457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the X86 specific subclass of TargetSubtargetInfo.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| 
 | |
| #include "X86CallLowering.h"
 | |
| #include "X86LegalizerInfo.h"
 | |
| #include "X86RegisterBankInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "MCTargetDesc/X86BaseInfo.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h"
 | |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
 | |
| #include "llvm/CodeGen/GlobalISel/Legalizer.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <cassert>
 | |
| #include <string>
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #include <intrin.h>
 | |
| #endif
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "subtarget"
 | |
| 
 | |
| #define GET_SUBTARGETINFO_TARGET_DESC
 | |
| #define GET_SUBTARGETINFO_CTOR
 | |
| #include "X86GenSubtargetInfo.inc"
 | |
| 
 | |
| // Temporary option to control early if-conversion for x86 while adding machine
 | |
| // models.
 | |
| static cl::opt<bool>
 | |
| X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
 | |
|                cl::desc("Enable early if-conversion on X86"));
 | |
| 
 | |
| 
 | |
| /// Classify a blockaddress reference for the current subtarget according to how
 | |
| /// we should reference it in a non-pcrel context.
 | |
| unsigned char X86Subtarget::classifyBlockAddressReference() const {
 | |
|   return classifyLocalReference(nullptr);
 | |
| }
 | |
| 
 | |
| /// Classify a global variable reference for the current subtarget according to
 | |
| /// how we should reference it in a non-pcrel context.
 | |
| unsigned char
 | |
| X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
 | |
|   return classifyGlobalReference(GV, *GV->getParent());
 | |
| }
 | |
| 
 | |
| unsigned char
 | |
| X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
 | |
|   // 64 bits can use %rip addressing for anything local.
 | |
|   if (is64Bit())
 | |
|     return X86II::MO_NO_FLAG;
 | |
| 
 | |
|   // If this is for a position dependent executable, the static linker can
 | |
|   // figure it out.
 | |
|   if (!isPositionIndependent())
 | |
|     return X86II::MO_NO_FLAG;
 | |
| 
 | |
|   // The COFF dynamic linker just patches the executable sections.
 | |
|   if (isTargetCOFF())
 | |
|     return X86II::MO_NO_FLAG;
 | |
| 
 | |
|   if (isTargetDarwin()) {
 | |
|     // 32 bit macho has no relocation for a-b if a is undefined, even if
 | |
|     // b is in the section that is being relocated.
 | |
|     // This means we have to use o load even for GVs that are known to be
 | |
|     // local to the dso.
 | |
|     if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
 | |
|       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
 | |
| 
 | |
|     return X86II::MO_PIC_BASE_OFFSET;
 | |
|   }
 | |
| 
 | |
|   return X86II::MO_GOTOFF;
 | |
| }
 | |
| 
 | |
| static bool shouldAssumeGlobalReferenceLocal(const X86Subtarget *ST,
 | |
|                                              const TargetMachine &TM,
 | |
|                                              const Module &M,
 | |
|                                              const GlobalValue *GV) {
 | |
|   if (!TM.shouldAssumeDSOLocal(M, GV))
 | |
|     return false;
 | |
|   // A weak reference can end up being 0. If the code can be more that 4g away
 | |
|   // from zero and we are using the small code model we have to treat it as non
 | |
|   // local.
 | |
|   if (GV && GV->hasExternalWeakLinkage() &&
 | |
|       TM.getCodeModel() == CodeModel::Small && TM.isPositionIndependent() &&
 | |
|       ST->is64Bit() && ST->isTargetELF())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
 | |
|                                                     const Module &M) const {
 | |
|   // Large model never uses stubs.
 | |
|   if (TM.getCodeModel() == CodeModel::Large)
 | |
|     return X86II::MO_NO_FLAG;
 | |
| 
 | |
|   // Absolute symbols can be referenced directly.
 | |
|   if (GV) {
 | |
|     if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
 | |
|       // See if we can use the 8-bit immediate form. Note that some instructions
 | |
|       // will sign extend the immediate operand, so to be conservative we only
 | |
|       // accept the range [0,128).
