2037 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			2037 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file describes the various pseudo instructions used by the compiler,
 | |
| // as well as Pat patterns used during instruction selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pattern Matching Support
 | |
| 
 | |
| def GetLo32XForm : SDNodeXForm<imm, [{
 | |
|   // Transformation function: get the low 32 bits.
 | |
|   return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
 | |
| }]>;
 | |
| 
 | |
| def GetLo8XForm : SDNodeXForm<imm, [{
 | |
|   // Transformation function: get the low 8 bits.
 | |
|   return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
 | |
| }]>;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Random Pseudo Instructions.
 | |
| 
 | |
| // PIC base construction.  This expands to code that looks like this:
 | |
| //     call  $next_inst
 | |
| //     popl %destreg"
 | |
| let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
 | |
|   def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
 | |
|                       "", []>;
 | |
| 
 | |
| 
 | |
| // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
 | |
| // a stack adjustment and the codegen must know that they may modify the stack
 | |
| // pointer before prolog-epilog rewriting occurs.
 | |
| // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
 | |
| // sub / add which can clobber EFLAGS.
 | |
| let Defs = [ESP, EFLAGS], Uses = [ESP] in {
 | |
| def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
 | |
|                            (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
 | |
|                            "#ADJCALLSTACKDOWN",
 | |
|                            []>,
 | |
|                           Requires<[NotLP64]>;
 | |
| def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
 | |
|                            "#ADJCALLSTACKUP",
 | |
|                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
 | |
|                           Requires<[NotLP64]>;
 | |
| }
 | |
| def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
 | |
|        (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
 | |
| 
 | |
| 
 | |
| // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
 | |
| // a stack adjustment and the codegen must know that they may modify the stack
 | |
| // pointer before prolog-epilog rewriting occurs.
 | |
| // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
 | |
| // sub / add which can clobber EFLAGS.
 | |
| let Defs = [RSP, EFLAGS], Uses = [RSP] in {
 | |
| def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
 | |
|                            (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
 | |
|                            "#ADJCALLSTACKDOWN",
 | |
|                            []>,
 | |
|                           Requires<[IsLP64]>;
 | |
| def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
 | |
|                            "#ADJCALLSTACKUP",
 | |
|                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
 | |
|                           Requires<[IsLP64]>;
 | |
| }
 | |
| def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
 | |
|         (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
 | |
| 
 | |
| 
 | |
| // x86-64 va_start lowering magic.
 | |
| let usesCustomInserter = 1, Defs = [EFLAGS] in {
 | |
| def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
 | |
|                               (outs),
 | |
|                               (ins GR8:$al,
 | |
|                                    i64imm:$regsavefi, i64imm:$offset,
 | |
|                                    variable_ops),
 | |
|                               "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
 | |
|                               [(X86vastart_save_xmm_regs GR8:$al,
 | |
|                                                          imm:$regsavefi,
 | |
|                                                          imm:$offset),
 | |
|                                (implicit EFLAGS)]>;
 | |
| 
 | |
| // The VAARG_64 pseudo-instruction takes the address of the va_list,
 | |
| // and places the address of the next argument into a register.
 | |
| let Defs = [EFLAGS] in
 | |
| def VAARG_64 : I<0, Pseudo,
 | |
|                  (outs GR64:$dst),
 | |
|                  (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
 | |
|                  "#VAARG_64 $dst, $ap, $size, $mode, $align",
 | |
|                  [(set GR64:$dst,
 | |
|                     (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
 | |
|                   (implicit EFLAGS)]>;
 | |
| 
 | |
| 
 | |
| // When using segmented stacks these are lowered into instructions which first
 | |
| // check if the current stacklet has enough free memory. If it does, memory is
 | |
| // allocated by bumping the stack pointer. Otherwise memory is allocated from
 | |
| // the heap.
 | |
| 
 | |
| let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
 | |
| def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
 | |
|                       "# variable sized alloca for segmented stacks",
 | |
|                       [(set GR32:$dst,
 | |
|                          (X86SegAlloca GR32:$size))]>,
 | |
|                     Requires<[NotLP64]>;
 | |
| 
 | |
| let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
 | |
| def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
 | |
|                       "# variable sized alloca for segmented stacks",
 | |
|                       [(set GR64:$dst,
 | |
|                          (X86SegAlloca GR64:$size))]>,
 | |
|                     Requires<[In64BitMode]>;
 | |
| }
 | |
| 
 | |
| // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
 | |
| // targets.  These calls are needed to probe the stack when allocating more than
 | |
| // 4k bytes in one go. Touching the stack at 4K increments is necessary to
 | |
| // ensure that the guard pages used by the OS virtual memory manager are
 | |
| // allocated in correct sequence.
 | |
| // The main point of having separate instruction are extra unmodelled effects
 | |
| // (compared to ordinary calls) like stack pointer change.
 | |
| 
 | |
| let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
 | |
| def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
 | |
|                      "# dynamic stack allocation",
 | |
|                      [(X86WinAlloca GR32:$size)]>,
 | |
|                      Requires<[NotLP64]>;
 | |
| 
 | |
| let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
 | |
| def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
 | |
|                      "# dynamic stack allocation",
 | |
|                      [(X86WinAlloca GR64:$size)]>,
 | |
|                      Requires<[In64BitMode]>;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // EH Pseudo Instructions
 | |
| //
 | |
| let SchedRW = [WriteSystem] in {
 | |
| let isTerminator = 1, isReturn = 1, isBarrier = 1,
 | |
|     hasCtrlDep = 1, isCodeGenOnly = 1 in {
 | |
| def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
 | |
|                     "ret\t#eh_return, addr: $addr",
 | |
|                     [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
 | |
| 
 | |
| }
 | |
| 
 | |
| let isTerminator = 1, isReturn = 1, isBarrier = 1,
 | |
|     hasCtrlDep = 1, isCodeGenOnly = 1 in {
 | |
| def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
 | |
|                      "ret\t#eh_return, addr: $addr",
 | |
|                      [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
 | |
| 
 | |
| }
 | |
| 
 | |
| let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
 | |
|     isCodeGenOnly = 1, isReturn = 1 in {
 | |
|   def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
 | |
| 
 | |
|   // CATCHRET needs a custom inserter for SEH.
 | |
|   let usesCustomInserter = 1 in
 | |
|     def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
 | |
|                      "# CATCHRET",
 | |
|                      [(catchret bb:$dst, bb:$from)]>;
 | |
| }
 | |
| 
 | |
| let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
 | |
|     usesCustomInserter = 1 in
 | |
| def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
 | |
| 
 | |
| // This instruction is responsible for re-establishing stack pointers after an
 | |
| // exception has been caught and we are rejoining normal control flow in the
 | |
| // parent function or funclet. It generally sets ESP and EBP, and optionally
 | |
| // ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
 | |
| // elsewhere.
 | |
| let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
 | |
| def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
 | |
| 
 | |
| let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
 | |
|     usesCustomInserter = 1 in {
 | |
|   def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
 | |
|                             "#EH_SJLJ_SETJMP32",
 | |
|                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
 | |
|                           Requires<[Not64BitMode]>;
 | |
|   def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
 | |
|                             "#EH_SJLJ_SETJMP64",
 | |
|                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
 | |
|                           Requires<[In64BitMode]>;
 | |
|   let isTerminator = 1 in {
 | |
|   def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
 | |
|                             "#EH_SJLJ_LONGJMP32",
 | |
|                             [(X86eh_sjlj_longjmp addr:$buf)]>,
 | |
|                           Requires<[Not64BitMode]>;
 | |
|   def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
 | |
|                             "#EH_SJLJ_LONGJMP64",
 | |
|                             [(X86eh_sjlj_longjmp addr:$buf)]>,
 | |
|                           Requires<[In64BitMode]>;
 | |
|   }
 | |
| }
 | |
| } // SchedRW
 | |
| 
 | |
| let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
 | |
|   def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
 | |
|                         "#EH_SjLj_Setup\t$dst", []>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pseudo instructions used by unwind info.
 | |
| //
 | |
| let isPseudo = 1 in {
 | |
|   def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
 | |
|                             "#SEH_PushReg $reg", []>;
 | |
|   def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
 | |
|                             "#SEH_SaveReg $reg, $dst", []>;
 | |
|   def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
 | |
|                             "#SEH_SaveXMM $reg, $dst", []>;
 | |
|   def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
 | |
|                             "#SEH_StackAlloc $size", []>;
 | |
|   def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
 | |
|                             "#SEH_SetFrame $reg, $offset", []>;
 | |
|   def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
 | |
|                             "#SEH_PushFrame $mode", []>;
 | |
|   def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
 | |
|                             "#SEH_EndPrologue", []>;
 | |
|   def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
 | |
|                             "#SEH_Epilogue", []>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pseudo instructions used by segmented stacks.
 | |
| //
 | |
| 
 | |
| // This is lowered into a RET instruction by MCInstLower.  We need
 | |
| // this so that we don't have to have a MachineBasicBlock which ends
 | |
| // with a RET and also has successors.
 | |
| let isPseudo = 1 in {
 | |
| def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
 | |
|                           "", []>;
 | |
| 
 | |
| // This instruction is lowered to a RET followed by a MOV.  The two
 | |
| // instructions are not generated on a higher level since then the
 | |
| // verifier sees a MachineBasicBlock ending with a non-terminator.
 | |
| def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
 | |
|                                   "", []>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Alias Instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Alias instruction mapping movr0 to xor.
 | |
| // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
 | |
| let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
 | |
|     isPseudo = 1, AddedComplexity = 10 in
 | |
| def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
 | |
|                  [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
 | |
| 
 | |
| // Other widths can also make use of the 32-bit xor, which may have a smaller
 | |
| // encoding and avoid partial register updates.
 | |
| let AddedComplexity = 10 in {
 | |
| def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
 | |
| def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
 | |
| def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
 | |
| }
 | |
| 
 | |
| let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
 | |
|     AddedComplexity = 10 in {
 | |
|   // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
 | |
|   // which only require 3 bytes compared to MOV32ri which requires 5.
