645 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			645 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the X86 implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
 | |
| #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
 | |
| 
 | |
| #include "MCTargetDesc/X86BaseInfo.h"
 | |
| #include "X86InstrFMA3Info.h"
 | |
| #include "X86RegisterInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| 
 | |
| #define GET_INSTRINFO_HEADER
 | |
| #include "X86GenInstrInfo.inc"
 | |
| 
 | |
| namespace llvm {
 | |
| class MachineInstrBuilder;
 | |
| class X86RegisterInfo;
 | |
| class X86Subtarget;
 | |
| 
 | |
| namespace X86 {
 | |
| // X86 specific condition code. These correspond to X86_*_COND in
 | |
| // X86InstrInfo.td. They must be kept in synch.
 | |
| enum CondCode {
 | |
|   COND_A = 0,
 | |
|   COND_AE = 1,
 | |
|   COND_B = 2,
 | |
|   COND_BE = 3,
 | |
|   COND_E = 4,
 | |
|   COND_G = 5,
 | |
|   COND_GE = 6,
 | |
|   COND_L = 7,
 | |
|   COND_LE = 8,
 | |
|   COND_NE = 9,
 | |
|   COND_NO = 10,
 | |
|   COND_NP = 11,
 | |
|   COND_NS = 12,
 | |
|   COND_O = 13,
 | |
|   COND_P = 14,
 | |
|   COND_S = 15,
 | |
|   LAST_VALID_COND = COND_S,
 | |
| 
 | |
|   // Artificial condition codes. These are used by AnalyzeBranch
 | |
|   // to indicate a block terminated with two conditional branches that together
 | |
|   // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
 | |
|   // which can't be represented on x86 with a single condition. These
 | |
|   // are never used in MachineInstrs and are inverses of one another.
 | |
|   COND_NE_OR_P,
 | |
|   COND_E_AND_NP,
 | |
| 
 | |
|   COND_INVALID
 | |
| };
 | |
| 
 | |
| // Turn condition code into conditional branch opcode.
 | |
| unsigned GetCondBranchFromCond(CondCode CC);
 | |
| 
 | |
| /// \brief Return a pair of condition code for the given predicate and whether
 | |
| /// the instruction operands should be swaped to match the condition code.
 | |
| std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);
 | |
| 
 | |
| /// \brief Return a set opcode for the given condition and whether it has
 | |
| /// a memory operand.
 | |
| unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
 | |
| 
 | |
| /// \brief Return a cmov opcode for the given condition, register size in
 | |
| /// bytes, and operand type.
 | |
| unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
 | |
|                          bool HasMemoryOperand = false);
 | |
| 
 | |
| // Turn CMov opcode into condition code.
 | |
| CondCode getCondFromCMovOpc(unsigned Opc);
 | |
| 
 | |
| /// GetOppositeBranchCondition - Return the inverse of the specified cond,
 | |
| /// e.g. turning COND_E to COND_NE.
 | |
| CondCode GetOppositeBranchCondition(CondCode CC);
 | |
| } // namespace X86
 | |
| 
 | |
| /// isGlobalStubReference - Return true if the specified TargetFlag operand is
 | |
| /// a reference to a stub for a global, not the global itself.
 | |
| inline static bool isGlobalStubReference(unsigned char TargetFlag) {
 | |
|   switch (TargetFlag) {
 | |
|   case X86II::MO_DLLIMPORT:               // dllimport stub.
 | |
|   case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
 | |
|   case X86II::MO_GOT:                     // normal GOT reference.
 | |
|   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
 | |
|   case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isGlobalRelativeToPICBase - Return true if the specified global value
 | |
| /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
 | |
| /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
 | |
| inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
 | |
|   switch (TargetFlag) {
 | |
|   case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
 | |
|   case X86II::MO_GOT:                     // isPICStyleGOT: other global.
 | |
|   case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
 | |
|   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
 | |
|   case X86II::MO_TLVP:                    // ??? Pretty sure..
