlock::const_iterator End(II);
 | |
|   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
 | |
|     // We only expect extractvalue instructions between the intrinsic and the
 | |
|     // instruction to be selected.
 | |
|     if (!isa<ExtractValueInst>(Itr))
 | |
|       return false;
 | |
| 
 | |
|     // Check that the extractvalue operand comes from the intrinsic.
 | |
|     const auto *EVI = cast<ExtractValueInst>(Itr);
 | |
|     if (EVI->getAggregateOperand() != II)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   CC = TmpCC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
 | |
|   EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
 | |
|   if (evt == MVT::Other || !evt.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   VT = evt.getSimpleVT();
 | |
|   // For now, require SSE/SSE2 for performing floating-point operations,
 | |
|   // since x87 requires additional work.
 | |
|   if (VT == MVT::f64 && !X86ScalarSSEf64)
 | |
|     return false;
 | |
|   if (VT == MVT::f32 && !X86ScalarSSEf32)
 | |
|     return false;
 | |
|   // Similarly, no f80 support yet.
 | |
|   if (VT == MVT::f80)
 | |
|     return false;
 | |
|   // We only handle legal types. For example, on x86-32 the instruction
 | |
|   // selector contains all of the 64-bit instructions from x86-64,
 | |
|   // under the assumption that i64 won't be used if the target doesn't
 | |
|   // support it.
 | |
|   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
 | |
| }
 | |
| 
 | |
| #include "X86GenCallingConv.inc"
 | |
| 
 | |
| /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
 | |
| /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
 | |
| /// Return true and the result register by reference if it is possible.
 | |
| bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
 | |
|                                   MachineMemOperand *MMO, unsigned &ResultReg,
 | |
|                                   unsigned Alignment) {
 | |
|   bool HasSSE41 = Subtarget->hasSSE41();
 | |
|   bool HasAVX = Subtarget->hasAVX();
 | |
|   bool HasAVX2 = Subtarget->hasAVX2();
 | |
|   bool HasAVX512 = Subtarget->hasAVX512();
 | |
|   bool HasVLX = Subtarget->hasVLX();
 | |
|   bool IsNonTemporal = MMO && MMO->isNonTemporal();
 | |
| 
 | |
|   // Get opcode and regclass of the output for the given load instruction.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|     Opc = X86::MOV8rm;
 | |
|     RC  = &X86::GR8RegClass;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     Opc = X86::MOV16rm;
 | |
|     RC  = &X86::GR16RegClass;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     Opc = X86::MOV32rm;
 | |
|     RC  = &X86::GR32RegClass;
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     // Must be in x86-64 mode.
 | |
|     Opc = X86::MOV64rm;
 | |
|     RC  = &X86::GR64RegClass;
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
 | |
|       RC  = &X86::FR32RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp32m;
 | |
|       RC  = &X86::RFP32RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (X86ScalarSSEf64) {
 | |
|       Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
 | |
|       RC  = &X86::FR64RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp64m;
 | |
|       RC  = &X86::RFP64RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return false;
 | |
|   case MVT::v4f32:
 | |
|     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
 | |
|       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
 | |
|             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
 | |
|     else if (Alignment >= 16)
 | |
|       Opc = HasVLX ? X86::VMOVAPSZ128rm :
 | |
|             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
 | |
|     else
 | |
|       Opc = HasVLX ? X86::VMOVUPSZ128rm :
 | |
|             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
 | |
|     RC  = &X86::VR128RegClass;
 | |
|     break;
 | |
|   case MVT::v2f64:
 | |
|     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
 | |
|       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
 | |
|             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
 | |
|     else if (Alignment >= 16)
 | |
|       Opc = HasVLX ? X86::VMOVAPDZ128rm :
 | |
|             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
 | |
|     else
 | |
|       Opc = HasVLX ? X86::VMOVUPDZ128rm :
 | |
|             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
 | |
|     RC  = &X86::VR128RegClass;
 | |
|     break;
 | |
|   case MVT::v4i32:
 | |
|   case MVT::v2i64:
 | |
|   case MVT::v8i16:
 | |
|   case MVT::v16i8:
 | |
|     if (IsNonTemporal && Alignment >= 16)
 | |
|       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
 | |
|             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
 | |
|     else if (Alignment >= 16)
 | |
|       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
 | |
|             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
 | |
|     else
 | |
|       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
 | |
|             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
 | |
|     RC  = &X86::VR128RegClass;
 | |
|     break;
 | |
|   case MVT::v8f32:
 | |
|     assert(HasAVX);
 | |
|     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
 | |
|       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
 | |
|     else if (IsNonTemporal && Alignment >= 16)
 | |
|       return false; // Force split for X86::VMOVNTDQArm
 | |
|     else if (Alignment >= 32)
 | |
|       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
 | |
|     else
 | |
|       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
 | |
|     RC  = &X86::VR256RegClass;
 | |
|     break;
 | |
|   case MVT::v4f64:
 | |
|     assert(HasAVX);
 | |
|     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
 | |
|       Opc = X86::VMOVNTDQAYrm;
 | |
|     else if (IsNonTemporal && Alignment >= 16)
 | |
|       return false; // Force split for X86::VMOVNTDQArm
 | |
|     else if (Alignment >= 32)
 | |
|       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
 | |
|     else
 | |
|       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
 | |
|     RC  = &X86::VR256RegClass;
 | |
|     break;
 | |
|   case MVT::v8i32:
 | |
|   case MVT::v4i64:
 | |
|   case MVT::v16i16:
 | |
|   case MVT::v32i8:
 | |
|     assert(HasAVX);
 | |
|     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
 | |
|       Opc = X86::VMOVNTDQAYrm;
 | |
|     else if (IsNonTemporal && Alignment >= 16)
 | |
|       return false; // Force split for X86::VMOVNTDQArm
 | |
|     else if (Alignment >= 32)
 | |
|       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
 | |
|     else
 | |
|       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
 | |
|     RC  = &X86::VR256RegClass;
 | |
|     break;
 | |
|   case MVT::v16f32:
 | |
|     assert(HasAVX512);
 | |
|     if (IsNonTemporal && Alignment >= 64)
 | |
|       Opc = X86::VMOVNTDQAZrm;
 | |
|     else
 | |
|       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
 | |
|     RC  = &X86::VR512RegClass;
 | |
|     break;
 | |
|   case MVT::v8f64:
 | |
|     assert(HasAVX512);
 | |
|     if (IsNonTemporal && Alignment >= 64)
 | |
|       Opc = X86::VMOVNTDQAZrm;
 | |
|     else
 | |
|       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
 | |
|     RC  = &X86::VR512RegClass;
 | |
|     break;
 | |
|   case MVT::v8i64:
 | |
|   case MVT::v16i32:
 | |
|   case MVT::v32i16:
 | |
|   case MVT::v64i8:
 | |
|     assert(HasAVX512);
 | |
|     // Note: There are a lot more choices based on type with AVX-512, but
 | |
|     // there's really no advantage when the load isn't masked.
 | |
|     if (IsNonTemporal && Alignment >= 64)
 | |
|       Opc = X86::VMOVNTDQAZrm;
 | |
|     else
 | |
|       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
 | |
|     RC  = &X86::VR512RegClass;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   ResultReg = createResultReg(RC);
 | |
|   MachineInstrBuilder MIB =
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
 | |
|   addFullAddress(MIB, AM);
 | |
|   if (MMO)
 | |
|     MIB->addMemOperand(*FuncInfo.MF, MMO);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// X86FastEmitStore - Emit a machine instruction to store a value Val of
 | |
| /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
 | |
| /// and a displacement offset, or a GlobalAddress,
 | |
| /// i.e. V. Return true if it is possible.
 | |
| bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
 | |
|                                    X86AddressMode &AM,
 | |
|                                    MachineMemOperand *MMO, bool Aligned) {
 | |
|   bool HasSSE1 = Subtarget->hasSSE1();
 | |
|   bool HasSSE2 = Subtarget->hasSSE2();
 | |
|   bool HasSSE4A = Subtarget->hasSSE4A();
 | |
|   bool HasAVX = Subtarget->hasAVX();
 | |
|   bool HasAVX512 = Subtarget->hasAVX512();
 | |
|   bool HasVLX = Subtarget->hasVLX();
 | |
|   bool IsNonTemporal = MMO && MMO->isNonTemporal();
 | |
| 
 | |
|   // Get opcode and regclass of the output for the given store instruction.
 | |
|   unsigned Opc = 0;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f80: // No f80 support yet.
 | |
|   default: return false;
 | |
|   case MVT::i1: {
 | |
|     // Mask out all but lowest bit.
 | |
|     unsigned AndResult = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(X86::AND8ri), AndResult)
 | |
|       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
 | |
|     ValReg = AndResult;
 | |
|     LLVM_FALLTHROUGH; // handle i1 as i8.
 | |
|   }
 | |
|   case MVT::i8:  Opc = X86::MOV8mr;  break;
 | |
|   case MVT::i16: Opc = X86::MOV16mr; break;
 | |
|   case MVT::i32:
 | |
|     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     // Must be in x86-64 mode.
 | |
|     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
 | |
|     break;
 | |
|   case MVT::f32:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       if (IsNonTemporal && HasSSE4A)
 | |
|         Opc = X86::MOVNTSS;
 | |
|       else
 | |
|         Opc = HasAVX512 ? X86::VMOVSSZmr :
 | |
|               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
 | |
|     } else
 | |
|       Opc = X86::ST_Fp32m;
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       if (IsNonTemporal && HasSSE4A)
 | |
|         Opc = X86::MOVNTSD;
 | |
|       else
 | |
|         Opc = HasAVX512 ? X86::VMOVSDZmr :
 | |
|               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
 | |
|     } else
 | |
|       Opc = X86::ST_Fp64m;
 | |
|     break;
 | |
|   case MVT::x86mmx:
 | |
|     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
 | |
|     break;
 | |
|   case MVT::v4f32:
 | |
|     if (Aligned) {
 | |
|       if (IsNonTemporal)
 | |
|         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
 | |
|               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
 | |
|       else
 | |
|         Opc = HasVLX ? X86::VMOVAPSZ128mr :
 | |
|               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
 | |
|     } else
 | |
|       Opc = HasVLX ? X86::VMOVUPSZ128mr :
 | |
|             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
 | |
|     break;
 | |
|   case MVT::v2f64:
 | |
|     if (Aligned) {
 | |
|       if (IsNonTemporal)
 | |
|         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
 | |
|               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
 | |
|       else
 | |
|         Opc = HasVLX ? X86::VMOVAPDZ128mr :
 | |
|               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
 | |
|     } else
 | |
|       Opc = HasVLX ? X86::VMOVUPDZ128mr :
 | |
|             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
 | |
|     break;
 | |
|   case MVT::v4i32:
 | |
|   case MVT::v2i64:
 | |
|   case MVT::v8i16:
 | |
|   case MVT::v16i8:
 | |
|     if (Aligned) {
 | |
|       if (IsNonTemporal)
 | |
|         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
 | |
|               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
 | |
|       else
 | |
|         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
 | |
|               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
 | |
|     } else
 | |
|       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
 | |
|             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
 | |
|     break;
 | |
|   case MVT::v8f32:
 | |
|     assert(HasAVX);
 | |
|     if (Aligned) {
 | |
|       if (IsNonTemporal)
 | |
|         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
 | |
|       else
 | |
|         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
 | |
|     } else
 | |
|       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
 | |
|     break;
 | |
|   case MVT::v4f64:
 | |
|     assert(HasAVX);
 | |
|     if (Aligned) {
 | |
|       if (IsNonTemporal)
 | |
|         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
 | |
|       else
 | |
|         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
 | |
|     } else
 | |
|       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
 | |
|     break;
 | |
|   case MVT::v8i32:
 | |
|   case MVT::v4i64:
 | |
|   case MVT::v16i16:
 | |
|   case MVT::v32i8:
 | |
|     assert(HasAVX);
 | |
|     if (Aligned) {
 | |
|       if (IsNonTemporal)
 | |
|         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
 | |
|       else
 | |
|         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
 | |
|     } else
 | |
|       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
 | |
|     break;
 | |
|   case MVT::v16f32:
 | |
|     assert(HasAVX512);
 | |
|     if (Aligned)
 | |
|       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
 | |
|     else
 | |
|       Opc = X86::VMOVUPSZmr;
 | |
|     break;
 | |
|   case MVT::v8f64:
 | |
|     assert(HasAVX512);
 | |
|     if (Aligned) {
 | |
|       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
 | |
|     } else
 | |
|       Opc = X86::VMOVUPDZmr;
 | |
|     break;
 | |
|   case MVT::v8i64:
 | |
|   case MVT::v16i32:
 | |
|   case MVT::v32i16:
 | |
|   case MVT::v64i8:
 | |
|     assert(HasAVX512);
 | |
|     // Note: There are a lot more choices based on type with AVX-512, but
 | |
|     // there's really no advantage when the store isn't masked.
 | |
|     if (Aligned)
 | |
|       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
 | |
|     else
 | |
|       Opc = X86::VMOVDQU64Zmr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const MCInstrDesc &Desc = TII.get(Opc);
 | |
|   // Some of the instructions in the previous switch use FR128 instead
 | |
|   // of FR32 for ValReg. Make sure the register we feed the instruction
 | |
|   // matches its register class constraints.
 | |
|   // Note: This is fine to do a copy from FR32 to FR128, this is the
 | |
|   // same registers behind the scene and actually why it did not trigger
 | |
|   // any bugs before.
 | |
|   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
 | |
|   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
 | |
|   if (MMO)
 | |
|     MIB->addMemOperand(*FuncInfo.MF, MMO);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
 | |
|                                    X86AddressMode &AM,
 | |
|                                    MachineMemOperand *MMO, bool Aligned) {
 | |
|   // Handle 'null' like i32/i64 0.
 | |
|   if (isa<ConstantPointerNull>(Val))
 | |
|     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
 | |
| 
 | |
|   // If this is a store of a simple constant, fold the constant into the store.
