1493 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1493 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineVectorOps.cpp -------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements instcombine for ExtractElement, InsertElement and
 | 
						|
// ShuffleVector.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
/// Return true if the value is cheaper to scalarize than it is to leave as a
 | 
						|
/// vector operation. isConstant indicates whether we're extracting one known
 | 
						|
/// element. If false we're extracting a variable index.
 | 
						|
static bool cheapToScalarize(Value *V, bool isConstant) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (isConstant) return true;
 | 
						|
 | 
						|
    // If all elts are the same, we can extract it and use any of the values.
 | 
						|
    if (Constant *Op0 = C->getAggregateElement(0U)) {
 | 
						|
      for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
 | 
						|
           ++i)
 | 
						|
        if (C->getAggregateElement(i) != Op0)
 | 
						|
          return false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // Insert element gets simplified to the inserted element or is deleted if
 | 
						|
  // this is constant idx extract element and its a constant idx insertelt.
 | 
						|
  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
 | 
						|
      isa<ConstantInt>(I->getOperand(2)))
 | 
						|
    return true;
 | 
						|
  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
 | 
						|
    return true;
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
 | 
						|
    if (BO->hasOneUse() &&
 | 
						|
        (cheapToScalarize(BO->getOperand(0), isConstant) ||
 | 
						|
         cheapToScalarize(BO->getOperand(1), isConstant)))
 | 
						|
      return true;
 | 
						|
  if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    if (CI->hasOneUse() &&
 | 
						|
        (cheapToScalarize(CI->getOperand(0), isConstant) ||
 | 
						|
         cheapToScalarize(CI->getOperand(1), isConstant)))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If we have a PHI node with a vector type that is only used to feed
 | 
						|
// itself and be an operand of extractelement at a constant location,
 | 
						|
// try to replace the PHI of the vector type with a PHI of a scalar type.
 | 
						|
Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
 | 
						|
  SmallVector<Instruction *, 2> Extracts;
 | 
						|
  // The users we want the PHI to have are:
 | 
						|
  // 1) The EI ExtractElement (we already know this)
 | 
						|
  // 2) Possibly more ExtractElements with the same index.
 | 
						|
  // 3) Another operand, which will feed back into the PHI.
 | 
						|
  Instruction *PHIUser = nullptr;
 | 
						|
  for (auto U : PN->users()) {
 | 
						|
    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
 | 
						|
      if (EI.getIndexOperand() == EU->getIndexOperand())
 | 
						|
        Extracts.push_back(EU);
 | 
						|
      else
 | 
						|
        return nullptr;
 | 
						|
    } else if (!PHIUser) {
 | 
						|
      PHIUser = cast<Instruction>(U);
 | 
						|
    } else {
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PHIUser)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Verify that this PHI user has one use, which is the PHI itself,
 | 
						|
  // and that it is a binary operation which is cheap to scalarize.
 | 
						|
  // otherwise return NULL.
 | 
						|
  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
 | 
						|
      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Create a scalar PHI node that will replace the vector PHI node
 | 
						|
  // just before the current PHI node.
 | 
						|
  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
 | 
						|
      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
 | 
						|
  // Scalarize each PHI operand.
 | 
						|
  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
 | 
						|
    Value *PHIInVal = PN->getIncomingValue(i);
 | 
						|
    BasicBlock *inBB = PN->getIncomingBlock(i);
 | 
						|
    Value *Elt = EI.getIndexOperand();
 | 
						|
    // If the operand is the PHI induction variable:
 | 
						|
    if (PHIInVal == PHIUser) {
 | 
						|
      // Scalarize the binary operation. Its first operand is the
 | 
						|
      // scalar PHI, and the second operand is extracted from the other
 | 
						|
      // vector operand.
 | 
						|
      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
 | 
						|
      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
 | 
						|
      Value *Op = InsertNewInstWith(
 | 
						|
          ExtractElementInst::Create(B0->getOperand(opId), Elt,
 | 
						|
                                     B0->getOperand(opId)->getName() + ".Elt"),
 | 
						|
          *B0);
 | 
						|
      Value *newPHIUser = InsertNewInstWith(
 | 
						|
          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
 | 
						|
                                                scalarPHI, Op, B0), *B0);
 | 
						|
      scalarPHI->addIncoming(newPHIUser, inBB);
 | 
						|
    } else {
 | 
						|
      // Scalarize PHI input:
 | 
						|
      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
 | 
						|
      // Insert the new instruction into the predecessor basic block.