 | |
|   let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
 | |
|     def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
 | |
|                         [(set GR32:$dst, 1)]>;
 | |
|     def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
 | |
|                         [(set GR32:$dst, -1)]>;
 | |
|   }
 | |
| 
 | |
|   // MOV16ri is 4 bytes, so the instructions above are smaller.
 | |
|   def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
 | |
|   def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
 | |
| }
 | |
| 
 | |
| let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5 in {
 | |
| // AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
 | |
| // FIXME: Add itinerary class and Schedule.
 | |
| def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
 | |
|                        [(set GR32:$dst, i32immSExt8:$src)]>,
 | |
|                      Requires<[OptForMinSize, NotWin64WithoutFP]>;
 | |
| def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
 | |
|                        [(set GR64:$dst, i64immSExt8:$src)]>,
 | |
|                      Requires<[OptForMinSize, NotWin64WithoutFP]>;
 | |
| }
 | |
| 
 | |
| // Materialize i64 constant where top 32-bits are zero. This could theoretically
 | |
| // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
 | |
| // that would make it more difficult to rematerialize.
 | |
| let isReMaterializable = 1, isAsCheapAsAMove = 1,
 | |
|     isPseudo = 1, hasSideEffects = 0 in
 | |
| def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
 | |
| 
 | |
| // This 64-bit pseudo-move can be used for both a 64-bit constant that is
 | |
| // actually the zero-extension of a 32-bit constant and for labels in the
 | |
| // x86-64 small code model.
 | |
| def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
 | |
| 
 | |
| let AddedComplexity = 1 in
 | |
| def : Pat<(i64 mov64imm32:$src),
 | |
|           (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
 | |
| 
 | |
| // Use sbb to materialize carry bit.
 | |
| let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
 | |
| // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
 | |
| // However, Pat<> can't replicate the destination reg into the inputs of the
 | |
| // result.
 | |
| def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
 | |
|                  [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
 | |
| def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
 | |
|                  [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
 | |
| def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
 | |
|                  [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
 | |
| def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
 | |
|                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
 | |
| } // isCodeGenOnly
 | |
| 
 | |
| 
 | |
| def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C16r)>;
 | |
| def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C32r)>;
 | |
| def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C64r)>;
 | |
| 
 | |
| def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C16r)>;
 | |
| def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C32r)>;
 | |
| def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C64r)>;
 | |
| 
 | |
| // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
 | |
| // will be eliminated and that the sbb can be extended up to a wider type.  When
 | |
| // this happens, it is great.  However, if we are left with an 8-bit sbb and an
 | |
| // and, we might as well just match it as a setb.
 | |
| def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
 | |
|           (SETBr)>;
 | |
| 
 | |
| // (add OP, SETB) -> (adc OP, 0)
 | |
| def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
 | |
|           (ADC8ri GR8:$op, 0)>;
 | |
| def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
 | |
|           (ADC32ri8 GR32:$op, 0)>;
 | |
| def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
 | |
|           (ADC64ri8 GR64:$op, 0)>;
 | |
| 
 | |
| // (sub OP, SETB) -> (sbb OP, 0)
 | |
| def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
 | |
|           (SBB8ri GR8:$op, 0)>;
 | |
| def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
 | |
|           (SBB32ri8 GR32:$op, 0)>;
 | |
| def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
 | |
|           (SBB64ri8 GR64:$op, 0)>;
 | |
| 
 | |
| // (sub OP, SETCC_CARRY) -> (adc OP, 0)
 | |
| def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
 | |
|           (ADC8ri GR8:$op, 0)>;
 | |
| def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
 | |
|           (ADC32ri8 GR32:$op, 0)>;
 | |
| def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
 | |
|           (ADC64ri8 GR64:$op, 0)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // String Pseudo Instructions
 | |
| //
 | |
| let SchedRW = [WriteMicrocoded] in {
 | |
| let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
 | |
| def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
 | |
|                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
 | |
|                    Requires<[Not64BitMode]>;
 | |
| def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
 | |
|                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
 | |
|                    Requires<[Not64BitMode]>;
 | |
| def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
 | |
|                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
 | |
|                    Requires<[Not64BitMode]>;
 | |
| }
 | |
| 
 | |
| let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
 | |
| def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
 | |
|                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
 | |
|                    Requires<[In64BitMode]>;
 | |
| def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
 | |
|                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
 | |
|                    Requires<[In64BitMode]>;
 | |
| def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
 | |
|                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
 | |
|                    Requires<[In64BitMode]>;
 | |
| def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
 | |
|                     [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
 | |
|                    Requires<[In64BitMode]>;
 | |
| }
 | |
| 
 | |
| // FIXME: Should use "(X86rep_stos AL)" as the pattern.
 | |
| let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
 | |
|   let Uses = [AL,ECX,EDI] in
 | |
|   def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
 | |
|                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
 | |
|                      Requires<[Not64BitMode]>;
 | |
|   let Uses = [AX,ECX,EDI] in
 | |
|   def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
 | |
|                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
 | |
|                      Requires<[Not64BitMode]>;
 | |
|   let Uses = [EAX,ECX,EDI] in
 | |
|   def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
 | |
|                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
 | |
|                      Requires<[Not64BitMode]>;
 | |
| }
 | |
| 
 | |
| let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
 | |
|   let Uses = [AL,RCX,RDI] in
 | |
|   def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
 | |
|                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
 | |
|                      Requires<[In64BitMode]>;
 | |
|   let Uses = [AX,RCX,RDI] in
 | |
|   def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
 | |
|                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
 | |
|                      Requires<[In64BitMode]>;
 | |
|   let Uses = [RAX,RCX,RDI] in
 | |
|   def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
 | |
|                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
 | |
|                      Requires<[In64BitMode]>;
 | |
| 
 | |
|   let Uses = [RAX,RCX,RDI] in
 | |
|   def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
 | |
|                       [(X86rep_stos i64)], IIC_REP_STOS>, REP,
 | |
|                      Requires<[In64BitMode]>;
 | |
| }
 | |
| } // SchedRW
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Thread Local Storage Instructions
 | |
| //
 | |
| 
 | |
| // ELF TLS Support
 | |
| // All calls clobber the non-callee saved registers. ESP is marked as
 | |
| // a use to prevent stack-pointer assignments that appear immediately
 | |
| // before calls from potentially appearing dead.
 | |
| let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
 | |
|             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
 | |
|             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
 | |
|             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
 | |
|             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
 | |
|     usesCustomInserter = 1, Uses = [ESP] in {
 | |
| def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
 | |
|                   "# TLS_addr32",
 | |
|                   [(X86tlsaddr tls32addr:$sym)]>,
 | |
|                   Requires<[Not64BitMode]>;
 | |
| def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
 | |
|                   "# TLS_base_addr32",
 | |
|                   [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
 | |
|                   Requires<[Not64BitMode]>;
 | |
| }
 | |
| 
 | |
| // All calls clobber the non-callee saved registers. RSP is marked as
 | |
| // a use to prevent stack-pointer assignments that appear immediately
 | |
| // before calls from potentially appearing dead.
 | |
| let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
 | |
|             FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
 | |
|             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
 | |
|             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
 | |
|             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
 | |
|             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
 | |
|     usesCustomInserter = 1, Uses = [RSP] in {
 | |
| def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
 | |
|                    "# TLS_addr64",
 | |
|                   [(X86tlsaddr tls64addr:$sym)]>,
 | |
|                   Requires<[In64BitMode]>;
 | |
| def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
 | |
|                    "# TLS_base_addr64",
 | |
|                   [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
 | |
|                   Requires<[In64BitMode]>;
 | |
| }
 | |
| 
 | |
| // Darwin TLS Support
 | |
| // For i386, the address of the thunk is passed on the stack, on return the
 | |
| // address of the variable is in %eax.  %ecx is trashed during the function
 | |
| // call.  All other registers are preserved.
 | |
| let Defs = [EAX, ECX, EFLAGS],
 | |
|     Uses = [ESP],
 | |
|     usesCustomInserter = 1 in
 | |
| def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
 | |
|                 "# TLSCall_32",
 | |
|                 [(X86TLSCall addr:$sym)]>,
 | |
|                 Requires<[Not64BitMode]>;
 | |
| 
 | |
| // For x86_64, the address of the thunk is passed in %rdi, but the
 | |
| // pseudo directly use the symbol, so do not add an implicit use of
 | |
| // %rdi. The lowering will do the right thing with RDI.
 | |
| // On return the address of the variable is in %rax.  All other
 | |
| // registers are preserved.
 | |
| let Defs = [RAX, EFLAGS],
 | |
|     Uses = [RSP],
 | |
|     usesCustomInserter = 1 in
 | |
| def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
 | |
|                   "# TLSCall_64",
 | |
|                   [(X86TLSCall addr:$sym)]>,
 | |
|                   Requires<[In64BitMode]>;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Conditional Move Pseudo Instructions
 | |
| 
 | |
| // CMOV* - Used to implement the SELECT DAG operation.  Expanded after
 | |
| // instruction selection into a branch sequence.
 | |
| multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
 | |
|   def CMOV#NAME  : I<0, Pseudo,
 | |
|                     (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
 | |
|                     "#CMOV_"#NAME#" PSEUDO!",
 | |
|                     [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
 | |
|                                                 EFLAGS)))]>;
 | |
| }
 | |
| 
 | |
| let usesCustomInserter = 1, Uses = [EFLAGS] in {
 | |
|   // X86 doesn't have 8-bit conditional moves. Use a customInserter to
 | |
|   // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
 | |
|   // however that requires promoting the operands, and can induce additional
 | |
|   // i8 register pressure.
 | |
|   defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
 | |
| 
 | |
|   let Predicates = [NoCMov] in {
 | |
|     defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
 | |
|     defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
 | |
|   } // Predicates = [NoCMov]
 | |
| 
 | |
|   // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
 | |
|   // SSE1/SSE2.