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|     unsigned Opc = 0;
 | |
|     bool Signed = true;
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: break;
 | |
|     case MVT::i1:
 | |
|       Signed = false;
 | |
|       LLVM_FALLTHROUGH; // Handle as i8.
 | |
|     case MVT::i8:  Opc = X86::MOV8mi;  break;
 | |
|     case MVT::i16: Opc = X86::MOV16mi; break;
 | |
|     case MVT::i32: Opc = X86::MOV32mi; break;
 | |
|     case MVT::i64:
 | |
|       // Must be a 32-bit sign extended value.
 | |
|       if (isInt<32>(CI->getSExtValue()))
 | |
|         Opc = X86::MOV64mi32;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (Opc) {
 | |
|       MachineInstrBuilder MIB =
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
 | |
|       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
 | |
|                                             : CI->getZExtValue());
 | |
|       if (MMO)
 | |
|         MIB->addMemOperand(*FuncInfo.MF, MMO);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned ValReg = getRegForValue(Val);
 | |
|   if (ValReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   bool ValKill = hasTrivialKill(Val);
 | |
|   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
 | |
| }
 | |
| 
 | |
| /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
 | |
| /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
 | |
| /// ISD::SIGN_EXTEND).
 | |
| bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
 | |
|                                     unsigned Src, EVT SrcVT,
 | |
|                                     unsigned &ResultReg) {
 | |
|   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
 | |
|                            Src, /*TODO: Kill=*/false);
 | |
|   if (RR == 0)
 | |
|     return false;
 | |
| 
 | |
|   ResultReg = RR;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
 | |
|   // Handle constant address.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // Can't handle alternate code models yet.
 | |
|     if (TM.getCodeModel() != CodeModel::Small)
 | |
|       return false;
 | |
| 
 | |
|     // Can't handle TLS yet.
 | |
|     if (GV->isThreadLocal())
 | |
|       return false;
 | |
| 
 | |
|     // RIP-relative addresses can't have additional register operands, so if
 | |
|     // we've already folded stuff into the addressing mode, just force the
 | |
|     // global value into its own register, which we can use as the basereg.
 | |
|     if (!Subtarget->isPICStyleRIPRel() ||
 | |
|         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
 | |
|       // Okay, we've committed to selecting this global. Set up the address.
 | |
|       AM.GV = GV;
 | |
| 
 | |
|       // Allow the subtarget to classify the global.
 | |
|       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
 | |
| 
 | |
|       // If this reference is relative to the pic base, set it now.
 | |
|       if (isGlobalRelativeToPICBase(GVFlags)) {
 | |
|         // FIXME: How do we know Base.Reg is free??
 | |
|         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|       }
 | |
| 
 | |
|       // Unless the ABI requires an extra load, return a direct reference to
 | |
|       // the global.
 | |
|       if (!isGlobalStubReference(GVFlags)) {
 | |
|         if (Subtarget->isPICStyleRIPRel()) {
 | |
|           // Use rip-relative addressing if we can.  Above we verified that the
 | |
|           // base and index registers are unused.
 | |
|           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | |
|           AM.Base.Reg = X86::RIP;
 | |
|         }
 | |
|         AM.GVOpFlags = GVFlags;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Ok, we need to do a load from a stub.  If we've already loaded from
 | |
|       // this stub, reuse the loaded pointer, otherwise emit the load now.
 | |
|       DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
 | |
|       unsigned LoadReg;
 | |
|       if (I != LocalValueMap.end() && I->second != 0) {
 | |
|         LoadReg = I->second;
 | |
|       } else {
 | |
|         // Issue load from stub.
 | |
|         unsigned Opc = 0;
 | |
|         const TargetRegisterClass *RC = nullptr;
 | |
|         X86AddressMode StubAM;
 | |
|         StubAM.Base.Reg = AM.Base.Reg;
 | |
|         StubAM.GV = GV;
 | |
|         StubAM.GVOpFlags = GVFlags;
 | |
| 
 | |
|         // Prepare for inserting code in the local-value area.
 | |
|         SavePoint SaveInsertPt = enterLocalValueArea();
 | |
| 
 | |
|         if (TLI.getPointerTy(DL) == MVT::i64) {
 | |
|           Opc = X86::MOV64rm;
 | |
|           RC  = &X86::GR64RegClass;
 | |
| 
 | |
|           if (Subtarget->isPICStyleRIPRel())
 | |
|             StubAM.Base.Reg = X86::RIP;
 | |
|         } else {
 | |
|           Opc = X86::MOV32rm;
 | |
|           RC  = &X86::GR32RegClass;
 | |
|         }
 | |
| 
 | |
|         LoadReg = createResultReg(RC);
 | |
|         MachineInstrBuilder LoadMI =
 | |
|           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
 | |
|         addFullAddress(LoadMI, StubAM);
 | |
| 
 | |
|         // Ok, back to normal mode.
 | |
|         leaveLocalValueArea(SaveInsertPt);
 | |
| 
 | |
|         // Prevent loading GV stub multiple times in same MBB.
 | |
|         LocalValueMap[V] = LoadReg;
 | |
|       }
 | |
| 
 | |
|       // Now construct the final address. Note that the Disp, Scale,
 | |
|       // and Index values may already be set here.
 | |
|       AM.Base.Reg = LoadReg;
 | |
|       AM.GV = nullptr;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all else fails, try to materialize the value in a register.
 | |
|   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | |
|     if (AM.Base.Reg == 0) {
 | |
|       AM.Base.Reg = getRegForValue(V);
 | |
|       return AM.Base.Reg != 0;
 | |
|     }
 | |
|     if (AM.IndexReg == 0) {
 | |
|       assert(AM.Scale == 1 && "Scale with no index!");
 | |
|       AM.IndexReg = getRegForValue(V);
 | |
|       return AM.IndexReg != 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// X86SelectAddress - Attempt to fill in an address from the given value.
 | |
| ///
 | |
| bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
 | |
|   SmallVector<const Value *, 32> GEPs;
 | |
| redo_gep:
 | |
|   const User *U = nullptr;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // Don't walk into other basic blocks; it's possible we haven't
 | |
|     // visited them yet, so the instructions may not yet be assigned
 | |
|     // virtual registers.
 | |
|     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
 | |
|         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
 | |
|       Opcode = I->getOpcode();
 | |
|       U = I;
 | |
|     }
 | |
|   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
 | |
|     if (Ty->getAddressSpace() > 255)
 | |
|       // Fast instruction selection doesn't support the special
 | |
|       // address spaces.
 | |
|       return false;
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::BitCast:
 | |
|     // Look past bitcasts.
 | |
|     return X86SelectAddress(U->getOperand(0), AM);
 | |
| 
 | |
|   case Instruction::IntToPtr:
 | |
|     // Look past no-op inttoptrs.
 | |
|     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
 | |
|         TLI.getPointerTy(DL))
 | |
|       return X86SelectAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PtrToInt:
 | |
|     // Look past no-op ptrtoints.
 | |
|     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
 | |
|       return X86SelectAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Alloca: {
 | |
|     // Do static allocas.
 | |
|     const AllocaInst *A = cast<AllocaInst>(V);
 | |
|     DenseMap<const AllocaInst *, int>::iterator SI =
 | |
|       FuncInfo.StaticAllocaMap.find(A);
 | |
|     if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|       AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = SI->second;
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Add: {
 | |
|     // Adds of constants are common and easy enough.
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
 | |
|       // They have to fit in the 32-bit signed displacement field though.
 | |
|       if (isInt<32>(Disp)) {
 | |
|         AM.Disp = (uint32_t)Disp;
 | |
|         return X86SelectAddress(U->getOperand(0), AM);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::GetElementPtr: {
 | |
|     X86AddressMode SavedAM = AM;
 | |
| 
 | |
|     // Pattern-match simple GEPs.
 | |
|     uint64_t Disp = (int32_t)AM.Disp;
 | |
|     unsigned IndexReg = AM.IndexReg;
 | |
|     unsigned Scale = AM.Scale;
 | |
|     gep_type_iterator GTI = gep_type_begin(U);
 | |
|     // Iterate through the indices, folding what we can. Constants can be
 | |
|     // folded, and one dynamic index can be handled, if the scale is supported.
 | |
|     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
 | |
|          i != e; ++i, ++GTI) {
 | |
|       const Value *Op = *i;
 | |
|       if (StructType *STy = GTI.getStructTypeOrNull()) {
 | |
|         const StructLayout *SL = DL.getStructLayout(STy);
 | |
|         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // A array/variable index is always of the form i*S where S is the
 | |
|       // constant scale size.  See if we can push the scale into immediates.
 | |
|       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|       for (;;) {
 | |
|         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|           // Constant-offset addressing.
 | |
|           Disp += CI->getSExtValue() * S;
 | |
|           break;
 | |
|         }
 | |
|         if (canFoldAddIntoGEP(U, Op)) {
 | |
|           // A compatible add with a constant operand. Fold the constant.
 | |
|           ConstantInt *CI =
 | |
|             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
 | |
|           Disp += CI->getSExtValue() * S;
 | |
|           // Iterate on the other operand.
 | |
|           Op = cast<AddOperator>(Op)->getOperand(0);
 | |
|           continue;
 | |
|         }
 | |
|         if (IndexReg == 0 &&
 | |
|             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
 | |
|             (S == 1 || S == 2 || S == 4 || S == 8)) {
 | |
|           // Scaled-index addressing.
 | |
|           Scale = S;
 | |
|           IndexReg = getRegForGEPIndex(Op).first;
 | |
|           if (IndexReg == 0)
 | |
|             return false;
 | |
|           break;
 | |
|         }
 | |
|         // Unsupported.
 | |
|         goto unsupported_gep;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for displacement overflow.
 | |
|     if (!isInt<32>(Disp))
 | |
|       break;
 | |
| 
 | |
|     AM.IndexReg = IndexReg;
 | |
|     AM.Scale = Scale;
 | |
|     AM.Disp = (uint32_t)Disp;
 | |
|     GEPs.push_back(V);
 | |
| 
 | |
|     if (const GetElementPtrInst *GEP =
 | |
|           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
 | |
|       // Ok, the GEP indices were covered by constant-offset and scaled-index
 | |
|       // addressing. Update the address state and move on to examining the base.
 | |
|       V = GEP;
 | |
|       goto redo_gep;
 | |
|     } else if (X86SelectAddress(U->getOperand(0), AM)) {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If we couldn't merge the gep value into this addr mode, revert back to
 | |
|     // our address and just match the value instead of completely failing.
 | |
|     AM = SavedAM;
 | |
| 
 | |
|     for (const Value *I : reverse(GEPs))
 | |
|       if (handleConstantAddresses(I, AM))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
|   unsupported_gep:
 | |
|     // Ok, the GEP indices weren't all covered.
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return handleConstantAddresses(V, AM);
 | |
| }
 | |
| 
 | |
| /// X86SelectCallAddress - Attempt to fill in an address from the given value.
 | |
| ///
 | |
| bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
 | |
|   const User *U = nullptr;
 | |
|   unsigned Opcode = Instruction::UserOp1;
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   // Record if the value is defined in the same basic block.
 | |
|   //
 | |
|   // This information is crucial to know whether or not folding an
 | |
|   // operand is valid.
 | |
|   // Indeed, FastISel generates or reuses a virtual register for all
 | |
|   // operands of all instructions it selects. Obviously, the definition and
 | |
|   // its uses must use the same virtual register otherwise the produced
 | |
|   // code is incorrect.
 | |
|   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
 | |
|   // registers for values that are alive across basic blocks. This ensures
 | |
|   // that the values are consistently set between across basic block, even
 | |
|   // if different instruction selection mechanisms are used (e.g., a mix of
 | |
|   // SDISel and FastISel).
 | |
|   // For values local to a basic block, the instruction selection process
 | |
|   // generates these virtual registers with whatever method is appropriate
 | |
|   // for its needs. In particular, FastISel and SDISel do not share the way
 | |
|   // local virtual registers are set.
 | |
|   // Therefore, this is impossible (or at least unsafe) to share values
 | |
|   // between basic blocks unless they use the same instruction selection
 | |
|   // method, which is not guarantee for X86.
 | |
|   // Moreover, things like hasOneUse could not be used accurately, if we
 | |
|   // allow to reference values across basic blocks whereas they are not
 | |
|   // alive across basic blocks initially.
 | |
|   bool InMBB = true;
 | |
|   if (I) {
 | |
|     Opcode = I->getOpcode();
 | |
|     U = I;
 | |
|     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
 | |
|   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | |
|     Opcode = C->getOpcode();
 | |
|     U = C;
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::BitCast:
 | |
|     // Look past bitcasts if its operand is in the same BB.
 | |
|     if (InMBB)
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::IntToPtr:
 | |
|     // Look past no-op inttoptrs if its operand is in the same BB.
 | |
|     if (InMBB &&
 | |
|         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
 | |
|             TLI.getPointerTy(DL))
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PtrToInt:
 | |
|     // Look past no-op ptrtoints if its operand is in the same BB.
 | |
|     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
 | |
|       return X86SelectCallAddress(U->getOperand(0), AM);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Handle constant address.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // Can't handle alternate code models yet.
 | |
|     if (TM.getCodeModel() != CodeModel::Small)
 | |
|       return false;
 | |
| 
 | |
|     // RIP-relative addresses can't have additional register operands.
 | |
|     if (Subtarget->isPICStyleRIPRel() &&
 | |
|         (AM.Base.Reg != 0 || AM.IndexReg != 0))
 | |
|       return false;
 | |
| 
 | |
|     // Can't handle TLS.
 | |
|     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
 | |
|       if (GVar->isThreadLocal())
 | |
|         return false;
 | |
| 
 | |
|     // Okay, we've committed to selecting this global. Set up the basic address.
 | |
|     AM.GV = GV;
 | |
| 
 | |
|     // Return a direct reference to the global. Fastisel can handle calls to
 | |
|     // functions that require loads, such as dllimport and nonlazybind
 | |
|     // functions.
 | |
|     if (Subtarget->isPICStyleRIPRel()) {
 | |
|       // Use rip-relative addressing if we can.  Above we verified that the
 | |
|       // base and index registers are unused.
 | |
|       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | |
|       AM.Base.Reg = X86::RIP;
 | |
|     } else {
 | |
|       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If all else fails, try to materialize the value in a register.
 | |
|   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | |
|     if (AM.Base.Reg == 0) {
 | |
|       AM.Base.Reg = getRegForValue(V);
 | |
|       return AM.Base.Reg != 0;
 | |
|     }
 | |
|     if (AM.IndexReg == 0) {
 | |
|       assert(AM.Scale == 1 && "Scale with no index!");
 | |
|       AM.IndexReg = getRegForValue(V);
 | |
|       return AM.IndexReg != 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// X86SelectStore - Select and emit code to implement store instructions.
 | |
| bool X86FastISel::X86SelectStore(const Instruction *I) {
 | |
|   // Atomic stores need special handling.
 | |
|   const StoreInst *S = cast<StoreInst>(I);
 | |
| 
 | |
|   if (S->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   const Value *PtrV = I->getOperand(1);
 | |
|   if (TLI.supportSwiftError()) {
 | |
|     // Swifterror values can come from either a function parameter with
 | |
|     // swifterror attribute or an alloca with swifterror attribute.