 | 
						|
      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
 | 
						|
      BasicBlock::iterator InsertPos;
 | 
						|
      if (pos && !isa<PHINode>(pos)) {
 | 
						|
        InsertPos = ++pos->getIterator();
 | 
						|
      } else {
 | 
						|
        InsertPos = inBB->getFirstInsertionPt();
 | 
						|
      }
 | 
						|
 | 
						|
      InsertNewInstWith(newEI, *InsertPos);
 | 
						|
 | 
						|
      scalarPHI->addIncoming(newEI, inBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto E : Extracts)
 | 
						|
    replaceInstUsesWith(*E, scalarPHI);
 | 
						|
 | 
						|
  return &EI;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | 
						|
  if (Value *V = SimplifyExtractElementInst(EI.getVectorOperand(),
 | 
						|
                                            EI.getIndexOperand(),
 | 
						|
                                            SQ.getWithInstruction(&EI)))
 | 
						|
    return replaceInstUsesWith(EI, V);
 | 
						|
 | 
						|
  // If vector val is constant with all elements the same, replace EI with
 | 
						|
  // that element.  We handle a known element # below.
 | 
						|
  if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
 | 
						|
    if (cheapToScalarize(C, false))
 | 
						|
      return replaceInstUsesWith(EI, C->getAggregateElement(0U));
 | 
						|
 | 
						|
  // If extracting a specified index from the vector, see if we can recursively
 | 
						|
  // find a previously computed scalar that was inserted into the vector.
 | 
						|
  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | 
						|
    unsigned IndexVal = IdxC->getZExtValue();
 | 
						|
    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
 | 
						|
 | 
						|
    // InstSimplify handles cases where the index is invalid.
 | 
						|
    assert(IndexVal < VectorWidth);
 | 
						|
 | 
						|
    // This instruction only demands the single element from the input vector.
 | 
						|
    // If the input vector has a single use, simplify it based on this use
 | 
						|
    // property.
 | 
						|
    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
 | 
						|
      APInt UndefElts(VectorWidth, 0);
 | 
						|
      APInt DemandedMask(VectorWidth, 0);
 | 
						|
      DemandedMask.setBit(IndexVal);
 | 
						|
      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
 | 
						|
                                                UndefElts)) {
 | 
						|
        EI.setOperand(0, V);
 | 
						|
        return &EI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this extractelement is directly using a bitcast from a vector of
 | 
						|
    // the same number of elements, see if we can find the source element from
 | 
						|
    // it.  In this case, we will end up needing to bitcast the scalars.
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
 | 
						|
      if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
 | 
						|
        if (VT->getNumElements() == VectorWidth)
 | 
						|
          if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
 | 
						|
            return new BitCastInst(Elt, EI.getType());
 | 
						|
    }
 | 
						|
 | 
						|
    // If there's a vector PHI feeding a scalar use through this extractelement
 | 
						|
    // instruction, try to scalarize the PHI.
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
 | 
						|
      Instruction *scalarPHI = scalarizePHI(EI, PN);
 | 
						|
      if (scalarPHI)
 | 
						|
        return scalarPHI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
 | 
						|
    // Push extractelement into predecessor operation if legal and
 | 
						|
    // profitable to do so.
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
      if (I->hasOneUse() &&
 | 
						|
          cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
 | 
						|
        Value *newEI0 =
 | 
						|
          Builder.CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
 | 
						|
                                       EI.getName()+".lhs");
 | 
						|
        Value *newEI1 =
 | 
						|
          Builder.CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
 | 
						|
                                       EI.getName()+".rhs");
 | 
						|
        return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(),
 | 
						|
                                                     newEI0, newEI1, BO);
 | 
						|
      }
 | 
						|
    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
 | 
						|
      // Extracting the inserted element?
 | 
						|
      if (IE->getOperand(2) == EI.getOperand(1))
 | 
						|
        return replaceInstUsesWith(EI, IE->getOperand(1));
 | 
						|
      // If the inserted and extracted elements are constants, they must not
 | 
						|
      // be the same value, extract from the pre-inserted value instead.
 | 
						|
      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
 | 
						|
        Worklist.AddValue(EI.getOperand(0));
 | 
						|
        EI.setOperand(0, IE->getOperand(0));
 | 
						|
        return &EI;
 | 
						|
      }
 | 
						|
    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | 
						|
      // If this is extracting an element from a shufflevector, figure out where
 | 
						|
      // it came from and extract from the appropriate input element instead.