 | |
|       if (CR->getUnsignedMax().ult(128))
 | |
|         return X86II::MO_ABS8;
 | |
|       else
 | |
|         return X86II::MO_NO_FLAG;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (shouldAssumeGlobalReferenceLocal(this, TM, M, GV))
 | |
|     return classifyLocalReference(GV);
 | |
| 
 | |
|   if (isTargetCOFF())
 | |
|     return X86II::MO_DLLIMPORT;
 | |
| 
 | |
|   if (is64Bit())
 | |
|     return X86II::MO_GOTPCREL;
 | |
| 
 | |
|   if (isTargetDarwin()) {
 | |
|     if (!isPositionIndependent())
 | |
|       return X86II::MO_DARWIN_NONLAZY;
 | |
|     return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
 | |
|   }
 | |
| 
 | |
|   return X86II::MO_GOT;
 | |
| }
 | |
| 
 | |
| unsigned char
 | |
| X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
 | |
|   return classifyGlobalFunctionReference(GV, *GV->getParent());
 | |
| }
 | |
| 
 | |
| unsigned char
 | |
| X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
 | |
|                                               const Module &M) const {
 | |
|   if (TM.shouldAssumeDSOLocal(M, GV))
 | |
|     return X86II::MO_NO_FLAG;
 | |
| 
 | |
|   if (isTargetCOFF()) {
 | |
|     assert(GV->hasDLLImportStorageClass() &&
 | |
|            "shouldAssumeDSOLocal gave inconsistent answer");
 | |
|     return X86II::MO_DLLIMPORT;
 | |
|   }
 | |
| 
 | |
|   const Function *F = dyn_cast_or_null<Function>(GV);
 | |
| 
 | |
|   if (isTargetELF()) {
 | |
|     if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
 | |
|       // According to psABI, PLT stub clobbers XMM8-XMM15.
 | |
|       // In Regcall calling convention those registers are used for passing
 | |
|       // parameters. Thus we need to prevent lazy binding in Regcall.
 | |
|       return X86II::MO_GOTPCREL;
 | |
|     return X86II::MO_PLT;
 | |
|   }
 | |
| 
 | |
|   if (is64Bit()) {
 | |
|     if (F && F->hasFnAttribute(Attribute::NonLazyBind))
 | |
|       // If the function is marked as non-lazy, generate an indirect call
 | |
|       // which loads from the GOT directly. This avoids runtime overhead
 | |
|       // at the cost of eager binding (and one extra byte of encoding).
 | |
|       return X86II::MO_GOTPCREL;
 | |
|     return X86II::MO_NO_FLAG;
 | |
|   }
 | |
| 
 | |
|   return X86II::MO_NO_FLAG;
 | |
| }
 | |
| 
 | |
| /// This function returns the name of a function which has an interface like
 | |
| /// the non-standard bzero function, if such a function exists on the
 | |
| /// current subtarget and it is considered preferable over memset with zero
 | |
| /// passed as the second argument. Otherwise it returns null.
 | |
| const char *X86Subtarget::getBZeroEntry() const {
 | |
|   // Darwin 10 has a __bzero entry point for this purpose.
 | |
|   if (getTargetTriple().isMacOSX() &&
 | |
|       !getTargetTriple().isMacOSXVersionLT(10, 6))
 | |
|     return "__bzero";
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool X86Subtarget::hasSinCos() const {
 | |
|   if (getTargetTriple().isMacOSX()) {
 | |
|     return !getTargetTriple().isMacOSXVersionLT(10, 9) && is64Bit();
 | |
|   } else if (getTargetTriple().isOSFuchsia()) {
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if the subtarget allows calls to immediate address.
 | |
| bool X86Subtarget::isLegalToCallImmediateAddr() const {
 | |
|   // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
 | |
|   // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
 | |
|   // the following check for Win32 should be removed.
 | |
|   if (In64BitMode || isTargetWin32())
 | |
|     return false;
 | |
|   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
 | |
| }
 | |
| 
 | |
| void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
 | |
|   std::string CPUName = CPU;
 | |
|   if (CPUName.empty())
 | |
|     CPUName = "generic";
 | |
| 
 | |
|   // Make sure 64-bit features are available in 64-bit mode. (But make sure
 | |
|   // SSE2 can be turned off explicitly.)
 | |
|   std::string FullFS = FS;
 | |
|   if (In64BitMode) {
 | |
|     if (!FullFS.empty())
 | |
|       FullFS = "+64bit,+sse2," + FullFS;
 | |
|     else
 | |
|       FullFS = "+64bit,+sse2";
 | |
|   }
 | |
| 
 | |
|   // LAHF/SAHF are always supported in non-64-bit mode.
 | |
|   if (!In64BitMode) {
 | |
|     if (!FullFS.empty())
 | |
|       FullFS = "+sahf," + FullFS;
 | |
|     else
 | |
|       FullFS = "+sahf";
 | |
|   }
 | |
| 
 | |
|   // Parse features string and set the CPU.
