2335 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2335 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineCasts.cpp -----------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visit functions for cast operations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
/// Analyze 'Val', seeing if it is a simple linear expression.
 | 
						|
/// If so, decompose it, returning some value X, such that Val is
 | 
						|
/// X*Scale+Offset.
 | 
						|
///
 | 
						|
static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | 
						|
                                        uint64_t &Offset) {
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | 
						|
    Offset = CI->getZExtValue();
 | 
						|
    Scale  = 0;
 | 
						|
    return ConstantInt::get(Val->getType(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
 | 
						|
    // Cannot look past anything that might overflow.
 | 
						|
    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
 | 
						|
    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
 | 
						|
      Scale = 1;
 | 
						|
      Offset = 0;
 | 
						|
      return Val;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      if (I->getOpcode() == Instruction::Shl) {
 | 
						|
        // This is a value scaled by '1 << the shift amt'.
 | 
						|
        Scale = UINT64_C(1) << RHS->getZExtValue();
 | 
						|
        Offset = 0;
 | 
						|
        return I->getOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      if (I->getOpcode() == Instruction::Mul) {
 | 
						|
        // This value is scaled by 'RHS'.
 | 
						|
        Scale = RHS->getZExtValue();
 | 
						|
        Offset = 0;
 | 
						|
        return I->getOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      if (I->getOpcode() == Instruction::Add) {
 | 
						|
        // We have X+C.  Check to see if we really have (X*C2)+C1,
 | 
						|
        // where C1 is divisible by C2.
 | 
						|
        unsigned SubScale;
 | 
						|
        Value *SubVal =
 | 
						|
          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
 | 
						|
        Offset += RHS->getZExtValue();
 | 
						|
        Scale = SubScale;
 | 
						|
        return SubVal;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we can't look past this.
 | 
						|
  Scale = 1;
 | 
						|
  Offset = 0;
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
/// If we find a cast of an allocation instruction, try to eliminate the cast by
 | 
						|
/// moving the type information into the alloc.
 | 
						|
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
 | 
						|
                                                   AllocaInst &AI) {
 | 
						|
  PointerType *PTy = cast<PointerType>(CI.getType());
 | 
						|
 | 
						|
  BuilderTy AllocaBuilder(Builder);
 | 
						|
  AllocaBuilder.SetInsertPoint(&AI);
 | 
						|
 | 
						|
  // Get the type really allocated and the type casted to.
 | 
						|
  Type *AllocElTy = AI.getAllocatedType();
 | 
						|
  Type *CastElTy = PTy->getElementType();
 | 
						|
  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
 | 
						|
 | 
						|
  unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
 | 
						|
  unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
 | 
						|
  if (CastElTyAlign < AllocElTyAlign) return nullptr;
 | 
						|
 | 
						|
  // If the allocation has multiple uses, only promote it if we are strictly
 | 
						|
  // increasing the alignment of the resultant allocation.  If we keep it the
 | 
						|
  // same, we open the door to infinite loops of various kinds.
 | 
						|
  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
 | 
						|
 | 
						|
  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
 | 
						|
  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
 | 
						|
  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
 | 
						|
 | 
						|
  // If the allocation has multiple uses, only promote it if we're not
 | 
						|
  // shrinking the amount of memory being allocated.
 | 
						|
  uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
 | 
						|
  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
 | 
						|
  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
 | 
						|
 | 
						|
  // See if we can satisfy the modulus by pulling a scale out of the array
 | 
						|
  // size argument.
 | 
						|
  unsigned ArraySizeScale;
 | 
						|
  uint64_t ArrayOffset;
 | 
						|
  Value *NumElements = // See if the array size is a decomposable linear expr.
 | 
						|
    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 | 
						|
 | 
						|
  // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | 
						|
  // do the xform.
 | 
						|
  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | 
						|
      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
 | 
						|
 | 
						|
  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | 
						|
  Value *Amt = nullptr;
 | 
						|
  if (Scale == 1) {
 | 
						|
    Amt = NumElements;
 | 
						|
  } else {
 | 
						|
    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
 | 
						|
    // Insert before the alloca, not before the cast.
 | 
						|
    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
 | 
						|
  }
 | 
						|
 | 
						|
  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | 
						|
    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
 | 
						|
                                  Offset, true);
 | 
						|
    Amt = AllocaBuilder.CreateAdd(Amt, Off);
 | 
						|
  }
 | 
						|
 | 
						|
  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
 | 
						|
  New->setAlignment(AI.getAlignment());
 | 
						|
  New->takeName(&AI);
 | 
						|
  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
 | 
						|
 | 
						|
  // If the allocation has multiple real uses, insert a cast and change all
 | 
						|
  // things that used it to use the new cast.  This will also hack on CI, but it
 | 
						|
  // will die soon.
 | 
						|
  if (!AI.hasOneUse()) {
 | 
						|
    // New is the allocation instruction, pointer typed. AI is the original
 | 
						|
    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
 | 
						|
    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
 | 
						|
    replaceInstUsesWith(AI, NewCast);
 | 
						|
  }
 | 
						|
  return replaceInstUsesWith(CI, New);
 | 
						|
}
 | 
						|
 | 
						|
/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
 | 
						|
/// true for, actually insert the code to evaluate the expression.
 | 
						|
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
 | 
						|
                                             bool isSigned) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
 | 
						|
    // If we got a constantexpr back, try to simplify it with DL info.
 | 
						|
    if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
 | 
						|
      C = FoldedC;
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it must be an instruction.
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  Instruction *Res = nullptr;
 | 
						|
  unsigned Opc = I->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::URem: {
 | 
						|
    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | 
						|
    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | 
						|
    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
    // If the source type of the cast is the type we're trying for then we can
 | 
						|
    // just return the source.  There's no need to insert it because it is not
 | 
						|
    // new.
 | 
						|
    if (I->getOperand(0)->getType() == Ty)
 | 
						|
      return I->getOperand(0);
 | 
						|
 | 
						|
    // Otherwise, must be the same type of cast, so just reinsert a new one.
 | 
						|
    // This also handles the case of zext(trunc(x)) -> zext(x).
 | 
						|
    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
 | 
						|
                                      Opc == Instruction::SExt);
 | 
						|
    break;
 | 
						|
  case Instruction::Select: {
 | 
						|
    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | 
						|
    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
 | 
						|
    Res = SelectInst::Create(I->getOperand(0), True, False);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::PHI: {
 | 
						|
    PHINode *OPN = cast<PHINode>(I);
 | 
						|
    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
 | 
						|
    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      Value *V =
 | 
						|
          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
 | 
						|
      NPN->addIncoming(V, OPN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
    Res = NPN;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    llvm_unreachable("Unreachable!");
 | 
						|
  }
 | 
						|
 | 
						|
  Res->takeName(I);
 | 
						|
  return InsertNewInstWith(Res, *I);
 | 
						|
}
 | 
						|
 | 
						|
Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
 | 
						|
                                                        const CastInst *CI2) {
 | 
						|
  Type *SrcTy = CI1->getSrcTy();
 | 
						|
  Type *MidTy = CI1->getDestTy();
 | 
						|
  Type *DstTy = CI2->getDestTy();
 | 
						|
 | 
						|
  Instruction::CastOps firstOp = CI1->getOpcode();
 | 
						|
  Instruction::CastOps secondOp = CI2->getOpcode();
 | 
						|
  Type *SrcIntPtrTy =
 | 
						|
      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
 | 
						|
  Type *MidIntPtrTy =
 | 
						|
      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
 | 
						|
  Type *DstIntPtrTy =
 | 
						|
      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
 | 
						|
  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
 | 
						|
                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
 | 
						|
                                                DstIntPtrTy);
 | 
						|
 | 
						|
  // We don't want to form an inttoptr or ptrtoint that converts to an integer
 | 
						|
  // type that differs from the pointer size.
 | 
						|
  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
 | 
						|
      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
 | 
						|
    Res = 0;
 | 
						|
 | 
						|
  return Instruction::CastOps(Res);
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Implement the transforms common to all CastInst visitors.
 | 
						|
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  // Try to eliminate a cast of a cast.
 | 
						|
  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | 
						|
    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
 | 
						|
      // The first cast (CSrc) is eliminable so we need to fix up or replace
 | 
						|
      // the second cast (CI). CSrc will then have a good chance of being dead.
 | 
						|
      return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are casting a select, then fold the cast into the select.
 | 
						|
  if (auto *SI = dyn_cast<SelectInst>(Src))
 | 
						|
    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
 | 
						|
      return NV;
 | 
						|
 | 
						|
  // If we are casting a PHI, then fold the cast into the PHI.
 | 
						|
  if (auto *PN = dyn_cast<PHINode>(Src)) {
 | 
						|
    // Don't do this if it would create a PHI node with an illegal type from a
 | 
						|
    // legal type.
 | 
						|
    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
 | 
						|
        shouldChangeType(CI.getType(), Src->getType()))
 | 
						|
      if (Instruction *NV = foldOpIntoPhi(CI, PN))
 | 
						|
        return NV;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can evaluate the specified expression tree as type Ty
 | 
						|
/// instead of its larger type, and arrive with the same value.
 | 
						|
/// This is used by code that tries to eliminate truncates.
 | 
						|
///
 | 
						|
/// Ty will always be a type smaller than V.  We should return true if trunc(V)
 | 
						|
/// can be computed by computing V in the smaller type.  If V is an instruction,
 | 
						|
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
 | 
						|
/// makes sense if x and y can be efficiently truncated.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
///
 | 
						|
static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
 | 
						|
                                 Instruction *CxtI) {
 | 
						|
  // We can always evaluate constants in another type.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  Type *OrigTy = V->getType();
 | 
						|
 | 
						|
  // If this is an extension from the dest type, we can eliminate it, even if it
 | 
						|
  // has multiple uses.
 | 
						|
  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
 | 
						|
      I->getOperand(0)->getType() == Ty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can't extend or shrink something that has multiple uses: doing so would
 | 
						|
  // require duplicating the instruction in general, which isn't profitable.
 | 
						|
  if (!I->hasOneUse()) return false;
 | 
						|
 | 
						|
  unsigned Opc = I->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    // These operators can all arbitrarily be extended or truncated.
 | 
						|
    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | 
						|
           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | 
						|
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::URem: {
 | 
						|
    // UDiv and URem can be truncated if all the truncated bits are zero.
 | 
						|
    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
    uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
    if (BitWidth < OrigBitWidth) {
 | 
						|
      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
 | 
						|
      if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
 | 
						|
          IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
 | 
						|
        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | 
						|
               canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Shl:
 | 
						|
    // If we are truncating the result of this SHL, and if it's a shift of a
 | 
						|
    // constant amount, we can always perform a SHL in a smaller type.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
      if (CI->getLimitedValue(BitWidth) < BitWidth)
 | 
						|
        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    // If this is a truncate of a logical shr, we can truncate it to a smaller
 | 
						|
    // lshr iff we know that the bits we would otherwise be shifting in are
 | 
						|
    // already zeros.