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline static bool isScale(const MachineOperand &MO) {
 | |
|   return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
 | |
|                         MO.getImm() == 4 || MO.getImm() == 8);
 | |
| }
 | |
| 
 | |
| inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
 | |
|   if (MI.getOperand(Op).isFI())
 | |
|     return true;
 | |
|   return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
 | |
|          MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
 | |
|          isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
 | |
|          MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
 | |
|          (MI.getOperand(Op + X86::AddrDisp).isImm() ||
 | |
|           MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
 | |
|           MI.getOperand(Op + X86::AddrDisp).isCPI() ||
 | |
|           MI.getOperand(Op + X86::AddrDisp).isJTI());
 | |
| }
 | |
| 
 | |
| inline static bool isMem(const MachineInstr &MI, unsigned Op) {
 | |
|   if (MI.getOperand(Op).isFI())
 | |
|     return true;
 | |
|   return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
 | |
|          MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
 | |
| }
 | |
| 
 | |
| class X86InstrInfo final : public X86GenInstrInfo {
 | |
|   X86Subtarget &Subtarget;
 | |
|   const X86RegisterInfo RI;
 | |
| 
 | |
|   /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
 | |
|   /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
 | |
|   ///
 | |
|   typedef DenseMap<unsigned, std::pair<uint16_t, uint16_t>>
 | |
|       RegOp2MemOpTableType;
 | |
|   RegOp2MemOpTableType RegOp2MemOpTable2Addr;
 | |
|   RegOp2MemOpTableType RegOp2MemOpTable0;
 | |
|   RegOp2MemOpTableType RegOp2MemOpTable1;
 | |
|   RegOp2MemOpTableType RegOp2MemOpTable2;
 | |
|   RegOp2MemOpTableType RegOp2MemOpTable3;
 | |
|   RegOp2MemOpTableType RegOp2MemOpTable4;
 | |
| 
 | |
|   /// MemOp2RegOpTable - Load / store unfolding opcode map.
 | |
|   ///
 | |
|   typedef DenseMap<unsigned, std::pair<uint16_t, uint16_t>>
 | |
|       MemOp2RegOpTableType;
 | |
|   MemOp2RegOpTableType MemOp2RegOpTable;
 | |
| 
 | |
|   static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
 | |
|                             MemOp2RegOpTableType &M2RTable, uint16_t RegOp,
 | |
|                             uint16_t MemOp, uint16_t Flags);
 | |
| 
 | |
|   virtual void anchor();
 | |
| 
 | |
|   bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
 | |
|                          MachineBasicBlock *&FBB,
 | |
|                          SmallVectorImpl<MachineOperand> &Cond,
 | |
|                          SmallVectorImpl<MachineInstr *> &CondBranches,
 | |
|                          bool AllowModify) const;
 | |
| 
 | |
| public:
 | |
|   explicit X86InstrInfo(X86Subtarget &STI);
 | |
| 
 | |
|   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
 | |
|   /// such, whenever a client has an instance of instruction info, it should
 | |
|   /// always be able to get register info as well (through this method).
 | |
|   ///
 | |
|   const X86RegisterInfo &getRegisterInfo() const { return RI; }
 | |
| 
 | |
|   /// Returns the stack pointer adjustment that happens inside the frame
 | |
|   /// setup..destroy sequence (e.g. by pushes, or inside the callee).
 | |
|   int64_t getFrameAdjustment(const MachineInstr &I) const {
 | |
|     assert(isFrameInstr(I));
 | |
|     if (isFrameSetup(I))
 | |
|       return I.getOperand(2).getImm();
 | |
|     return I.getOperand(1).getImm();
 | |
|   }
 | |
| 
 | |
|   /// Sets the stack pointer adjustment made inside the frame made up by this
 | |
|   /// instruction.
 | |
|   void setFrameAdjustment(MachineInstr &I, int64_t V) const {
 | |
|     assert(isFrameInstr(I));
 | |
|     if (isFrameSetup(I))
 | |
|       I.getOperand(2).setImm(V);
 | |
|     else
 | |
|       I.getOperand(1).setImm(V);
 | |
|   }
 | |
| 
 | |
|   /// getSPAdjust - This returns the stack pointer adjustment made by
 | |
|   /// this instruction. For x86, we need to handle more complex call
 | |
|   /// sequences involving PUSHes.
 | |
|   int getSPAdjust(const MachineInstr &MI) const override;
 | |
| 
 | |
|   /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
 | |
|   /// extension instruction. That is, it's like a copy where it's legal for the
 | |
|   /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
 | |
|   /// true, then it's expected the pre-extension value is available as a subreg
 | |
|   /// of the result register. This also returns the sub-register index in
 | |
|   /// SubIdx.