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
 | |
|       if (Arg->hasSwiftErrorAttr())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
 | |
|       if (Alloca->isSwiftError())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const Value *Val = S->getValueOperand();
 | |
|   const Value *Ptr = S->getPointerOperand();
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Alignment = S->getAlignment();
 | |
|   unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
 | |
|   if (Alignment == 0) // Ensure that codegen never sees alignment 0
 | |
|     Alignment = ABIAlignment;
 | |
|   bool Aligned = Alignment >= ABIAlignment;
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(Ptr, AM))
 | |
|     return false;
 | |
| 
 | |
|   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
 | |
| }
 | |
| 
 | |
| /// X86SelectRet - Select and emit code to implement ret instructions.
 | |
| bool X86FastISel::X86SelectRet(const Instruction *I) {
 | |
|   const ReturnInst *Ret = cast<ReturnInst>(I);
 | |
|   const Function &F = *I->getParent()->getParent();
 | |
|   const X86MachineFunctionInfo *X86MFInfo =
 | |
|       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
 | |
| 
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   if (TLI.supportSwiftError() &&
 | |
|       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
 | |
|     return false;
 | |
| 
 | |
|   if (TLI.supportSplitCSR(FuncInfo.MF))
 | |
|     return false;
 | |
| 
 | |
|   CallingConv::ID CC = F.getCallingConv();
 | |
|   if (CC != CallingConv::C &&
 | |
|       CC != CallingConv::Fast &&
 | |
|       CC != CallingConv::X86_FastCall &&
 | |
|       CC != CallingConv::X86_StdCall &&
 | |
|       CC != CallingConv::X86_ThisCall &&
 | |
|       CC != CallingConv::X86_64_SysV &&
 | |
|       CC != CallingConv::Win64)
 | |
|     return false;
 | |
| 
 | |
|   // Don't handle popping bytes if they don't fit the ret's immediate.
 | |
|   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
 | |
|     return false;
 | |
| 
 | |
|   // fastcc with -tailcallopt is intended to provide a guaranteed
 | |
|   // tail call optimization. Fastisel doesn't know how to do that.
 | |
|   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   // Let SDISel handle vararg functions.
 | |
|   if (F.isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   // Build a list of return value registers.
 | |
|   SmallVector<unsigned, 4> RetRegs;
 | |
| 
 | |
|   if (Ret->getNumOperands() > 0) {
 | |
|     SmallVector<ISD::OutputArg, 4> Outs;
 | |
|     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
 | |
| 
 | |
|     // Analyze operands of the call, assigning locations to each operand.
 | |
|     SmallVector<CCValAssign, 16> ValLocs;
 | |
|     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
 | |
|     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
 | |
| 
 | |
|     const Value *RV = Ret->getOperand(0);
 | |
|     unsigned Reg = getRegForValue(RV);
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
| 
 | |
|     // Only handle a single return value for now.
 | |
|     if (ValLocs.size() != 1)
 | |
|       return false;
 | |
| 
 | |
|     CCValAssign &VA = ValLocs[0];
 | |
| 
 | |
|     // Don't bother handling odd stuff for now.
 | |
|     if (VA.getLocInfo() != CCValAssign::Full)
 | |
|       return false;
 | |
|     // Only handle register returns for now.
 | |
|     if (!VA.isRegLoc())
 | |
|       return false;
 | |
| 
 | |
|     // The calling-convention tables for x87 returns don't tell
 | |
|     // the whole story.
 | |
|     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
 | |
|       return false;
 | |
| 
 | |
|     unsigned SrcReg = Reg + VA.getValNo();
 | |
|     EVT SrcVT = TLI.getValueType(DL, RV->getType());
 | |
|     EVT DstVT = VA.getValVT();
 | |
|     // Special handling for extended integers.
 | |
|     if (SrcVT != DstVT) {
 | |
|       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
 | |
|         return false;
 | |
| 
 | |
|       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
 | |
|         return false;
 | |
| 
 | |
|       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
 | |
| 
 | |
|       if (SrcVT == MVT::i1) {
 | |
|         if (Outs[0].Flags.isSExt())
 | |
|           return false;
 | |
|         // In case SrcReg is a K register, COPY to a GPR
 | |
|         if (MRI.getRegClass(SrcReg) == &X86::VK1RegClass) {
 | |
|           unsigned KSrcReg = SrcReg;
 | |
|           SrcReg = createResultReg(&X86::GR32RegClass);
 | |
|           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                   TII.get(TargetOpcode::COPY), SrcReg)
 | |
|               .addReg(KSrcReg);
 | |
|           SrcReg = fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
 | |
|                                               X86::sub_8bit);
 | |
|         }
 | |
|         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
 | |
|         SrcVT = MVT::i8;
 | |
|       }
 | |
|       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
 | |
|                                              ISD::SIGN_EXTEND;
 | |
|       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
 | |
|                           SrcReg, /*TODO: Kill=*/false);
 | |
|     }
 | |
| 
 | |
|     // Make the copy.
 | |
|     unsigned DstReg = VA.getLocReg();
 | |
|     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
 | |
|     // Avoid a cross-class copy. This is very unlikely.
 | |
|     if (!SrcRC->contains(DstReg))
 | |
|       return false;
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
 | |
| 
 | |
|     // Add register to return instruction.
 | |
|     RetRegs.push_back(VA.getLocReg());
 | |
|   }
 | |
| 
 | |
|   // Swift calling convention does not require we copy the sret argument
 | |
|   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
 | |
| 
 | |
|   // All x86 ABIs require that for returning structs by value we copy
 | |
|   // the sret argument into %rax/%eax (depending on ABI) for the return.
 | |
|   // We saved the argument into a virtual register in the entry block,
 | |
|   // so now we copy the value out and into %rax/%eax.
 | |
|   if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
 | |
|     unsigned Reg = X86MFInfo->getSRetReturnReg();
 | |
|     assert(Reg &&
 | |
|            "SRetReturnReg should have been set in LowerFormalArguments()!");
 | |
|     unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
 | |
|     RetRegs.push_back(RetReg);
 | |
|   }
 | |
| 
 | |
|   // Now emit the RET.
 | |
|   MachineInstrBuilder MIB;
 | |
|   if (X86MFInfo->getBytesToPopOnReturn()) {
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                   TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
 | |
|               .addImm(X86MFInfo->getBytesToPopOnReturn());
 | |
|   } else {
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                   TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
 | |
|   }
 | |
|   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
 | |
|     MIB.addReg(RetRegs[i], RegState::Implicit);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// X86SelectLoad - Select and emit code to implement load instructions.
 | |
| ///
 | |
| bool X86FastISel::X86SelectLoad(const Instruction *I) {
 | |
|   const LoadInst *LI = cast<LoadInst>(I);
 | |
| 
 | |
|   // Atomic loads need special handling.
 | |
|   if (LI->isAtomic())
 | |
|     return false;
 | |
| 
 | |
|   const Value *SV = I->getOperand(0);
 | |
|   if (TLI.supportSwiftError()) {
 | |
|     // Swifterror values can come from either a function parameter with
 | |
|     // swifterror attribute or an alloca with swifterror attribute.
 | |
|     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
 | |
|       if (Arg->hasSwiftErrorAttr())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
 | |
|       if (Alloca->isSwiftError())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
 | |
|     return false;
 | |
| 
 | |
|   const Value *Ptr = LI->getPointerOperand();
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(Ptr, AM))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Alignment = LI->getAlignment();
 | |
|   unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
 | |
|   if (Alignment == 0) // Ensure that codegen never sees alignment 0
 | |
|     Alignment = ABIAlignment;
 | |
| 
 | |
|   unsigned ResultReg = 0;
 | |
|   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
 | |
|                        Alignment))
 | |
|     return false;
 | |
| 
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
 | |
|   bool HasAVX = Subtarget->hasAVX();
 | |
|   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
 | |
|   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:       return 0;
 | |
|   case MVT::i8:  return X86::CMP8rr;
 | |
|   case MVT::i16: return X86::CMP16rr;
 | |
|   case MVT::i32: return X86::CMP32rr;
 | |
|   case MVT::i64: return X86::CMP64rr;
 | |
|   case MVT::f32:
 | |
|     return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
 | |
|   case MVT::f64:
 | |
|     return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If we have a comparison with RHS as the RHS  of the comparison, return an
 | |
| /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
 | |
| static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
 | |
|   int64_t Val = RHSC->getSExtValue();
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   // Otherwise, we can't fold the immediate into this comparison.
 | |
|   default:
 | |
|     return 0;
 | |
|   case MVT::i8:
 | |
|     return X86::CMP8ri;
 | |
|   case MVT::i16:
 | |
|     if (isInt<8>(Val))
 | |
|       return X86::CMP16ri8;
 | |
|     return X86::CMP16ri;
 | |
|   case MVT::i32:
 | |
|     if (isInt<8>(Val))
 | |
|       return X86::CMP32ri8;
 | |
|     return X86::CMP32ri;
 | |
|   case MVT::i64:
 | |
|     if (isInt<8>(Val))
 | |
|       return X86::CMP64ri8;
 | |
|     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
 | |
|     // field.
 | |
|     if (isInt<32>(Val))
 | |
|       return X86::CMP64ri32;
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
 | |
|                                      const DebugLoc &CurDbgLoc) {
 | |
|   unsigned Op0Reg = getRegForValue(Op0);
 | |
|   if (Op0Reg == 0) return false;
 | |
| 
 | |
|   // Handle 'null' like i32/i64 0.
 | |
|   if (isa<ConstantPointerNull>(Op1))
 | |
|     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
 | |
| 
 | |
|   // We have two options: compare with register or immediate.  If the RHS of
 | |
|   // the compare is an immediate that we can fold into this compare, use
 | |
|   // CMPri, otherwise use CMPrr.
 | |
|   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
 | |
|         .addReg(Op0Reg)
 | |
|         .addImm(Op1C->getSExtValue());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
 | |
|   if (CompareOpc == 0) return false;
 | |
| 
 | |
|   unsigned Op1Reg = getRegForValue(Op1);
 | |
|   if (Op1Reg == 0) return false;
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
 | |
|     .addReg(Op0Reg)
 | |
|     .addReg(Op1Reg);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectCmp(const Instruction *I) {
 | |
|   const CmpInst *CI = cast<CmpInst>(I);
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   if (I->getType()->isIntegerTy(1) && Subtarget->hasAVX512())
 | |
|     return false;
 | |
| 
 | |
|   // Try to optimize or fold the cmp.
 | |
|   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
 | |
|   unsigned ResultReg = 0;
 | |
|   switch (Predicate) {
 | |
|   default: break;
 | |
|   case CmpInst::FCMP_FALSE: {
 | |
|     ResultReg = createResultReg(&X86::GR32RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
 | |
|             ResultReg);
 | |
|     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
 | |
|                                            X86::sub_8bit);
 | |
|     if (!ResultReg)
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
|   case CmpInst::FCMP_TRUE: {
 | |
|     ResultReg = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
 | |
|             ResultReg).addImm(1);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (ResultReg) {
 | |
|     updateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const Value *LHS = CI->getOperand(0);
 | |
|   const Value *RHS = CI->getOperand(1);
 | |
| 
 | |
|   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
 | |
|   // We don't have to materialize a zero constant for this case and can just use
 | |
|   // %x again on the RHS.
 | |
|   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
 | |
|     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
 | |
|     if (RHSC && RHSC->isNullValue())
 | |
|       RHS = LHS;
 | |
|   }
 | |
| 
 | |
|   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
 | |
|   static const uint16_t SETFOpcTable[2][3] = {
 | |
|     { X86::SETEr,  X86::SETNPr, X86::AND8rr },
 | |
|     { X86::SETNEr, X86::SETPr,  X86::OR8rr  }
 | |
|   };
 | |
|   const uint16_t *SETFOpc = nullptr;
 | |
|   switch (Predicate) {
 | |
|   default: break;
 | |
|   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
 | |
|   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
 | |
|   }
 | |
| 
 | |
|   ResultReg = createResultReg(&X86::GR8RegClass);
 | |
|   if (SETFOpc) {
 | |
|     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
 | |
|       return false;
 | |
| 
 | |
|     unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
 | |
|     unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
 | |
|             FlagReg1);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
 | |
|             FlagReg2);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
 | |
|             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
 | |
|     updateValueMap(I, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   X86::CondCode CC;
 | |
|   bool SwapArgs;
 | |
|   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
 | |
|   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
 | |
|   unsigned Opc = X86::getSETFromCond(CC);
 | |
| 
 | |
|   if (SwapArgs)
 | |
|     std::swap(LHS, RHS);
 | |
| 
 | |
|   // Emit a compare of LHS/RHS.
 | |
|   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
 | |
|     return false;
 | |
| 
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectZExt(const Instruction *I) {
 | |
|   EVT DstVT = TLI.getValueType(DL, I->getType());
 | |
|   if (!TLI.isTypeLegal(DstVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned ResultReg = getRegForValue(I->getOperand(0));
 | |
|   if (ResultReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Handle zero-extension from i1 to i8, which is common.
 | |
|   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
 | |
|   if (SrcVT == MVT::i1) {
 | |
|     // In case ResultReg is a K register, COPY to a GPR
 | |
|     if (MRI.getRegClass(ResultReg) == &X86::VK1RegClass) {
 | |
|       unsigned KResultReg = ResultReg;
 | |
|       ResultReg = createResultReg(&X86::GR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), ResultReg)
 | |
|           .addReg(KResultReg);
 | |
|       ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
 | |
|                                              X86::sub_8bit);
 | |
|     }
 | |
| 
 | |
|     // Set the high bits to zero.
 | |
|     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
 | |
|     SrcVT = MVT::i8;
 | |
| 
 | |
|     if (ResultReg == 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (DstVT == MVT::i64) {
 | |
|     // Handle extension to 64-bits via sub-register shenanigans.
 | |
|     unsigned MovInst;
 | |
| 
 | |
|     switch (SrcVT.SimpleTy) {
 | |
|     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
 | |
|     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
 | |
|     case MVT::i32: MovInst = X86::MOV32rr;     break;
 | |
|     default: llvm_unreachable("Unexpected zext to i64 source type");
 | |
|     }
 | |
| 
 | |
|     unsigned Result32 = createResultReg(&X86::GR32RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
 | |
|       .addReg(ResultReg);
 | |
| 
 | |
|     ResultReg = createResultReg(&X86::GR64RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
 | |
|             ResultReg)
 | |
|       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
 | |
|   } else if (DstVT != MVT::i8) {
 | |
|     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
 | |
|                            ResultReg, /*Kill=*/true);
 | |
|     if (ResultReg == 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectBranch(const Instruction *I) {
 | |
|   // Unconditional branches are selected by tablegen-generated code.
 | |
|   // Handle a conditional branch.
 | |
|   const BranchInst *BI = cast<BranchInst>(I);
 | |
|   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
 | |
|   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
 | |
| 
 | |
|   // Fold the common case of a conditional branch with a comparison
 | |
|   // in the same block (values defined on other blocks may not have
 | |
|   // initialized registers).
 | |
|   X86::CondCode CC;
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
 | |
|     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
 | |
|       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
 | |
| 
 | |
|       // Try to optimize or fold the cmp.
 | |
|       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
 | |
|       switch (Predicate) {
 | |
|       default: break;
 | |
|       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
 | |
|       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
 | |
|       }
 | |
| 
 | |
|       const Value *CmpLHS = CI->getOperand(0);
 | |
|       const Value *CmpRHS = CI->getOperand(1);
 | |
| 
 | |
|       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
 | |
|       // 0.0.
 | |
|       // We don't have to materialize a zero constant for this case and can just
 | |
|       // use %x again on the RHS.
 | |
|       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
 | |
|         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
 | |
|         if (CmpRHSC && CmpRHSC->isNullValue())
 | |
|           CmpRHS = CmpLHS;
 | |
|       }
 | |
| 
 | |
|       // Try to take advantage of fallthrough opportunities.
 | |
|       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
 | |
|         std::swap(TrueMBB, FalseMBB);
 | |
|         Predicate = CmpInst::getInversePredicate(Predicate);
 | |
|       }
 | |
| 
 | |
|       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
 | |
|       // code check. Instead two branch instructions are required to check all
 | |
|       // the flags. First we change the predicate to a supported condition code,
 | |
|       // which will be the first branch. Later one we will emit the second
 | |
|       // branch.