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | 
						|
      uint32_t BitWidth = Ty->getScalarSizeInBits();
 | 
						|
      if (IC.MaskedValueIsZero(I->getOperand(0),
 | 
						|
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
 | 
						|
          CI->getLimitedValue(BitWidth) < BitWidth) {
 | 
						|
        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
    // trunc(trunc(x)) -> trunc(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
 | 
						|
    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
 | 
						|
    return true;
 | 
						|
  case Instruction::Select: {
 | 
						|
    SelectInst *SI = cast<SelectInst>(I);
 | 
						|
    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
 | 
						|
           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
 | 
						|
  }
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (Value *IncValue : PN->incoming_values())
 | 
						|
      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a vector that is bitcast to an integer, optionally logically
 | 
						|
/// right-shifted, and truncated, convert it to an extractelement.
 | 
						|
/// Example (big endian):
 | 
						|
///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
 | 
						|
///   --->
 | 
						|
///   extractelement <4 x i32> %X, 1
 | 
						|
static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
 | 
						|
  Value *TruncOp = Trunc.getOperand(0);
 | 
						|
  Type *DestType = Trunc.getType();
 | 
						|
  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *VecInput = nullptr;
 | 
						|
  ConstantInt *ShiftVal = nullptr;
 | 
						|
  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
 | 
						|
                                  m_LShr(m_BitCast(m_Value(VecInput)),
 | 
						|
                                         m_ConstantInt(ShiftVal)))) ||
 | 
						|
      !isa<VectorType>(VecInput->getType()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  VectorType *VecType = cast<VectorType>(VecInput->getType());
 | 
						|
  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
 | 
						|
  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
 | 
						|
 | 
						|
  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If the element type of the vector doesn't match the result type,
 | 
						|
  // bitcast it to a vector type that we can extract from.
 | 
						|
  unsigned NumVecElts = VecWidth / DestWidth;
 | 
						|
  if (VecType->getElementType() != DestType) {
 | 
						|
    VecType = VectorType::get(DestType, NumVecElts);
 | 
						|
    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Elt = ShiftAmount / DestWidth;
 | 
						|
  if (IC.getDataLayout().isBigEndian())
 | 
						|
    Elt = NumVecElts - 1 - Elt;
 | 
						|
 | 
						|
  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
 | 
						|
}
 | 
						|
 | 
						|
/// Rotate left/right may occur in a wider type than necessary because of type
 | 
						|
/// promotion rules. Try to narrow all of the component instructions.
 | 
						|
Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
 | 
						|
  assert((isa<VectorType>(Trunc.getSrcTy()) ||
 | 
						|
          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
 | 
						|
         "Don't narrow to an illegal scalar type");
 | 
						|
 | 
						|
  // First, find an or'd pair of opposite shifts with the same shifted operand:
 | 
						|
  // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
 | 
						|
  Value *Or0, *Or1;
 | 
						|
  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *ShVal, *ShAmt0, *ShAmt1;
 | 
						|
  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
 | 
						|
      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
 | 
						|
  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
 | 
						|
  if (ShiftOpcode0 == ShiftOpcode1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The shift amounts must add up to the narrow bit width.
 | 
						|
  Value *ShAmt;
 | 
						|
  bool SubIsOnLHS;
 | 
						|
  Type *DestTy = Trunc.getType();
 | 
						|
  unsigned NarrowWidth = DestTy->getScalarSizeInBits();
 | 
						|
  if (match(ShAmt0,
 | 
						|
            m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
 | 
						|
    ShAmt = ShAmt1;
 | 
						|
    SubIsOnLHS = true;
 | 
						|
  } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
 | 
						|
                                          m_Specific(ShAmt0))))) {
 | 
						|
    ShAmt = ShAmt0;
 | 
						|
    SubIsOnLHS = false;
 | 
						|
  } else {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // The shifted value must have high zeros in the wide type. Typically, this
 | 
						|
  // will be a zext, but it could also be the result of an 'and' or 'shift'.
 | 
						|
  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
 | 
						|
  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
 | 
						|
  if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We have an unnecessarily wide rotate!
 | 
						|
  // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
 | 
						|
  // Narrow it down to eliminate the zext/trunc:
 | 
						|
  // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
 | 
						|
  Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
 | 
						|
  Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
 | 
						|
 | 
						|
  // Mask both shift amounts to ensure there's no UB from oversized shifts.
 | 
						|
  Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
 | 
						|
  Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
 | 
						|
  Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
 | 
						|
 | 
						|
  // Truncate the original value and use narrow ops.
 | 
						|
  Value *X = Builder.CreateTrunc(ShVal, DestTy);
 | 
						|
  Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
 | 
						|
  Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
 | 
						|
  Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
 | 
						|
  Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
 | 
						|
  return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to narrow the width of math or bitwise logic instructions by pulling a
 | 
						|
/// truncate ahead of binary operators.
 | 
						|
/// TODO: Transforms for truncated shifts should be moved into here.
 | 
						|
Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
 | 
						|
  Type *SrcTy = Trunc.getSrcTy();
 | 
						|
  Type *DestTy = Trunc.getType();
 | 
						|
  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BinaryOperator *BinOp;
 | 
						|
  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  switch (BinOp->getOpcode()) {
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul: {
 | 
						|
    Constant *C;
 | 
						|
    if (match(BinOp->getOperand(1), m_Constant(C))) {
 | 
						|
      // trunc (binop X, C) --> binop (trunc X, C')
 | 
						|
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
 | 
						|
      Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy);
 | 
						|
      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Sub: {
 | 
						|
    Constant *C;
 | 
						|
    if (match(BinOp->getOperand(0), m_Constant(C))) {
 | 
						|
      // trunc (binop C, X) --> binop (trunc C', X)
 | 
						|
      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
 | 
						|
      Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy);
 | 
						|
      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *NarrowOr = narrowRotate(Trunc))
 | 
						|
    return NarrowOr;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to narrow the width of a splat shuffle. This could be generalized to any
 | 
						|
/// shuffle with a constant operand, but we limit the transform to avoid
 | 
						|
/// creating a shuffle type that targets may not be able to lower effectively.
 | 
						|
static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
 | 
						|
                                       InstCombiner::BuilderTy &Builder) {
 | 
						|
  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
 | 
						|
  if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
 | 
						|
      Shuf->getMask()->getSplatValue() &&
 | 
						|
      Shuf->getType() == Shuf->getOperand(0)->getType()) {
 | 
						|
    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
 | 
						|
    Constant *NarrowUndef = UndefValue::get(Trunc.getType());
 | 
						|
    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
 | 
						|
    return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to narrow the width of an insert element. This could be generalized for
 | 
						|
/// any vector constant, but we limit the transform to insertion into undef to
 | 
						|
/// avoid potential backend problems from unsupported insertion widths. This
 | 
						|
/// could also be extended to handle the case of inserting a scalar constant
 | 
						|
/// into a vector variable.
 | 
						|
static Instruction *shrinkInsertElt(CastInst &Trunc,
 | 
						|
                                    InstCombiner::BuilderTy &Builder) {
 | 
						|
  Instruction::CastOps Opcode = Trunc.getOpcode();
 | 
						|
  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
 | 
						|
         "Unexpected instruction for shrinking");
 | 
						|
 | 
						|
  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
 | 
						|
  if (!InsElt || !InsElt->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *DestTy = Trunc.getType();
 | 
						|
  Type *DestScalarTy = DestTy->getScalarType();
 | 
						|
  Value *VecOp = InsElt->getOperand(0);
 | 
						|
  Value *ScalarOp = InsElt->getOperand(1);
 | 
						|
  Value *Index = InsElt->getOperand(2);
 | 
						|
 | 
						|
  if (isa<UndefValue>(VecOp)) {
 | 
						|
    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
 | 
						|
    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
 | 
						|
    UndefValue *NarrowUndef = UndefValue::get(DestTy);
 | 
						|
    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
 | 
						|
    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
 | 
						|
  if (Instruction *Result = commonCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Test if the trunc is the user of a select which is part of a
 | 
						|
  // minimum or maximum operation. If so, don't do any more simplification.
 | 
						|
  // Even simplifying demanded bits can break the canonical form of a
 | 
						|
  // min/max.
 | 
						|
  Value *LHS, *RHS;
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
 | 
						|
    if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  // See if we can simplify any instructions used by the input whose sole
 | 
						|
  // purpose is to compute bits we don't care about.
 | 
						|
  if (SimplifyDemandedInstructionBits(CI))
 | 
						|
    return &CI;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
 | 
						|
 | 
						|
  // Attempt to truncate the entire input expression tree to the destination
 | 
						|
  // type.   Only do this if the dest type is a simple type, don't convert the
 | 
						|
  // expression tree to something weird like i93 unless the source is also
 | 
						|
  // strange.
 | 
						|
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
 | 
						|
      canEvaluateTruncated(Src, DestTy, *this, &CI)) {
 | 
						|
 | 
						|
    // If this cast is a truncate, evaluting in a different type always
 | 
						|
    // eliminates the cast, so it is always a win.
 | 
						|
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
          " to avoid cast: " << CI << '\n');
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
    return replaceInstUsesWith(CI, Res);
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
 | 
						|
  if (DestTy->getScalarSizeInBits() == 1) {
 | 
						|
    Constant *One = ConstantInt::get(SrcTy, 1);
 | 
						|
    Src = Builder.CreateAnd(Src, One);
 | 
						|
    Value *Zero = Constant::getNullValue(Src->getType());
 | 
						|
    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Maybe combine the next two transforms to handle the no cast case
 | 
						|
  // more efficiently. Support vector types. Cleanup code by using m_OneUse.