 | |
|   bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
 | |
|                              unsigned &DstReg, unsigned &SubIdx) const override;
 | |
| 
 | |
|   unsigned isLoadFromStackSlot(const MachineInstr &MI,
 | |
|                                int &FrameIndex) const override;
 | |
|   /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
 | |
|   /// stack locations as well.  This uses a heuristic so it isn't
 | |
|   /// reliable for correctness.
 | |
|   unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
 | |
|                                      int &FrameIndex) const override;
 | |
| 
 | |
|   unsigned isStoreToStackSlot(const MachineInstr &MI,
 | |
|                               int &FrameIndex) const override;
 | |
|   /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
 | |
|   /// stack locations as well.  This uses a heuristic so it isn't
 | |
|   /// reliable for correctness.
 | |
|   unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
 | |
|                                     int &FrameIndex) const override;
 | |
| 
 | |
|   bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
 | |
|                                          AliasAnalysis *AA) const override;
 | |
|   void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | |
|                      unsigned DestReg, unsigned SubIdx,
 | |
|                      const MachineInstr &Orig,
 | |
|                      const TargetRegisterInfo &TRI) const override;
 | |
| 
 | |
|   /// Given an operand within a MachineInstr, insert preceding code to put it
 | |
|   /// into the right format for a particular kind of LEA instruction. This may
 | |
|   /// involve using an appropriate super-register instead (with an implicit use
 | |
|   /// of the original) or creating a new virtual register and inserting COPY
 | |
|   /// instructions to get the data into the right class.
 | |
|   ///
 | |
|   /// Reference parameters are set to indicate how caller should add this
 | |
|   /// operand to the LEA instruction.
 | |
|   bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
 | |
|                       unsigned LEAOpcode, bool AllowSP, unsigned &NewSrc,
 | |
|                       bool &isKill, bool &isUndef, MachineOperand &ImplicitOp,
 | |
|                       LiveVariables *LV) const;
 | |
| 
 | |
|   /// convertToThreeAddress - This method must be implemented by targets that
 | |
|   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
 | |
|   /// may be able to convert a two-address instruction into a true
 | |
|   /// three-address instruction on demand.  This allows the X86 target (for
 | |
|   /// example) to convert ADD and SHL instructions into LEA instructions if they
 | |
|   /// would require register copies due to two-addressness.
 | |
|   ///
 | |
|   /// This method returns a null pointer if the transformation cannot be
 | |
|   /// performed, otherwise it returns the new instruction.
 | |
|   ///
 | |
|   MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
 | |
|                                       MachineInstr &MI,
 | |
|                                       LiveVariables *LV) const override;
 | |
| 
 | |
|   /// Returns true iff the routine could find two commutable operands in the
 | |
|   /// given machine instruction.
 | |
|   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
 | |
|   /// input values can be re-defined in this method only if the input values
 | |
|   /// are not pre-defined, which is designated by the special value
 | |
|   /// 'CommuteAnyOperandIndex' assigned to it.
 | |
|   /// If both of indices are pre-defined and refer to some operands, then the
 | |
|   /// method simply returns true if the corresponding operands are commutable
 | |
|   /// and returns false otherwise.
 | |
|   ///
 | |
|   /// For example, calling this method this way:
 | |
|   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
 | |
|   ///     findCommutedOpIndices(MI, Op1, Op2);
 | |
|   /// can be interpreted as a query asking to find an operand that would be
 | |
|   /// commutable with the operand#1.
 | |
|   bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
 | |
|                              unsigned &SrcOpIdx2) const override;
 | |
| 
 | |
|   /// Returns true if the routine could find two commutable operands
 | |
|   /// in the given FMA instruction \p MI. Otherwise, returns false.
 | |
|   ///
 | |
|   /// \p SrcOpIdx1 and \p SrcOpIdx2 are INPUT and OUTPUT arguments.
 | |
|   /// The output indices of the commuted operands are returned in these
 | |
|   /// arguments. Also, the input values of these arguments may be preset either
 | |
|   /// to indices of operands that must be commuted or be equal to a special
 | |
|   /// value 'CommuteAnyOperandIndex' which means that the corresponding
 | |
|   /// operand index is not set and this method is free to pick any of
 | |
|   /// available commutable operands.