 | |
|       bool NeedExtraBranch = false;
 | |
|       switch (Predicate) {
 | |
|       default: break;
 | |
|       case CmpInst::FCMP_OEQ:
 | |
|         std::swap(TrueMBB, FalseMBB);
 | |
|         LLVM_FALLTHROUGH;
 | |
|       case CmpInst::FCMP_UNE:
 | |
|         NeedExtraBranch = true;
 | |
|         Predicate = CmpInst::FCMP_ONE;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       bool SwapArgs;
 | |
|       unsigned BranchOpc;
 | |
|       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
 | |
|       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
 | |
| 
 | |
|       BranchOpc = X86::GetCondBranchFromCond(CC);
 | |
|       if (SwapArgs)
 | |
|         std::swap(CmpLHS, CmpRHS);
 | |
| 
 | |
|       // Emit a compare of the LHS and RHS, setting the flags.
 | |
|       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
 | |
|         return false;
 | |
| 
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
 | |
|         .addMBB(TrueMBB);
 | |
| 
 | |
|       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
 | |
|       // to UNE above).
 | |
|       if (NeedExtraBranch) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
 | |
|           .addMBB(TrueMBB);
 | |
|       }
 | |
| 
 | |
|       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
 | |
|     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
 | |
|     // typically happen for _Bool and C++ bools.
 | |
|     MVT SourceVT;
 | |
|     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
 | |
|         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
 | |
|       unsigned TestOpc = 0;
 | |
|       switch (SourceVT.SimpleTy) {
 | |
|       default: break;
 | |
|       case MVT::i8:  TestOpc = X86::TEST8ri; break;
 | |
|       case MVT::i16: TestOpc = X86::TEST16ri; break;
 | |
|       case MVT::i32: TestOpc = X86::TEST32ri; break;
 | |
|       case MVT::i64: TestOpc = X86::TEST64ri32; break;
 | |
|       }
 | |
|       if (TestOpc) {
 | |
|         unsigned OpReg = getRegForValue(TI->getOperand(0));
 | |
|         if (OpReg == 0) return false;
 | |
| 
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
 | |
|           .addReg(OpReg).addImm(1);
 | |
| 
 | |
|         unsigned JmpOpc = X86::JNE_1;
 | |
|         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
 | |
|           std::swap(TrueMBB, FalseMBB);
 | |
|           JmpOpc = X86::JE_1;
 | |
|         }
 | |
| 
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
 | |
|           .addMBB(TrueMBB);
 | |
| 
 | |
|         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
 | |
|     // Fake request the condition, otherwise the intrinsic might be completely
 | |
|     // optimized away.
 | |
|     unsigned TmpReg = getRegForValue(BI->getCondition());
 | |
|     if (TmpReg == 0)
 | |
|       return false;
 | |
| 
 | |
|     unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
 | |
| 
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
 | |
|       .addMBB(TrueMBB);
 | |
|     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise do a clumsy setcc and re-test it.
 | |
|   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
 | |
|   // in an explicit cast, so make sure to handle that correctly.
 | |
|   unsigned OpReg = getRegForValue(BI->getCondition());
 | |
|   if (OpReg == 0) return false;
 | |
| 
 | |
|   // In case OpReg is a K register, COPY to a GPR
 | |
|   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
 | |
|     unsigned KOpReg = OpReg;
 | |
|     OpReg = createResultReg(&X86::GR32RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), OpReg)
 | |
|         .addReg(KOpReg);
 | |
|     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
 | |
|                                        X86::sub_8bit);
 | |
|   }
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
 | |
|       .addReg(OpReg)
 | |
|       .addImm(1);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
 | |
|     .addMBB(TrueMBB);
 | |
|   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectShift(const Instruction *I) {
 | |
|   unsigned CReg = 0, OpReg = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   if (I->getType()->isIntegerTy(8)) {
 | |
|     CReg = X86::CL;
 | |
|     RC = &X86::GR8RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(16)) {
 | |
|     CReg = X86::CX;
 | |
|     RC = &X86::GR16RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(32)) {
 | |
|     CReg = X86::ECX;
 | |
|     RC = &X86::GR32RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else if (I->getType()->isIntegerTy(64)) {
 | |
|     CReg = X86::RCX;
 | |
|     RC = &X86::GR64RegClass;
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
 | |
|     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
 | |
|     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
 | |
|     default: return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | |
|   if (Op0Reg == 0) return false;
 | |
| 
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0) return false;
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
 | |
|           CReg).addReg(Op1Reg);
 | |
| 
 | |
|   // The shift instruction uses X86::CL. If we defined a super-register
 | |
|   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
 | |
|   if (CReg != X86::CL)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::KILL), X86::CL)
 | |
|       .addReg(CReg, RegState::Kill);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
 | |
|     .addReg(Op0Reg);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectDivRem(const Instruction *I) {
 | |
|   const static unsigned NumTypes = 4; // i8, i16, i32, i64
 | |
|   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
 | |
|   const static bool S = true;  // IsSigned
 | |
|   const static bool U = false; // !IsSigned
 | |
|   const static unsigned Copy = TargetOpcode::COPY;
 | |
|   // For the X86 DIV/IDIV instruction, in most cases the dividend
 | |
|   // (numerator) must be in a specific register pair highreg:lowreg,
 | |
|   // producing the quotient in lowreg and the remainder in highreg.
 | |
|   // For most data types, to set up the instruction, the dividend is
 | |
|   // copied into lowreg, and lowreg is sign-extended or zero-extended
 | |
|   // into highreg.  The exception is i8, where the dividend is defined
 | |
|   // as a single register rather than a register pair, and we
 | |
|   // therefore directly sign-extend or zero-extend the dividend into
 | |
|   // lowreg, instead of copying, and ignore the highreg.
 | |
|   const static struct DivRemEntry {
 | |
|     // The following portion depends only on the data type.
 | |
|     const TargetRegisterClass *RC;
 | |
|     unsigned LowInReg;  // low part of the register pair
 | |
|     unsigned HighInReg; // high part of the register pair
 | |
|     // The following portion depends on both the data type and the operation.
 | |
|     struct DivRemResult {
 | |
|     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
 | |
|     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
 | |
|                               // highreg, or copying a zero into highreg.
 | |
|     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
 | |
|                               // zero/sign-extending into lowreg for i8.
 | |
|     unsigned DivRemResultReg; // Register containing the desired result.
 | |
|     bool IsOpSigned;          // Whether to use signed or unsigned form.
 | |
|     } ResultTable[NumOps];
 | |
|   } OpTable[NumTypes] = {
 | |
|     { &X86::GR8RegClass,  X86::AX,  0, {
 | |
|         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
 | |
|         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
 | |
|         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
 | |
|         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
 | |
|       }
 | |
|     }, // i8
 | |
|     { &X86::GR16RegClass, X86::AX,  X86::DX, {
 | |
|         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
 | |
|         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
 | |
|         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
 | |
|         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
 | |
|       }
 | |
|     }, // i16
 | |
|     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
 | |
|         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
 | |
|         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
 | |
|         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
 | |
|         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
 | |
|       }
 | |
|     }, // i32
 | |
|     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
 | |
|         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
 | |
|         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
 | |
|         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
 | |
|         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
 | |
|       }
 | |
|     }, // i64
 | |
|   };
 | |
| 
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(I->getType(), VT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned TypeIndex, OpIndex;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i8:  TypeIndex = 0; break;
 | |
|   case MVT::i16: TypeIndex = 1; break;
 | |
|   case MVT::i32: TypeIndex = 2; break;
 | |
|   case MVT::i64: TypeIndex = 3;
 | |
|     if (!Subtarget->is64Bit())
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("Unexpected div/rem opcode");
 | |
|   case Instruction::SDiv: OpIndex = 0; break;
 | |
|   case Instruction::SRem: OpIndex = 1; break;
 | |
|   case Instruction::UDiv: OpIndex = 2; break;
 | |
|   case Instruction::URem: OpIndex = 3; break;
 | |
|   }
 | |
| 
 | |
|   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
 | |
|   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
 | |
|   unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | |
|   if (Op0Reg == 0)
 | |
|     return false;
 | |
|   unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | |
|   if (Op1Reg == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Move op0 into low-order input register.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
 | |
|   // Zero-extend or sign-extend into high-order input register.
 | |
|   if (OpEntry.OpSignExtend) {
 | |
|     if (OpEntry.IsOpSigned)
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(OpEntry.OpSignExtend));
 | |
|     else {
 | |
|       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(X86::MOV32r0), Zero32);
 | |
| 
 | |
|       // Copy the zero into the appropriate sub/super/identical physical
 | |
|       // register. Unfortunately the operations needed are not uniform enough
 | |
|       // to fit neatly into the table above.
 | |
|       if (VT == MVT::i16) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(Copy), TypeEntry.HighInReg)
 | |
|           .addReg(Zero32, 0, X86::sub_16bit);
 | |
|       } else if (VT == MVT::i32) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(Copy), TypeEntry.HighInReg)
 | |
|             .addReg(Zero32);
 | |
|       } else if (VT == MVT::i64) {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
 | |
|             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Generate the DIV/IDIV instruction.
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
 | |
|   // For i8 remainder, we can't reference AH directly, as we'll end
 | |
|   // up with bogus copies like %R9B = COPY %AH. Reference AX
 | |
|   // instead to prevent AH references in a REX instruction.
 | |
|   //
 | |
|   // The current assumption of the fast register allocator is that isel
 | |
|   // won't generate explicit references to the GPR8_NOREX registers. If
 | |
|   // the allocator and/or the backend get enhanced to be more robust in
 | |
|   // that regard, this can be, and should be, removed.
 | |
|   unsigned ResultReg = 0;
 | |
|   if ((I->getOpcode() == Instruction::SRem ||
 | |
|        I->getOpcode() == Instruction::URem) &&
 | |
|       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
 | |
|     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
 | |
|     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
 | |
| 
 | |
|     // Shift AX right by 8 bits instead of using AH.
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
 | |
|             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
 | |
| 
 | |
|     // Now reference the 8-bit subreg of the result.
 | |
|     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
 | |
|                                            /*Kill=*/true, X86::sub_8bit);
 | |
|   }
 | |
|   // Copy the result out of the physreg if we haven't already.
 | |
|   if (!ResultReg) {
 | |
|     ResultReg = createResultReg(TypeEntry.RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
 | |
|         .addReg(OpEntry.DivRemResultReg);
 | |
|   }
 | |
|   updateValueMap(I, ResultReg);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Emit a conditional move instruction (if the are supported) to lower
 | |
| /// the select.
 | |
| bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
 | |
|   // Check if the subtarget supports these instructions.
 | |
|   if (!Subtarget->hasCMov())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Add support for i8.
 | |
|   if (RetVT < MVT::i16 || RetVT > MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   const Value *Cond = I->getOperand(0);
 | |
|   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
 | |
|   bool NeedTest = true;
 | |
|   X86::CondCode CC = X86::COND_NE;
 | |
| 
 | |
|   // Optimize conditions coming from a compare if both instructions are in the
 | |
|   // same basic block (values defined in other basic blocks may not have
 | |
|   // initialized registers).
 | |
|   const auto *CI = dyn_cast<CmpInst>(Cond);
 | |
|   if (CI && (CI->getParent() == I->getParent())) {
 | |
|     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
 | |
| 
 | |
|     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
 | |
|     static const uint16_t SETFOpcTable[2][3] = {
 | |
|       { X86::SETNPr, X86::SETEr , X86::TEST8rr },
 | |
|       { X86::SETPr,  X86::SETNEr, X86::OR8rr   }
 | |
|     };
 | |
|     const uint16_t *SETFOpc = nullptr;
 | |
|     switch (Predicate) {
 | |
|     default: break;
 | |
|     case CmpInst::FCMP_OEQ:
 | |
|       SETFOpc = &SETFOpcTable[0][0];
 | |
|       Predicate = CmpInst::ICMP_NE;
 | |
|       break;
 | |
|     case CmpInst::FCMP_UNE:
 | |
|       SETFOpc = &SETFOpcTable[1][0];
 | |
|       Predicate = CmpInst::ICMP_NE;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     bool NeedSwap;
 | |
|     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
 | |
|     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
 | |
| 
 | |
|     const Value *CmpLHS = CI->getOperand(0);
 | |
|     const Value *CmpRHS = CI->getOperand(1);
 | |
|     if (NeedSwap)
 | |
|       std::swap(CmpLHS, CmpRHS);
 | |
| 
 | |
|     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
 | |
|     // Emit a compare of the LHS and RHS, setting the flags.
 | |
|     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
 | |
|       return false;
 | |
| 
 | |
|     if (SETFOpc) {
 | |
|       unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
 | |
|       unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
 | |
|               FlagReg1);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
 | |
|               FlagReg2);
 | |
|       auto const &II = TII.get(SETFOpc[2]);
 | |
|       if (II.getNumDefs()) {
 | |
|         unsigned TmpReg = createResultReg(&X86::GR8RegClass);
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
 | |
|           .addReg(FlagReg2).addReg(FlagReg1);
 | |
|       } else {
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|           .addReg(FlagReg2).addReg(FlagReg1);
 | |
|       }
 | |
|     }
 | |
|     NeedTest = false;
 | |
|   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
 | |
|     // Fake request the condition, otherwise the intrinsic might be completely
 | |
|     // optimized away.
 | |
|     unsigned TmpReg = getRegForValue(Cond);
 | |
|     if (TmpReg == 0)
 | |
|       return false;
 | |
| 
 | |
|     NeedTest = false;
 | |
|   }
 | |
| 
 | |
|   if (NeedTest) {
 | |
|     // Selects operate on i1, however, CondReg is 8 bits width and may contain
 | |
|     // garbage. Indeed, only the less significant bit is supposed to be
 | |
|     // accurate. If we read more than the lsb, we may see non-zero values
 | |
|     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
 | |
|     // the select. This is achieved by performing TEST against 1.
 | |
|     unsigned CondReg = getRegForValue(Cond);
 | |
|     if (CondReg == 0)
 | |
|       return false;
 | |
|     bool CondIsKill = hasTrivialKill(Cond);
 | |
| 
 | |
|     // In case OpReg is a K register, COPY to a GPR
 | |
|     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
 | |
|       unsigned KCondReg = CondReg;
 | |
|       CondReg = createResultReg(&X86::GR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), CondReg)
 | |
|           .addReg(KCondReg, getKillRegState(CondIsKill));
 | |
|       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
 | |
|                                            X86::sub_8bit);
 | |
|     }
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
 | |
|         .addReg(CondReg, getKillRegState(CondIsKill))
 | |
|         .addImm(1);
 | |
|   }
 | |
| 
 | |
|   const Value *LHS = I->getOperand(1);
 | |
|   const Value *RHS = I->getOperand(2);
 | |
| 
 | |
|   unsigned RHSReg = getRegForValue(RHS);
 | |
|   bool RHSIsKill = hasTrivialKill(RHS);
 | |
| 
 | |
|   unsigned LHSReg = getRegForValue(LHS);
 | |
|   bool LHSIsKill = hasTrivialKill(LHS);
 | |
| 
 | |
|   if (!LHSReg || !RHSReg)
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
 | |
|   unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8);
 | |
|   unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
 | |
|                                        LHSReg, LHSIsKill);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Emit SSE or AVX instructions to lower the select.
 | |
| ///
 | |
| /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
 | |
| /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
 | |
| /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
 | |
| bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
 | |
|   // Optimize conditions coming from a compare if both instructions are in the
 | |
|   // same basic block (values defined in other basic blocks may not have
 | |
|   // initialized registers).