 | 
						|
 | 
						|
  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
 | 
						|
  Value *A = nullptr; ConstantInt *Cst = nullptr;
 | 
						|
  if (Src->hasOneUse() &&
 | 
						|
      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
 | 
						|
    // We have three types to worry about here, the type of A, the source of
 | 
						|
    // the truncate (MidSize), and the destination of the truncate. We know that
 | 
						|
    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
 | 
						|
    // between ASize and ResultSize.
 | 
						|
    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
    // If the shift amount is larger than the size of A, then the result is
 | 
						|
    // known to be zero because all the input bits got shifted out.
 | 
						|
    if (Cst->getZExtValue() >= ASize)
 | 
						|
      return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
 | 
						|
 | 
						|
    // Since we're doing an lshr and a zero extend, and know that the shift
 | 
						|
    // amount is smaller than ASize, it is always safe to do the shift in A's
 | 
						|
    // type, then zero extend or truncate to the result.
 | 
						|
    Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
 | 
						|
    Shift->takeName(Src);
 | 
						|
    return CastInst::CreateIntegerCast(Shift, DestTy, false);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We should canonicalize to zext/trunc and remove this transform.
 | 
						|
  // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
 | 
						|
  // conversion.
 | 
						|
  // It works because bits coming from sign extension have the same value as
 | 
						|
  // the sign bit of the original value; performing ashr instead of lshr
 | 
						|
  // generates bits of the same value as the sign bit.
 | 
						|
  if (Src->hasOneUse() &&
 | 
						|
      match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
 | 
						|
    Value *SExt = cast<Instruction>(Src)->getOperand(0);
 | 
						|
    const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
 | 
						|
    const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
 | 
						|
    const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
 | 
						|
    const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
 | 
						|
    unsigned ShiftAmt = Cst->getZExtValue();
 | 
						|
 | 
						|
    // This optimization can be only performed when zero bits generated by
 | 
						|
    // the original lshr aren't pulled into the value after truncation, so we
 | 
						|
    // can only shift by values no larger than the number of extension bits.
 | 
						|
    // FIXME: Instead of bailing when the shift is too large, use and to clear
 | 
						|
    // the extra bits.
 | 
						|
    if (ShiftAmt <= MaxAmt) {
 | 
						|
      if (CISize == ASize)
 | 
						|
        return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
 | 
						|
                                          std::min(ShiftAmt, ASize - 1)));
 | 
						|
      if (SExt->hasOneUse()) {
 | 
						|
        Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
 | 
						|
        Shift->takeName(Src);
 | 
						|
        return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = narrowBinOp(CI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = shrinkSplatShuffle(CI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = shrinkInsertElt(CI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
 | 
						|
      shouldChangeType(SrcTy, DestTy)) {
 | 
						|
    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
 | 
						|
    // dest type is native and cst < dest size.
 | 
						|
    if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
 | 
						|
        !match(A, m_Shr(m_Value(), m_Constant()))) {
 | 
						|
      // Skip shifts of shift by constants. It undoes a combine in
 | 
						|
      // FoldShiftByConstant and is the extend in reg pattern.
 | 
						|
      const unsigned DestSize = DestTy->getScalarSizeInBits();
 | 
						|
      if (Cst->getValue().ult(DestSize)) {
 | 
						|
        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
 | 
						|
 | 
						|
        return BinaryOperator::Create(
 | 
						|
          Instruction::Shl, NewTrunc,
 | 
						|
          ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = foldVecTruncToExtElt(CI, *this))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
 | 
						|
                                             bool DoTransform) {
 | 
						|
  // If we are just checking for a icmp eq of a single bit and zext'ing it
 | 
						|
  // to an integer, then shift the bit to the appropriate place and then
 | 
						|
  // cast to integer to avoid the comparison.
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
 | 
						|
    const APInt &Op1CV = Op1C->getValue();
 | 
						|
 | 
						|
    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
 | 
						|
    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
 | 
						|
    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV.isNullValue()) ||
 | 
						|
        (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
 | 
						|
      if (!DoTransform) return ICI;
 | 
						|
 | 
						|
      Value *In = ICI->getOperand(0);
 | 
						|
      Value *Sh = ConstantInt::get(In->getType(),
 | 
						|
                                   In->getType()->getScalarSizeInBits() - 1);
 | 
						|
      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
 | 
						|
      if (In->getType() != CI.getType())
 | 
						|
        In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
 | 
						|
 | 
						|
      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
 | 
						|
        Constant *One = ConstantInt::get(In->getType(), 1);
 | 
						|
        In = Builder.CreateXor(In, One, In->getName() + ".not");
 | 
						|
      }
 | 
						|
 | 
						|
      return replaceInstUsesWith(CI, In);
 | 
						|
    }
 | 
						|
 | 
						|
    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
 | 
						|
    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
 | 
						|
    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
 | 
						|
    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
 | 
						|
    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
 | 
						|
    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
 | 
						|
    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | 
						|
    if ((Op1CV.isNullValue() || Op1CV.isPowerOf2()) &&
 | 
						|
        // This only works for EQ and NE
 | 
						|
        ICI->isEquality()) {
 | 
						|
      // If Op1C some other power of two, convert:
 | 
						|
      KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
 | 
						|
 | 
						|
      APInt KnownZeroMask(~Known.Zero);
 | 
						|
      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
 | 
						|
        if (!DoTransform) return ICI;
 | 
						|
 | 
						|
        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
 | 
						|
        if (!Op1CV.isNullValue() && (Op1CV != KnownZeroMask)) {
 | 
						|
          // (X&4) == 2 --> false
 | 
						|
          // (X&4) != 2 --> true
 | 
						|
          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
 | 
						|
                                           isNE);
 | 
						|
          Res = ConstantExpr::getZExt(Res, CI.getType());
 | 
						|
          return replaceInstUsesWith(CI, Res);
 | 
						|
        }
 | 
						|
 | 
						|
        uint32_t ShAmt = KnownZeroMask.logBase2();
 | 
						|
        Value *In = ICI->getOperand(0);
 | 
						|
        if (ShAmt) {
 | 
						|
          // Perform a logical shr by shiftamt.
 | 
						|
          // Insert the shift to put the result in the low bit.
 | 
						|
          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
 | 
						|
                                  In->getName() + ".lobit");
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Op1CV.isNullValue() == isNE) { // Toggle the low bit.
 | 
						|
          Constant *One = ConstantInt::get(In->getType(), 1);
 | 
						|
          In = Builder.CreateXor(In, One);
 | 
						|
        }
 | 
						|
 | 
						|
        if (CI.getType() == In->getType())
 | 
						|
          return replaceInstUsesWith(CI, In);
 | 
						|
 | 
						|
        Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
 | 
						|
        return replaceInstUsesWith(CI, IntCast);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
 | 
						|
  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
 | 
						|
  // may lead to additional simplifications.
 | 
						|
  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
 | 
						|
    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
 | 
						|
      Value *LHS = ICI->getOperand(0);
 | 
						|
      Value *RHS = ICI->getOperand(1);
 | 
						|
 | 
						|
      KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
 | 
						|
      KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
 | 
						|
 | 
						|
      if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
 | 
						|
        APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
 | 
						|
        APInt UnknownBit = ~KnownBits;
 | 
						|
        if (UnknownBit.countPopulation() == 1) {
 | 
						|
          if (!DoTransform) return ICI;
 | 
						|
 | 
						|
          Value *Result = Builder.CreateXor(LHS, RHS);
 | 
						|
 | 
						|
          // Mask off any bits that are set and won't be shifted away.
 | 
						|
          if (KnownLHS.One.uge(UnknownBit))
 | 
						|
            Result = Builder.CreateAnd(Result,
 | 
						|
                                        ConstantInt::get(ITy, UnknownBit));
 | 
						|
 | 
						|
          // Shift the bit we're testing down to the lsb.
 | 
						|
          Result = Builder.CreateLShr(
 | 
						|
               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
 | 
						|
 | 
						|
          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | 
						|
            Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
 | 
						|
          Result->takeName(ICI);
 | 
						|
          return replaceInstUsesWith(CI, Result);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine if the specified value can be computed in the specified wider type
 | 
						|
/// and produce the same low bits. If not, return false.
 | 
						|
///
 | 
						|
/// If this function returns true, it can also return a non-zero number of bits
 | 
						|
/// (in BitsToClear) which indicates that the value it computes is correct for
 | 
						|
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
 | 
						|
/// out.  For example, to promote something like:
 | 
						|
///
 | 
						|
///   %B = trunc i64 %A to i32
 | 
						|
///   %C = lshr i32 %B, 8
 | 
						|
///   %E = zext i32 %C to i64
 | 
						|
///
 | 
						|
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
 | 
						|
/// set to 8 to indicate that the promoted value needs to have bits 24-31
 | 
						|
/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
 | 
						|
/// clear the top bits anyway, doing this has no extra cost.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
 | 
						|
                             InstCombiner &IC, Instruction *CxtI) {
 | 
						|
  BitsToClear = 0;
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // If the input is a truncate from the destination type, we can trivially
 | 
						|
  // eliminate it.
 | 
						|
  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can't extend or shrink something that has multiple uses: doing so would
 | 
						|
  // require duplicating the instruction in general, which isn't profitable.
 | 
						|
  if (!I->hasOneUse()) return false;
 | 
						|
 | 
						|
  unsigned Opc = I->getOpcode(), Tmp;
 | 
						|
  switch (Opc) {
 | 
						|
  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
 | 
						|
  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
 | 
						|
  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
 | 
						|
        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
 | 
						|
      return false;
 | 
						|
    // These can all be promoted if neither operand has 'bits to clear'.
 | 
						|
    if (BitsToClear == 0 && Tmp == 0)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
 | 
						|
    // other side, BitsToClear is ok.
 | 
						|
    if (Tmp == 0 && I->isBitwiseLogicOp()) {
 | 
						|
      // We use MaskedValueIsZero here for generality, but the case we care
 | 
						|
      // about the most is constant RHS.
 | 
						|
      unsigned VSize = V->getType()->getScalarSizeInBits();
 | 
						|
      if (IC.MaskedValueIsZero(I->getOperand(1),
 | 
						|
                               APInt::getHighBitsSet(VSize, BitsToClear),
 | 
						|
                               0, CxtI))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we don't know how to analyze this BitsToClear case yet.