 | 
						|
      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | 
						|
        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
 | 
						|
        Value *Src;
 | 
						|
        unsigned LHSWidth =
 | 
						|
          SVI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
 | 
						|
        if (SrcIdx < 0)
 | 
						|
          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | 
						|
        if (SrcIdx < (int)LHSWidth)
 | 
						|
          Src = SVI->getOperand(0);
 | 
						|
        else {
 | 
						|
          SrcIdx -= LHSWidth;
 | 
						|
          Src = SVI->getOperand(1);
 | 
						|
        }
 | 
						|
        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
 | 
						|
        return ExtractElementInst::Create(Src,
 | 
						|
                                          ConstantInt::get(Int32Ty,
 | 
						|
                                                           SrcIdx, false));
 | 
						|
      }
 | 
						|
    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
      // Canonicalize extractelement(cast) -> cast(extractelement).
 | 
						|
      // Bitcasts can change the number of vector elements, and they cost
 | 
						|
      // nothing.
 | 
						|
      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
 | 
						|
        Value *EE = Builder.CreateExtractElement(CI->getOperand(0),
 | 
						|
                                                 EI.getIndexOperand());
 | 
						|
        Worklist.AddValue(EE);
 | 
						|
        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
 | 
						|
      }
 | 
						|
    } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | 
						|
      if (SI->hasOneUse()) {
 | 
						|
        // TODO: For a select on vectors, it might be useful to do this if it
 | 
						|
        // has multiple extractelement uses. For vector select, that seems to
 | 
						|
        // fight the vectorizer.
 | 
						|
 | 
						|
        // If we are extracting an element from a vector select or a select on
 | 
						|
        // vectors, create a select on the scalars extracted from the vector
 | 
						|
        // arguments.
 | 
						|
        Value *TrueVal = SI->getTrueValue();
 | 
						|
        Value *FalseVal = SI->getFalseValue();
 | 
						|
 | 
						|
        Value *Cond = SI->getCondition();
 | 
						|
        if (Cond->getType()->isVectorTy()) {
 | 
						|
          Cond = Builder.CreateExtractElement(Cond,
 | 
						|
                                              EI.getIndexOperand(),
 | 
						|
                                              Cond->getName() + ".elt");
 | 
						|
        }
 | 
						|
 | 
						|
        Value *V1Elem
 | 
						|
          = Builder.CreateExtractElement(TrueVal,
 | 
						|
                                         EI.getIndexOperand(),
 | 
						|
                                         TrueVal->getName() + ".elt");
 | 
						|
 | 
						|
        Value *V2Elem
 | 
						|
          = Builder.CreateExtractElement(FalseVal,
 | 
						|
                                         EI.getIndexOperand(),
 | 
						|
                                         FalseVal->getName() + ".elt");
 | 
						|
        return SelectInst::Create(Cond,
 | 
						|
                                  V1Elem,
 | 
						|
                                  V2Elem,
 | 
						|
                                  SI->getName() + ".elt");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If V is a shuffle of values that ONLY returns elements from either LHS or
 | 
						|
/// RHS, return the shuffle mask and true. Otherwise, return false.
 | 
						|
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | 
						|
                                         SmallVectorImpl<Constant*> &Mask) {
 | 
						|
  assert(LHS->getType() == RHS->getType() &&
 | 
						|
         "Invalid CollectSingleShuffleElements");
 | 
						|
  unsigned NumElts = V->getType()->getVectorNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (V == LHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (V == RHS) {
 | 
						|
    for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                                      i+NumElts));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
 | 
						|
    if (!isa<ConstantInt>(IdxOp))
 | 
						|
      return false;
 | 
						|
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | 
						|
      // We can handle this if the vector we are inserting into is
 | 
						|
      // transitively ok.
 | 
						|
      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
        // If so, update the mask to reflect the inserted undef.
 | 
						|
        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1))) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
 | 
						|
 | 
						|
        // This must be extracting from either LHS or RHS.
 | 
						|
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | 
						|
          // We can handle this if the vector we are inserting into is
 | 
						|
          // transitively ok.
 | 
						|
          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | 
						|
            // If so, update the mask to reflect the inserted value.