 | |
|   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
 | |
|   if (!CI || (CI->getParent() != I->getParent()))
 | |
|     return false;
 | |
| 
 | |
|   if (I->getType() != CI->getOperand(0)->getType() ||
 | |
|       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
 | |
|         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
 | |
|     return false;
 | |
| 
 | |
|   const Value *CmpLHS = CI->getOperand(0);
 | |
|   const Value *CmpRHS = CI->getOperand(1);
 | |
|   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
 | |
| 
 | |
|   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
 | |
|   // We don't have to materialize a zero constant for this case and can just use
 | |
|   // %x again on the RHS.
 | |
|   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
 | |
|     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
 | |
|     if (CmpRHSC && CmpRHSC->isNullValue())
 | |
|       CmpRHS = CmpLHS;
 | |
|   }
 | |
| 
 | |
|   unsigned CC;
 | |
|   bool NeedSwap;
 | |
|   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
 | |
|   if (CC > 7)
 | |
|     return false;
 | |
| 
 | |
|   if (NeedSwap)
 | |
|     std::swap(CmpLHS, CmpRHS);
 | |
| 
 | |
|   // Choose the SSE instruction sequence based on data type (float or double).
 | |
|   static const uint16_t OpcTable[2][4] = {
 | |
|     { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
 | |
|     { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
 | |
|   };
 | |
| 
 | |
|   const uint16_t *Opc = nullptr;
 | |
|   switch (RetVT.SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::f32: Opc = &OpcTable[0][0]; break;
 | |
|   case MVT::f64: Opc = &OpcTable[1][0]; break;
 | |
|   }
 | |
| 
 | |
|   const Value *LHS = I->getOperand(1);
 | |
|   const Value *RHS = I->getOperand(2);
 | |
| 
 | |
|   unsigned LHSReg = getRegForValue(LHS);
 | |
|   bool LHSIsKill = hasTrivialKill(LHS);
 | |
| 
 | |
|   unsigned RHSReg = getRegForValue(RHS);
 | |
|   bool RHSIsKill = hasTrivialKill(RHS);
 | |
| 
 | |
|   unsigned CmpLHSReg = getRegForValue(CmpLHS);
 | |
|   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
 | |
| 
 | |
|   unsigned CmpRHSReg = getRegForValue(CmpRHS);
 | |
|   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
 | |
| 
 | |
|   if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
 | |
|   unsigned ResultReg;
 | |
| 
 | |
|   if (Subtarget->hasAVX512()) {
 | |
|     // If we have AVX512 we can use a mask compare and masked movss/sd.
 | |
|     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
 | |
|     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
 | |
| 
 | |
|     unsigned CmpOpcode =
 | |
|       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
 | |
|     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
 | |
|                                        CmpRHSReg, CmpRHSIsKill, CC);
 | |
| 
 | |
|     // Need an IMPLICIT_DEF for the input that is used to generate the upper
 | |
|     // bits of the result register since its not based on any of the inputs.
 | |
|     unsigned ImplicitDefReg = createResultReg(VR128X);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
 | |
| 
 | |
|     // Place RHSReg is the passthru of the masked movss/sd operation and put
 | |
|     // LHS in the input. The mask input comes from the compare.
 | |
|     unsigned MovOpcode =
 | |
|       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
 | |
|     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
 | |
|                                         CmpReg, true, ImplicitDefReg, true,
 | |
|                                         LHSReg, LHSIsKill);
 | |
| 
 | |
|     ResultReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
 | |
| 
 | |
|   } else if (Subtarget->hasAVX()) {
 | |
|     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
 | |
| 
 | |
|     // If we have AVX, create 1 blendv instead of 3 logic instructions.
 | |
|     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
 | |
|     // uses XMM0 as the selection register. That may need just as many
 | |
|     // instructions as the AND/ANDN/OR sequence due to register moves, so
 | |
|     // don't bother.
 | |
|     unsigned CmpOpcode =
 | |
|       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
 | |
|     unsigned BlendOpcode =
 | |
|       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
 | |
| 
 | |
|     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
 | |
|                                        CmpRHSReg, CmpRHSIsKill, CC);
 | |
|     unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
 | |
|                                           LHSReg, LHSIsKill, CmpReg, true);
 | |
|     ResultReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
 | |
|   } else {
 | |
|     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
 | |
|     unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
 | |
|                                        CmpRHSReg, CmpRHSIsKill, CC);
 | |
|     unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
 | |
|                                       LHSReg, LHSIsKill);
 | |
|     unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
 | |
|                                        RHSReg, RHSIsKill);
 | |
|     unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
 | |
|                                      AndReg, /*IsKill=*/true);
 | |
|     ResultReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
 | |
|   }
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
 | |
|   // These are pseudo CMOV instructions and will be later expanded into control-
 | |
|   // flow.
 | |
|   unsigned Opc;
 | |
|   switch (RetVT.SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
 | |
|   case MVT::i16: Opc = X86::CMOV_GR16; break;
 | |
|   case MVT::i32: Opc = X86::CMOV_GR32; break;
 | |
|   case MVT::f32: Opc = X86::CMOV_FR32; break;
 | |
|   case MVT::f64: Opc = X86::CMOV_FR64; break;
 | |
|   }
 | |
| 
 | |
|   const Value *Cond = I->getOperand(0);
 | |
|   X86::CondCode CC = X86::COND_NE;
 | |
| 
 | |
|   // Optimize conditions coming from a compare if both instructions are in the
 | |
|   // same basic block (values defined in other basic blocks may not have
 | |
|   // initialized registers).
 | |
|   const auto *CI = dyn_cast<CmpInst>(Cond);
 | |
|   if (CI && (CI->getParent() == I->getParent())) {
 | |
|     bool NeedSwap;
 | |
|     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
 | |
|     if (CC > X86::LAST_VALID_COND)
 | |
|       return false;
 | |
| 
 | |
|     const Value *CmpLHS = CI->getOperand(0);
 | |
|     const Value *CmpRHS = CI->getOperand(1);
 | |
| 
 | |
|     if (NeedSwap)
 | |
|       std::swap(CmpLHS, CmpRHS);
 | |
| 
 | |
|     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
 | |
|     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
 | |
|       return false;
 | |
|   } else {
 | |
|     unsigned CondReg = getRegForValue(Cond);
 | |
|     if (CondReg == 0)
 | |
|       return false;
 | |
|     bool CondIsKill = hasTrivialKill(Cond);
 | |
| 
 | |
|     // In case OpReg is a K register, COPY to a GPR
 | |
|     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
 | |
|       unsigned KCondReg = CondReg;
 | |
|       CondReg = createResultReg(&X86::GR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), CondReg)
 | |
|           .addReg(KCondReg, getKillRegState(CondIsKill));
 | |
|       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
 | |
|                                            X86::sub_8bit);
 | |
|     }
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
 | |
|         .addReg(CondReg, getKillRegState(CondIsKill))
 | |
|         .addImm(1);
 | |
|   }
 | |
| 
 | |
|   const Value *LHS = I->getOperand(1);
 | |
|   const Value *RHS = I->getOperand(2);
 | |
| 
 | |
|   unsigned LHSReg = getRegForValue(LHS);
 | |
|   bool LHSIsKill = hasTrivialKill(LHS);
 | |
| 
 | |
|   unsigned RHSReg = getRegForValue(RHS);
 | |
|   bool RHSIsKill = hasTrivialKill(RHS);
 | |
| 
 | |
|   if (!LHSReg || !RHSReg)
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
 | |
| 
 | |
|   unsigned ResultReg =
 | |
|     fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectSelect(const Instruction *I) {
 | |
|   MVT RetVT;
 | |
|   if (!isTypeLegal(I->getType(), RetVT))
 | |
|     return false;
 | |
| 
 | |
|   // Check if we can fold the select.
 | |
|   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
 | |
|     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
 | |
|     const Value *Opnd = nullptr;
 | |
|     switch (Predicate) {
 | |
|     default:                              break;
 | |
|     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
 | |
|     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
 | |
|     }
 | |
|     // No need for a select anymore - this is an unconditional move.
 | |
|     if (Opnd) {
 | |
|       unsigned OpReg = getRegForValue(Opnd);
 | |
|       if (OpReg == 0)
 | |
|         return false;
 | |
|       bool OpIsKill = hasTrivialKill(Opnd);
 | |
|       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
 | |
|       unsigned ResultReg = createResultReg(RC);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), ResultReg)
 | |
|         .addReg(OpReg, getKillRegState(OpIsKill));
 | |
|       updateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First try to use real conditional move instructions.
 | |
|   if (X86FastEmitCMoveSelect(RetVT, I))
 | |
|     return true;
 | |
| 
 | |
|   // Try to use a sequence of SSE instructions to simulate a conditional move.
 | |
|   if (X86FastEmitSSESelect(RetVT, I))
 | |
|     return true;
 | |
| 
 | |
|   // Fall-back to pseudo conditional move instructions, which will be later
 | |
|   // converted to control-flow.
 | |
|   if (X86FastEmitPseudoSelect(RetVT, I))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
 | |
|   // The target-independent selection algorithm in FastISel already knows how
 | |
|   // to select a SINT_TO_FP if the target is SSE but not AVX.
 | |
|   // Early exit if the subtarget doesn't have AVX.
 | |
|   if (!Subtarget->hasAVX())
 | |
|     return false;
 | |
| 
 | |
|   if (!I->getOperand(0)->getType()->isIntegerTy(32))
 | |
|     return false;
 | |
| 
 | |
|   // Select integer to float/double conversion.
 | |
|   unsigned OpReg = getRegForValue(I->getOperand(0));
 | |
|   if (OpReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   unsigned Opcode;
 | |
| 
 | |
|   if (I->getType()->isDoubleTy()) {
 | |
|     // sitofp int -> double
 | |
|     Opcode = X86::VCVTSI2SDrr;
 | |
|     RC = &X86::FR64RegClass;
 | |
|   } else if (I->getType()->isFloatTy()) {
 | |
|     // sitofp int -> float
 | |
|     Opcode = X86::VCVTSI2SSrr;
 | |
|     RC = &X86::FR32RegClass;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   unsigned ImplicitDefReg = createResultReg(RC);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
 | |
|   unsigned ResultReg =
 | |
|       fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
 | |
| bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
 | |
|                                           unsigned TargetOpc,
 | |
|                                           const TargetRegisterClass *RC) {
 | |
|   assert((I->getOpcode() == Instruction::FPExt ||
 | |
|           I->getOpcode() == Instruction::FPTrunc) &&
 | |
|          "Instruction must be an FPExt or FPTrunc!");
 | |
| 
 | |
|   unsigned OpReg = getRegForValue(I->getOperand(0));
 | |
|   if (OpReg == 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned ImplicitDefReg;
 | |
|   if (Subtarget->hasAVX()) {
 | |
|     ImplicitDefReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   MachineInstrBuilder MIB;
 | |
|   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
 | |
|                 ResultReg);
 | |
| 
 | |
|   if (Subtarget->hasAVX())
 | |
|     MIB.addReg(ImplicitDefReg);
 | |
| 
 | |
|   MIB.addReg(OpReg);
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectFPExt(const Instruction *I) {
 | |
|   if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
 | |
|       I->getOperand(0)->getType()->isFloatTy()) {
 | |
|     // fpext from float to double.
 | |
|     unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
 | |
|     return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
 | |
|   if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
 | |
|       I->getOperand(0)->getType()->isDoubleTy()) {
 | |
|     // fptrunc from double to float.
 | |
|     unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
 | |
|     return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::X86SelectTrunc(const Instruction *I) {
 | |
|   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(DL, I->getType());
 | |
| 
 | |
|   // This code only handles truncation to byte.
 | |
|   // TODO: Support truncate to i1 with AVX512.
 | |
|   if (DstVT != MVT::i8 && (DstVT != MVT::i1 || Subtarget->hasAVX512()))
 | |
|     return false;
 | |
|   if (!TLI.isTypeLegal(SrcVT))
 | |
|     return false;
 | |
| 
 | |
|   unsigned InputReg = getRegForValue(I->getOperand(0));
 | |
|   if (!InputReg)
 | |
|     // Unhandled operand.  Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   if (SrcVT == MVT::i8) {
 | |
|     // Truncate from i8 to i1; no code needed.
 | |
|     updateValueMap(I, InputReg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool KillInputReg = false;
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     // If we're on x86-32; we can't extract an i8 from a general register.
 | |
|     // First issue a copy to GR16_ABCD or GR32_ABCD.
 | |
|     const TargetRegisterClass *CopyRC =
 | |
|       (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
 | |
|     unsigned CopyReg = createResultReg(CopyRC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
 | |
|     InputReg = CopyReg;
 | |
|     KillInputReg = true;
 | |
|   }
 | |
| 
 | |
|   // Issue an extract_subreg.
 | |
|   unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
 | |
|                                                   InputReg, KillInputReg,
 | |
|                                                   X86::sub_8bit);
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
| 
 | |
|   updateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::IsMemcpySmall(uint64_t Len) {
 | |
|   return Len <= (Subtarget->is64Bit() ? 32 : 16);
 | |
| }
 | |
| 
 | |
| bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
 | |
|                                      X86AddressMode SrcAM, uint64_t Len) {
 | |
| 
 | |
|   // Make sure we don't bloat code by inlining very large memcpy's.
 | |
|   if (!IsMemcpySmall(Len))
 | |
|     return false;
 | |
| 
 | |
|   bool i64Legal = Subtarget->is64Bit();
 | |
| 
 | |
|   // We don't care about alignment here since we just emit integer accesses.
 | |
|   while (Len) {
 | |
|     MVT VT;
 | |
|     if (Len >= 8 && i64Legal)
 | |
|       VT = MVT::i64;
 | |
|     else if (Len >= 4)
 | |
|       VT = MVT::i32;
 | |
|     else if (Len >= 2)
 | |
|       VT = MVT::i16;
 | |
|     else
 | |
|       VT = MVT::i8;
 | |
| 
 | |
|     unsigned Reg;
 | |
|     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
 | |
|     RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
 | |
|     assert(RV && "Failed to emit load or store??");
 | |
| 
 | |
|     unsigned Size = VT.getSizeInBits()/8;
 | |
|     Len -= Size;
 | |
|     DestAM.Disp += Size;
 | |
|     SrcAM.Disp += Size;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
 | |
|   // FIXME: Handle more intrinsics.