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Instruction::Shl:
 | 
						|
    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
 | 
						|
    // upper bits we can reduce BitsToClear by the shift amount.
 | 
						|
    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
 | 
						|
        return false;
 | 
						|
      uint64_t ShiftAmt = Amt->getZExtValue();
 | 
						|
      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  case Instruction::LShr:
 | 
						|
    // We can promote lshr(x, cst) if we can promote x.  This requires the
 | 
						|
    // ultimate 'and' to clear out the high zero bits we're clearing out though.
 | 
						|
    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
 | 
						|
        return false;
 | 
						|
      BitsToClear += Amt->getZExtValue();
 | 
						|
      if (BitsToClear > V->getType()->getScalarSizeInBits())
 | 
						|
        BitsToClear = V->getType()->getScalarSizeInBits();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Cannot promote variable LSHR.
 | 
						|
    return false;
 | 
						|
  case Instruction::Select:
 | 
						|
    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
 | 
						|
        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
 | 
						|
        // TODO: If important, we could handle the case when the BitsToClear are
 | 
						|
        // known zero in the disagreeing side.
 | 
						|
        Tmp != BitsToClear)
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
 | 
						|
          // TODO: If important, we could handle the case when the BitsToClear
 | 
						|
          // are known zero in the disagreeing input.
 | 
						|
          Tmp != BitsToClear)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
 | 
						|
  // If this zero extend is only used by a truncate, let the truncate be
 | 
						|
  // eliminated before we try to optimize this zext.
 | 
						|
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If one of the common conversion will work, do it.
 | 
						|
  if (Instruction *Result = commonCastTransforms(CI))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | 
						|
 | 
						|
  // Attempt to extend the entire input expression tree to the destination
 | 
						|
  // type.   Only do this if the dest type is a simple type, don't convert the
 | 
						|
  // expression tree to something weird like i93 unless the source is also
 | 
						|
  // strange.
 | 
						|
  unsigned BitsToClear;
 | 
						|
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
 | 
						|
      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
 | 
						|
    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
 | 
						|
           "Can't clear more bits than in SrcTy");
 | 
						|
 | 
						|
    // Okay, we can transform this!  Insert the new expression now.
 | 
						|
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
          " to avoid zero extend: " << CI << '\n');
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
 | 
						|
    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
 | 
						|
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
    // If the high bits are already filled with zeros, just replace this
 | 
						|
    // cast with the result.
 | 
						|
    if (MaskedValueIsZero(Res,
 | 
						|
                          APInt::getHighBitsSet(DestBitSize,
 | 
						|
                                                DestBitSize-SrcBitsKept),
 | 
						|
                             0, &CI))
 | 
						|
      return replaceInstUsesWith(CI, Res);
 | 
						|
 | 
						|
    // We need to emit an AND to clear the high bits.
 | 
						|
    Constant *C = ConstantInt::get(Res->getType(),
 | 
						|
                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
 | 
						|
    return BinaryOperator::CreateAnd(Res, C);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
 | 
						|
  // types and if the sizes are just right we can convert this into a logical
 | 
						|
  // 'and' which will be much cheaper than the pair of casts.
 | 
						|
  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
 | 
						|
    // TODO: Subsume this into EvaluateInDifferentType.
 | 
						|
 | 
						|
    // Get the sizes of the types involved.  We know that the intermediate type
 | 
						|
    // will be smaller than A or C, but don't know the relation between A and C.
 | 
						|
    Value *A = CSrc->getOperand(0);
 | 
						|
    unsigned SrcSize = A->getType()->getScalarSizeInBits();
 | 
						|
    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
 | 
						|
    unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | 
						|
    // If we're actually extending zero bits, then if
 | 
						|
    // SrcSize <  DstSize: zext(a & mask)
 | 
						|
    // SrcSize == DstSize: a & mask
 | 
						|
    // SrcSize  > DstSize: trunc(a) & mask
 | 
						|
    if (SrcSize < DstSize) {
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | 
						|
      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
 | 
						|
      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
 | 
						|
      return new ZExtInst(And, CI.getType());
 | 
						|
    }
 | 
						|
 | 
						|
    if (SrcSize == DstSize) {
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | 
						|
      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
 | 
						|
                                                           AndValue));
 | 
						|
    }
 | 
						|
    if (SrcSize > DstSize) {
 | 
						|
      Value *Trunc = Builder.CreateTrunc(A, CI.getType());
 | 
						|
      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
 | 
						|
      return BinaryOperator::CreateAnd(Trunc,
 | 
						|
                                       ConstantInt::get(Trunc->getType(),
 | 
						|
                                                        AndValue));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | 
						|
    return transformZExtICmp(ICI, CI);
 | 
						|
 | 
						|
  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
 | 
						|
  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
 | 
						|
    // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
 | 
						|
    // of the (zext icmp) can be eliminated. If so, immediately perform the
 | 
						|
    // according elimination.
 | 
						|
    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
 | 
						|
    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
 | 
						|
    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
 | 
						|
        (transformZExtICmp(LHS, CI, false) ||
 | 
						|
         transformZExtICmp(RHS, CI, false))) {
 | 
						|
      // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
 | 
						|
      Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
 | 
						|
      Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
 | 
						|
      BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
 | 
						|
 | 
						|
      // Perform the elimination.
 | 
						|
      if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
 | 
						|
        transformZExtICmp(LHS, *LZExt);
 | 
						|
      if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
 | 
						|
        transformZExtICmp(RHS, *RZExt);
 | 
						|
 | 
						|
      return Or;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // zext(trunc(X) & C) -> (X & zext(C)).
 | 
						|
  Constant *C;
 | 
						|
  Value *X;
 | 
						|
  if (SrcI &&
 | 
						|
      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
 | 
						|
      X->getType() == CI.getType())
 | 
						|
    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
 | 
						|
 | 
						|
  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
 | 
						|
  Value *And;
 | 
						|
  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
 | 
						|
      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
 | 
						|
      X->getType() == CI.getType()) {
 | 
						|
    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
 | 
						|
    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
 | 
						|
Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
 | 
						|
  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
 | 
						|
  ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
 | 
						|
  // Don't bother if Op1 isn't of vector or integer type.
 | 
						|
  if (!Op1->getType()->isIntOrIntVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | 
						|
    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
 | 
						|
    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
 | 
						|
    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
 | 
						|
        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
 | 
						|
 | 
						|
      Value *Sh = ConstantInt::get(Op0->getType(),
 | 
						|
                                   Op0->getType()->getScalarSizeInBits()-1);
 | 
						|
      Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
 | 
						|
      if (In->getType() != CI.getType())
 | 
						|
        In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
 | 
						|
 | 
						|
      if (Pred == ICmpInst::ICMP_SGT)
 | 
						|
        In = Builder.CreateNot(In, In->getName() + ".not");
 | 
						|
      return replaceInstUsesWith(CI, In);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    // If we know that only one bit of the LHS of the icmp can be set and we
 | 
						|
    // have an equality comparison with zero or a power of 2, we can transform
 | 
						|
    // the icmp and sext into bitwise/integer operations.
 | 
						|
    if (ICI->hasOneUse() &&
 | 
						|
        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
 | 
						|
      KnownBits Known = computeKnownBits(Op0, 0, &CI);
 | 
						|
 | 
						|
      APInt KnownZeroMask(~Known.Zero);
 | 
						|
      if (KnownZeroMask.isPowerOf2()) {
 | 
						|
        Value *In = ICI->getOperand(0);
 | 
						|
 | 
						|
        // If the icmp tests for a known zero bit we can constant fold it.
 | 
						|
        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
 | 
						|
          Value *V = Pred == ICmpInst::ICMP_NE ?
 | 
						|
                       ConstantInt::getAllOnesValue(CI.getType()) :
 | 
						|
                       ConstantInt::getNullValue(CI.getType());
 | 
						|
          return replaceInstUsesWith(CI, V);
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
 | 
						|
          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
 | 
						|
          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
 | 
						|
          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
 | 
						|
          // Perform a right shift to place the desired bit in the LSB.
 | 
						|
          if (ShiftAmt)
 | 
						|
            In = Builder.CreateLShr(In,
 | 
						|
                                    ConstantInt::get(In->getType(), ShiftAmt));
 | 
						|
 | 
						|
          // At this point "In" is either 1 or 0. Subtract 1 to turn
 | 
						|
          // {1, 0} -> {0, -1}.
 | 
						|
          In = Builder.CreateAdd(In,
 | 
						|
                                 ConstantInt::getAllOnesValue(In->getType()),
 | 
						|
                                 "sext");
 | 
						|
        } else {
 | 
						|
          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
 | 
						|
          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
 | 
						|
          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
 | 
						|
          // Perform a left shift to place the desired bit in the MSB.
 | 
						|
          if (ShiftAmt)
 | 
						|
            In = Builder.CreateShl(In,
 | 
						|
                                   ConstantInt::get(In->getType(), ShiftAmt));
 | 
						|
 | 
						|
          // Distribute the bit over the whole bit width.
 | 
						|
          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
 | 
						|
                                  KnownZeroMask.getBitWidth() - 1), "sext");
 | 
						|
        }
 | 
						|
 | 
						|
        if (CI.getType() == In->getType())
 | 
						|
          return replaceInstUsesWith(CI, In);
 | 
						|
        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can take the specified value and return it as type Ty
 | 
						|
/// without inserting any new casts and without changing the value of the common
 | 
						|
/// low bits.  This is used by code that tries to promote integer operations to
 | 
						|
/// a wider types will allow us to eliminate the extension.
 | 
						|
///
 | 
						|
/// This function works on both vectors and scalars.
 | 
						|
///
 | 
						|
static bool canEvaluateSExtd(Value *V, Type *Ty) {
 | 
						|
  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
 | 
						|
         "Can't sign extend type to a smaller type");
 | 
						|
  // If this is a constant, it can be trivially promoted.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // If this is a truncate from the dest type, we can trivially eliminate it.
 | 
						|
  if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can't extend or shrink something that has multiple uses: doing so would
 | 
						|
  // require duplicating the instruction in general, which isn't profitable.
 | 
						|
  if (!I->hasOneUse()) return false;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
 | 
						|
  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
 | 
						|
  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
 | 
						|
    return true;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // These operators can all arbitrarily be extended if their inputs can.
 | 
						|
    return canEvaluateSExtd(I->getOperand(0), Ty) &&
 | 
						|
           canEvaluateSExtd(I->getOperand(1), Ty);
 | 
						|
 | 
						|
  //case Instruction::Shl:   TODO
 | 
						|
  //case Instruction::LShr:  TODO
 | 
						|
 | 
						|
  case Instruction::Select:
 | 
						|
    return canEvaluateSExtd(I->getOperand(1), Ty) &&
 | 
						|
           canEvaluateSExtd(I->getOperand(2), Ty);
 | 
						|
 | 
						|
  case Instruction::PHI: {
 | 
						|
    // We can change a phi if we can change all operands.  Note that we never
 | 
						|
    // get into trouble with cyclic PHIs here because we only consider
 | 
						|
    // instructions with a single use.