 | |
|   /// The parameter \p FMA3Group keeps the reference to the group of relative
 | |
|   /// FMA3 opcodes including register/memory forms of 132/213/231 opcodes.
 | |
|   ///
 | |
|   /// For example, calling this method this way:
 | |
|   ///     unsigned Idx1 = 1, Idx2 = CommuteAnyOperandIndex;
 | |
|   ///     findFMA3CommutedOpIndices(MI, Idx1, Idx2, FMA3Group);
 | |
|   /// can be interpreted as a query asking if the operand #1 can be swapped
 | |
|   /// with any other available operand (e.g. operand #2, operand #3, etc.).
 | |
|   ///
 | |
|   /// The returned FMA opcode may differ from the opcode in the given MI.
 | |
|   /// For example, commuting the operands #1 and #3 in the following FMA
 | |
|   ///     FMA213 #1, #2, #3
 | |
|   /// results into instruction with adjusted opcode:
 | |
|   ///     FMA231 #3, #2, #1
 | |
|   bool findFMA3CommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
 | |
|                                  unsigned &SrcOpIdx2,
 | |
|                                  const X86InstrFMA3Group &FMA3Group) const;
 | |
| 
 | |
|   /// Returns an adjusted FMA opcode that must be used in FMA instruction that
 | |
|   /// performs the same computations as the given \p MI but which has the
 | |
|   /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
 | |
|   /// It may return 0 if it is unsafe to commute the operands.
 | |
|   /// Note that a machine instruction (instead of its opcode) is passed as the
 | |
|   /// first parameter to make it possible to analyze the instruction's uses and
 | |
|   /// commute the first operand of FMA even when it seems unsafe when you look
 | |
|   /// at the opcode. For example, it is Ok to commute the first operand of
 | |
|   /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
 | |
|   ///
 | |
|   /// The returned FMA opcode may differ from the opcode in the given \p MI.
 | |
|   /// For example, commuting the operands #1 and #3 in the following FMA
 | |
|   ///     FMA213 #1, #2, #3
 | |
|   /// results into instruction with adjusted opcode:
 | |
|   ///     FMA231 #3, #2, #1
 | |
|   unsigned
 | |
|   getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
 | |
|                                  unsigned SrcOpIdx2,
 | |
|                                  const X86InstrFMA3Group &FMA3Group) const;
 | |
| 
 | |
|   // Branch analysis.
 | |
|   bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
 | |
|   bool isUnconditionalTailCall(const MachineInstr &MI) const override;
 | |
|   bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                   const MachineInstr &TailCall) const override;
 | |
|   void replaceBranchWithTailCall(MachineBasicBlock &MBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  const MachineInstr &TailCall) const override;
 | |
| 
 | |
|   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
 | |
|                      MachineBasicBlock *&FBB,
 | |
|                      SmallVectorImpl<MachineOperand> &Cond,
 | |
|                      bool AllowModify) const override;
 | |
| 
 | |
|   bool getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
 | |
|                              int64_t &Offset,
 | |
|                              const TargetRegisterInfo *TRI) const override;
 | |
|   bool analyzeBranchPredicate(MachineBasicBlock &MBB,
 | |
|                               TargetInstrInfo::MachineBranchPredicate &MBP,
 | |
|                               bool AllowModify = false) const override;
 | |
| 
 | |
|   unsigned removeBranch(MachineBasicBlock &MBB,
 | |
|                         int *BytesRemoved = nullptr) const override;
 | |
|   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
 | |
|                         const DebugLoc &DL,
 | |
|                         int *BytesAdded = nullptr) const override;
 | |
|   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
 | |
|                        unsigned, unsigned, int &, int &, int &) const override;
 | |
|   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | |
|                     const DebugLoc &DL, unsigned DstReg,
 | |
|                     ArrayRef<MachineOperand> Cond, unsigned TrueReg,
 | |
|                     unsigned FalseReg) const override;
 | |
|   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | |
|                    const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
 | |
|                    bool KillSrc) const override;
 | |
|   void storeRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                            MachineBasicBlock::iterator MI, unsigned SrcReg,
 | |
|                            bool isKill, int FrameIndex,
 | |
|                            const TargetRegisterClass *RC,
 | |
|                            const TargetRegisterInfo *TRI) const override;
 | |
| 
 | |
|   void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
 | |