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: return false;
 | |
|   case Intrinsic::convert_from_fp16:
 | |
|   case Intrinsic::convert_to_fp16: {
 | |
|     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
 | |
|       return false;
 | |
| 
 | |
|     const Value *Op = II->getArgOperand(0);
 | |
|     unsigned InputReg = getRegForValue(Op);
 | |
|     if (InputReg == 0)
 | |
|       return false;
 | |
| 
 | |
|     // F16C only allows converting from float to half and from half to float.
 | |
|     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
 | |
|     if (IsFloatToHalf) {
 | |
|       if (!Op->getType()->isFloatTy())
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!II->getType()->isFloatTy())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     unsigned ResultReg = 0;
 | |
|     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
 | |
|     if (IsFloatToHalf) {
 | |
|       // 'InputReg' is implicitly promoted from register class FR32 to
 | |
|       // register class VR128 by method 'constrainOperandRegClass' which is
 | |
|       // directly called by 'fastEmitInst_ri'.
 | |
|       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
 | |
|       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
 | |
|       // It's consistent with the other FP instructions, which are usually
 | |
|       // controlled by MXCSR.
 | |
|       InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
 | |
| 
 | |
|       // Move the lower 32-bits of ResultReg to another register of class GR32.
 | |
|       ResultReg = createResultReg(&X86::GR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(X86::VMOVPDI2DIrr), ResultReg)
 | |
|           .addReg(InputReg, RegState::Kill);
 | |
|       
 | |
|       // The result value is in the lower 16-bits of ResultReg.
 | |
|       unsigned RegIdx = X86::sub_16bit;
 | |
|       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
 | |
|     } else {
 | |
|       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
 | |
|       // Explicitly sign-extend the input to 32-bit.
 | |
|       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
 | |
|                             /*Kill=*/false);
 | |
| 
 | |
|       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
 | |
|       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
 | |
|                             InputReg, /*Kill=*/true);
 | |
| 
 | |
|       InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
 | |
| 
 | |
|       // The result value is in the lower 32-bits of ResultReg.
 | |
|       // Emit an explicit copy from register class VR128 to register class FR32.
 | |
|       ResultReg = createResultReg(&X86::FR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), ResultReg)
 | |
|           .addReg(InputReg, RegState::Kill);
 | |
|     }
 | |
| 
 | |
|     updateValueMap(II, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::frameaddress: {
 | |
|     MachineFunction *MF = FuncInfo.MF;
 | |
|     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
 | |
|       return false;
 | |
| 
 | |
|     Type *RetTy = II->getCalledFunction()->getReturnType();
 | |
| 
 | |
|     MVT VT;
 | |
|     if (!isTypeLegal(RetTy, VT))
 | |
|       return false;
 | |
| 
 | |
|     unsigned Opc;
 | |
|     const TargetRegisterClass *RC = nullptr;
 | |
| 
 | |
|     switch (VT.SimpleTy) {
 | |
|     default: llvm_unreachable("Invalid result type for frameaddress.");
 | |
|     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
 | |
|     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
 | |
|     }
 | |
| 
 | |
|     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
 | |
|     // we get the wrong frame register.
 | |
|     MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|     MFI.setFrameAddressIsTaken(true);
 | |
| 
 | |
|     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
 | |
|     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
 | |
|     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
 | |
|             (FrameReg == X86::EBP && VT == MVT::i32)) &&
 | |
|            "Invalid Frame Register!");
 | |
| 
 | |
|     // Always make a copy of the frame register to to a vreg first, so that we
 | |
|     // never directly reference the frame register (the TwoAddressInstruction-
 | |
|     // Pass doesn't like that).
 | |
|     unsigned SrcReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
 | |
| 
 | |
|     // Now recursively load from the frame address.
 | |
|     // movq (%rbp), %rax
 | |
|     // movq (%rax), %rax
 | |
|     // movq (%rax), %rax
 | |
|     // ...
 | |
|     unsigned DestReg;
 | |
|     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
 | |
|     while (Depth--) {
 | |
|       DestReg = createResultReg(RC);
 | |
|       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                            TII.get(Opc), DestReg), SrcReg);
 | |
|       SrcReg = DestReg;
 | |
|     }
 | |
| 
 | |
|     updateValueMap(II, SrcReg);
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::memcpy: {
 | |
|     const MemCpyInst *MCI = cast<MemCpyInst>(II);
 | |
|     // Don't handle volatile or variable length memcpys.
 | |
|     if (MCI->isVolatile())
 | |
|       return false;
 | |
| 
 | |
|     if (isa<ConstantInt>(MCI->getLength())) {
 | |
|       // Small memcpy's are common enough that we want to do them
 | |
|       // without a call if possible.
 | |
|       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
 | |
|       if (IsMemcpySmall(Len)) {
 | |
|         X86AddressMode DestAM, SrcAM;
 | |
|         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
 | |
|             !X86SelectAddress(MCI->getRawSource(), SrcAM))
 | |
|           return false;
 | |
|         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
 | |
|     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
 | |
|       return false;
 | |
| 
 | |
|     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
 | |
|       return false;
 | |
| 
 | |
|     return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
 | |
|   }
 | |
|   case Intrinsic::memset: {
 | |
|     const MemSetInst *MSI = cast<MemSetInst>(II);
 | |
| 
 | |
|     if (MSI->isVolatile())
 | |
|       return false;
 | |
| 
 | |
|     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
 | |
|     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
 | |
|       return false;
 | |
| 
 | |
|     if (MSI->getDestAddressSpace() > 255)
 | |
|       return false;
 | |
| 
 | |
|     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
 | |
|   }
 | |
|   case Intrinsic::stackprotector: {
 | |
|     // Emit code to store the stack guard onto the stack.
 | |
|     EVT PtrTy = TLI.getPointerTy(DL);
 | |
| 
 | |
|     const Value *Op1 = II->getArgOperand(0); // The guard's value.
 | |
|     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
 | |
| 
 | |
|     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
 | |
| 
 | |
|     // Grab the frame index.
 | |
|     X86AddressMode AM;
 | |
|     if (!X86SelectAddress(Slot, AM)) return false;
 | |
|     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
 | |
|     X86AddressMode AM;
 | |
|     assert(DI->getAddress() && "Null address should be checked earlier!");
 | |
|     if (!X86SelectAddress(DI->getAddress(), AM))
 | |
|       return false;
 | |
|     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | |
|     // FIXME may need to add RegState::Debug to any registers produced,
 | |
|     // although ESP/EBP should be the only ones at the moment.
 | |
|     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
 | |
|            "Expected inlined-at fields to agree");
 | |
|     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
 | |
|         .addImm(0)
 | |
|         .addMetadata(DI->getVariable())
 | |
|         .addMetadata(DI->getExpression());
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::trap: {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::sqrt: {
 | |
|     if (!Subtarget->hasSSE1())
 | |
|       return false;
 | |
| 
 | |
|     Type *RetTy = II->getCalledFunction()->getReturnType();
 | |
| 
 | |
|     MVT VT;
 | |
|     if (!isTypeLegal(RetTy, VT))
 | |
|       return false;
 | |
| 
 | |
|     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
 | |
|     // is not generated by FastISel yet.
 | |
|     // FIXME: Update this code once tablegen can handle it.
 | |
|     static const uint16_t SqrtOpc[2][2] = {
 | |
|       {X86::SQRTSSr, X86::VSQRTSSr},
 | |
|       {X86::SQRTSDr, X86::VSQRTSDr}
 | |
|     };
 | |
|     bool HasAVX = Subtarget->hasAVX();
 | |
|     unsigned Opc;
 | |
|     const TargetRegisterClass *RC;
 | |
|     switch (VT.SimpleTy) {
 | |
|     default: return false;
 | |
|     case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
 | |
|     case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
 | |
|     }
 | |
| 
 | |
|     const Value *SrcVal = II->getArgOperand(0);
 | |
|     unsigned SrcReg = getRegForValue(SrcVal);
 | |
| 
 | |
|     if (SrcReg == 0)
 | |
|       return false;
 | |
| 
 | |
|     unsigned ImplicitDefReg = 0;
 | |
|     if (HasAVX) {
 | |
|       ImplicitDefReg = createResultReg(RC);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
 | |
|     }
 | |
| 
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     MachineInstrBuilder MIB;
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
 | |
|                   ResultReg);
 | |
| 
 | |
|     if (ImplicitDefReg)
 | |
|       MIB.addReg(ImplicitDefReg);
 | |
| 
 | |
|     MIB.addReg(SrcReg);
 | |
| 
 | |
|     updateValueMap(II, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow: {
 | |
|     // This implements the basic lowering of the xalu with overflow intrinsics
 | |
|     // into add/sub/mul followed by either seto or setb.
 | |
|     const Function *Callee = II->getCalledFunction();
 | |
|     auto *Ty = cast<StructType>(Callee->getReturnType());
 | |
|     Type *RetTy = Ty->getTypeAtIndex(0U);
 | |
|     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
 | |
|            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
 | |
|            "Overflow value expected to be an i1");
 | |
| 
 | |
|     MVT VT;
 | |
|     if (!isTypeLegal(RetTy, VT))
 | |
|       return false;
 | |
| 
 | |
|     if (VT < MVT::i8 || VT > MVT::i64)
 | |
|       return false;
 | |
| 
 | |
|     const Value *LHS = II->getArgOperand(0);
 | |
|     const Value *RHS = II->getArgOperand(1);
 | |
| 
 | |
|     // Canonicalize immediate to the RHS.
 | |
|     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
 | |
|         isCommutativeIntrinsic(II))
 | |
|       std::swap(LHS, RHS);
 | |
| 
 | |
|     bool UseIncDec = false;
 | |
|     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
 | |
|       UseIncDec = true;
 | |
| 
 | |
|     unsigned BaseOpc, CondOpc;
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: llvm_unreachable("Unexpected intrinsic!");
 | |
|     case Intrinsic::sadd_with_overflow:
 | |
|       BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
 | |
|       CondOpc = X86::SETOr;
 | |
|       break;
 | |
|     case Intrinsic::uadd_with_overflow:
 | |
|       BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
 | |
|     case Intrinsic::ssub_with_overflow:
 | |
|       BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
 | |
|       CondOpc = X86::SETOr;
 | |
|       break;
 | |
|     case Intrinsic::usub_with_overflow:
 | |
|       BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
 | |
|     case Intrinsic::smul_with_overflow:
 | |
|       BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
 | |
|     case Intrinsic::umul_with_overflow:
 | |
|       BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
 | |
|     }
 | |
| 
 | |
|     unsigned LHSReg = getRegForValue(LHS);
 | |
|     if (LHSReg == 0)
 | |
|       return false;
 | |
|     bool LHSIsKill = hasTrivialKill(LHS);
 | |
| 
 | |
|     unsigned ResultReg = 0;
 | |
|     // Check if we have an immediate version.
 | |
|     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|       static const uint16_t Opc[2][4] = {
 | |
|         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
 | |
|         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
 | |
|       };
 | |
| 
 | |
|       if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
 | |
|         ResultReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|         bool IsDec = BaseOpc == X86ISD::DEC;
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
 | |
|           .addReg(LHSReg, getKillRegState(LHSIsKill));
 | |
|       } else
 | |
|         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
 | |
|                                 CI->getZExtValue());
 | |
|     }
 | |
| 
 | |
|     unsigned RHSReg;
 | |
|     bool RHSIsKill;
 | |
|     if (!ResultReg) {
 | |
|       RHSReg = getRegForValue(RHS);
 | |
|       if (RHSReg == 0)
 | |
|         return false;
 | |
|       RHSIsKill = hasTrivialKill(RHS);
 | |
|       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
 | |
|                               RHSIsKill);
 | |
|     }
 | |
| 
 | |
|     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
 | |
|     // it manually.
 | |
|     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
 | |
|       static const uint16_t MULOpc[] =
 | |
|         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
 | |
|       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
 | |
|       // First copy the first operand into RAX, which is an implicit input to
 | |
|       // the X86::MUL*r instruction.
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
 | |
|         .addReg(LHSReg, getKillRegState(LHSIsKill));
 | |
|       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
 | |
|                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
 | |
|     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
 | |
|       static const uint16_t MULOpc[] =
 | |
|         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
 | |
|       if (VT == MVT::i8) {
 | |
|         // Copy the first operand into AL, which is an implicit input to the
 | |
|         // X86::IMUL8r instruction.
 | |
|         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                TII.get(TargetOpcode::COPY), X86::AL)
 | |
|           .addReg(LHSReg, getKillRegState(LHSIsKill));
 | |
|         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
 | |
|                                    RHSIsKill);
 | |
|       } else
 | |
|         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
 | |
|                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
 | |
|                                     RHSReg, RHSIsKill);
 | |
|     }
 | |
| 
 | |
|     if (!ResultReg)
 | |
|       return false;
 | |
| 
 | |
|     // Assign to a GPR since the overflow return value is lowered to a SETcc.
 | |
|     unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
 | |
|     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
 | |
|             ResultReg2);
 | |
| 
 | |
|     updateValueMap(II, ResultReg, 2);
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::x86_sse_cvttss2si:
 | |
|   case Intrinsic::x86_sse_cvttss2si64:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si64: {
 | |
|     bool IsInputDouble;
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: llvm_unreachable("Unexpected intrinsic.");
 | |
|     case Intrinsic::x86_sse_cvttss2si:
 | |
|     case Intrinsic::x86_sse_cvttss2si64:
 | |
|       if (!Subtarget->hasSSE1())
 | |
|         return false;
 | |
|       IsInputDouble = false;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_cvttsd2si:
 | |
|     case Intrinsic::x86_sse2_cvttsd2si64:
 | |
|       if (!Subtarget->hasSSE2())
 | |
|         return false;
 | |
|       IsInputDouble = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Type *RetTy = II->getCalledFunction()->getReturnType();
 | |
|     MVT VT;
 | |
|     if (!isTypeLegal(RetTy, VT))
 | |
|       return false;
 | |
| 
 | |
|     static const uint16_t CvtOpc[2][2][2] = {
 | |
|       { { X86::CVTTSS2SIrr,   X86::VCVTTSS2SIrr   },
 | |
|         { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr }  },
 | |
|       { { X86::CVTTSD2SIrr,   X86::VCVTTSD2SIrr   },
 | |
|         { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr }  }
 | |
|     };
 | |
|     bool HasAVX = Subtarget->hasAVX();
 | |
|     unsigned Opc;
 | |
|     switch (VT.SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected result type.");
 | |
|     case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
 | |
|     case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
 | |
|     }
 | |
| 
 | |
|     // Check if we can fold insertelement instructions into the convert.
 | |
|     const Value *Op = II->getArgOperand(0);
 | |
|     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
 | |
|       const Value *Index = IE->getOperand(2);
 | |
|       if (!isa<ConstantInt>(Index))
 | |
|         break;
 | |
|       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
 | |
| 
 | |
|       if (Idx == 0) {
 | |
|         Op = IE->getOperand(1);
 | |
|         break;
 | |
|       }
 | |
|       Op = IE->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     unsigned Reg = getRegForValue(Op);
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
| 
 | |
|     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
 | |
|       .addReg(Reg);
 | |
| 
 | |
|     updateValueMap(II, ResultReg);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86FastISel::fastLowerArguments() {
 | |
|   if (!FuncInfo.CanLowerReturn)
 | |
|     return false;
 | |
| 
 | |
|   const Function *F = FuncInfo.Fn;
 | |
|   if (F->isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   CallingConv::ID CC = F->getCallingConv();
 | |
|   if (CC != CallingConv::C)
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->isCallingConvWin64(CC))
 | |
|     return false;
 | |
| 
 | |
|   if (!Subtarget->is64Bit())
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->useSoftFloat())
 | |
|     return false;
 | |
| 
 | |
|   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
 | |
|   unsigned GPRCnt = 0;
 | |
|   unsigned FPRCnt = 0;
 | |
|   for (auto const &Arg : F->args()) {
 | |
|     if (Arg.hasAttribute(Attribute::ByVal) ||
 | |
|         Arg.hasAttribute(Attribute::InReg) ||
 | |
|         Arg.hasAttribute(Attribute::StructRet) ||
 | |
|         Arg.hasAttribute(Attribute::SwiftSelf) ||
 | |
|         Arg.hasAttribute(Attribute::SwiftError) ||
 | |
|         Arg.hasAttribute(Attribute::Nest))
 | |
|       return false;
 | |
| 
 | |
|     Type *ArgTy = Arg.getType();
 | |
|     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
 | |
|       return false;
 | |
| 
 | |
|     EVT ArgVT = TLI.getValueType(DL, ArgTy);
 | |
|     if (!ArgVT.isSimple()) return false;
 | |
|     switch (ArgVT.getSimpleVT().SimpleTy) {
 | |
|     default: return false;
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       ++GPRCnt;
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       if (!Subtarget->hasSSE1())
 | |
|         return false;
 | |
|       ++FPRCnt;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (GPRCnt > 6)
 | |
|       return false;
 | |
| 
 | |
|     if (FPRCnt > 8)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   static const MCPhysReg GPR32ArgRegs[] = {
 | |
|     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
 | |
|   };
 | |
|   static const MCPhysReg GPR64ArgRegs[] = {
 | |
|     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
 | |
|   };
 | |
|   static const MCPhysReg XMMArgRegs[] = {
 | |
|     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|   };
 | |
| 
 | |
|   unsigned GPRIdx = 0;
 | |
|   unsigned FPRIdx = 0;
 | |
|   for (auto const &Arg : F->args()) {
 | |
|     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
 | |
|     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
 | |
|     unsigned SrcReg;
 | |
|     switch (VT.SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected value type.");
 | |
|     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
 | |
|     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
 | |
|     case MVT::f32: LLVM_FALLTHROUGH;
 | |
|     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
 | |
|     }
 | |
|     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
 | |
|     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
 | |
|     // Without this, EmitLiveInCopies may eliminate the livein if its only
 | |
|     // use is a bitcast (which isn't turned into an instruction).