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (Value *IncValue : PN->incoming_values())
 | 
						|
      if (!canEvaluateSExtd(IncValue, Ty)) return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // TODO: Can handle more cases here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
 | 
						|
  // If this sign extend is only used by a truncate, let the truncate be
 | 
						|
  // eliminated before we try to optimize this sext.
 | 
						|
  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | 
						|
 | 
						|
  // If we know that the value being extended is positive, we can use a zext
 | 
						|
  // instead.
 | 
						|
  KnownBits Known = computeKnownBits(Src, 0, &CI);
 | 
						|
  if (Known.isNonNegative()) {
 | 
						|
    Value *ZExt = Builder.CreateZExt(Src, DestTy);
 | 
						|
    return replaceInstUsesWith(CI, ZExt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt to extend the entire input expression tree to the destination
 | 
						|
  // type.   Only do this if the dest type is a simple type, don't convert the
 | 
						|
  // expression tree to something weird like i93 unless the source is also
 | 
						|
  // strange.
 | 
						|
  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
 | 
						|
      canEvaluateSExtd(Src, DestTy)) {
 | 
						|
    // Okay, we can transform this!  Insert the new expression now.
 | 
						|
    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | 
						|
          " to avoid sign extend: " << CI << '\n');
 | 
						|
    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
 | 
						|
    assert(Res->getType() == DestTy);
 | 
						|
 | 
						|
    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
 | 
						|
    // If the high bits are already filled with sign bit, just replace this
 | 
						|
    // cast with the result.
 | 
						|
    if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
 | 
						|
      return replaceInstUsesWith(CI, Res);
 | 
						|
 | 
						|
    // We need to emit a shl + ashr to do the sign extend.
 | 
						|
    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
 | 
						|
    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
 | 
						|
                                      ShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the input is a trunc from the destination type, then turn sext(trunc(x))
 | 
						|
  // into shifts.
 | 
						|
  Value *X;
 | 
						|
  if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
 | 
						|
    // sext(trunc(X)) --> ashr(shl(X, C), C)
 | 
						|
    unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | 
						|
    unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | 
						|
    Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
 | 
						|
    return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | 
						|
    return transformSExtICmp(ICI, CI);
 | 
						|
 | 
						|
  // If the input is a shl/ashr pair of a same constant, then this is a sign
 | 
						|
  // extension from a smaller value.  If we could trust arbitrary bitwidth
 | 
						|
  // integers, we could turn this into a truncate to the smaller bit and then
 | 
						|
  // use a sext for the whole extension.  Since we don't, look deeper and check
 | 
						|
  // for a truncate.  If the source and dest are the same type, eliminate the
 | 
						|
  // trunc and extend and just do shifts.  For example, turn:
 | 
						|
  //   %a = trunc i32 %i to i8
 | 
						|
  //   %b = shl i8 %a, 6
 | 
						|
  //   %c = ashr i8 %b, 6
 | 
						|
  //   %d = sext i8 %c to i32
 | 
						|
  // into:
 | 
						|
  //   %a = shl i32 %i, 30
 | 
						|
  //   %d = ashr i32 %a, 30
 | 
						|
  Value *A = nullptr;
 | 
						|
  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
 | 
						|
  ConstantInt *BA = nullptr, *CA = nullptr;
 | 
						|
  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
 | 
						|
                        m_ConstantInt(CA))) &&
 | 
						|
      BA == CA && A->getType() == CI.getType()) {
 | 
						|
    unsigned MidSize = Src->getType()->getScalarSizeInBits();
 | 
						|
    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
 | 
						|
    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
 | 
						|
    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
 | 
						|
    A = Builder.CreateShl(A, ShAmtV, CI.getName());
 | 
						|
    return BinaryOperator::CreateAShr(A, ShAmtV);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Return a Constant* for the specified floating-point constant if it fits
 | 
						|
/// in the specified FP type without changing its value.
 | 
						|
static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
 | 
						|
  bool losesInfo;
 | 
						|
  APFloat F = CFP->getValueAPF();
 | 
						|
  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
 | 
						|
  if (!losesInfo)
 | 
						|
    return ConstantFP::get(CFP->getContext(), F);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Look through floating-point extensions until we get the source value.
 | 
						|
static Value *lookThroughFPExtensions(Value *V) {
 | 
						|
  while (auto *FPExt = dyn_cast<FPExtInst>(V))
 | 
						|
    V = FPExt->getOperand(0);
 | 
						|
 | 
						|
  // If this value is a constant, return the constant in the smallest FP type
 | 
						|
  // that can accurately represent it.  This allows us to turn
 | 
						|
  // (float)((double)X+2.0) into x+2.0f.
 | 
						|
  if (auto *CFP = dyn_cast<ConstantFP>(V)) {
 | 
						|
    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
 | 
						|
      return V;  // No constant folding of this.
 | 
						|
    // See if the value can be truncated to half and then reextended.
 | 
						|
    if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
 | 
						|
      return V;
 | 
						|
    // See if the value can be truncated to float and then reextended.
 | 
						|
    if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
 | 
						|
      return V;
 | 
						|
    if (CFP->getType()->isDoubleTy())
 | 
						|
      return V;  // Won't shrink.
 | 
						|
    if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
 | 
						|
      return V;
 | 
						|
    // Don't try to shrink to various long double types.
 | 
						|
  }
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
 | 
						|
  // simplify this expression to avoid one or more of the trunc/extend
 | 
						|
  // operations if we can do so without changing the numerical results.
 | 
						|
  //
 | 
						|
  // The exact manner in which the widths of the operands interact to limit
 | 
						|
  // what we can and cannot do safely varies from operation to operation, and
 | 
						|
  // is explained below in the various case statements.
 | 
						|
  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
 | 
						|
  if (OpI && OpI->hasOneUse()) {
 | 
						|
    Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
 | 
						|
    Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
 | 
						|
    unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
 | 
						|
    unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
 | 
						|
    unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
 | 
						|
    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
 | 
						|
    unsigned DstWidth = CI.getType()->getFPMantissaWidth();
 | 
						|
    switch (OpI->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case Instruction::FAdd:
 | 
						|
      case Instruction::FSub:
 | 
						|
        // For addition and subtraction, the infinitely precise result can
 | 
						|
        // essentially be arbitrarily wide; proving that double rounding
 | 
						|
        // will not occur because the result of OpI is exact (as we will for
 | 
						|
        // FMul, for example) is hopeless.  However, we *can* nonetheless
 | 
						|
        // frequently know that double rounding cannot occur (or that it is
 | 
						|
        // innocuous) by taking advantage of the specific structure of
 | 
						|
        // infinitely-precise results that admit double rounding.
 | 
						|
        //
 | 
						|
        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
 | 
						|
        // to represent both sources, we can guarantee that the double
 | 
						|
        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
 | 
						|
        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
 | 
						|
        // for proof of this fact).
 | 
						|
        //
 | 
						|
        // Note: Figueroa does not consider the case where DstFormat !=
 | 
						|
        // SrcFormat.  It's possible (likely even!) that this analysis
 | 
						|
        // could be tightened for those cases, but they are rare (the main
 | 
						|
        // case of interest here is (float)((double)float + float)).
 | 
						|
        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
 | 
						|
          if (LHSOrig->getType() != CI.getType())
 | 
						|
            LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
 | 
						|
          if (RHSOrig->getType() != CI.getType())
 | 
						|
            RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
 | 
						|
          Instruction *RI =
 | 
						|
            BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
 | 
						|
          RI->copyFastMathFlags(OpI);
 | 
						|
          return RI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FMul:
 | 
						|
        // For multiplication, the infinitely precise result has at most
 | 
						|
        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
 | 
						|
        // that such a value can be exactly represented, then no double
 | 
						|
        // rounding can possibly occur; we can safely perform the operation
 | 
						|
        // in the destination format if it can represent both sources.
 | 
						|
        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
 | 
						|
          if (LHSOrig->getType() != CI.getType())
 | 
						|
            LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
 | 
						|
          if (RHSOrig->getType() != CI.getType())
 | 
						|
            RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
 | 
						|
          Instruction *RI =
 | 
						|
            BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
 | 
						|
          RI->copyFastMathFlags(OpI);
 | 
						|
          return RI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FDiv:
 | 
						|
        // For division, we use again use the bound from Figueroa's
 | 
						|
        // dissertation.  I am entirely certain that this bound can be
 | 
						|
        // tightened in the unbalanced operand case by an analysis based on
 | 
						|
        // the diophantine rational approximation bound, but the well-known
 | 
						|
        // condition used here is a good conservative first pass.
 | 
						|
        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
 | 
						|
        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
 | 
						|
          if (LHSOrig->getType() != CI.getType())
 | 
						|
            LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
 | 
						|
          if (RHSOrig->getType() != CI.getType())
 | 
						|
            RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
 | 
						|
          Instruction *RI =
 | 
						|
            BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
 | 
						|
          RI->copyFastMathFlags(OpI);
 | 
						|
          return RI;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::FRem:
 | 
						|
        // Remainder is straightforward.  Remainder is always exact, so the
 | 
						|
        // type of OpI doesn't enter into things at all.  We simply evaluate
 | 
						|
        // in whichever source type is larger, then convert to the
 | 
						|
        // destination type.