 | 
						|
            if (EI->getOperand(0) == LHS) {
 | 
						|
              Mask[InsertedIdx % NumElts] =
 | 
						|
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                               ExtractedIdx);
 | 
						|
            } else {
 | 
						|
              assert(EI->getOperand(0) == RHS);
 | 
						|
              Mask[InsertedIdx % NumElts] =
 | 
						|
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                               ExtractedIdx + NumLHSElts);
 | 
						|
            }
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// If we have insertion into a vector that is wider than the vector that we
 | 
						|
/// are extracting from, try to widen the source vector to allow a single
 | 
						|
/// shufflevector to replace one or more insert/extract pairs.
 | 
						|
static void replaceExtractElements(InsertElementInst *InsElt,
 | 
						|
                                   ExtractElementInst *ExtElt,
 | 
						|
                                   InstCombiner &IC) {
 | 
						|
  VectorType *InsVecType = InsElt->getType();
 | 
						|
  VectorType *ExtVecType = ExtElt->getVectorOperandType();
 | 
						|
  unsigned NumInsElts = InsVecType->getVectorNumElements();
 | 
						|
  unsigned NumExtElts = ExtVecType->getVectorNumElements();
 | 
						|
 | 
						|
  // The inserted-to vector must be wider than the extracted-from vector.
 | 
						|
  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
 | 
						|
      NumExtElts >= NumInsElts)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create a shuffle mask to widen the extended-from vector using undefined
 | 
						|
  // values. The mask selects all of the values of the original vector followed
 | 
						|
  // by as many undefined values as needed to create a vector of the same length
 | 
						|
  // as the inserted-to vector.
 | 
						|
  SmallVector<Constant *, 16> ExtendMask;
 | 
						|
  IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
 | 
						|
  for (unsigned i = 0; i < NumExtElts; ++i)
 | 
						|
    ExtendMask.push_back(ConstantInt::get(IntType, i));
 | 
						|
  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
 | 
						|
    ExtendMask.push_back(UndefValue::get(IntType));
 | 
						|
 | 
						|
  Value *ExtVecOp = ExtElt->getVectorOperand();
 | 
						|
  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
 | 
						|
  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
 | 
						|
                                   ? ExtVecOpInst->getParent()
 | 
						|
                                   : ExtElt->getParent();
 | 
						|
 | 
						|
  // TODO: This restriction matches the basic block check below when creating
 | 
						|
  // new extractelement instructions. If that limitation is removed, this one
 | 
						|
  // could also be removed. But for now, we just bail out to ensure that we
 | 
						|
  // will replace the extractelement instruction that is feeding our
 | 
						|
  // insertelement instruction. This allows the insertelement to then be
 | 
						|
  // replaced by a shufflevector. If the insertelement is not replaced, we can
 | 
						|
  // induce infinite looping because there's an optimization for extractelement
 | 
						|
  // that will delete our widening shuffle. This would trigger another attempt
 | 
						|
  // here to create that shuffle, and we spin forever.
 | 
						|
  if (InsertionBlock != InsElt->getParent())
 | 
						|
    return;
 | 
						|
 | 
						|
  // TODO: This restriction matches the check in visitInsertElementInst() and
 | 
						|
  // prevents an infinite loop caused by not turning the extract/insert pair
 | 
						|
  // into a shuffle. We really should not need either check, but we're lacking
 | 
						|
  // folds for shufflevectors because we're afraid to generate shuffle masks
 | 
						|
  // that the backend can't handle.
 | 
						|
  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
 | 
						|
    return;
 | 
						|
 | 
						|
  auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
 | 
						|
                                        ConstantVector::get(ExtendMask));
 | 
						|
 | 
						|
  // Insert the new shuffle after the vector operand of the extract is defined
 | 
						|
  // (as long as it's not a PHI) or at the start of the basic block of the
 | 
						|
  // extract, so any subsequent extracts in the same basic block can use it.
 | 
						|
  // TODO: Insert before the earliest ExtractElementInst that is replaced.
 | 
						|
  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
 | 
						|
    WideVec->insertAfter(ExtVecOpInst);
 | 
						|
  else
 | 
						|
    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
 | 
						|
 | 
						|
  // Replace extracts from the original narrow vector with extracts from the new
 | 
						|
  // wide vector.