 | |
|   let Predicates = [FPStackf32] in
 | |
|     defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
 | |
| 
 | |
|   let Predicates = [FPStackf64] in
 | |
|     defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
 | |
| 
 | |
|   defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
 | |
| 
 | |
|   defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
 | |
|   defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
 | |
|   defm _FR128  : CMOVrr_PSEUDO<FR128, f128>;
 | |
|   defm _V4F32  : CMOVrr_PSEUDO<VR128, v4f32>;
 | |
|   defm _V2F64  : CMOVrr_PSEUDO<VR128, v2f64>;
 | |
|   defm _V2I64  : CMOVrr_PSEUDO<VR128, v2i64>;
 | |
|   defm _V8F32  : CMOVrr_PSEUDO<VR256, v8f32>;
 | |
|   defm _V4F64  : CMOVrr_PSEUDO<VR256, v4f64>;
 | |
|   defm _V4I64  : CMOVrr_PSEUDO<VR256, v4i64>;
 | |
|   defm _V8I64  : CMOVrr_PSEUDO<VR512, v8i64>;
 | |
|   defm _V8F64  : CMOVrr_PSEUDO<VR512, v8f64>;
 | |
|   defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
 | |
|   defm _V8I1   : CMOVrr_PSEUDO<VK8,  v8i1>;
 | |
|   defm _V16I1  : CMOVrr_PSEUDO<VK16, v16i1>;
 | |
|   defm _V32I1  : CMOVrr_PSEUDO<VK32, v32i1>;
 | |
|   defm _V64I1  : CMOVrr_PSEUDO<VK64, v64i1>;
 | |
| } // usesCustomInserter = 1, Uses = [EFLAGS]
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // FIXME: Use normal instructions and add lock prefix dynamically.
 | |
| 
 | |
| // Memory barriers
 | |
| 
 | |
| // TODO: Get this to fold the constant into the instruction.
 | |
| let isCodeGenOnly = 1, Defs = [EFLAGS] in
 | |
| def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
 | |
|                       "or{l}\t{$zero, $dst|$dst, $zero}", [],
 | |
|                       IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
 | |
|                     Sched<[WriteALULd, WriteRMW]>;
 | |
| 
 | |
| let hasSideEffects = 1 in
 | |
| def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
 | |
|                      "#MEMBARRIER",
 | |
|                      [(X86MemBarrier)]>, Sched<[WriteLoad]>;
 | |
| 
 | |
| // RegOpc corresponds to the mr version of the instruction
 | |
| // ImmOpc corresponds to the mi version of the instruction
 | |
| // ImmOpc8 corresponds to the mi8 version of the instruction
 | |
| // ImmMod corresponds to the instruction format of the mi and mi8 versions
 | |
| multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
 | |
|                            Format ImmMod, SDPatternOperator Op, string mnemonic> {
 | |
| let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
 | |
|     SchedRW = [WriteALULd, WriteRMW] in {
 | |
| 
 | |
| def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
 | |
|                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
 | |
|                   MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
 | |
|                   !strconcat(mnemonic, "{b}\t",
 | |
|                              "{$src2, $dst|$dst, $src2}"),
 | |
|                   [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
 | |
|                   IIC_ALU_NONMEM>, LOCK;
 | |
| 
 | |
| def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
 | |
|                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
 | |
|                    MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
 | |
|                    !strconcat(mnemonic, "{w}\t",
 | |
|                               "{$src2, $dst|$dst, $src2}"),
 | |
|                    [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
 | |
|                    IIC_ALU_NONMEM>, OpSize16, LOCK;
 | |
| 
 | |
| def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
 | |
|                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
 | |
|                    MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
 | |
|                    !strconcat(mnemonic, "{l}\t",
 | |
|                               "{$src2, $dst|$dst, $src2}"),
 | |
|                    [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
 | |
|                    IIC_ALU_NONMEM>, OpSize32, LOCK;
 | |
| 
 | |
| def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
 | |
|                     RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
 | |
|                     MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
 | |
|                     !strconcat(mnemonic, "{q}\t",
 | |
|                                "{$src2, $dst|$dst, $src2}"),
 | |
|                     [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
 | |
|                     IIC_ALU_NONMEM>, LOCK;
 | |
| 
 | |
| def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
 | |
|                     ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
 | |
|                     ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
 | |
|                     !strconcat(mnemonic, "{b}\t",
 | |
|                                "{$src2, $dst|$dst, $src2}"),
 | |
|                     [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
 | |
|                     IIC_ALU_MEM>, LOCK;
 | |
| 
 | |
| def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
 | |
|                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
 | |
|                       ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
 | |
|                       !strconcat(mnemonic, "{w}\t",
 | |
|                                  "{$src2, $dst|$dst, $src2}"),
 | |
|                       [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
 | |
|                       IIC_ALU_MEM>, OpSize16, LOCK;
 | |
| 
 | |
| def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
 | |
|                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
 | |
|                       ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
 | |
|                       !strconcat(mnemonic, "{l}\t",
 | |
|                                  "{$src2, $dst|$dst, $src2}"),
 | |
|                       [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
 | |
|                       IIC_ALU_MEM>, OpSize32, LOCK;
 | |
| 
 | |
| def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
 | |
|                           ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
 | |
|                           ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
 | |
|                           !strconcat(mnemonic, "{q}\t",
 | |
|                                      "{$src2, $dst|$dst, $src2}"),
 | |
|                           [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
 | |
|                           IIC_ALU_MEM>, LOCK;
 | |
| 
 | |
| def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
 | |
|                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
 | |
|                       ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
 | |
|                       !strconcat(mnemonic, "{w}\t",
 | |
|                                  "{$src2, $dst|$dst, $src2}"),
 | |
|                       [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
 | |
|                       IIC_ALU_MEM>, OpSize16, LOCK;
 | |
| 
 | |
| def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
 | |
|                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
 | |
|                       ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
 | |
|                       !strconcat(mnemonic, "{l}\t",
 | |
|                                  "{$src2, $dst|$dst, $src2}"),
 | |
|                       [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
 | |
|                       IIC_ALU_MEM>, OpSize32, LOCK;
 | |
| 
 | |
| def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
 | |
|                        ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
 | |
|                        ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
 | |
|                        !strconcat(mnemonic, "{q}\t",
 | |
|                                   "{$src2, $dst|$dst, $src2}"),
 | |
|                        [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))],
 | |
|                        IIC_ALU_MEM>, LOCK;
 | |
| 
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
 | |
| defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
 | |
| defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
 | |
| defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
 | |
| defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
 | |
| 
 | |
| multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
 | |
|                           int Increment, string mnemonic> {
 | |
| let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
 | |
|     SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in {
 | |
| def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
 | |
|                  !strconcat(mnemonic, "{b}\t$dst"),
 | |
|                  [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))],
 | |
|                   IIC_UNARY_MEM>, LOCK;
 | |
| def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
 | |
|                  !strconcat(mnemonic, "{w}\t$dst"),
 | |
|                  [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))],
 | |
|                  IIC_UNARY_MEM>, OpSize16, LOCK;
 | |
| def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
 | |
|                  !strconcat(mnemonic, "{l}\t$dst"),
 | |
|                  [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))],
 | |
|                  IIC_UNARY_MEM>, OpSize32, LOCK;
 | |
| def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
 | |
|                   !strconcat(mnemonic, "{q}\t$dst"),
 | |
|                   [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))],
 | |
|                   IIC_UNARY_MEM>, LOCK;
 | |
| }
 | |
| }
 | |
| 
 | |
| defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m,  1, "inc">;
 | |
| defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">;
 | |
| 
 | |
| // Atomic compare and swap.
 | |
| multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
 | |
|                          SDPatternOperator frag, X86MemOperand x86memop,
 | |
|                          InstrItinClass itin> {
 | |
| let isCodeGenOnly = 1, usesCustomInserter = 1 in {
 | |
|   def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
 | |
|                !strconcat(mnemonic, "\t$ptr"),
 | |
|                [(frag addr:$ptr)], itin>, TB, LOCK;
 | |
| }
 | |
| }
 | |
| 
 | |
| multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
 | |
|                           string mnemonic, SDPatternOperator frag,
 | |
|                           InstrItinClass itin8, InstrItinClass itin> {
 | |
| let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
 | |
|   let Defs = [AL, EFLAGS], Uses = [AL] in
 | |
|   def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
 | |
|                   !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
 | |
|                   [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
 | |
|   let Defs = [AX, EFLAGS], Uses = [AX] in
 | |
|   def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
 | |
|                   !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
 | |
|                   [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
 | |
|   let Defs = [EAX, EFLAGS], Uses = [EAX] in
 | |
|   def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
 | |
|                   !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
 | |
|                   [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
 | |
|   let Defs = [RAX, EFLAGS], Uses = [RAX] in
 | |
|   def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
 | |
|                    !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
 | |
|                    [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
 | |
| }
 | |
| }
 | |
| 
 | |
| let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
 | |
|     SchedRW = [WriteALULd, WriteRMW] in {
 | |
| defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
 | |
|                                 X86cas8, i64mem,
 | |
|                                 IIC_CMPX_LOCK_8B>;
 | |
| }
 | |
| 
 | |
| // This pseudo must be used when the frame uses RBX as
 | |
| // the base pointer. Indeed, in such situation RBX is a reserved
 | |
| // register and the register allocator will ignore any use/def of
 | |
| // it. In other words, the register will not fix the clobbering of
 | |
| // RBX that will happen when setting the arguments for the instrucion.
 | |
| // 
 | |
| // Unlike the actual related instuction, we mark that this one
 | |
| // defines EBX (instead of using EBX).
 | |
| // The rationale is that we will define RBX during the expansion of
 | |
| // the pseudo. The argument feeding EBX is ebx_input.
 | |
| //
 | |
| // The additional argument, $ebx_save, is a temporary register used to
 | |
| // save the value of RBX across the actual instruction.