 | 
						|
        if (SrcWidth == OpWidth)
 | 
						|
          break;
 | 
						|
        if (LHSWidth < SrcWidth)
 | 
						|
          LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
 | 
						|
        else if (RHSWidth <= SrcWidth)
 | 
						|
          RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
 | 
						|
        if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
 | 
						|
          Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
 | 
						|
          if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
 | 
						|
            RI->copyFastMathFlags(OpI);
 | 
						|
          return CastInst::CreateFPCast(ExactResult, CI.getType());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // (fptrunc (fneg x)) -> (fneg (fptrunc x))
 | 
						|
    if (BinaryOperator::isFNeg(OpI)) {
 | 
						|
      Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
 | 
						|
                                                CI.getType());
 | 
						|
      Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
 | 
						|
      RI->copyFastMathFlags(OpI);
 | 
						|
      return RI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // (fptrunc (select cond, R1, Cst)) -->
 | 
						|
  // (select cond, (fptrunc R1), (fptrunc Cst))
 | 
						|
  //
 | 
						|
  //  - but only if this isn't part of a min/max operation, else we'll
 | 
						|
  // ruin min/max canonical form which is to have the select and
 | 
						|
  // compare's operands be of the same type with no casts to look through.
 | 
						|
  Value *LHS, *RHS;
 | 
						|
  SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
 | 
						|
  if (SI &&
 | 
						|
      (isa<ConstantFP>(SI->getOperand(1)) ||
 | 
						|
       isa<ConstantFP>(SI->getOperand(2))) &&
 | 
						|
      matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
 | 
						|
    Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
 | 
						|
    Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
 | 
						|
    return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
 | 
						|
  }
 | 
						|
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
 | 
						|
  if (II) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::fabs:
 | 
						|
    case Intrinsic::ceil:
 | 
						|
    case Intrinsic::floor:
 | 
						|
    case Intrinsic::rint:
 | 
						|
    case Intrinsic::round:
 | 
						|
    case Intrinsic::nearbyint:
 | 
						|
    case Intrinsic::trunc: {
 | 
						|
      Value *Src = II->getArgOperand(0);
 | 
						|
      if (!Src->hasOneUse())
 | 
						|
        break;
 | 
						|
 | 
						|
      // Except for fabs, this transformation requires the input of the unary FP
 | 
						|
      // operation to be itself an fpext from the type to which we're
 | 
						|
      // truncating.
 | 
						|
      if (II->getIntrinsicID() != Intrinsic::fabs) {
 | 
						|
        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
 | 
						|
        if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Do unary FP operation on smaller type.
 | 
						|
      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
 | 
						|
      Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
 | 
						|
      Type *IntrinsicType[] = { CI.getType() };
 | 
						|
      Function *Overload = Intrinsic::getDeclaration(
 | 
						|
        CI.getModule(), II->getIntrinsicID(), IntrinsicType);
 | 
						|
 | 
						|
      SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
      II->getOperandBundlesAsDefs(OpBundles);
 | 
						|
 | 
						|
      Value *Args[] = { InnerTrunc };
 | 
						|
      CallInst *NewCI =  CallInst::Create(Overload, Args,
 | 
						|
                                          OpBundles, II->getName());
 | 
						|
      NewCI->copyFastMathFlags(II);
 | 
						|
      return NewCI;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = shrinkInsertElt(CI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
 | 
						|
// This is safe if the intermediate type has enough bits in its mantissa to
 | 
						|
// accurately represent all values of X.  For example, this won't work with
 | 
						|
// i64 -> float -> i64.
 | 
						|
Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
 | 
						|
  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
 | 
						|
    return nullptr;
 | 
						|
  Instruction *OpI = cast<Instruction>(FI.getOperand(0));
 | 
						|
 | 
						|
  Value *SrcI = OpI->getOperand(0);
 | 
						|
  Type *FITy = FI.getType();
 | 
						|
  Type *OpITy = OpI->getType();
 | 
						|
  Type *SrcTy = SrcI->getType();
 | 
						|
  bool IsInputSigned = isa<SIToFPInst>(OpI);
 | 
						|
  bool IsOutputSigned = isa<FPToSIInst>(FI);
 | 
						|
 | 
						|
  // We can safely assume the conversion won't overflow the output range,
 | 
						|
  // because (for example) (uint8_t)18293.f is undefined behavior.
 | 
						|
 | 
						|
  // Since we can assume the conversion won't overflow, our decision as to
 | 
						|
  // whether the input will fit in the float should depend on the minimum
 | 
						|
  // of the input range and output range.
 | 
						|
 | 
						|
  // This means this is also safe for a signed input and unsigned output, since
 | 
						|
  // a negative input would lead to undefined behavior.
 | 
						|
  int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
 | 
						|
  int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
 | 
						|
  int ActualSize = std::min(InputSize, OutputSize);
 | 
						|
 | 
						|
  if (ActualSize <= OpITy->getFPMantissaWidth()) {
 | 
						|
    if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
 | 
						|
      if (IsInputSigned && IsOutputSigned)
 | 
						|
        return new SExtInst(SrcI, FITy);
 | 
						|
      return new ZExtInst(SrcI, FITy);
 | 
						|
    }
 | 
						|
    if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
 | 
						|
      return new TruncInst(SrcI, FITy);
 | 
						|
    if (SrcTy == FITy)
 | 
						|
      return replaceInstUsesWith(FI, SrcI);
 | 
						|
    return new BitCastInst(SrcI, FITy);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
 | 
						|
  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | 
						|
  if (!OpI)
 | 
						|
    return commonCastTransforms(FI);
 | 
						|
 | 
						|
  if (Instruction *I = FoldItoFPtoI(FI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return commonCastTransforms(FI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
 | 
						|
  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | 
						|
  if (!OpI)
 | 
						|
    return commonCastTransforms(FI);
 | 
						|
 | 
						|
  if (Instruction *I = FoldItoFPtoI(FI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return commonCastTransforms(FI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
 | 
						|
  // If the source integer type is not the intptr_t type for this target, do a
 | 
						|
  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
 | 
						|
  // cast to be exposed to other transforms.
 | 
						|
  unsigned AS = CI.getAddressSpace();
 | 
						|
  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
 | 
						|
      DL.getPointerSizeInBits(AS)) {
 | 
						|
    Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
 | 
						|
    if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
 | 
						|
      Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
 | 
						|
 | 
						|
    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
 | 
						|
    return new IntToPtrInst(P, CI.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = commonCastTransforms(CI))
 | 
						|
    return I;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
 | 
						|
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | 
						|
    // If casting the result of a getelementptr instruction with no offset, turn
 | 
						|
    // this into a cast of the original pointer!
 | 
						|
    if (GEP->hasAllZeroIndices() &&
 | 
						|
        // If CI is an addrspacecast and GEP changes the poiner type, merging
 | 
						|
        // GEP into CI would undo canonicalizing addrspacecast with different
 | 
						|
        // pointer types, causing infinite loops.
 | 
						|
        (!isa<AddrSpaceCastInst>(CI) ||
 | 
						|
         GEP->getType() == GEP->getPointerOperandType())) {
 | 
						|
      // Changing the cast operand is usually not a good idea but it is safe
 | 
						|
      // here because the pointer operand is being replaced with another
 | 
						|
      // pointer operand so the opcode doesn't need to change.
 | 
						|
      Worklist.Add(GEP);
 | 
						|
      CI.setOperand(0, GEP->getOperand(0));
 | 
						|
      return &CI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
 | 
						|
  // If the destination integer type is not the intptr_t type for this target,
 | 
						|
  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
 | 
						|
  // to be exposed to other transforms.
 | 
						|
 | 
						|
  Type *Ty = CI.getType();
 | 
						|
  unsigned AS = CI.getPointerAddressSpace();
 | 
						|
 | 
						|
  if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
 | 
						|
    return commonPointerCastTransforms(CI);
 | 
						|
 | 
						|
  Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
 | 
						|
  if (Ty->isVectorTy()) // Handle vectors of pointers.
 | 
						|
    PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
 | 
						|
 | 
						|
  Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
 | 
						|
  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
 | 
						|
}
 | 
						|
 | 
						|
/// This input value (which is known to have vector type) is being zero extended
 | 
						|
/// or truncated to the specified vector type.
 | 
						|
/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
 | 
						|
///
 | 
						|
/// The source and destination vector types may have different element types.
 | 
						|
static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
 | 
						|
                                         InstCombiner &IC) {
 | 
						|
  // We can only do this optimization if the output is a multiple of the input
 | 
						|
  // element size, or the input is a multiple of the output element size.
 | 
						|
  // Convert the input type to have the same element type as the output.
 | 
						|
  VectorType *SrcTy = cast<VectorType>(InVal->getType());
 | 
						|
 | 
						|
  if (SrcTy->getElementType() != DestTy->getElementType()) {
 | 
						|
    // The input types don't need to be identical, but for now they must be the
 | 
						|
    // same size.  There is no specific reason we couldn't handle things like
 | 
						|
    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
 | 
						|
    // there yet.
 | 
						|
    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
 | 
						|
        DestTy->getElementType()->getPrimitiveSizeInBits())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
 | 
						|
    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that the element types match, get the shuffle mask and RHS of the
 | 
						|
  // shuffle to use, which depends on whether we're increasing or decreasing the
 | 
						|
  // size of the input.
 | 
						|
  SmallVector<uint32_t, 16> ShuffleMask;
 | 
						|
  Value *V2;
 | 
						|
 | 
						|
  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
 | 
						|
    // If we're shrinking the number of elements, just shuffle in the low
 | 
						|
    // elements from the input and use undef as the second shuffle input.
 | 
						|
    V2 = UndefValue::get(SrcTy);
 | 
						|
    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
 | 
						|
      ShuffleMask.push_back(i);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // If we're increasing the number of elements, shuffle in all of the
 | 
						|
    // elements from InVal and fill the rest of the result elements with zeros
 | 
						|
    // from a constant zero.