 | 
						|
  for (User *U : ExtVecOp->users()) {
 | 
						|
    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
 | 
						|
    if (!OldExt || OldExt->getParent() != WideVec->getParent())
 | 
						|
      continue;
 | 
						|
    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
 | 
						|
    NewExt->insertAfter(OldExt);
 | 
						|
    IC.replaceInstUsesWith(*OldExt, NewExt);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// We are building a shuffle to create V, which is a sequence of insertelement,
 | 
						|
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
 | 
						|
/// not rely on the second vector source. Return a std::pair containing the
 | 
						|
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
 | 
						|
/// parameter as required.
 | 
						|
///
 | 
						|
/// Note: we intentionally don't try to fold earlier shuffles since they have
 | 
						|
/// often been chosen carefully to be efficiently implementable on the target.
 | 
						|
typedef std::pair<Value *, Value *> ShuffleOps;
 | 
						|
 | 
						|
static ShuffleOps collectShuffleElements(Value *V,
 | 
						|
                                         SmallVectorImpl<Constant *> &Mask,
 | 
						|
                                         Value *PermittedRHS,
 | 
						|
                                         InstCombiner &IC) {
 | 
						|
  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
 | 
						|
  unsigned NumElts = V->getType()->getVectorNumElements();
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | 
						|
    return std::make_pair(
 | 
						|
        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantAggregateZero>(V)) {
 | 
						|
    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
 | 
						|
    return std::make_pair(V, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    // If this is an insert of an extract from some other vector, include it.
 | 
						|
    Value *VecOp    = IEI->getOperand(0);
 | 
						|
    Value *ScalarOp = IEI->getOperand(1);
 | 
						|
    Value *IdxOp    = IEI->getOperand(2);
 | 
						|
 | 
						|
    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | 
						|
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
 | 
						|
        unsigned ExtractedIdx =
 | 
						|
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
        // Either the extracted from or inserted into vector must be RHSVec,
 | 
						|
        // otherwise we'd end up with a shuffle of three inputs.
 | 
						|
        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
 | 
						|
          Value *RHS = EI->getOperand(0);
 | 
						|
          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
 | 
						|
          assert(LR.second == nullptr || LR.second == RHS);
 | 
						|
 | 
						|
          if (LR.first->getType() != RHS->getType()) {
 | 
						|
            // Although we are giving up for now, see if we can create extracts
 | 
						|
            // that match the inserts for another round of combining.
 | 
						|
            replaceExtractElements(IEI, EI, IC);
 | 
						|
 | 
						|
            // We tried our best, but we can't find anything compatible with RHS
 | 
						|
            // further up the chain. Return a trivial shuffle.
 | 
						|
            for (unsigned i = 0; i < NumElts; ++i)
 | 
						|
              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
 | 
						|
            return std::make_pair(V, nullptr);
 | 
						|
          }
 | 
						|
 | 
						|
          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
 | 
						|
          Mask[InsertedIdx % NumElts] =
 | 
						|
            ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | 
						|
                             NumLHSElts+ExtractedIdx);
 | 
						|
          return std::make_pair(LR.first, RHS);
 | 
						|
        }
 | 
						|
 | 
						|
        if (VecOp == PermittedRHS) {
 | 
						|
          // We've gone as far as we can: anything on the other side of the
 | 
						|
          // extractelement will already have been converted into a shuffle.
 | 
						|
          unsigned NumLHSElts =
 | 
						|
              EI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
          for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
            Mask.push_back(ConstantInt::get(
 | 
						|
                Type::getInt32Ty(V->getContext()),
 | 
						|
                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
 | 
						|
          return std::make_pair(EI->getOperand(0), PermittedRHS);
 | 
						|
        }
 | 
						|
 | 
						|
        // If this insertelement is a chain that comes from exactly these two
 | 
						|
        // vectors, return the vector and the effective shuffle.
 | 
						|
        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
 | 
						|
            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
 | 
						|
                                         Mask))
 | 
						|
          return std::make_pair(EI->getOperand(0), PermittedRHS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we can't do anything fancy. Return an identity vector.