 | |
| //
 | |
| // To make sure the register assigned to $ebx_save does not interfere with
 | |
| // the definition of the actual instruction, we use a definition $dst which
 | |
| // is tied to $rbx_save. That way, the live-range of $rbx_save spans across
 | |
| // the instruction and we are sure we will have a valid register to restore
 | |
| // the value of RBX.
 | |
| let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
 | |
|     SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
 | |
|     Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
 | |
| def LCMPXCHG8B_SAVE_EBX :
 | |
|     I<0, Pseudo, (outs GR32:$dst),
 | |
|       (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
 | |
|       !strconcat("cmpxchg8b", "\t$ptr"),
 | |
|       [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
 | |
|                                         GR32:$ebx_save))],
 | |
|       IIC_CMPX_LOCK_8B>;
 | |
| }
 | |
| 
 | |
| 
 | |
| let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
 | |
|     Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
 | |
| defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
 | |
|                                  X86cas16, i128mem,
 | |
|                                  IIC_CMPX_LOCK_16B>, REX_W;
 | |
| }
 | |
| 
 | |
| // Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
 | |
| let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
 | |
|     Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
 | |
|     isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
 | |
|     usesCustomInserter = 1 in {
 | |
| def LCMPXCHG16B_SAVE_RBX :
 | |
|     I<0, Pseudo, (outs GR64:$dst),
 | |
|       (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
 | |
|       !strconcat("cmpxchg16b", "\t$ptr"),
 | |
|       [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
 | |
|                                                     GR64:$rbx_save))],
 | |
|       IIC_CMPX_LOCK_16B>;
 | |
| }
 | |
| 
 | |
| defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
 | |
|                                X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
 | |
| 
 | |
| // Atomic exchange and add
 | |
| multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
 | |
|                              string frag,
 | |
|                              InstrItinClass itin8, InstrItinClass itin> {
 | |
|   let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
 | |
|       SchedRW = [WriteALULd, WriteRMW] in {
 | |
|     def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
 | |
|                     (ins GR8:$val, i8mem:$ptr),
 | |
|                     !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
 | |
|                     [(set GR8:$dst,
 | |
|                           (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
 | |
|                     itin8>;
 | |
|     def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
 | |
|                     (ins GR16:$val, i16mem:$ptr),
 | |
|                     !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
 | |
|                     [(set
 | |
|                        GR16:$dst,
 | |
|                        (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
 | |
|                     itin>, OpSize16;
 | |
|     def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
 | |
|                     (ins GR32:$val, i32mem:$ptr),
 | |
|                     !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
 | |
|                     [(set
 | |
|                        GR32:$dst,
 | |
|                        (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
 | |
|                     itin>, OpSize32;
 | |
|     def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
 | |
|                      (ins GR64:$val, i64mem:$ptr),
 | |
|                      !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
 | |
|                      [(set
 | |
|                         GR64:$dst,
 | |
|                         (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
 | |
|                      itin>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
 | |
|                                IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
 | |
|              TB, LOCK;
 | |
| 
 | |
| /* The following multiclass tries to make sure that in code like
 | |
|  *    x.store (immediate op x.load(acquire), release)
 | |
|  * and
 | |
|  *    x.store (register op x.load(acquire), release)
 | |
|  * an operation directly on memory is generated instead of wasting a register.
 | |
|  * It is not automatic as atomic_store/load are only lowered to MOV instructions
 | |
|  * extremely late to prevent them from being accidentally reordered in the backend
 | |
|  * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
 | |
|  */
 | |
| multiclass RELEASE_BINOP_MI<SDNode op> {
 | |
|     def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
 | |
|         "#BINOP "#NAME#"8mi PSEUDO!",
 | |
|         [(atomic_store_8 addr:$dst, (op
 | |
|             (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
 | |
|     def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
 | |
|         "#BINOP "#NAME#"8mr PSEUDO!",
 | |
|         [(atomic_store_8 addr:$dst, (op
 | |
|             (atomic_load_8 addr:$dst), GR8:$src))]>;
 | |
|     // NAME#16 is not generated as 16-bit arithmetic instructions are considered
 | |
|     // costly and avoided as far as possible by this backend anyway
 | |
|     def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
 | |
|         "#BINOP "#NAME#"32mi PSEUDO!",
 | |
|         [(atomic_store_32 addr:$dst, (op
 | |
|             (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
 | |
|     def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
 | |
|         "#BINOP "#NAME#"32mr PSEUDO!",
 | |
|         [(atomic_store_32 addr:$dst, (op
 | |
|             (atomic_load_32 addr:$dst), GR32:$src))]>;
 | |
|     def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
 | |
|         "#BINOP "#NAME#"64mi32 PSEUDO!",
 | |
|         [(atomic_store_64 addr:$dst, (op
 | |
|             (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
 | |
|     def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
 | |
|         "#BINOP "#NAME#"64mr PSEUDO!",
 | |
|         [(atomic_store_64 addr:$dst, (op
 | |
|             (atomic_load_64 addr:$dst), GR64:$src))]>;
 | |
| }
 | |
| let Defs = [EFLAGS] in {
 | |
|   defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
 | |
|   defm RELEASE_AND : RELEASE_BINOP_MI<and>;
 | |
|   defm RELEASE_OR  : RELEASE_BINOP_MI<or>;
 | |
|   defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
 | |
|   // Note: we don't deal with sub, because substractions of constants are
 | |
|   //       optimized into additions before this code can run.
 | |
| }
 | |
| 
 | |
| // Same as above, but for floating-point.
 | |
| // FIXME: imm version.
 | |
| // FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
 | |
| // FIXME: This could also handle SIMD operations with *ps and *pd instructions.
 | |
| let usesCustomInserter = 1 in {
 | |
| multiclass RELEASE_FP_BINOP_MI<SDNode op> {
 | |
|     def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
 | |
|         "#BINOP "#NAME#"32mr PSEUDO!",
 | |
|         [(atomic_store_32 addr:$dst,
 | |
| 	   (i32 (bitconvert (op
 | |
|              (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
 | |
| 	      FR32:$src))))]>, Requires<[HasSSE1]>;
 | |
|     def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
 | |
|         "#BINOP "#NAME#"64mr PSEUDO!",
 | |
|         [(atomic_store_64 addr:$dst,
 | |
| 	   (i64 (bitconvert (op
 | |
|              (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
 | |
| 	      FR64:$src))))]>, Requires<[HasSSE2]>;
 | |
| }
 | |
| defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
 | |
| // FIXME: Add fsub, fmul, fdiv, ...
 | |
| }
 | |
| 
 | |
| multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
 | |
|     def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
 | |
|         "#UNOP "#NAME#"8m PSEUDO!",
 | |
|         [(atomic_store_8 addr:$dst, dag8)]>;
 | |
|     def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
 | |
|         "#UNOP "#NAME#"16m PSEUDO!",
 | |
|         [(atomic_store_16 addr:$dst, dag16)]>;
 | |
|     def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
 | |
|         "#UNOP "#NAME#"32m PSEUDO!",
 | |
|         [(atomic_store_32 addr:$dst, dag32)]>;
 | |
|     def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
 | |
|         "#UNOP "#NAME#"64m PSEUDO!",
 | |
|         [(atomic_store_64 addr:$dst, dag64)]>;
 | |
| }
 | |
| 
 | |
| let Defs = [EFLAGS] in {
 | |
|   defm RELEASE_INC : RELEASE_UNOP<
 | |
|       (add (atomic_load_8  addr:$dst), (i8 1)),
 | |
|       (add (atomic_load_16 addr:$dst), (i16 1)),
 | |
|       (add (atomic_load_32 addr:$dst), (i32 1)),
 | |
|       (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
 | |
|   defm RELEASE_DEC : RELEASE_UNOP<
 | |
|       (add (atomic_load_8  addr:$dst), (i8 -1)),
 | |
|       (add (atomic_load_16 addr:$dst), (i16 -1)),
 | |
|       (add (atomic_load_32 addr:$dst), (i32 -1)),
 | |
|       (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
 | |
| }
 | |
| /*
 | |
| TODO: These don't work because the type inference of TableGen fails.
 | |
| TODO: find a way to fix it.
 | |
| let Defs = [EFLAGS] in {
 | |
|   defm RELEASE_NEG : RELEASE_UNOP<
 | |
|       (ineg (atomic_load_8  addr:$dst)),
 | |
|       (ineg (atomic_load_16 addr:$dst)),
 | |
|       (ineg (atomic_load_32 addr:$dst)),
 | |
|       (ineg (atomic_load_64 addr:$dst))>;
 | |
| }
 | |
| // NOT doesn't set flags.
 | |
| defm RELEASE_NOT : RELEASE_UNOP<
 | |
|     (not (atomic_load_8  addr:$dst)),
 | |
|     (not (atomic_load_16 addr:$dst)),
 | |
|     (not (atomic_load_32 addr:$dst)),
 | |
|     (not (atomic_load_64 addr:$dst))>;
 | |
| */
 | |
| 
 | |
| def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
 | |
| 			"#RELEASE_MOV8mi PSEUDO!",
 | |
| 			[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
 | |
| def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
 | |
| 			"#RELEASE_MOV16mi PSEUDO!",
 | |
| 			[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
 | |
| def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
 | |
| 			"#RELEASE_MOV32mi PSEUDO!",
 | |
| 			[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
 | |
| def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
 | |
| 			"#RELEASE_MOV64mi32 PSEUDO!",
 | |
| 			[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
 | |
| 
 | |
| def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
 | |
|                         "#RELEASE_MOV8mr PSEUDO!",
 | |
|                         [(atomic_store_8  addr:$dst, GR8 :$src)]>;
 | |
| def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
 | |
|                         "#RELEASE_MOV16mr PSEUDO!",
 | |
|                         [(atomic_store_16 addr:$dst, GR16:$src)]>;
 | |
| def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
 | |
|                         "#RELEASE_MOV32mr PSEUDO!",
 | |
|                         [(atomic_store_32 addr:$dst, GR32:$src)]>;
 | |
| def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
 | |
|                         "#RELEASE_MOV64mr PSEUDO!",
 | |
|                         [(atomic_store_64 addr:$dst, GR64:$src)]>;
 | |
| 
 | |
| def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
 | |
|                       "#ACQUIRE_MOV8rm PSEUDO!",
 | |
|                       [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
 | |
| def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
 | |
|                       "#ACQUIRE_MOV16rm PSEUDO!",
 | |
|                       [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
 | |
| def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
 | |
|                       "#ACQUIRE_MOV32rm PSEUDO!",
 | |
|                       [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
 | |
| def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
 | |
|                       "#ACQUIRE_MOV64rm PSEUDO!",
 | |
|                       [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DAG Pattern Matching Rules
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
 | |
| // binary size compared to a regular MOV, but it introduces an unnecessary
 | |
| // load, so is not suitable for regular or optsize functions.