 | 
						|
    V2 = Constant::getNullValue(SrcTy);
 | 
						|
    unsigned SrcElts = SrcTy->getNumElements();
 | 
						|
    for (unsigned i = 0, e = SrcElts; i != e; ++i)
 | 
						|
      ShuffleMask.push_back(i);
 | 
						|
 | 
						|
    // The excess elements reference the first element of the zero input.
 | 
						|
    for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
 | 
						|
      ShuffleMask.push_back(SrcElts);
 | 
						|
  }
 | 
						|
 | 
						|
  return new ShuffleVectorInst(InVal, V2,
 | 
						|
                               ConstantDataVector::get(V2->getContext(),
 | 
						|
                                                       ShuffleMask));
 | 
						|
}
 | 
						|
 | 
						|
static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
 | 
						|
  return Value % Ty->getPrimitiveSizeInBits() == 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
 | 
						|
  return Value / Ty->getPrimitiveSizeInBits();
 | 
						|
}
 | 
						|
 | 
						|
/// V is a value which is inserted into a vector of VecEltTy.
 | 
						|
/// Look through the value to see if we can decompose it into
 | 
						|
/// insertions into the vector.  See the example in the comment for
 | 
						|
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
 | 
						|
/// The type of V is always a non-zero multiple of VecEltTy's size.
 | 
						|
/// Shift is the number of bits between the lsb of V and the lsb of
 | 
						|
/// the vector.
 | 
						|
///
 | 
						|
/// This returns false if the pattern can't be matched or true if it can,
 | 
						|
/// filling in Elements with the elements found here.
 | 
						|
static bool collectInsertionElements(Value *V, unsigned Shift,
 | 
						|
                                     SmallVectorImpl<Value *> &Elements,
 | 
						|
                                     Type *VecEltTy, bool isBigEndian) {
 | 
						|
  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
 | 
						|
         "Shift should be a multiple of the element type size");
 | 
						|
 | 
						|
  // Undef values never contribute useful bits to the result.
 | 
						|
  if (isa<UndefValue>(V)) return true;
 | 
						|
 | 
						|
  // If we got down to a value of the right type, we win, try inserting into the
 | 
						|
  // right element.
 | 
						|
  if (V->getType() == VecEltTy) {
 | 
						|
    // Inserting null doesn't actually insert any elements.
 | 
						|
    if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
      if (C->isNullValue())
 | 
						|
        return true;
 | 
						|
 | 
						|
    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
 | 
						|
    if (isBigEndian)
 | 
						|
      ElementIndex = Elements.size() - ElementIndex - 1;
 | 
						|
 | 
						|
    // Fail if multiple elements are inserted into this slot.
 | 
						|
    if (Elements[ElementIndex])
 | 
						|
      return false;
 | 
						|
 | 
						|
    Elements[ElementIndex] = V;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    // Figure out the # elements this provides, and bitcast it or slice it up
 | 
						|
    // as required.
 | 
						|
    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
 | 
						|
                                        VecEltTy);
 | 
						|
    // If the constant is the size of a vector element, we just need to bitcast
 | 
						|
    // it to the right type so it gets properly inserted.
 | 
						|
    if (NumElts == 1)
 | 
						|
      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
 | 
						|
                                      Shift, Elements, VecEltTy, isBigEndian);
 | 
						|
 | 
						|
    // Okay, this is a constant that covers multiple elements.  Slice it up into
 | 
						|
    // pieces and insert each element-sized piece into the vector.
 | 
						|
    if (!isa<IntegerType>(C->getType()))
 | 
						|
      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
 | 
						|
                                       C->getType()->getPrimitiveSizeInBits()));
 | 
						|
    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
 | 
						|
    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
      unsigned ShiftI = Shift+i*ElementSize;
 | 
						|
      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
 | 
						|
                                                                  ShiftI));
 | 
						|
      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
 | 
						|
      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
 | 
						|
                                    isBigEndian))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!V->hasOneUse()) return false;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: return false; // Unhandled case.
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  case Instruction::ZExt:
 | 
						|
    if (!isMultipleOfTypeSize(
 | 
						|
                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
 | 
						|
                              VecEltTy))
 | 
						|
      return false;
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  case Instruction::Or:
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian) &&
 | 
						|
           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // Must be shifting by a constant that is a multiple of the element size.
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | 
						|
    if (!CI) return false;
 | 
						|
    Shift += CI->getZExtValue();
 | 
						|
    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
 | 
						|
    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | 
						|
                                    isBigEndian);
 | 
						|
  }
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// If the input is an 'or' instruction, we may be doing shifts and ors to
 | 
						|
/// assemble the elements of the vector manually.
 | 
						|
/// Try to rip the code out and replace it with insertelements.  This is to
 | 
						|
/// optimize code like this:
 | 
						|
///
 | 
						|
///    %tmp37 = bitcast float %inc to i32
 | 
						|
///    %tmp38 = zext i32 %tmp37 to i64
 | 
						|
///    %tmp31 = bitcast float %inc5 to i32
 | 
						|
///    %tmp32 = zext i32 %tmp31 to i64
 | 
						|
///    %tmp33 = shl i64 %tmp32, 32
 | 
						|
///    %ins35 = or i64 %tmp33, %tmp38
 | 
						|
///    %tmp43 = bitcast i64 %ins35 to <2 x float>
 | 
						|
///
 | 
						|
/// Into two insertelements that do "buildvector{%inc, %inc5}".
 | 
						|
static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
 | 
						|
                                                InstCombiner &IC) {
 | 
						|
  VectorType *DestVecTy = cast<VectorType>(CI.getType());
 | 
						|
  Value *IntInput = CI.getOperand(0);
 | 
						|
 | 
						|
  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
 | 
						|
  if (!collectInsertionElements(IntInput, 0, Elements,
 | 
						|
                                DestVecTy->getElementType(),
 | 
						|
                                IC.getDataLayout().isBigEndian()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we succeeded, we know that all of the element are specified by Elements
 | 
						|
  // or are zero if Elements has a null entry.  Recast this as a set of
 | 
						|
  // insertions.
 | 
						|
  Value *Result = Constant::getNullValue(CI.getType());
 | 
						|
  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | 
						|
    if (!Elements[i]) continue;  // Unset element.
 | 
						|
 | 
						|
    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
 | 
						|
                                            IC.Builder.getInt32(i));
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
 | 
						|
/// vector followed by extract element. The backend tends to handle bitcasts of
 | 
						|
/// vectors better than bitcasts of scalars because vector registers are
 | 
						|
/// usually not type-specific like scalar integer or scalar floating-point.
 | 
						|
static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
 | 
						|
                                              InstCombiner &IC) {
 | 
						|
  // TODO: Create and use a pattern matcher for ExtractElementInst.
 | 
						|
  auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
 | 
						|
  if (!ExtElt || !ExtElt->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The bitcast must be to a vectorizable type, otherwise we can't make a new
 | 
						|
  // type to extract from.
 | 
						|
  Type *DestType = BitCast.getType();
 | 
						|
  if (!VectorType::isValidElementType(DestType))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
 | 
						|
  auto *NewVecType = VectorType::get(DestType, NumElts);
 | 
						|
  auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
 | 
						|
                                         NewVecType, "bc");
 | 
						|
  return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
 | 
						|
}
 | 
						|
 | 
						|
/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
 | 
						|
static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
 | 
						|
                                            InstCombiner::BuilderTy &Builder) {
 | 
						|
  Type *DestTy = BitCast.getType();
 | 
						|
  BinaryOperator *BO;
 | 
						|
  if (!DestTy->isIntOrIntVectorTy() ||
 | 
						|
      !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
 | 
						|
      !BO->isBitwiseLogicOp())
 | 
						|
    return nullptr;
 | 
						|
  
 | 
						|
  // FIXME: This transform is restricted to vector types to avoid backend
 | 
						|
  // problems caused by creating potentially illegal operations. If a fix-up is
 | 
						|
  // added to handle that situation, we can remove this check.
 | 
						|
  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
 | 
						|
    return nullptr;
 | 
						|
  
 | 
						|
  Value *X;
 | 
						|
  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
 | 
						|
      X->getType() == DestTy && !isa<Constant>(X)) {
 | 
						|
    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
 | 
						|
    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
 | 
						|
    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
 | 
						|
      X->getType() == DestTy && !isa<Constant>(X)) {
 | 
						|
    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
 | 
						|
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
 | 
						|
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize vector bitcasts to come before vector bitwise logic with a
 | 
						|
  // constant. This eases recognition of special constants for later ops.
 | 
						|
  // Example:
 | 
						|
  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
 | 
						|
  Constant *C;
 | 
						|
  if (match(BO->getOperand(1), m_Constant(C))) {
 | 
						|
    // bitcast (logic X, C) --> logic (bitcast X, C')
 | 
						|
    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
 | 
						|
    Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
 | 
						|
    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Change the type of a select if we can eliminate a bitcast.
 | 
						|
static Instruction *foldBitCastSelect(BitCastInst &BitCast,
 | 
						|
                                      InstCombiner::BuilderTy &Builder) {
 | 
						|
  Value *Cond, *TVal, *FVal;
 | 
						|
  if (!match(BitCast.getOperand(0),
 | 
						|
             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // A vector select must maintain the same number of elements in its operands.
 | 
						|
  Type *CondTy = Cond->getType();
 | 
						|
  Type *DestTy = BitCast.getType();
 | 
						|
  if (CondTy->isVectorTy()) {
 | 
						|
    if (!DestTy->isVectorTy())
 | 
						|
      return nullptr;
 | 
						|
    if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: This transform is restricted from changing the select between
 | 
						|
  // scalars and vectors to avoid backend problems caused by creating
 | 
						|
  // potentially illegal operations. If a fix-up is added to handle that
 | 
						|
  // situation, we can remove this check.
 | 
						|
  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
 | 
						|
  Value *X;
 | 
						|
  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
 | 
						|
    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
 | 
						|
    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
 | 
						|
  }
 | 
						|
 | 
						|
  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
 | 
						|
    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
 | 
						|
    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if all users of CI are StoreInsts.