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i)
 | 
						|
    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | 
						|
  return std::make_pair(V, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
/// Try to find redundant insertvalue instructions, like the following ones:
 | 
						|
///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
 | 
						|
///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
 | 
						|
/// Here the second instruction inserts values at the same indices, as the
 | 
						|
/// first one, making the first one redundant.
 | 
						|
/// It should be transformed to:
 | 
						|
///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
 | 
						|
Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
 | 
						|
  bool IsRedundant = false;
 | 
						|
  ArrayRef<unsigned int> FirstIndices = I.getIndices();
 | 
						|
 | 
						|
  // If there is a chain of insertvalue instructions (each of them except the
 | 
						|
  // last one has only one use and it's another insertvalue insn from this
 | 
						|
  // chain), check if any of the 'children' uses the same indices as the first
 | 
						|
  // instruction. In this case, the first one is redundant.
 | 
						|
  Value *V = &I;
 | 
						|
  unsigned Depth = 0;
 | 
						|
  while (V->hasOneUse() && Depth < 10) {
 | 
						|
    User *U = V->user_back();
 | 
						|
    auto UserInsInst = dyn_cast<InsertValueInst>(U);
 | 
						|
    if (!UserInsInst || U->getOperand(0) != V)
 | 
						|
      break;
 | 
						|
    if (UserInsInst->getIndices() == FirstIndices) {
 | 
						|
      IsRedundant = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    V = UserInsInst;
 | 
						|
    Depth++;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsRedundant)
 | 
						|
    return replaceInstUsesWith(I, I.getOperand(0));
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
 | 
						|
  int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
 | 
						|
  int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
 | 
						|
 | 
						|
  // A vector select does not change the size of the operands.
 | 
						|
  if (MaskSize != VecSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Each mask element must be undefined or choose a vector element from one of
 | 
						|
  // the source operands without crossing vector lanes.
 | 
						|
  for (int i = 0; i != MaskSize; ++i) {
 | 
						|
    int Elt = Shuf.getMaskValue(i);
 | 
						|
    if (Elt != -1 && Elt != i && Elt != i + VecSize)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Turn a chain of inserts that splats a value into a canonical insert + shuffle
 | 
						|
// splat. That is:
 | 
						|
// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
 | 
						|
// shufflevector(insertelt(X, %k, 0), undef, zero)
 | 
						|
static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
 | 
						|
  // We are interested in the last insert in a chain. So, if this insert
 | 
						|
  // has a single user, and that user is an insert, bail.
 | 
						|
  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  VectorType *VT = cast<VectorType>(InsElt.getType());
 | 
						|
  int NumElements = VT->getNumElements();
 | 
						|
 | 
						|
  // Do not try to do this for a one-element vector, since that's a nop,
 | 
						|
  // and will cause an inf-loop.
 | 
						|
  if (NumElements == 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *SplatVal = InsElt.getOperand(1);
 | 
						|
  InsertElementInst *CurrIE = &InsElt;  
 | 
						|
  SmallVector<bool, 16> ElementPresent(NumElements, false);
 | 
						|
 | 
						|
  // Walk the chain backwards, keeping track of which indices we inserted into,
 | 
						|
  // until we hit something that isn't an insert of the splatted value.
 | 
						|
  while (CurrIE) {
 | 
						|
    ConstantInt *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
 | 
						|
    if (!Idx || CurrIE->getOperand(1) != SplatVal)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Check none of the intermediate steps have any additional uses.
 | 
						|
    if ((CurrIE != &InsElt) && !CurrIE->hasOneUse())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    ElementPresent[Idx->getZExtValue()] = true;
 | 
						|
    CurrIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we've seen an insert into every element.
 | 
						|
  if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // All right, create the insert + shuffle.
 | 
						|
  Instruction *InsertFirst = InsertElementInst::Create(
 | 
						|
      UndefValue::get(VT), SplatVal,
 | 
						|
      ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0), "", &InsElt);
 | 
						|
 | 
						|
  Constant *ZeroMask = ConstantAggregateZero::get(
 | 
						|
      VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
 | 
						|
 | 
						|
  return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
 | 
						|
}
 | 
						|
 | 
						|
/// If we have an insertelement instruction feeding into another insertelement
 | 
						|
/// and the 2nd is inserting a constant into the vector, canonicalize that
 | 
						|
/// constant insertion before the insertion of a variable:
 | 
						|
///
 | 
						|
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
 | 
						|
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
 | 
						|
///
 | 
						|
/// This has the potential of eliminating the 2nd insertelement instruction
 | 
						|
/// via constant folding of the scalar constant into a vector constant.