 | |
| let Predicates = [OptForMinSize] in {
 | |
| def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
 | |
| def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
 | |
| def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
 | |
| def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
 | |
| def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
 | |
| def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
 | |
| }
 | |
| 
 | |
| // In kernel code model, we can get the address of a label
 | |
| // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
 | |
| // the MOV64ri32 should accept these.
 | |
| def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
 | |
|           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
 | |
| def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
 | |
|           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
 | |
| def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
 | |
|           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
 | |
| def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
 | |
|           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
 | |
| def : Pat<(i64 (X86Wrapper mcsym:$dst)),
 | |
|           (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
 | |
| def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
 | |
|           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
 | |
| 
 | |
| // If we have small model and -static mode, it is safe to store global addresses
 | |
| // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
 | |
| // for MOV64mi32 should handle this sort of thing.
 | |
| def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
 | |
|           (MOV64mi32 addr:$dst, tconstpool:$src)>,
 | |
|           Requires<[NearData, IsNotPIC]>;
 | |
| def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
 | |
|           (MOV64mi32 addr:$dst, tjumptable:$src)>,
 | |
|           Requires<[NearData, IsNotPIC]>;
 | |
| def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
 | |
|           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
 | |
|           Requires<[NearData, IsNotPIC]>;
 | |
| def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
 | |
|           (MOV64mi32 addr:$dst, texternalsym:$src)>,
 | |
|           Requires<[NearData, IsNotPIC]>;
 | |
| def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
 | |
|           (MOV64mi32 addr:$dst, mcsym:$src)>,
 | |
|           Requires<[NearData, IsNotPIC]>;
 | |
| def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
 | |
|           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
 | |
|           Requires<[NearData, IsNotPIC]>;
 | |
| 
 | |
| def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
 | |
| def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
 | |
| 
 | |
| // Calls
 | |
| 
 | |
| // tls has some funny stuff here...
 | |
| // This corresponds to movabs $foo@tpoff, %rax
 | |
| def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
 | |
|           (MOV64ri32 tglobaltlsaddr :$dst)>;
 | |
| // This corresponds to add $foo@tpoff, %rax
 | |
| def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
 | |
|           (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
 | |
| 
 | |
| 
 | |
| // Direct PC relative function call for small code model. 32-bit displacement
 | |
| // sign extended to 64-bit.
 | |
| def : Pat<(X86call (i64 tglobaladdr:$dst)),
 | |
|           (CALL64pcrel32 tglobaladdr:$dst)>;
 | |
| def : Pat<(X86call (i64 texternalsym:$dst)),
 | |
|           (CALL64pcrel32 texternalsym:$dst)>;
 | |
| 
 | |
| // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
 | |
| // can never use callee-saved registers. That is the purpose of the GR64_TC
 | |
| // register classes.
 | |
| //
 | |
| // The only volatile register that is never used by the calling convention is
 | |
| // %r11. This happens when calling a vararg function with 6 arguments.
 | |
| //
 | |
| // Match an X86tcret that uses less than 7 volatile registers.
 | |
| def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
 | |
|                              (X86tcret node:$ptr, node:$off), [{
 | |
|   // X86tcret args: (*chain, ptr, imm, regs..., glue)
 | |
|   unsigned NumRegs = 0;
 | |
|   for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
 | |
|       return false;
 | |
|   return true;
 | |
| }]>;
 | |
| 
 | |
| def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
 | |
|           (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
 | |
|           Requires<[Not64BitMode]>;
 | |
| 
 | |
| // FIXME: This is disabled for 32-bit PIC mode because the global base
 | |
| // register which is part of the address mode may be assigned a
 | |
| // callee-saved register.
 | |
| def : Pat<(X86tcret (load addr:$dst), imm:$off),
 | |
|           (TCRETURNmi addr:$dst, imm:$off)>,
 | |
|           Requires<[Not64BitMode, IsNotPIC]>;
 | |
| 
 | |
| def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
 | |
|           (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
 | |
|           Requires<[NotLP64]>;
 | |
| 
 | |
| def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
 | |
|           (TCRETURNdi texternalsym:$dst, imm:$off)>,
 | |
|           Requires<[NotLP64]>;
 | |
| 
 | |
| def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
 | |
|           (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
 | |
|           Requires<[In64BitMode]>;
 | |
| 
 | |
| // Don't fold loads into X86tcret requiring more than 6 regs.
 | |
| // There wouldn't be enough scratch registers for base+index.
 | |
| def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
 | |
|           (TCRETURNmi64 addr:$dst, imm:$off)>,
 | |
|           Requires<[In64BitMode]>;
 | |
| 
 | |
| def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
 | |
|           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
 | |
|           Requires<[IsLP64]>;
 | |
| 
 | |
| def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
 | |
|           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
 | |
|           Requires<[IsLP64]>;
 | |
| 
 | |
| // Normal calls, with various flavors of addresses.
 | |
| def : Pat<(X86call (i32 tglobaladdr:$dst)),
 | |
|           (CALLpcrel32 tglobaladdr:$dst)>;
 | |
| def : Pat<(X86call (i32 texternalsym:$dst)),
 | |
|           (CALLpcrel32 texternalsym:$dst)>;
 | |
| def : Pat<(X86call (i32 imm:$dst)),
 | |
|           (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
 | |
| 
 | |
| // Comparisons.
 | |
| 
 | |
| // TEST R,R is smaller than CMP R,0
 | |
| def : Pat<(X86cmp GR8:$src1, 0),
 | |
|           (TEST8rr GR8:$src1, GR8:$src1)>;
 | |
| def : Pat<(X86cmp GR16:$src1, 0),
 | |
|           (TEST16rr GR16:$src1, GR16:$src1)>;
 | |
| def : Pat<(X86cmp GR32:$src1, 0),
 | |
|           (TEST32rr GR32:$src1, GR32:$src1)>;
 | |
| def : Pat<(X86cmp GR64:$src1, 0),
 | |
|           (TEST64rr GR64:$src1, GR64:$src1)>;
 | |
| 
 | |
| // Conditional moves with folded loads with operands swapped and conditions
 | |
| // inverted.
 | |
| multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
 | |
|                   Instruction Inst64> {
 | |
|   let Predicates = [HasCMov] in {
 | |
|     def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
 | |
|               (Inst16 GR16:$src2, addr:$src1)>;
 | |
|     def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
 | |
|               (Inst32 GR32:$src2, addr:$src1)>;
 | |
|     def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
 | |
|               (Inst64 GR64:$src2, addr:$src1)>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
 | |
| defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
 | |
| defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
 | |
| defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
 | |
| defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
 | |
| defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
 | |
| defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
 | |
| defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
 | |
| defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
 | |
| defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
 | |
| defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
 | |
| defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
 | |
| defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
 | |
| defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
 | |
| defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
 | |
| defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
 | |
| 
 | |
| // zextload bool -> zextload byte
 | |
| // i1 stored in one byte in zero-extended form.
 | |
| // Upper bits cleanup should be executed before Store.
 | |
| def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
 | |
| def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
 | |
| def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
 | |
| def : Pat<(zextloadi64i1 addr:$src),
 | |
|           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
 | |
| 
 | |
| // extload bool -> extload byte
 | |
| // When extloading from 16-bit and smaller memory locations into 64-bit
 | |
| // registers, use zero-extending loads so that the entire 64-bit register is
 | |
| // defined, avoiding partial-register updates.
 | |
| 
 | |
| def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
 | |
| def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
 | |
| def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
 | |
| def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
 | |
| def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
 | |
| def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
 | |
| 
 | |
| // For other extloads, use subregs, since the high contents of the register are
 | |
| // defined after an extload.
 | |
| def : Pat<(extloadi64i1 addr:$src),
 | |
|           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
 | |
| def : Pat<(extloadi64i8 addr:$src),
 | |
|           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
 | |
| def : Pat<(extloadi64i16 addr:$src),
 | |
|           (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
 | |
| def : Pat<(extloadi64i32 addr:$src),
 | |
|           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
 | |
| 
 | |
| // anyext. Define these to do an explicit zero-extend to
 | |
| // avoid partial-register updates.
 | |
| def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
 | |
|                                      (MOVZX32rr8 GR8 :$src), sub_16bit)>;
 | |
| def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
 | |
| 
 | |
| // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
 | |
| def : Pat<(i32 (anyext GR16:$src)),
 | |
|           (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
 | |
| 
 | |
| def : Pat<(i64 (anyext GR8 :$src)),
 | |
|           (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
 | |
| def : Pat<(i64 (anyext GR16:$src)),
 | |
|           (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
 | |
| def : Pat<(i64 (anyext GR32:$src)),
 | |
|           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
 | |
| 
 | |
| 
 | |
| // Any instruction that defines a 32-bit result leaves the high half of the
 | |
| // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
 | |
| // be copying from a truncate. Any other 32-bit operation will zero-extend
 | |
| // up to 64 bits.