 | |
|   ParseSubtargetFeatures(CPUName, FullFS);
 | |
| 
 | |
|   // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
 | |
|   // 16-bytes and under that are reasonably fast. These features were
 | |
|   // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
 | |
|   // micro-architectures respectively.
 | |
|   if (hasSSE42() || hasSSE4A())
 | |
|     IsUAMem16Slow = false;
 | |
|   
 | |
|   InstrItins = getInstrItineraryForCPU(CPUName);
 | |
| 
 | |
|   // It's important to keep the MCSubtargetInfo feature bits in sync with
 | |
|   // target data structure which is shared with MC code emitter, etc.
 | |
|   if (In64BitMode)
 | |
|     ToggleFeature(X86::Mode64Bit);
 | |
|   else if (In32BitMode)
 | |
|     ToggleFeature(X86::Mode32Bit);
 | |
|   else if (In16BitMode)
 | |
|     ToggleFeature(X86::Mode16Bit);
 | |
|   else
 | |
|     llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
 | |
| 
 | |
|   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
 | |
|                << ", 3DNowLevel " << X863DNowLevel
 | |
|                << ", 64bit " << HasX86_64 << "\n");
 | |
|   assert((!In64BitMode || HasX86_64) &&
 | |
|          "64-bit code requested on a subtarget that doesn't support it!");
 | |
| 
 | |
|   // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
 | |
|   // 32 and 64 bit) and for all 64-bit targets.
 | |
|   if (StackAlignOverride)
 | |
|     stackAlignment = StackAlignOverride;
 | |
|   else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
 | |
|            isTargetKFreeBSD() || In64BitMode)
 | |
|     stackAlignment = 16;
 | |
| }
 | |
| 
 | |
| void X86Subtarget::initializeEnvironment() {
 | |
|   X86SSELevel = NoSSE;
 | |
|   X863DNowLevel = NoThreeDNow;
 | |
|   HasX87 = false;
 | |
|   HasCMov = false;
 | |
|   HasX86_64 = false;
 | |
|   HasPOPCNT = false;
 | |
|   HasSSE4A = false;
 | |
|   HasAES = false;
 | |
|   HasFXSR = false;
 | |
|   HasXSAVE = false;
 | |
|   HasXSAVEOPT = false;
 | |
|   HasXSAVEC = false;
 | |
|   HasXSAVES = false;
 | |
|   HasPCLMUL = false;
 | |
|   HasFMA = false;
 | |
|   HasFMA4 = false;
 | |
|   HasXOP = false;
 | |
|   HasTBM = false;
 | |
|   HasLWP = false;
 | |
|   HasMOVBE = false;
 | |
|   HasRDRAND = false;
 | |
|   HasF16C = false;
 | |
|   HasFSGSBase = false;
 | |
|   HasLZCNT = false;
 | |
|   HasBMI = false;
 | |
|   HasBMI2 = false;
 | |
|   HasVBMI = false;
 | |
|   HasIFMA = false;
 | |
|   HasRTM = false;
 | |
|   HasERI = false;
 | |
|   HasCDI = false;
 | |
|   HasPFI = false;
 | |
|   HasDQI = false;
 | |
|   HasVPOPCNTDQ = false;
 | |
|   HasBWI = false;
 | |
|   HasVLX = false;
 | |
|   HasADX = false;
 | |
|   HasPKU = false;
 | |
|   HasSHA = false;
 | |
|   HasPRFCHW = false;
 | |
|   HasRDSEED = false;
 | |
|   HasLAHFSAHF = false;
 | |
|   HasMWAITX = false;
 | |
|   HasCLZERO = false;
 | |
|   HasMPX = false;
 | |
|   HasSGX = false;
 | |
|   HasCLFLUSHOPT = false;
 | |
|   HasCLWB = false;
 | |
|   IsBTMemSlow = false;
 | |
|   IsPMULLDSlow = false;
 | |
|   IsSHLDSlow = false;
 | |
|   IsUAMem16Slow = false;
 | |
|   IsUAMem32Slow = false;
 | |
|   HasSSEUnalignedMem = false;
 | |
|   HasCmpxchg16b = false;
 | |
|   UseLeaForSP = false;
 | |
|   HasFastPartialYMMorZMMWrite = false;
 | |
|   HasFastScalarFSQRT = false;
 | |
|   HasFastVectorFSQRT = false;
 | |
|   HasFastLZCNT = false;
 | |
|   HasFastSHLDRotate = false;
 | |
|   HasERMSB = false;
 | |
|   HasSlowDivide32 = false;
 | |
|   HasSlowDivide64 = false;
 | |
|   PadShortFunctions = false;
 | |
|   CallRegIndirect = false;
 | |
|   LEAUsesAG = false;
 | |
|   SlowLEA = false;
 | |
|   Slow3OpsLEA = false;
 | |
|   SlowIncDec = false;
 | |
|   stackAlignment = 4;
 | |
|   // FIXME: this is a known good value for Yonah. How about others?