|                       SmallVectorImpl<MachineOperand> &Addr,
 | |
|                       const TargetRegisterClass *RC,
 | |
|                       MachineInstr::mmo_iterator MMOBegin,
 | |
|                       MachineInstr::mmo_iterator MMOEnd,
 | |
|                       SmallVectorImpl<MachineInstr *> &NewMIs) const;
 | |
| 
 | |
|   void loadRegFromStackSlot(MachineBasicBlock &MBB,
 | |
|                             MachineBasicBlock::iterator MI, unsigned DestReg,
 | |
|                             int FrameIndex, const TargetRegisterClass *RC,
 | |
|                             const TargetRegisterInfo *TRI) const override;
 | |
| 
 | |
|   void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
 | |
|                        SmallVectorImpl<MachineOperand> &Addr,
 | |
|                        const TargetRegisterClass *RC,
 | |
|                        MachineInstr::mmo_iterator MMOBegin,
 | |
|                        MachineInstr::mmo_iterator MMOEnd,
 | |
|                        SmallVectorImpl<MachineInstr *> &NewMIs) const;
 | |
| 
 | |
|   bool expandPostRAPseudo(MachineInstr &MI) const override;
 | |
| 
 | |
|   /// Check whether the target can fold a load that feeds a subreg operand
 | |
|   /// (or a subreg operand that feeds a store).
 | |
|   bool isSubregFoldable() const override { return true; }
 | |
| 
 | |
|   /// foldMemoryOperand - If this target supports it, fold a load or store of
 | |
|   /// the specified stack slot into the specified machine instruction for the
 | |
|   /// specified operand(s).  If this is possible, the target should perform the
 | |
|   /// folding and return true, otherwise it should return false.  If it folds
 | |
|   /// the instruction, it is likely that the MachineInstruction the iterator
 | |
|   /// references has been changed.
 | |
|   MachineInstr *
 | |
|   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
 | |
|                         ArrayRef<unsigned> Ops,
 | |
|                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
 | |
|                         LiveIntervals *LIS = nullptr) const override;
 | |
| 
 | |
|   /// foldMemoryOperand - Same as the previous version except it allows folding
 | |
|   /// of any load and store from / to any address, not just from a specific
 | |
|   /// stack slot.
 | |
|   MachineInstr *foldMemoryOperandImpl(
 | |
|       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
 | |
|       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
 | |
|       LiveIntervals *LIS = nullptr) const override;
 | |
| 
 | |
|   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
 | |
|   /// a store or a load and a store into two or more instruction. If this is
 | |
|   /// possible, returns true as well as the new instructions by reference.
 | |
|   bool
 | |
|   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
 | |
|                       bool UnfoldLoad, bool UnfoldStore,
 | |
|                       SmallVectorImpl<MachineInstr *> &NewMIs) const override;
 | |
| 
 | |
|   bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
 | |
|                            SmallVectorImpl<SDNode *> &NewNodes) const override;
 | |
| 
 | |
|   /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
 | |
|   /// instruction after load / store are unfolded from an instruction of the
 | |
|   /// specified opcode. It returns zero if the specified unfolding is not
 | |
|   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
 | |
|   /// index of the operand which will hold the register holding the loaded
 | |
|   /// value.
 | |
|   unsigned
 | |
|   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
 | |
|                              unsigned *LoadRegIndex = nullptr) const override;
 | |
| 
 | |
|   /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
 | |
|   /// to determine if two loads are loading from the same base address. It
 | |
|   /// should only return true if the base pointers are the same and the
 | |
|   /// only differences between the two addresses are the offset. It also returns
 | |
|   /// the offsets by reference.
 | |
|   bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
 | |
|                                int64_t &Offset2) const override;
 | |
| 
 | |
|   /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
 | |
|   /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
 | |
|   /// should be scheduled togther. On some targets if two loads are loading from
 | |
|   /// addresses in the same cache line, it's better if they are scheduled
 | |
|   /// together. This function takes two integers that represent the load offsets
 | |
|   /// from the common base address. It returns true if it decides it's desirable
 | |
|   /// to schedule the two loads together. "NumLoads" is the number of loads that
 | |
|   /// have already been scheduled after Load1.