 | |
| def def32 : PatLeaf<(i32 GR32:$src), [{
 | |
|   return N->getOpcode() != ISD::TRUNCATE &&
 | |
|          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
 | |
|          N->getOpcode() != ISD::CopyFromReg &&
 | |
|          N->getOpcode() != ISD::AssertSext;
 | |
| }]>;
 | |
| 
 | |
| // In the case of a 32-bit def that is known to implicitly zero-extend,
 | |
| // we can use a SUBREG_TO_REG.
 | |
| def : Pat<(i64 (zext def32:$src)),
 | |
|           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pattern match OR as ADD
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
 | |
| // 3-addressified into an LEA instruction to avoid copies.  However, we also
 | |
| // want to finally emit these instructions as an or at the end of the code
 | |
| // generator to make the generated code easier to read.  To do this, we select
 | |
| // into "disjoint bits" pseudo ops.
 | |
| 
 | |
| // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
 | |
| def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | |
|     return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
 | |
| 
 | |
|   KnownBits Known0;
 | |
|   CurDAG->computeKnownBits(N->getOperand(0), Known0, 0);
 | |
|   KnownBits Known1;
 | |
|   CurDAG->computeKnownBits(N->getOperand(1), Known1, 0);
 | |
|   return (~Known0.Zero & ~Known1.Zero) == 0;
 | |
| }]>;
 | |
| 
 | |
| 
 | |
| // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
 | |
| // Try this before the selecting to OR.
 | |
| let AddedComplexity = 5, SchedRW = [WriteALU] in {
 | |
| 
 | |
| let isConvertibleToThreeAddress = 1,
 | |
|     Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
 | |
| let isCommutable = 1 in {
 | |
| def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
 | |
|                     "", // orw/addw REG, REG
 | |
|                     [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
 | |
| def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
 | |
|                     "", // orl/addl REG, REG
 | |
|                     [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
 | |
| def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
 | |
|                     "", // orq/addq REG, REG
 | |
|                     [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
 | |
| } // isCommutable
 | |
| 
 | |
| // NOTE: These are order specific, we want the ri8 forms to be listed
 | |
| // first so that they are slightly preferred to the ri forms.
 | |
| 
 | |
| def ADD16ri8_DB : I<0, Pseudo,
 | |
|                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
 | |
|                     "", // orw/addw REG, imm8
 | |
|                     [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
 | |
| def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
 | |
|                     "", // orw/addw REG, imm
 | |
|                     [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
 | |
| 
 | |
| def ADD32ri8_DB : I<0, Pseudo,
 | |
|                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
 | |
|                     "", // orl/addl REG, imm8
 | |
|                     [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
 | |
| def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
 | |
|                     "", // orl/addl REG, imm
 | |
|                     [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
 | |
| 
 | |
| 
 | |
| def ADD64ri8_DB : I<0, Pseudo,
 | |
|                     (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
 | |
|                     "", // orq/addq REG, imm8
 | |
|                     [(set GR64:$dst, (or_is_add GR64:$src1,
 | |
|                                                 i64immSExt8:$src2))]>;
 | |
| def ADD64ri32_DB : I<0, Pseudo,
 | |
|                      (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
 | |
|                       "", // orq/addq REG, imm
 | |
|                       [(set GR64:$dst, (or_is_add GR64:$src1,
 | |
|                                                   i64immSExt32:$src2))]>;
 | |
| }
 | |
| } // AddedComplexity, SchedRW
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Some peepholes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Odd encoding trick: -128 fits into an 8-bit immediate field while
 | |
| // +128 doesn't, so in this special case use a sub instead of an add.
 | |
| def : Pat<(add GR16:$src1, 128),
 | |
|           (SUB16ri8 GR16:$src1, -128)>;
 | |
| def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
 | |
|           (SUB16mi8 addr:$dst, -128)>;
 | |
| 
 | |
| def : Pat<(add GR32:$src1, 128),
 | |
|           (SUB32ri8 GR32:$src1, -128)>;
 | |
| def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
 | |
|           (SUB32mi8 addr:$dst, -128)>;
 | |
| 
 | |
| def : Pat<(add GR64:$src1, 128),
 | |
|           (SUB64ri8 GR64:$src1, -128)>;
 | |
| def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
 | |
|           (SUB64mi8 addr:$dst, -128)>;
 | |
| 
 | |
| // The same trick applies for 32-bit immediate fields in 64-bit
 | |
| // instructions.
 | |
| def : Pat<(add GR64:$src1, 0x0000000080000000),
 | |
|           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
 | |
| def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
 | |
|           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
 | |
| 
 | |
| // To avoid needing to materialize an immediate in a register, use a 32-bit and
 | |
| // with implicit zero-extension instead of a 64-bit and if the immediate has at
 | |
| // least 32 bits of leading zeros. If in addition the last 32 bits can be
 | |
| // represented with a sign extension of a 8 bit constant, use that.
 | |
| // This can also reduce instruction size by eliminating the need for the REX
 | |
| // prefix.
 | |
| 
 | |
| // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
 | |
| let AddedComplexity = 1 in {
 | |
| def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
 | |
|           (SUBREG_TO_REG
 | |
|             (i64 0),
 | |
|             (AND32ri8
 | |
|               (EXTRACT_SUBREG GR64:$src, sub_32bit),
 | |
|               (i32 (GetLo8XForm imm:$imm))),
 | |
|             sub_32bit)>;
 | |
| 
 | |
| def : Pat<(and GR64:$src, i64immZExt32:$imm),
 | |
|           (SUBREG_TO_REG
 | |
|             (i64 0),
 | |
|             (AND32ri
 | |
|               (EXTRACT_SUBREG GR64:$src, sub_32bit),
 | |
|               (i32 (GetLo32XForm imm:$imm))),
 | |
|             sub_32bit)>;
 | |
| } // AddedComplexity = 1
 | |
| 
 | |
| 
 | |
| // AddedComplexity is needed due to the increased complexity on the
 | |
| // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
 | |
| // the MOVZX patterns keeps thems together in DAGIsel tables.
 | |
| let AddedComplexity = 1 in {
 | |
| // r & (2^16-1) ==> movz
 | |
| def : Pat<(and GR32:$src1, 0xffff),
 | |
|           (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
 | |
| // r & (2^8-1) ==> movz
 | |
| def : Pat<(and GR32:$src1, 0xff),
 | |
|           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
 | |
|                                                              GR32_ABCD)),
 | |
|                                       sub_8bit))>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| // r & (2^8-1) ==> movz
 | |
| def : Pat<(and GR16:$src1, 0xff),
 | |
|            (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
 | |
|             (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
 | |
|              sub_16bit)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| 
 | |
| // r & (2^32-1) ==> movz
 | |
| def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
 | |
|           (SUBREG_TO_REG (i64 0),
 | |
|                          (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
 | |
|                          sub_32bit)>;
 | |
| // r & (2^16-1) ==> movz
 | |
| def : Pat<(and GR64:$src, 0xffff),
 | |
|           (SUBREG_TO_REG (i64 0),
 | |
|                       (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
 | |
|                       sub_32bit)>;
 | |
| // r & (2^8-1) ==> movz
 | |
| def : Pat<(and GR64:$src, 0xff),
 | |
|           (SUBREG_TO_REG (i64 0),
 | |
|                          (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
 | |
|                          sub_32bit)>;
 | |
| // r & (2^8-1) ==> movz
 | |
| def : Pat<(and GR32:$src1, 0xff),
 | |
|            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| // r & (2^8-1) ==> movz
 | |
| def : Pat<(and GR16:$src1, 0xff),
 | |
|            (EXTRACT_SUBREG (MOVZX32rr8 (i8
 | |
|             (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
 | |
|       Requires<[In64BitMode]>;
 | |
| } // AddedComplexity = 1
 | |
| 
 | |
| 
 | |
| // sext_inreg patterns
 | |
| def : Pat<(sext_inreg GR32:$src, i16),
 | |
|           (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
 | |
| def : Pat<(sext_inreg GR32:$src, i8),
 | |
|           (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
 | |
|                                                              GR32_ABCD)),
 | |
|                                       sub_8bit))>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| 
 | |
| def : Pat<(sext_inreg GR16:$src, i8),
 | |
|            (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
 | |
|             (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
 | |
|              sub_16bit)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| 
 | |
| def : Pat<(sext_inreg GR64:$src, i32),
 | |
|           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
 | |
| def : Pat<(sext_inreg GR64:$src, i16),
 | |
|           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
 | |
| def : Pat<(sext_inreg GR64:$src, i8),
 | |
|           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
 | |
| def : Pat<(sext_inreg GR32:$src, i8),
 | |
|           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(sext_inreg GR16:$src, i8),
 | |
|            (EXTRACT_SUBREG (MOVSX32rr8
 | |
|             (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
 | |
|       Requires<[In64BitMode]>;
 | |
| 
 | |
| // sext, sext_load, zext, zext_load
 | |
| def: Pat<(i16 (sext GR8:$src)),
 | |
|           (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
 | |
| def: Pat<(sextloadi16i8 addr:$src),
 | |
|           (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
 | |
| def: Pat<(i16 (zext GR8:$src)),
 | |
|           (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
 | |
| def: Pat<(zextloadi16i8 addr:$src),
 | |
|           (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
 | |
| 
 | |
| // trunc patterns
 | |
| def : Pat<(i16 (trunc GR32:$src)),
 | |
|           (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
 | |
| def : Pat<(i8 (trunc GR32:$src)),
 | |
|           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
 | |
|                           sub_8bit)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(i8 (trunc GR16:$src)),
 | |
|           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                           sub_8bit)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(i32 (trunc GR64:$src)),
 | |
|           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
 | |
| def : Pat<(i16 (trunc GR64:$src)),
 | |
|           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
 | |
| def : Pat<(i8 (trunc GR64:$src)),
 | |
|           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
 | |
| def : Pat<(i8 (trunc GR32:$src)),
 | |
|           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(i8 (trunc GR16:$src)),
 | |
|           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
 | |
|       Requires<[In64BitMode]>;
 | |
| 
 | |
| // h-register tricks
 | |
| def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
 | |
|           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                           sub_8bit_hi)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
 | |
|           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                           sub_8bit_hi)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
 | |
|           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
 | |
|                           sub_8bit_hi)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(srl GR16:$src, (i8 8)),
 | |
|           (EXTRACT_SUBREG
 | |
|             (MOVZX32rr8
 | |
|               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                               sub_8bit_hi)),
 | |
|             sub_16bit)>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
 | |
|           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
 | |
|                                                              GR16_ABCD)),
 | |
|                                       sub_8bit_hi))>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
 | |
|           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
 | |
|                                                              GR16_ABCD)),
 | |
|                                       sub_8bit_hi))>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
 | |
|           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
 | |
|                                                              GR32_ABCD)),
 | |
|                                       sub_8bit_hi))>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
 | |
|           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
 | |
|                                                              GR32_ABCD)),
 | |
|                                       sub_8bit_hi))>,
 | |
|       Requires<[Not64BitMode]>;
 | |
| 
 | |
| // h-register tricks.