 | |
|   MaxInlineSizeThreshold = 128;
 | |
|   UseSoftFloat = false;
 | |
| }
 | |
| 
 | |
| X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
 | |
|                                                             StringRef FS) {
 | |
|   initializeEnvironment();
 | |
|   initSubtargetFeatures(CPU, FS);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct X86GISelActualAccessor : public GISelAccessor {
 | |
|   std::unique_ptr<CallLowering> CallLoweringInfo;
 | |
|   std::unique_ptr<LegalizerInfo> Legalizer;
 | |
|   std::unique_ptr<RegisterBankInfo> RegBankInfo;
 | |
|   std::unique_ptr<InstructionSelector> InstSelector;
 | |
| 
 | |
|   const CallLowering *getCallLowering() const override {
 | |
|     return CallLoweringInfo.get();
 | |
|   }
 | |
| 
 | |
|   const InstructionSelector *getInstructionSelector() const override {
 | |
|     return InstSelector.get();
 | |
|   }
 | |
| 
 | |
|   const LegalizerInfo *getLegalizerInfo() const override {
 | |
|     return Legalizer.get();
 | |
|   }
 | |
| 
 | |
|   const RegisterBankInfo *getRegBankInfo() const override {
 | |
|     return RegBankInfo.get();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
 | |
|                            const X86TargetMachine &TM,
 | |
|                            unsigned StackAlignOverride)
 | |
|     : X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
 | |
|       PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
 | |
|       StackAlignOverride(StackAlignOverride),
 | |
|       In64BitMode(TargetTriple.getArch() == Triple::x86_64),
 | |
|       In32BitMode(TargetTriple.getArch() == Triple::x86 &&
 | |
|                   TargetTriple.getEnvironment() != Triple::CODE16),
 | |
|       In16BitMode(TargetTriple.getArch() == Triple::x86 &&
 | |
|                   TargetTriple.getEnvironment() == Triple::CODE16),
 | |
|       InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
 | |
|       FrameLowering(*this, getStackAlignment()) {
 | |
|   // Determine the PICStyle based on the target selected.
 | |
|   if (!isPositionIndependent())
 | |
|     setPICStyle(PICStyles::None);
 | |
|   else if (is64Bit())
 | |
|     setPICStyle(PICStyles::RIPRel);
 | |
|   else if (isTargetCOFF())
 | |
|     setPICStyle(PICStyles::None);
 | |
|   else if (isTargetDarwin())
 | |
|     setPICStyle(PICStyles::StubPIC);
 | |
|   else if (isTargetELF())
 | |
|     setPICStyle(PICStyles::GOT);
 | |
|   X86GISelActualAccessor *GISel = new X86GISelActualAccessor();
 | |
| 
 | |
|   GISel->CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
 | |
|   GISel->Legalizer.reset(new X86LegalizerInfo(*this, TM));
 | |
| 
 | |
|   auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
 | |
|   GISel->RegBankInfo.reset(RBI);
 | |
|   GISel->InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
 | |
|   setGISelAccessor(*GISel);
 | |
| }
 | |
| 
 | |
| const CallLowering *X86Subtarget::getCallLowering() const {
 | |
|   assert(GISel && "Access to GlobalISel APIs not set");
 | |
|   return GISel->getCallLowering();
 | |
| }
 | |
| 
 | |
| const InstructionSelector *X86Subtarget::getInstructionSelector() const {
 | |
|   assert(GISel && "Access to GlobalISel APIs not set");
 | |
|   return GISel->getInstructionSelector();
 | |
| }
 | |
| 
 | |
| const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
 | |
|   assert(GISel && "Access to GlobalISel APIs not set");
 | |
|   return GISel->getLegalizerInfo();
 | |
| }
 | |
| 
 | |
| const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
 | |
|   assert(GISel && "Access to GlobalISel APIs not set");
 | |
|   return GISel->getRegBankInfo();
 | |
| }
 | |
| 
 | |
| bool X86Subtarget::enableEarlyIfConversion() const {
 | |
|   return hasCMov() && X86EarlyIfConv;
 | |
| }
 |