 | 
						|
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
 | 
						|
                                     InstCombiner::BuilderTy &Builder) {
 | 
						|
  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
 | 
						|
  if (!InsElt1 || !InsElt1->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *X, *Y;
 | 
						|
  Constant *ScalarC;
 | 
						|
  ConstantInt *IdxC1, *IdxC2;
 | 
						|
  if (match(InsElt1->getOperand(0), m_Value(X)) &&
 | 
						|
      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
 | 
						|
      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
 | 
						|
      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
 | 
						|
      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
 | 
						|
    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
 | 
						|
    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
 | 
						|
/// --> shufflevector X, CVec', Mask'
 | 
						|
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
 | 
						|
  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
 | 
						|
  // Bail out if the parent has more than one use. In that case, we'd be
 | 
						|
  // replacing the insertelt with a shuffle, and that's not a clear win.
 | 
						|
  if (!Inst || !Inst->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
 | 
						|
    // The shuffle must have a constant vector operand. The insertelt must have
 | 
						|
    // a constant scalar being inserted at a constant position in the vector.
 | 
						|
    Constant *ShufConstVec, *InsEltScalar;
 | 
						|
    uint64_t InsEltIndex;
 | 
						|
    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
 | 
						|
        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
 | 
						|
        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Adding an element to an arbitrary shuffle could be expensive, but a
 | 
						|
    // shuffle that selects elements from vectors without crossing lanes is
 | 
						|
    // assumed cheap.
 | 
						|
    // If we're just adding a constant into that shuffle, it will still be
 | 
						|
    // cheap.
 | 
						|
    if (!isShuffleEquivalentToSelect(*Shuf))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // From the above 'select' check, we know that the mask has the same number
 | 
						|
    // of elements as the vector input operands. We also know that each constant
 | 
						|
    // input element is used in its lane and can not be used more than once by
 | 
						|
    // the shuffle. Therefore, replace the constant in the shuffle's constant
 | 
						|
    // vector with the insertelt constant. Replace the constant in the shuffle's
 | 
						|
    // mask vector with the insertelt index plus the length of the vector
 | 
						|
    // (because the constant vector operand of a shuffle is always the 2nd
 | 
						|
    // operand).
 | 
						|
    Constant *Mask = Shuf->getMask();
 | 
						|
    unsigned NumElts = Mask->getType()->getVectorNumElements();
 | 
						|
    SmallVector<Constant *, 16> NewShufElts(NumElts);
 | 
						|
    SmallVector<Constant *, 16> NewMaskElts(NumElts);
 | 
						|
    for (unsigned I = 0; I != NumElts; ++I) {
 | 
						|
      if (I == InsEltIndex) {
 | 
						|
        NewShufElts[I] = InsEltScalar;
 | 
						|
        Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
 | 
						|
        NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
 | 
						|
      } else {
 | 
						|
        // Copy over the existing values.
 | 
						|
        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
 | 
						|
        NewMaskElts[I] = Mask->getAggregateElement(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Create new operands for a shuffle that includes the constant of the
 | 
						|
    // original insertelt. The old shuffle will be dead now.
 | 
						|
    return new ShuffleVectorInst(Shuf->getOperand(0),
 | 
						|
                                 ConstantVector::get(NewShufElts),
 | 
						|
                                 ConstantVector::get(NewMaskElts));
 | 
						|
  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
 | 
						|
    // Transform sequences of insertelements ops with constant data/indexes into
 | 
						|
    // a single shuffle op.
 | 
						|
    unsigned NumElts = InsElt.getType()->getNumElements();
 | 
						|
 | 
						|
    uint64_t InsertIdx[2];
 | 
						|
    Constant *Val[2];
 | 
						|
    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
 | 
						|
        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
 | 
						|
        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
 | 
						|
        !match(IEI->getOperand(1), m_Constant(Val[1])))
 | 
						|
      return nullptr;
 | 
						|
    SmallVector<Constant *, 16> Values(NumElts);
 | 
						|
    SmallVector<Constant *, 16> Mask(NumElts);
 | 
						|
    auto ValI = std::begin(Val);
 | 
						|
    // Generate new constant vector and mask.
 | 
						|
    // We have 2 values/masks from the insertelements instructions. Insert them
 | 
						|
    // into new value/mask vectors.
 | 
						|
    for (uint64_t I : InsertIdx) {
 | 
						|
      if (!Values[I]) {
 | 
						|
        assert(!Mask[I]);
 | 
						|
        Values[I] = *ValI;
 | 
						|
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
 | 
						|
                                   NumElts + I);
 | 
						|
      }
 | 
						|
      ++ValI;
 | 
						|
    }
 | 
						|
    // Remaining values are filled with 'undef' values.