 | |
| // For now, be conservative on x86-64 and use an h-register extract only if the
 | |
| // value is immediately zero-extended or stored, which are somewhat common
 | |
| // cases. This uses a bunch of code to prevent a register requiring a REX prefix
 | |
| // from being allocated in the same instruction as the h register, as there's
 | |
| // currently no way to describe this requirement to the register allocator.
 | |
| 
 | |
| // h-register extract and zero-extend.
 | |
| def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
 | |
|           (SUBREG_TO_REG
 | |
|             (i64 0),
 | |
|             (MOVZX32_NOREXrr8
 | |
|               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
 | |
|                               sub_8bit_hi)),
 | |
|             sub_32bit)>;
 | |
| def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
 | |
|           (MOVZX32_NOREXrr8
 | |
|             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
 | |
|                             sub_8bit_hi))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
 | |
|           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
 | |
|                                                                    GR32_ABCD)),
 | |
|                                              sub_8bit_hi))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(srl GR16:$src, (i8 8)),
 | |
|           (EXTRACT_SUBREG
 | |
|             (MOVZX32_NOREXrr8
 | |
|               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                               sub_8bit_hi)),
 | |
|             sub_16bit)>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
 | |
|           (MOVZX32_NOREXrr8
 | |
|             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                             sub_8bit_hi))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
 | |
|           (MOVZX32_NOREXrr8
 | |
|             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                             sub_8bit_hi))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
 | |
|           (SUBREG_TO_REG
 | |
|             (i64 0),
 | |
|             (MOVZX32_NOREXrr8
 | |
|               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                               sub_8bit_hi)),
 | |
|             sub_32bit)>;
 | |
| def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
 | |
|           (SUBREG_TO_REG
 | |
|             (i64 0),
 | |
|             (MOVZX32_NOREXrr8
 | |
|               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                               sub_8bit_hi)),
 | |
|             sub_32bit)>;
 | |
| 
 | |
| // h-register extract and store.
 | |
| def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
 | |
|           (MOV8mr_NOREX
 | |
|             addr:$dst,
 | |
|             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
 | |
|                             sub_8bit_hi))>;
 | |
| def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
 | |
|           (MOV8mr_NOREX
 | |
|             addr:$dst,
 | |
|             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
 | |
|                             sub_8bit_hi))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
 | |
|           (MOV8mr_NOREX
 | |
|             addr:$dst,
 | |
|             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
 | |
|                             sub_8bit_hi))>,
 | |
|       Requires<[In64BitMode]>;
 | |
| 
 | |
| 
 | |
| // (shl x, 1) ==> (add x, x)
 | |
| // Note that if x is undef (immediate or otherwise), we could theoretically
 | |
| // end up with the two uses of x getting different values, producing a result
 | |
| // where the least significant bit is not 0. However, the probability of this
 | |
| // happening is considered low enough that this is officially not a
 | |
| // "real problem".
 | |
| def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
 | |
| def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
 | |
| def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
 | |
| def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
 | |
| 
 | |
| // Helper imms to check if a mask doesn't change significant shift/rotate bits.
 | |
| def immShift8 : ImmLeaf<i8, [{
 | |
|   return countTrailingOnes<uint64_t>(Imm) >= 3;
 | |
| }]>;
 | |
| def immShift16 : ImmLeaf<i8, [{
 | |
|   return countTrailingOnes<uint64_t>(Imm) >= 4;
 | |
| }]>;
 | |
| def immShift32 : ImmLeaf<i8, [{
 | |
|   return countTrailingOnes<uint64_t>(Imm) >= 5;
 | |
| }]>;
 | |
| def immShift64 : ImmLeaf<i8, [{
 | |
|   return countTrailingOnes<uint64_t>(Imm) >= 6;
 | |
| }]>;
 | |
| 
 | |
| // Shift amount is implicitly masked.
 | |
| multiclass MaskedShiftAmountPats<SDNode frag, string name> {
 | |
|   // (shift x (and y, 31)) ==> (shift x, y)
 | |
|   def : Pat<(frag GR8:$src1, (and CL, immShift32)),
 | |
|             (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
 | |
|   def : Pat<(frag GR16:$src1, (and CL, immShift32)),
 | |
|             (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
 | |
|   def : Pat<(frag GR32:$src1, (and CL, immShift32)),
 | |
|             (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
 | |
|   def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
 | |
|             (!cast<Instruction>(name # "8mCL") addr:$dst)>;
 | |
|   def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
 | |
|             (!cast<Instruction>(name # "16mCL") addr:$dst)>;
 | |
|   def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
 | |
|             (!cast<Instruction>(name # "32mCL") addr:$dst)>;
 | |
| 
 | |
|   // (shift x (and y, 63)) ==> (shift x, y)
 | |
|   def : Pat<(frag GR64:$src1, (and CL, immShift64)),
 | |
|             (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
 | |
|   def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
 | |
|             (!cast<Instruction>(name # "64mCL") addr:$dst)>;
 | |
| }
 | |
| 
 | |
| defm : MaskedShiftAmountPats<shl, "SHL">;
 | |
| defm : MaskedShiftAmountPats<srl, "SHR">;
 | |
| defm : MaskedShiftAmountPats<sra, "SAR">;
 | |
| 
 | |
| // ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
 | |
| // 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
 | |
| // because over-rotating produces the same result. This is noted in the Intel
 | |
| // docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
 | |
| // amount could affect EFLAGS results, but that does not matter because we are
 | |
| // not tracking flags for these nodes.
 | |
| multiclass MaskedRotateAmountPats<SDNode frag, string name> {
 | |
|   // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
 | |
|   def : Pat<(frag GR8:$src1, (and CL, immShift8)),
 | |
|   (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
 | |
|   def : Pat<(frag GR16:$src1, (and CL, immShift16)),
 | |
|   (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
 | |
|   def : Pat<(frag GR32:$src1, (and CL, immShift32)),
 | |
|   (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
 | |
|   def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift8)), addr:$dst),
 | |
|   (!cast<Instruction>(name # "8mCL") addr:$dst)>;
 | |
|   def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift16)), addr:$dst),
 | |
|   (!cast<Instruction>(name # "16mCL") addr:$dst)>;
 | |
|   def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
 | |
|   (!cast<Instruction>(name # "32mCL") addr:$dst)>;
 | |
| 
 | |
|   // (rot x (and y, 63)) ==> (rot x, y)
 | |
|   def : Pat<(frag GR64:$src1, (and CL, immShift64)),
 | |
|   (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
 | |
|   def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
 | |
|   (!cast<Instruction>(name # "64mCL") addr:$dst)>;
 | |
| }
 | |
| 
 | |
| 
 | |
| defm : MaskedRotateAmountPats<rotl, "ROL">;
 | |
| defm : MaskedRotateAmountPats<rotr, "ROR">;
 | |
| 
 | |
| // Double shift amount is implicitly masked.