 | 
						|
static bool hasStoreUsersOnly(CastInst &CI) {
 | 
						|
  for (User *U : CI.users()) {
 | 
						|
    if (!isa<StoreInst>(U))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This function handles following case
 | 
						|
///
 | 
						|
///     A  ->  B    cast
 | 
						|
///     PHI
 | 
						|
///     B  ->  A    cast
 | 
						|
///
 | 
						|
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
 | 
						|
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
 | 
						|
Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
 | 
						|
  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
 | 
						|
  if (hasStoreUsersOnly(CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType();         // Type B
 | 
						|
  Type *DestTy = CI.getType();          // Type A
 | 
						|
 | 
						|
  SmallVector<PHINode *, 4> PhiWorklist;
 | 
						|
  SmallSetVector<PHINode *, 4> OldPhiNodes;
 | 
						|
 | 
						|
  // Find all of the A->B casts and PHI nodes.
 | 
						|
  // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
 | 
						|
  // OldPhiNodes is used to track all known PHI nodes, before adding a new
 | 
						|
  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
 | 
						|
  PhiWorklist.push_back(PN);
 | 
						|
  OldPhiNodes.insert(PN);
 | 
						|
  while (!PhiWorklist.empty()) {
 | 
						|
    auto *OldPN = PhiWorklist.pop_back_val();
 | 
						|
    for (Value *IncValue : OldPN->incoming_values()) {
 | 
						|
      if (isa<Constant>(IncValue))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
 | 
						|
        // If there is a sequence of one or more load instructions, each loaded
 | 
						|
        // value is used as address of later load instruction, bitcast is
 | 
						|
        // necessary to change the value type, don't optimize it. For
 | 
						|
        // simplicity we give up if the load address comes from another load.
 | 
						|
        Value *Addr = LI->getOperand(0);
 | 
						|
        if (Addr == &CI || isa<LoadInst>(Addr))
 | 
						|
          return nullptr;
 | 
						|
        if (LI->hasOneUse() && LI->isSimple())
 | 
						|
          continue;
 | 
						|
        // If a LoadInst has more than one use, changing the type of loaded
 | 
						|
        // value may create another bitcast.
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
 | 
						|
        if (OldPhiNodes.insert(PNode))
 | 
						|
          PhiWorklist.push_back(PNode);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      auto *BCI = dyn_cast<BitCastInst>(IncValue);
 | 
						|
      // We can't handle other instructions.
 | 
						|
      if (!BCI)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // Verify it's a A->B cast.
 | 
						|
      Type *TyA = BCI->getOperand(0)->getType();
 | 
						|
      Type *TyB = BCI->getType();
 | 
						|
      if (TyA != DestTy || TyB != SrcTy)
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For each old PHI node, create a corresponding new PHI node with a type A.
 | 
						|
  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
 | 
						|
  for (auto *OldPN : OldPhiNodes) {
 | 
						|
    Builder.SetInsertPoint(OldPN);
 | 
						|
    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
 | 
						|
    NewPNodes[OldPN] = NewPN;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill in the operands of new PHI nodes.
 | 
						|
  for (auto *OldPN : OldPhiNodes) {
 | 
						|
    PHINode *NewPN = NewPNodes[OldPN];
 | 
						|
    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
 | 
						|
      Value *V = OldPN->getOperand(j);
 | 
						|
      Value *NewV = nullptr;
 | 
						|
      if (auto *C = dyn_cast<Constant>(V)) {
 | 
						|
        NewV = ConstantExpr::getBitCast(C, DestTy);
 | 
						|
      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
 | 
						|
        Builder.SetInsertPoint(LI->getNextNode());
 | 
						|
        NewV = Builder.CreateBitCast(LI, DestTy);
 | 
						|
        Worklist.Add(LI);
 | 
						|
      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
 | 
						|
        NewV = BCI->getOperand(0);
 | 
						|
      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
 | 
						|
        NewV = NewPNodes[PrevPN];
 | 
						|
      }
 | 
						|
      assert(NewV);
 | 
						|
      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is a store with type B, change it to type A.
 | 
						|
  for (User *U : PN->users()) {
 | 
						|
    auto *SI = dyn_cast<StoreInst>(U);
 | 
						|
    if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
 | 
						|
      Builder.SetInsertPoint(SI);
 | 
						|
      auto *NewBC =
 | 
						|
          cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
 | 
						|
      SI->setOperand(0, NewBC);
 | 
						|
      Worklist.Add(SI);
 | 
						|
      assert(hasStoreUsersOnly(*NewBC));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return replaceInstUsesWith(CI, NewPNodes[PN]);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
 | 
						|
  // If the operands are integer typed then apply the integer transforms,
 | 
						|
  // otherwise just apply the common ones.
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  Type *SrcTy = Src->getType();
 | 
						|
  Type *DestTy = CI.getType();
 | 
						|
 | 
						|
  // Get rid of casts from one type to the same type. These are useless and can
 | 
						|
  // be replaced by the operand.
 | 
						|
  if (DestTy == Src->getType())
 | 
						|
    return replaceInstUsesWith(CI, Src);
 | 
						|
 | 
						|
  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
 | 
						|
    PointerType *SrcPTy = cast<PointerType>(SrcTy);
 | 
						|
    Type *DstElTy = DstPTy->getElementType();
 | 
						|
    Type *SrcElTy = SrcPTy->getElementType();
 | 
						|
 | 
						|
    // If we are casting a alloca to a pointer to a type of the same
 | 
						|
    // size, rewrite the allocation instruction to allocate the "right" type.
 | 
						|
    // There is no need to modify malloc calls because it is their bitcast that
 | 
						|
    // needs to be cleaned up.
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
 | 
						|
      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // When the type pointed to is not sized the cast cannot be
 | 
						|
    // turned into a gep.
 | 
						|
    Type *PointeeType =
 | 
						|
        cast<PointerType>(Src->getType()->getScalarType())->getElementType();
 | 
						|
    if (!PointeeType->isSized())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If the source and destination are pointers, and this cast is equivalent
 | 
						|
    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
 | 
						|
    // This can enhance SROA and other transforms that want type-safe pointers.
 | 
						|
    unsigned NumZeros = 0;
 | 
						|
    while (SrcElTy != DstElTy &&
 | 
						|
           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
 | 
						|
           SrcElTy->getNumContainedTypes() /* not "{}" */) {
 | 
						|
      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
 | 
						|
      ++NumZeros;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a path from the src to dest, create the getelementptr now.
 | 
						|
    if (SrcElTy == DstElTy) {
 | 
						|
      SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
 | 
						|
      return GetElementPtrInst::CreateInBounds(Src, Idxs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
 | 
						|
    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
 | 
						|
      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
 | 
						|
      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
 | 
						|
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | 
						|
      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<IntegerType>(SrcTy)) {
 | 
						|
      // If this is a cast from an integer to vector, check to see if the input
 | 
						|
      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
 | 
						|
      // the casts with a shuffle and (potentially) a bitcast.
 | 
						|
      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
 | 
						|
        CastInst *SrcCast = cast<CastInst>(Src);
 | 
						|
        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
 | 
						|
          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
 | 
						|
            if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
 | 
						|
                                               cast<VectorType>(DestTy), *this))
 | 
						|
              return I;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the input is an 'or' instruction, we may be doing shifts and ors to
 | 
						|
      // assemble the elements of the vector manually.  Try to rip the code out
 | 
						|
      // and replace it with insertelements.
 | 
						|
      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
 | 
						|
        return replaceInstUsesWith(CI, V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
 | 
						|
    if (SrcVTy->getNumElements() == 1) {
 | 
						|
      // If our destination is not a vector, then make this a straight
 | 
						|
      // scalar-scalar cast.
 | 
						|
      if (!DestTy->isVectorTy()) {
 | 
						|
        Value *Elem =
 | 
						|
          Builder.CreateExtractElement(Src,
 | 
						|
                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | 
						|
        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, see if our source is an insert. If so, then use the scalar
 | 
						|
      // component directly.
 | 
						|
      if (InsertElementInst *IEI =
 | 
						|
            dyn_cast<InsertElementInst>(CI.getOperand(0)))
 | 
						|
        return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
 | 
						|
                                DestTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
 | 
						|
    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
 | 
						|
    // a bitcast to a vector with the same # elts.
 | 
						|
    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
 | 
						|
        DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
 | 
						|
        SVI->getType()->getNumElements() ==
 | 
						|
        SVI->getOperand(0)->getType()->getVectorNumElements()) {
 | 
						|
      BitCastInst *Tmp;
 | 
						|
      // If either of the operands is a cast from CI.getType(), then
 | 
						|
      // evaluating the shuffle in the casted destination's type will allow
 | 
						|
      // us to eliminate at least one cast.
 | 
						|
      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
 | 
						|
           Tmp->getOperand(0)->getType() == DestTy) ||
 | 
						|
          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
 | 
						|
           Tmp->getOperand(0)->getType() == DestTy)) {
 | 
						|
        Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
 | 
						|
        Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
 | 
						|
        // Return a new shuffle vector.  Use the same element ID's, as we
 | 
						|
        // know the vector types match #elts.
 | 
						|
        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the A->B->A cast, and there is an intervening PHI node.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(Src))
 | 
						|
    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
 | 
						|
      return I;
 | 
						|
 | 
						|
  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (Instruction *I = foldBitCastSelect(CI, Builder))
 | 
						|
    return I;
 | 
						|
 | 
						|
  if (SrcTy->isPointerTy())
 | 
						|
    return commonPointerCastTransforms(CI);
 | 
						|
  return commonCastTransforms(CI);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
 | 
						|
  // If the destination pointer element type is not the same as the source's
 | 
						|
  // first do a bitcast to the destination type, and then the addrspacecast.
 | 
						|
  // This allows the cast to be exposed to other transforms.
 | 
						|
  Value *Src = CI.getOperand(0);
 | 
						|
  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
 | 
						|
  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
 | 
						|
 | 
						|
  Type *DestElemTy = DestTy->getElementType();
 | 
						|
  if (SrcTy->getElementType() != DestElemTy) {
 | 
						|
    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
 | 
						|
    if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
 | 
						|
      // Handle vectors of pointers.
 | 
						|
      MidTy = VectorType::get(MidTy, VT->getNumElements());
 | 
						|
    }
 | 
						|
 | 
						|
    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
 | 
						|
    return new AddrSpaceCastInst(NewBitCast, CI.getType());
 | 
						|
  }
 | 
						|
 | 
						|
  return commonPointerCastTransforms(CI);
 | 
						|
}
 |