 | |
|     unsigned ResultReg = createResultReg(RC);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg)
 | |
|       .addReg(DstReg, getKillRegState(true));
 | |
|     updateValueMap(&Arg, ResultReg);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
 | |
|                                                   CallingConv::ID CC,
 | |
|                                                   ImmutableCallSite *CS) {
 | |
|   if (Subtarget->is64Bit())
 | |
|     return 0;
 | |
|   if (Subtarget->getTargetTriple().isOSMSVCRT())
 | |
|     return 0;
 | |
|   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
 | |
|       CC == CallingConv::HiPE)
 | |
|     return 0;
 | |
| 
 | |
|   if (CS)
 | |
|     if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
 | |
|         CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
 | |
|       return 0;
 | |
| 
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
 | |
|   auto &OutVals       = CLI.OutVals;
 | |
|   auto &OutFlags      = CLI.OutFlags;
 | |
|   auto &OutRegs       = CLI.OutRegs;
 | |
|   auto &Ins           = CLI.Ins;
 | |
|   auto &InRegs        = CLI.InRegs;
 | |
|   CallingConv::ID CC  = CLI.CallConv;
 | |
|   bool &IsTailCall    = CLI.IsTailCall;
 | |
|   bool IsVarArg       = CLI.IsVarArg;
 | |
|   const Value *Callee = CLI.Callee;
 | |
|   MCSymbol *Symbol = CLI.Symbol;
 | |
| 
 | |
|   bool Is64Bit        = Subtarget->is64Bit();
 | |
|   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
 | |
| 
 | |
|   const CallInst *CI =
 | |
|       CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
 | |
|   const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
 | |
| 
 | |
|   // Functions with no_caller_saved_registers that need special handling.
 | |
|   if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
 | |
|       (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
 | |
|     return false;
 | |
| 
 | |
|   // Handle only C, fastcc, and webkit_js calling conventions for now.
 | |
|   switch (CC) {
 | |
|   default: return false;
 | |
|   case CallingConv::C:
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::WebKit_JS:
 | |
|   case CallingConv::Swift:
 | |
|   case CallingConv::X86_FastCall:
 | |
|   case CallingConv::X86_StdCall:
 | |
|   case CallingConv::X86_ThisCall:
 | |
|   case CallingConv::Win64:
 | |
|   case CallingConv::X86_64_SysV:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Allow SelectionDAG isel to handle tail calls.
 | |
|   if (IsTailCall)
 | |
|     return false;
 | |
| 
 | |
|   // fastcc with -tailcallopt is intended to provide a guaranteed
 | |
|   // tail call optimization. Fastisel doesn't know how to do that.
 | |
|   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
 | |
|   // x86-32. Special handling for x86-64 is implemented.
 | |
|   if (IsVarArg && IsWin64)
 | |
|     return false;
 | |
| 
 | |
|   // Don't know about inalloca yet.
 | |
|   if (CLI.CS && CLI.CS->hasInAllocaArgument())
 | |
|     return false;
 | |
| 
 | |
|   for (auto Flag : CLI.OutFlags)
 | |
|     if (Flag.isSwiftError())
 | |
|       return false;
 | |
| 
 | |
|   SmallVector<MVT, 16> OutVTs;
 | |
|   SmallVector<unsigned, 16> ArgRegs;
 | |
| 
 | |
|   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
 | |
|   // instruction. This is safe because it is common to all FastISel supported
 | |
|   // calling conventions on x86.
 | |
|   for (int i = 0, e = OutVals.size(); i != e; ++i) {
 | |
|     Value *&Val = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = OutFlags[i];
 | |
|     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|       if (CI->getBitWidth() < 32) {
 | |
|         if (Flags.isSExt())
 | |
|           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
 | |
|         else
 | |
|           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Passing bools around ends up doing a trunc to i1 and passing it.
 | |
|     // Codegen this as an argument + "and 1".
 | |
|     MVT VT;
 | |
|     auto *TI = dyn_cast<TruncInst>(Val);
 | |
|     unsigned ResultReg;
 | |
|     if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
 | |
|               (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
 | |
|               TI->hasOneUse()) {
 | |
|       Value *PrevVal = TI->getOperand(0);
 | |
|       ResultReg = getRegForValue(PrevVal);
 | |
| 
 | |
|       if (!ResultReg)
 | |
|         return false;
 | |
| 
 | |
|       if (!isTypeLegal(PrevVal->getType(), VT))
 | |
|         return false;
 | |
| 
 | |
|       ResultReg =
 | |
|         fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
 | |
|     } else {
 | |
|       if (!isTypeLegal(Val->getType(), VT))
 | |
|         return false;
 | |
|       ResultReg = getRegForValue(Val);
 | |
|     }
 | |
| 
 | |
|     if (!ResultReg)
 | |
|       return false;
 | |
| 
 | |
|     ArgRegs.push_back(ResultReg);
 | |
|     OutVTs.push_back(VT);
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
 | |
| 
 | |
|   // Allocate shadow area for Win64
 | |
|   if (IsWin64)
 | |
|     CCInfo.AllocateStack(32, 8);
 | |
| 
 | |
|   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
 | |
| 
 | |
|   // Issue CALLSEQ_START
 | |
|   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
 | |
|     .addImm(NumBytes).addImm(0).addImm(0);
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign const &VA = ArgLocs[i];
 | |
|     const Value *ArgVal = OutVals[VA.getValNo()];
 | |
|     MVT ArgVT = OutVTs[VA.getValNo()];
 | |
| 
 | |
|     if (ArgVT == MVT::x86mmx)
 | |
|       return false;
 | |
| 
 | |
|     unsigned ArgReg = ArgRegs[VA.getValNo()];
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt: {
 | |
|       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
 | |
|              "Unexpected extend");
 | |
| 
 | |
|       if (ArgVT == MVT::i1)
 | |
|         return false;
 | |
| 
 | |
|       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
 | |
|                                        ArgVT, ArgReg);
 | |
|       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::ZExt: {
 | |
|       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
 | |
|              "Unexpected extend");
 | |
| 
 | |
|       // Handle zero-extension from i1 to i8, which is common.
 | |
|       if (ArgVT == MVT::i1) {
 | |
|         // In case SrcReg is a K register, COPY to a GPR
 | |
|         if (MRI.getRegClass(ArgReg) == &X86::VK1RegClass) {
 | |
|           unsigned KArgReg = ArgReg;
 | |
|           ArgReg = createResultReg(&X86::GR32RegClass);
 | |
|           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                   TII.get(TargetOpcode::COPY), ArgReg)
 | |
|               .addReg(KArgReg);
 | |
|           ArgReg = fastEmitInst_extractsubreg(MVT::i8, ArgReg, /*Kill=*/true,
 | |
|                                               X86::sub_8bit);
 | |
|         }
 | |
|         // Set the high bits to zero.
 | |
|         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
 | |
|         ArgVT = MVT::i8;
 | |
| 
 | |
|         if (ArgReg == 0)
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
 | |
|                                        ArgVT, ArgReg);
 | |
|       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::AExt: {
 | |
|       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
 | |
|              "Unexpected extend");
 | |
|       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
 | |
|                                        ArgVT, ArgReg);
 | |
|       if (!Emitted)
 | |
|         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
 | |
|                                     ArgVT, ArgReg);
 | |
|       if (!Emitted)
 | |
|         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
 | |
|                                     ArgVT, ArgReg);
 | |
| 
 | |
|       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::BCvt: {
 | |
|       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
 | |
|                           /*TODO: Kill=*/false);
 | |
|       assert(ArgReg && "Failed to emit a bitcast!");
 | |
|       ArgVT = VA.getLocVT();
 | |
|       break;
 | |
|     }
 | |
|     case CCValAssign::VExt:
 | |
|       // VExt has not been implemented, so this should be impossible to reach
 | |
|       // for now.  However, fallback to Selection DAG isel once implemented.
 | |
|       return false;
 | |
|     case CCValAssign::AExtUpper:
 | |
|     case CCValAssign::SExtUpper:
 | |
|     case CCValAssign::ZExtUpper:
 | |
|     case CCValAssign::FPExt:
 | |
|       llvm_unreachable("Unexpected loc info!");
 | |
|     case CCValAssign::Indirect:
 | |
|       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
 | |
|       // support this.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
 | |
|       OutRegs.push_back(VA.getLocReg());
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       // Don't emit stores for undef values.
 | |
|       if (isa<UndefValue>(ArgVal))
 | |
|         continue;
 | |
| 
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|       X86AddressMode AM;
 | |
|       AM.Base.Reg = RegInfo->getStackRegister();
 | |
|       AM.Disp = LocMemOffset;
 | |
|       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
 | |
|       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
 | |
|       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
 | |
|           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
 | |
|           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
 | |
|       if (Flags.isByVal()) {
 | |
|         X86AddressMode SrcAM;
 | |
|         SrcAM.Base.Reg = ArgReg;
 | |
|         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
 | |
|           return false;
 | |
|       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
 | |
|         // If this is a really simple value, emit this with the Value* version
 | |
|         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
 | |
|         // as it can cause us to reevaluate the argument.
 | |
|         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
 | |
|           return false;
 | |
|       } else {
 | |
|         bool ValIsKill = hasTrivialKill(ArgVal);
 | |
|         if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | |
|   // GOT pointer.
 | |
|   if (Subtarget->isPICStyleGOT()) {
 | |
|     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
 | |
|   }
 | |
| 
 | |
|   if (Is64Bit && IsVarArg && !IsWin64) {
 | |
|     // From AMD64 ABI document:
 | |
|     // For calls that may call functions that use varargs or stdargs
 | |
|     // (prototype-less calls or calls to functions containing ellipsis (...) in
 | |
|     // the declaration) %al is used as hidden argument to specify the number
 | |
|     // of SSE registers used. The contents of %al do not need to match exactly
 | |
|     // the number of registers, but must be an ubound on the number of SSE
 | |
|     // registers used and is in the range 0 - 8 inclusive.
 | |
| 
 | |
|     // Count the number of XMM registers allocated.
 | |
|     static const MCPhysReg XMMArgRegs[] = {
 | |
|       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|     };
 | |
|     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
 | |
|     assert((Subtarget->hasSSE1() || !NumXMMRegs)
 | |
|            && "SSE registers cannot be used when SSE is disabled");
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
 | |
|             X86::AL).addImm(NumXMMRegs);
 | |
|   }
 | |
| 
 | |
|   // Materialize callee address in a register. FIXME: GV address can be
 | |
|   // handled with a CALLpcrel32 instead.
 | |
|   X86AddressMode CalleeAM;
 | |
|   if (!X86SelectCallAddress(Callee, CalleeAM))
 | |
|     return false;
 | |
| 
 | |
|   unsigned CalleeOp = 0;
 | |
|   const GlobalValue *GV = nullptr;
 | |
|   if (CalleeAM.GV != nullptr) {
 | |
|     GV = CalleeAM.GV;
 | |
|   } else if (CalleeAM.Base.Reg != 0) {
 | |
|     CalleeOp = CalleeAM.Base.Reg;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Issue the call.
 | |
|   MachineInstrBuilder MIB;
 | |
|   if (CalleeOp) {
 | |
|     // Register-indirect call.
 | |
|     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
 | |
|       .addReg(CalleeOp);
 | |
|   } else {
 | |
|     // Direct call.
 | |
|     assert(GV && "Not a direct call");
 | |
|     // See if we need any target-specific flags on the GV operand.
 | |
|     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
 | |
|     // Ignore NonLazyBind attribute in FastISel
 | |
|     if (OpFlags == X86II::MO_GOTPCREL)
 | |
|       OpFlags = 0;
 | |
| 
 | |
|     // This will be a direct call, or an indirect call through memory for
 | |
|     // NonLazyBind calls or dllimport calls.
 | |
|     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT;
 | |
|     unsigned CallOpc = NeedLoad
 | |
|                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
 | |
|                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
 | |
| 
 | |
|     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
 | |
|     if (NeedLoad)
 | |
|       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
 | |
|     if (Symbol)
 | |
|       MIB.addSym(Symbol, OpFlags);
 | |
|     else
 | |
|       MIB.addGlobalAddress(GV, 0, OpFlags);
 | |
|     if (NeedLoad)
 | |
|       MIB.addReg(0);
 | |
|   }
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   // Proper defs for return values will be added by setPhysRegsDeadExcept().
 | |
|   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
 | |
| 
 | |
|   // Add an implicit use GOT pointer in EBX.
 | |
|   if (Subtarget->isPICStyleGOT())
 | |
|     MIB.addReg(X86::EBX, RegState::Implicit);
 | |
| 
 | |
|   if (Is64Bit && IsVarArg && !IsWin64)
 | |
|     MIB.addReg(X86::AL, RegState::Implicit);
 | |
| 
 | |
|   // Add implicit physical register uses to the call.
 | |
|   for (auto Reg : OutRegs)
 | |
|     MIB.addReg(Reg, RegState::Implicit);
 | |
| 
 | |
|   // Issue CALLSEQ_END
 | |
|   unsigned NumBytesForCalleeToPop =
 | |
|       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
 | |
|                        TM.Options.GuaranteedTailCallOpt)
 | |
|           ? NumBytes // Callee pops everything.
 | |
|           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
 | |
|   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
 | |
|     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
 | |
| 
 | |
|   // Now handle call return values.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
 | |
|                     CLI.RetTy->getContext());
 | |
|   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     EVT CopyVT = VA.getValVT();
 | |
|     unsigned CopyReg = ResultReg + i;
 | |
|     unsigned SrcReg = VA.getLocReg();
 | |
| 
 | |
|     // If this is x86-64, and we disabled SSE, we can't return FP values
 | |
|     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
 | |
|         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
 | |
|       report_fatal_error("SSE register return with SSE disabled");
 | |
|     }
 | |
| 
 | |
|     // If the return value is an i1 and AVX-512 is enabled, we need
 | |
|     // to do a fixup to make the copy legal.
 | |
|     if (CopyVT == MVT::i1 && SrcReg == X86::AL && Subtarget->hasAVX512()) {
 | |
|       // Need to copy to a GR32 first.
 | |
|       // TODO: MOVZX isn't great here. We don't care about the upper bits.
 | |
|       SrcReg = createResultReg(&X86::GR32RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(X86::MOVZX32rr8), SrcReg).addReg(X86::AL);
 | |
|     }
 | |
| 
 | |
|     // If we prefer to use the value in xmm registers, copy it out as f80 and
 | |
|     // use a truncate to move it from fp stack reg to xmm reg.
 | |
|     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
 | |
|         isScalarFPTypeInSSEReg(VA.getValVT())) {
 | |
|       CopyVT = MVT::f80;
 | |
|       CopyReg = createResultReg(&X86::RFP80RegClass);
 | |
|     }
 | |
| 
 | |
|     // Copy out the result.