 | |
| multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> {
 | |
|   // (shift x (and y, 31)) ==> (shift x, y)
 | |
|   def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)),
 | |
|             (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>;
 | |
|   def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)),
 | |
|             (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>;
 | |
| 
 | |
|   // (shift x (and y, 63)) ==> (shift x, y)
 | |
|   def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)),
 | |
|             (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>;
 | |
| }
 | |
| 
 | |
| defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">;
 | |
| defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">;
 | |
| 
 | |
| let Predicates = [HasBMI2] in {
 | |
|   let AddedComplexity = 1 in {
 | |
|     def : Pat<(sra GR32:$src1, (and GR8:$src2, immShift32)),
 | |
|               (SARX32rr GR32:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|     def : Pat<(sra GR64:$src1, (and GR8:$src2, immShift64)),
 | |
|               (SARX64rr GR64:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
| 
 | |
|     def : Pat<(srl GR32:$src1, (and GR8:$src2, immShift32)),
 | |
|               (SHRX32rr GR32:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|     def : Pat<(srl GR64:$src1, (and GR8:$src2, immShift64)),
 | |
|               (SHRX64rr GR64:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
| 
 | |
|     def : Pat<(shl GR32:$src1, (and GR8:$src2, immShift32)),
 | |
|               (SHLX32rr GR32:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|     def : Pat<(shl GR64:$src1, (and GR8:$src2, immShift64)),
 | |
|               (SHLX64rr GR64:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|   }
 | |
| 
 | |
|   let AddedComplexity = -20 in {
 | |
|     def : Pat<(sra (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
 | |
|               (SARX32rm addr:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|     def : Pat<(sra (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
 | |
|               (SARX64rm addr:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
| 
 | |
|     def : Pat<(srl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
 | |
|               (SHRX32rm addr:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|     def : Pat<(srl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
 | |
|               (SHRX64rm addr:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
| 
 | |
|     def : Pat<(shl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
 | |
|               (SHLX32rm addr:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|     def : Pat<(shl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
 | |
|               (SHLX64rm addr:$src1,
 | |
|                         (INSERT_SUBREG
 | |
|                           (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // (anyext (setcc_carry)) -> (setcc_carry)
 | |
| def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C16r)>;
 | |
| def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C32r)>;
 | |
| def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
 | |
|           (SETB_C32r)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // EFLAGS-defining Patterns
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // add reg, reg
 | |
| def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
 | |
| def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
 | |
| def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
 | |
| 
 | |
| // add reg, mem
 | |
| def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
 | |
|           (ADD8rm GR8:$src1, addr:$src2)>;
 | |
| def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
 | |
|           (ADD16rm GR16:$src1, addr:$src2)>;
 | |
| def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
 | |
|           (ADD32rm GR32:$src1, addr:$src2)>;
 | |
| 
 | |
| // add reg, imm
 | |
| def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
 | |
| def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
 | |
| def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
 | |
| def : Pat<(add GR16:$src1, i16immSExt8:$src2),
 | |
|           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
 | |
| def : Pat<(add GR32:$src1, i32immSExt8:$src2),
 | |
|           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
 | |
| 
 | |
| // sub reg, reg
 | |
| def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
 | |
| def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
 | |
| def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
 | |
| 
 | |
| // sub reg, mem
 | |
| def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
 | |
|           (SUB8rm GR8:$src1, addr:$src2)>;
 | |
| def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
 | |
|           (SUB16rm GR16:$src1, addr:$src2)>;
 | |
| def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
 | |
|           (SUB32rm GR32:$src1, addr:$src2)>;
 | |
| 
 | |
| // sub reg, imm
 | |
| def : Pat<(sub GR8:$src1, imm:$src2),
 | |
|           (SUB8ri GR8:$src1, imm:$src2)>;
 | |
| def : Pat<(sub GR16:$src1, imm:$src2),
 | |
|           (SUB16ri GR16:$src1, imm:$src2)>;
 | |
| def : Pat<(sub GR32:$src1, imm:$src2),
 | |
|           (SUB32ri GR32:$src1, imm:$src2)>;
 | |
| def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
 | |
|           (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
 | |
| def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
 | |
|           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
 | |
| 
 | |
| // sub 0, reg
 | |
| def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
 | |
| def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
 | |
| def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
 | |
| def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
 | |
| 
 | |
| // sub reg, relocImm
 | |
| def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2),
 | |
|           (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
 | |
| def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2),
 | |
|           (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
 | |
| 
 | |
| // mul reg, reg
 | |
| def : Pat<(mul GR16:$src1, GR16:$src2),
 | |
|           (IMUL16rr GR16:$src1, GR16:$src2)>;
 | |
| def : Pat<(mul GR32:$src1, GR32:$src2),
 | |
|           (IMUL32rr GR32:$src1, GR32:$src2)>;
 | |
| 
 | |
| // mul reg, mem
 | |
| def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
 | |
|           (IMUL16rm GR16:$src1, addr:$src2)>;
 | |
| def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
 | |
|           (IMUL32rm GR32:$src1, addr:$src2)>;
 | |
| 
 | |
| // mul reg, imm
 | |
| def : Pat<(mul GR16:$src1, imm:$src2),
 | |
|           (IMUL16rri GR16:$src1, imm:$src2)>;
 | |
| def : Pat<(mul GR32:$src1, imm:$src2),
 | |
|           (IMUL32rri GR32:$src1, imm:$src2)>;
 | |
| def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
 | |
|           (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
 | |
| def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
 | |
|           (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
 | |
| 
 | |
| // reg = mul mem, imm
 | |
| def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
 | |
|           (IMUL16rmi addr:$src1, imm:$src2)>;
 | |
| def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
 | |
|           (IMUL32rmi addr:$src1, imm:$src2)>;
 | |
| def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
 | |
|           (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
 | |
| def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
 | |
|           (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
 | |
| 
 | |
| // Patterns for nodes that do not produce flags, for instructions that do.
 | |
| 
 | |
| // addition
 | |
| def : Pat<(add GR64:$src1, GR64:$src2),
 | |
|           (ADD64rr GR64:$src1, GR64:$src2)>;
 | |
| def : Pat<(add GR64:$src1, i64immSExt8:$src2),
 | |
|           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
 | |
| def : Pat<(add GR64:$src1, i64immSExt32:$src2),
 | |
|           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
 | |
| def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
 | |
|           (ADD64rm GR64:$src1, addr:$src2)>;
 | |
| 
 | |
| // subtraction
 | |
| def : Pat<(sub GR64:$src1, GR64:$src2),
 | |
|           (SUB64rr GR64:$src1, GR64:$src2)>;
 | |
| def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
 | |
|           (SUB64rm GR64:$src1, addr:$src2)>;
 | |
| def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
 | |
|           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
 | |
| def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
 | |
|           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
 | |
| 
 | |
| // Multiply
 | |
| def : Pat<(mul GR64:$src1, GR64:$src2),
 | |
|           (IMUL64rr GR64:$src1, GR64:$src2)>;
 | |
| def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
 | |
|           (IMUL64rm GR64:$src1, addr:$src2)>;
 | |
| def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
 | |
|           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
 | |
| def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
 | |
|           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
 | |
| def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
 | |
|           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
 | |
| def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
 | |
|           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
 | |
| 
 | |
| // Increment/Decrement reg.
 | |
| // Do not make INC/DEC if it is slow
 | |
| let Predicates = [NotSlowIncDec] in {
 | |
|   def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
 | |
|   def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
 | |
|   def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
 | |
|   def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
 | |
|   def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
 | |
|   def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
 | |
|   def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
 | |
|   def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
 | |
| }
 | |
| 
 | |
| // or reg/reg.
 | |
| def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
 | |
| def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
 | |
| def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
 | |
| def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
 | |
| 
 | |
| // or reg/mem
 | |
| def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
 | |
|           (OR8rm GR8:$src1, addr:$src2)>;
 | |
| def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
 | |
|           (OR16rm GR16:$src1, addr:$src2)>;
 | |
| def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
 | |
|           (OR32rm GR32:$src1, addr:$src2)>;
 | |
| def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
 | |
|           (OR64rm GR64:$src1, addr:$src2)>;
 | |
| 
 | |
| // or reg/imm
 | |
| def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
 | |
| def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
 | |
| def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
 | |
| def : Pat<(or GR16:$src1, i16immSExt8:$src2),
 | |
|           (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
 | |
| def : Pat<(or GR32:$src1, i32immSExt8:$src2),
 | |
|           (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
 | |
| def : Pat<(or GR64:$src1, i64immSExt8:$src2),
 | |
|           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
 | |
| def : Pat<(or GR64:$src1, i64immSExt32:$src2),
 | |
|           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
 | |
| 
 | |
| // xor reg/reg
 | |
| def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
 | |
| def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
 | |
| def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
 | |
| def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
 | |
| 
 | |
| // xor reg/mem
 | |
| def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
 | |
|           (XOR8rm GR8:$src1, addr:$src2)>;
 | |
| def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
 | |
|           (XOR16rm GR16:$src1, addr:$src2)>;
 | |
| def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
 | |
|           (XOR32rm GR32:$src1, addr:$src2)>;
 | |
| def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
 | |
|           (XOR64rm GR64:$src1, addr:$src2)>;
 | |
| 
 | |
| // xor reg/imm
 | |
| def : Pat<(xor GR8:$src1, imm:$src2),
 | |
|           (XOR8ri GR8:$src1, imm:$src2)>;
 | |
| def : Pat<(xor GR16:$src1, imm:$src2),
 | |
|           (XOR16ri GR16:$src1, imm:$src2)>;
 | |
| def : Pat<(xor GR32:$src1, imm:$src2),
 | |
|           (XOR32ri GR32:$src1, imm:$src2)>;
 | |
| def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
 | |
|           (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
 | |
| def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
 | |
|           (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
 | |
| def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
 | |
|           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
 | |
| def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
 | |
|           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
 | |
| 
 | |
| // and reg/reg
 | |
| def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
 | |
| def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
 | |
| def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
 | |
| def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
 | |
| 
 | |
| // and reg/mem
 | |
| def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
 | |
|           (AND8rm GR8:$src1, addr:$src2)>;
 | |
| def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
 | |
|           (AND16rm GR16:$src1, addr:$src2)>;
 | |
| def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
 | |
|           (AND32rm GR32:$src1, addr:$src2)>;
 | |
| def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
 | |
|           (AND64rm GR64:$src1, addr:$src2)>;
 | |
| 
 | |
| // and reg/imm
 | |
| def : Pat<(and GR8:$src1, imm:$src2),
 | |
|           (AND8ri GR8:$src1, imm:$src2)>;
 | |
| def : Pat<(and GR16:$src1, imm:$src2),
 | |
|           (AND16ri GR16:$src1, imm:$src2)>;
 | |
| def : Pat<(and GR32:$src1, imm:$src2),
 | |
|           (AND32ri GR32:$src1, imm:$src2)>;
 | |
| def : Pat<(and GR16:$src1, i16immSExt8:$src2),
 | |
|           (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
 | |
| def : Pat<(and GR32:$src1, i32immSExt8:$src2),
 | |
|           (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
 | |
| def : Pat<(and GR64:$src1, i64immSExt8:$src2),
 | |
|           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
 | |
| def : Pat<(and GR64:$src1, i64immSExt32:$src2),
 | |
|           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
 | |
| 
 | |
| // Bit scan instruction patterns to match explicit zero-undef behavior.
 | |
| def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
 | |
| def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
 | |
| def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
 | |
| def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
 | |
| def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
 | |
| def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
 | |
| 
 | |
| // When HasMOVBE is enabled it is possible to get a non-legalized
 | |
| // register-register 16 bit bswap. This maps it to a ROL instruction.
 | |
| let Predicates = [HasMOVBE] in {
 | |
|  def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
 | |
| }
 |