 | |
|   bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
 | |
|                                int64_t Offset2,
 | |
|                                unsigned NumLoads) const override;
 | |
| 
 | |
|   void getNoop(MCInst &NopInst) const override;
 | |
| 
 | |
|   bool
 | |
|   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
 | |
| 
 | |
|   /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
 | |
|   /// instruction that defines the specified register class.
 | |
|   bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
 | |
| 
 | |
|   /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
 | |
|   /// would clobber the EFLAGS condition register. Note the result may be
 | |
|   /// conservative. If it cannot definitely determine the safety after visiting
 | |
|   /// a few instructions in each direction it assumes it's not safe.
 | |
|   bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
 | |
|                              MachineBasicBlock::iterator I) const;
 | |
| 
 | |
|   /// True if MI has a condition code def, e.g. EFLAGS, that is
 | |
|   /// not marked dead.
 | |
|   bool hasLiveCondCodeDef(MachineInstr &MI) const;
 | |
| 
 | |
|   /// getGlobalBaseReg - Return a virtual register initialized with the
 | |
|   /// the global base register value. Output instructions required to
 | |
|   /// initialize the register in the function entry block, if necessary.
 | |
|   ///
 | |
|   unsigned getGlobalBaseReg(MachineFunction *MF) const;
 | |
| 
 | |
|   std::pair<uint16_t, uint16_t>
 | |
|   getExecutionDomain(const MachineInstr &MI) const override;
 | |
| 
 | |
|   void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;
 | |
| 
 | |
|   unsigned
 | |
|   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
 | |
|                                const TargetRegisterInfo *TRI) const override;
 | |
|   unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
 | |
|                                 const TargetRegisterInfo *TRI) const override;
 | |
|   void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
 | |
|                                  const TargetRegisterInfo *TRI) const override;
 | |
| 
 | |
|   MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
 | |
|                                       unsigned OpNum,
 | |
|                                       ArrayRef<MachineOperand> MOs,
 | |
|                                       MachineBasicBlock::iterator InsertPt,
 | |
|                                       unsigned Size, unsigned Alignment,
 | |
|                                       bool AllowCommute) const;
 | |
| 
 | |
|   bool isHighLatencyDef(int opc) const override;
 | |
| 
 | |
|   bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
 | |
|                              const MachineRegisterInfo *MRI,
 | |
|                              const MachineInstr &DefMI, unsigned DefIdx,
 | |
|                              const MachineInstr &UseMI,
 | |
|                              unsigned UseIdx) const override;
 | |
| 
 | |
|   bool useMachineCombiner() const override { return true; }
 | |
| 
 | |
|   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
 | |
| 
 | |
|   bool hasReassociableOperands(const MachineInstr &Inst,
 | |
|                                const MachineBasicBlock *MBB) const override;
 | |
| 
 | |
|   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
 | |
|                              MachineInstr &NewMI1,
 | |
|                              MachineInstr &NewMI2) const override;
 | |
| 
 | |
|   /// analyzeCompare - For a comparison instruction, return the source registers
 | |
|   /// in SrcReg and SrcReg2 if having two register operands, and the value it
 | |
|   /// compares against in CmpValue. Return true if the comparison instruction
 | |
|   /// can be analyzed.
 | |
|   bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
 | |
|                       unsigned &SrcReg2, int &CmpMask,
 | |
|                       int &CmpValue) const override;
 | |
| 
 | |
|   /// optimizeCompareInstr - Check if there exists an earlier instruction that
 | |
|   /// operates on the same source operands and sets flags in the same way as
 | |
|   /// Compare; remove Compare if possible.
 | |
|   bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
 | |
|                             unsigned SrcReg2, int CmpMask, int CmpValue,
 | |
|                             const MachineRegisterInfo *MRI) const override;
 | |
| 
 | |
|   /// optimizeLoadInstr - Try to remove the load by folding it to a register
 | |
|   /// operand at the use. We fold the load instructions if and only if the
 | |
|   /// def and use are in the same BB. We only look at one load and see
 | |
|   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
 | |
|   /// defined by the load we are trying to fold. DefMI returns the machine
 | |
|   /// instruction that defines FoldAsLoadDefReg, and the function returns
 | |
|   /// the machine instruction generated due to folding.