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
 | |
|     InRegs.push_back(VA.getLocReg());
 | |
| 
 | |
|     // Round the f80 to the right size, which also moves it to the appropriate
 | |
|     // xmm register. This is accomplished by storing the f80 value in memory
 | |
|     // and then loading it back.
 | |
|     if (CopyVT != VA.getValVT()) {
 | |
|       EVT ResVT = VA.getValVT();
 | |
|       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
 | |
|       unsigned MemSize = ResVT.getSizeInBits()/8;
 | |
|       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
 | |
|       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                 TII.get(Opc)), FI)
 | |
|         .addReg(CopyReg);
 | |
|       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
 | |
|       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                 TII.get(Opc), ResultReg + i), FI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CLI.ResultReg = ResultReg;
 | |
|   CLI.NumResultRegs = RVLocs.size();
 | |
|   CLI.Call = MIB;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86FastISel::fastSelectInstruction(const Instruction *I)  {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::Load:
 | |
|     return X86SelectLoad(I);
 | |
|   case Instruction::Store:
 | |
|     return X86SelectStore(I);
 | |
|   case Instruction::Ret:
 | |
|     return X86SelectRet(I);
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|     return X86SelectCmp(I);
 | |
|   case Instruction::ZExt:
 | |
|     return X86SelectZExt(I);
 | |
|   case Instruction::Br:
 | |
|     return X86SelectBranch(I);
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::Shl:
 | |
|     return X86SelectShift(I);
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::URem:
 | |
|     return X86SelectDivRem(I);
 | |
|   case Instruction::Select:
 | |
|     return X86SelectSelect(I);
 | |
|   case Instruction::Trunc:
 | |
|     return X86SelectTrunc(I);
 | |
|   case Instruction::FPExt:
 | |
|     return X86SelectFPExt(I);
 | |
|   case Instruction::FPTrunc:
 | |
|     return X86SelectFPTrunc(I);
 | |
|   case Instruction::SIToFP:
 | |
|     return X86SelectSIToFP(I);
 | |
|   case Instruction::IntToPtr: // Deliberate fall-through.
 | |
|   case Instruction::PtrToInt: {
 | |
|     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
 | |
|     EVT DstVT = TLI.getValueType(DL, I->getType());
 | |
|     if (DstVT.bitsGT(SrcVT))
 | |
|       return X86SelectZExt(I);
 | |
|     if (DstVT.bitsLT(SrcVT))
 | |
|       return X86SelectTrunc(I);
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0) return false;
 | |
|     updateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
|   case Instruction::BitCast: {
 | |
|     // Select SSE2/AVX bitcasts between 128/256 bit vector types.
 | |
|     if (!Subtarget->hasSSE2())
 | |
|       return false;
 | |
| 
 | |
|     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
 | |
|     EVT DstVT = TLI.getValueType(DL, I->getType());
 | |
| 
 | |
|     if (!SrcVT.isSimple() || !DstVT.isSimple())
 | |
|       return false;
 | |
| 
 | |
|     MVT SVT = SrcVT.getSimpleVT();
 | |
|     MVT DVT = DstVT.getSimpleVT();
 | |
| 
 | |
|     if (!SVT.is128BitVector() &&
 | |
|         !(Subtarget->hasAVX() && SVT.is256BitVector()) &&
 | |
|         !(Subtarget->hasAVX512() && SVT.is512BitVector() &&
 | |
|           (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 &&
 | |
|                                    DVT.getScalarSizeInBits() >= 32))))
 | |
|       return false;
 | |
| 
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
|       
 | |
|     // No instruction is needed for conversion. Reuse the register used by
 | |
|     // the fist operand.
 | |
|     updateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
 | |
|   if (VT > MVT::i64)
 | |
|     return 0;
 | |
| 
 | |
|   uint64_t Imm = CI->getZExtValue();
 | |
|   if (Imm == 0) {
 | |
|     unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
 | |
|     switch (VT.SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected value type");
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
 | |
|                                         X86::sub_8bit);
 | |
|     case MVT::i16:
 | |
|       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
 | |
|                                         X86::sub_16bit);
 | |
|     case MVT::i32:
 | |
|       return SrcReg;
 | |
|     case MVT::i64: {
 | |
|       unsigned ResultReg = createResultReg(&X86::GR64RegClass);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
 | |
|         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
 | |
|       return ResultReg;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Opc = 0;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default: llvm_unreachable("Unexpected value type");
 | |
|   case MVT::i1:
 | |
|     // TODO: Support this properly.
 | |
|     if (Subtarget->hasAVX512())
 | |
|       return 0;
 | |
|     VT = MVT::i8;
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case MVT::i8:  Opc = X86::MOV8ri;  break;
 | |
|   case MVT::i16: Opc = X86::MOV16ri; break;
 | |
|   case MVT::i32: Opc = X86::MOV32ri; break;
 | |
|   case MVT::i64: {
 | |
|     if (isUInt<32>(Imm))
 | |
|       Opc = X86::MOV32ri;
 | |
|     else if (isInt<32>(Imm))
 | |
|       Opc = X86::MOV64ri32;
 | |
|     else
 | |
|       Opc = X86::MOV64ri;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   if (VT == MVT::i64 && Opc == X86::MOV32ri) {
 | |
|     unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
 | |
|     unsigned ResultReg = createResultReg(&X86::GR64RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
 | |
|       .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
 | |
|     return ResultReg;
 | |
|   }
 | |
|   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
 | |
|   if (CFP->isNullValue())
 | |
|     return fastMaterializeFloatZero(CFP);
 | |
| 
 | |
|   // Can't handle alternate code models yet.
 | |
|   CodeModel::Model CM = TM.getCodeModel();
 | |
|   if (CM != CodeModel::Small && CM != CodeModel::Large)
 | |
|     return 0;
 | |
| 
 | |
|   // Get opcode and regclass of the output for the given load instruction.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default: return 0;
 | |
|   case MVT::f32:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
 | |
|       RC  = &X86::FR32RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp32m;
 | |
|       RC  = &X86::RFP32RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (X86ScalarSSEf64) {
 | |
|       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
 | |
|       RC  = &X86::FR64RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp64m;
 | |
|       RC  = &X86::RFP64RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // MachineConstantPool wants an explicit alignment.
 | |
|   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
 | |
|   if (Align == 0) {
 | |
|     // Alignment of vector types. FIXME!
 | |
|     Align = DL.getTypeAllocSize(CFP->getType());
 | |
|   }
 | |
| 
 | |
|   // x86-32 PIC requires a PIC base register for constant pools.
 | |
|   unsigned PICBase = 0;
 | |
|   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
 | |
|   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
 | |
|     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|   else if (OpFlag == X86II::MO_GOTOFF)
 | |
|     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | |
|   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
 | |
|     PICBase = X86::RIP;
 | |
| 
 | |
|   // Create the load from the constant pool.
 | |
|   unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
| 
 | |
|   if (CM == CodeModel::Large) {
 | |
|     unsigned AddrReg = createResultReg(&X86::GR64RegClass);
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
 | |
|             AddrReg)
 | |
|       .addConstantPoolIndex(CPI, 0, OpFlag);
 | |
|     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                       TII.get(Opc), ResultReg);
 | |
|     addDirectMem(MIB, AddrReg);
 | |
|     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
 | |
|         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
 | |
|         MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
 | |
|     MIB->addMemOperand(*FuncInfo.MF, MMO);
 | |
|     return ResultReg;
 | |
|   }
 | |
| 
 | |
|   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                                    TII.get(Opc), ResultReg),
 | |
|                            CPI, PICBase, OpFlag);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
 | |
|   // Can't handle alternate code models yet.
 | |
|   if (TM.getCodeModel() != CodeModel::Small)
 | |
|     return 0;
 | |
| 
 | |
|   // Materialize addresses with LEA/MOV instructions.
 | |
|   X86AddressMode AM;
 | |
|   if (X86SelectAddress(GV, AM)) {
 | |
|     // If the expression is just a basereg, then we're done, otherwise we need
 | |
|     // to emit an LEA.
 | |
|     if (AM.BaseType == X86AddressMode::RegBase &&
 | |
|         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
 | |
|       return AM.Base.Reg;
 | |
| 
 | |
|     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     if (TM.getRelocationModel() == Reloc::Static &&
 | |
|         TLI.getPointerTy(DL) == MVT::i64) {
 | |
|       // The displacement code could be more than 32 bits away so we need to use
 | |
|       // an instruction with a 64 bit immediate
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
 | |
|               ResultReg)
 | |
|         .addGlobalAddress(GV);
 | |
|     } else {
 | |
|       unsigned Opc =
 | |
|           TLI.getPointerTy(DL) == MVT::i32
 | |
|               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
 | |
|               : X86::LEA64r;
 | |
|       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                              TII.get(Opc), ResultReg), AM);
 | |
|     }
 | |
|     return ResultReg;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
 | |
|   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
 | |
| 
 | |
|   // Only handle simple types.
 | |
|   if (!CEVT.isSimple())
 | |
|     return 0;
 | |
|   MVT VT = CEVT.getSimpleVT();
 | |
| 
 | |
|   if (const auto *CI = dyn_cast<ConstantInt>(C))
 | |
|     return X86MaterializeInt(CI, VT);
 | |
|   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
 | |
|     return X86MaterializeFP(CFP, VT);
 | |
|   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|     return X86MaterializeGV(GV, VT);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
 | |
|   // Fail on dynamic allocas. At this point, getRegForValue has already
 | |
|   // checked its CSE maps, so if we're here trying to handle a dynamic
 | |
|   // alloca, we're not going to succeed. X86SelectAddress has a
 | |
|   // check for dynamic allocas, because it's called directly from
 | |
|   // various places, but targetMaterializeAlloca also needs a check
 | |
|   // in order to avoid recursion between getRegForValue,
 | |
|   // X86SelectAddrss, and targetMaterializeAlloca.
 | |
|   if (!FuncInfo.StaticAllocaMap.count(C))
 | |
|     return 0;
 | |
|   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
 | |
| 
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(C, AM))
 | |
|     return 0;
 | |
|   unsigned Opc =
 | |
|       TLI.getPointerTy(DL) == MVT::i32
 | |
|           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
 | |
|           : X86::LEA64r;
 | |
|   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|                          TII.get(Opc), ResultReg), AM);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
 | |
|   MVT VT;
 | |
|   if (!isTypeLegal(CF->getType(), VT))
 | |
|     return 0;
 | |
| 
 | |
|   // Get opcode and regclass for the given zero.
 | |
|   unsigned Opc = 0;
 | |
|   const TargetRegisterClass *RC = nullptr;
 | |
|   switch (VT.SimpleTy) {
 | |
|   default: return 0;
 | |
|   case MVT::f32:
 | |
|     if (X86ScalarSSEf32) {
 | |
|       Opc = X86::FsFLD0SS;
 | |
|       RC  = &X86::FR32RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp032;
 | |
|       RC  = &X86::RFP32RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f64:
 | |
|     if (X86ScalarSSEf64) {
 | |
|       Opc = X86::FsFLD0SD;
 | |
|       RC  = &X86::FR64RegClass;
 | |
|     } else {
 | |
|       Opc = X86::LD_Fp064;
 | |
|       RC  = &X86::RFP64RegClass;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::f80:
 | |
|     // No f80 support yet.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
 | |
|                                       const LoadInst *LI) {
 | |
|   const Value *Ptr = LI->getPointerOperand();
 | |
|   X86AddressMode AM;
 | |
|   if (!X86SelectAddress(Ptr, AM))
 | |
|     return false;
 | |
| 
 | |
|   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
 | |
| 
 | |
|   unsigned Size = DL.getTypeAllocSize(LI->getType());
 | |
|   unsigned Alignment = LI->getAlignment();
 | |
| 
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = DL.getABITypeAlignment(LI->getType());
 | |
| 
 | |
|   SmallVector<MachineOperand, 8> AddrOps;
 | |
|   AM.getFullAddress(AddrOps);
 | |
| 
 | |
|   MachineInstr *Result = XII.foldMemoryOperandImpl(
 | |
|       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
 | |
|       /*AllowCommute=*/true);
 | |
|   if (!Result)
 | |
|     return false;
 | |
| 
 | |
|   // The index register could be in the wrong register class.  Unfortunately,
 | |
|   // foldMemoryOperandImpl could have commuted the instruction so its not enough
 | |
|   // to just look at OpNo + the offset to the index reg.  We actually need to
 | |
|   // scan the instruction to find the index reg and see if its the correct reg
 | |
|   // class.
 | |
|   unsigned OperandNo = 0;
 | |
|   for (MachineInstr::mop_iterator I = Result->operands_begin(),
 | |
|        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
 | |
|     MachineOperand &MO = *I;
 | |
|     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
 | |
|       continue;
 | |
|     // Found the index reg, now try to rewrite it.
 | |
|     unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
 | |
|                                                  MO.getReg(), OperandNo);
 | |
|     if (IndexReg == MO.getReg())
 | |
|       continue;
 | |
|     MO.setReg(IndexReg);
 | |
|   }
 | |
| 
 | |
|   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
 | |
|   MI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
 | |
|                                         const TargetRegisterClass *RC,
 | |
|                                         unsigned Op0, bool Op0IsKill,
 | |
|                                         unsigned Op1, bool Op1IsKill,
 | |
|                                         unsigned Op2, bool Op2IsKill,
 | |
|                                         unsigned Op3, bool Op3IsKill) {
 | |
|   const MCInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
 | |
|   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
 | |
|   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
 | |
|   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 3);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
 | |
|         .addReg(Op0, getKillRegState(Op0IsKill))
 | |
|         .addReg(Op1, getKillRegState(Op1IsKill))
 | |
|         .addReg(Op2, getKillRegState(Op2IsKill))
 | |
|         .addReg(Op3, getKillRegState(Op3IsKill));
 | |
|   else {
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
 | |
|         .addReg(Op0, getKillRegState(Op0IsKill))
 | |
|         .addReg(Op1, getKillRegState(Op1IsKill))
 | |
|         .addReg(Op2, getKillRegState(Op2IsKill))
 | |
|         .addReg(Op3, getKillRegState(Op3IsKill));
 | |
|     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
 | |
|             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace llvm {
 | |
|   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
 | |
|                                 const TargetLibraryInfo *libInfo) {
 | |
|     return new X86FastISel(funcInfo, libInfo);
 | |
|   }
 | |
| }
 |