 | |
|   MachineInstr *optimizeLoadInstr(MachineInstr &MI,
 | |
|                                   const MachineRegisterInfo *MRI,
 | |
|                                   unsigned &FoldAsLoadDefReg,
 | |
|                                   MachineInstr *&DefMI) const override;
 | |
| 
 | |
|   std::pair<unsigned, unsigned>
 | |
|   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
 | |
| 
 | |
|   ArrayRef<std::pair<unsigned, const char *>>
 | |
|   getSerializableDirectMachineOperandTargetFlags() const override;
 | |
| 
 | |
|   std::pair<size_t, unsigned>
 | |
|   getOutliningCallOverhead(MachineBasicBlock::iterator &StartIt,
 | |
|                            MachineBasicBlock::iterator &EndIt) const override;
 | |
| 
 | |
|   std::pair<size_t, unsigned> getOutliningFrameOverhead(
 | |
|       std::vector<
 | |
|           std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
 | |
|           &CandidateClass) const override;
 | |
| 
 | |
|   bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const override;
 | |
| 
 | |
|   llvm::X86GenInstrInfo::MachineOutlinerInstrType
 | |
|   getOutliningType(MachineInstr &MI) const override;
 | |
| 
 | |
|   void insertOutlinerEpilogue(MachineBasicBlock &MBB, MachineFunction &MF,
 | |
|                               unsigned FrameClass) const override;
 | |
| 
 | |
|   void insertOutlinerPrologue(MachineBasicBlock &MBB, MachineFunction &MF,
 | |
|                               unsigned FrameClass) const override;
 | |
| 
 | |
|   MachineBasicBlock::iterator
 | |
|   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
 | |
|                      MachineBasicBlock::iterator &It, MachineFunction &MF,
 | |
|                      unsigned CallClass) const override;
 | |
| 
 | |
| protected:
 | |
|   /// Commutes the operands in the given instruction by changing the operands
 | |
|   /// order and/or changing the instruction's opcode and/or the immediate value
 | |
|   /// operand.
 | |
|   ///
 | |
|   /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
 | |
|   /// to be commuted.
 | |
|   ///
 | |
|   /// Do not call this method for a non-commutable instruction or
 | |
|   /// non-commutable operands.
 | |
|   /// Even though the instruction is commutable, the method may still
 | |
|   /// fail to commute the operands, null pointer is returned in such cases.
 | |
|   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
 | |
|                                        unsigned CommuteOpIdx1,
 | |
|                                        unsigned CommuteOpIdx2) const override;
 | |
| 
 | |
| private:
 | |
|   MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
 | |
|                                              MachineFunction::iterator &MFI,
 | |
|                                              MachineInstr &MI,
 | |
|                                              LiveVariables *LV) const;
 | |
| 
 | |
|   /// Handles memory folding for special case instructions, for instance those
 | |
|   /// requiring custom manipulation of the address.
 | |
|   MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
 | |
|                                         unsigned OpNum,
 | |
|                                         ArrayRef<MachineOperand> MOs,
 | |
|                                         MachineBasicBlock::iterator InsertPt,
 | |
|                                         unsigned Size, unsigned Align) const;
 | |
| 
 | |
|   /// isFrameOperand - Return true and the FrameIndex if the specified
 | |
|   /// operand and follow operands form a reference to the stack frame.
 | |
|   bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
 | |
|                       int &FrameIndex) const;
 | |
| 
 | |
|   /// Returns true iff the routine could find two commutable operands in the
 | |
|   /// given machine instruction with 3 vector inputs.
 | |
|   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
 | |
|   /// input values can be re-defined in this method only if the input values
 | |
|   /// are not pre-defined, which is designated by the special value
 | |
|   /// 'CommuteAnyOperandIndex' assigned to it.
 | |
|   /// If both of indices are pre-defined and refer to some operands, then the
 | |
|   /// method simply returns true if the corresponding operands are commutable
 | |
|   /// and returns false otherwise.
 | |
|   ///
 | |
|   /// For example, calling this method this way:
 | |
|   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
 | |
|   ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
 | |
|   /// can be interpreted as a query asking to find an operand that would be
 | |
|   /// commutable with the operand#1.
 | |
|   bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
 | |
|                                      unsigned &SrcOpIdx1,
 | |
|                                      unsigned &SrcOpIdx2) const;
 | |
| };
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| #endif
 |