 | 
						|
    for (unsigned I = 0; I < NumElts; ++I) {
 | 
						|
      if (!Values[I]) {
 | 
						|
        assert(!Mask[I]);
 | 
						|
        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
 | 
						|
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Create new operands for a shuffle that includes the constant of the
 | 
						|
    // original insertelt.
 | 
						|
    return new ShuffleVectorInst(IEI->getOperand(0),
 | 
						|
                                 ConstantVector::get(Values),
 | 
						|
                                 ConstantVector::get(Mask));
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | 
						|
  Value *VecOp    = IE.getOperand(0);
 | 
						|
  Value *ScalarOp = IE.getOperand(1);
 | 
						|
  Value *IdxOp    = IE.getOperand(2);
 | 
						|
 | 
						|
  // Inserting an undef or into an undefined place, remove this.
 | 
						|
  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
 | 
						|
    replaceInstUsesWith(IE, VecOp);
 | 
						|
 | 
						|
  // If the inserted element was extracted from some other vector, and if the
 | 
						|
  // indexes are constant, try to turn this into a shufflevector operation.
 | 
						|
  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | 
						|
    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
 | 
						|
      unsigned NumInsertVectorElts = IE.getType()->getNumElements();
 | 
						|
      unsigned NumExtractVectorElts =
 | 
						|
          EI->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
      unsigned ExtractedIdx =
 | 
						|
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | 
						|
      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | 
						|
 | 
						|
      if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
 | 
						|
        return replaceInstUsesWith(IE, VecOp);
 | 
						|
 | 
						|
      if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
 | 
						|
        return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 | 
						|
 | 
						|
      // If we are extracting a value from a vector, then inserting it right
 | 
						|
      // back into the same place, just use the input vector.
 | 
						|
      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
 | 
						|
        return replaceInstUsesWith(IE, VecOp);
 | 
						|
 | 
						|
      // If this insertelement isn't used by some other insertelement, turn it
 | 
						|
      // (and any insertelements it points to), into one big shuffle.
 | 
						|
      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
 | 
						|
        SmallVector<Constant*, 16> Mask;
 | 
						|
        ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
 | 
						|
 | 
						|
        // The proposed shuffle may be trivial, in which case we shouldn't
 | 
						|
        // perform the combine.
 | 
						|
        if (LR.first != &IE && LR.second != &IE) {
 | 
						|
          // We now have a shuffle of LHS, RHS, Mask.
 | 
						|
          if (LR.second == nullptr)
 | 
						|
            LR.second = UndefValue::get(LR.first->getType());
 | 
						|
          return new ShuffleVectorInst(LR.first, LR.second,
 | 
						|
                                       ConstantVector::get(Mask));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned VWidth = VecOp->getType()->getVectorNumElements();
 | 
						|
  APInt UndefElts(VWidth, 0);
 | 
						|
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
 | 
						|
    if (V != &IE)
 | 
						|
      return replaceInstUsesWith(IE, V);
 | 
						|
    return &IE;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
 | 
						|
    return Shuf;
 | 
						|
 | 
						|
  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
 | 
						|
    return NewInsElt;
 | 
						|
 | 
						|
  // Turn a sequence of inserts that broadcasts a scalar into a single
 | 
						|
  // insert + shufflevector.
 | 
						|
  if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
 | 
						|
    return Broadcast;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if we can evaluate the specified expression tree if the vector
 | 
						|
/// elements were shuffled in a different order.
 | 
						|
static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
 | 
						|
                                unsigned Depth = 5) {
 | 
						|
  // We can always reorder the elements of a constant.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We won't reorder vector arguments. No IPO here.
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return false;
 | 
						|
 | 
						|
  // Two users may expect different orders of the elements. Don't try it.
 | 
						|
  if (!I->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Depth == 0) return false;
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      for (Value *Operand : I->operands()) {
 | 
						|
        if (!CanEvaluateShuffled(Operand, Mask, Depth-1))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    case Instruction::InsertElement: {
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
 | 
						|
      if (!CI) return false;
 | 
						|
      int ElementNumber = CI->getLimitedValue();
 | 
						|
 | 
						|
      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
 | 
						|
      // can't put an element into multiple indices.
 | 
						|
      bool SeenOnce = false;
 | 
						|
      for (int i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
        if (Mask[i] == ElementNumber) {
 | 
						|
          if (SeenOnce)
 | 
						|
            return false;
 | 
						|
          SeenOnce = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Rebuild a new instruction just like 'I' but with the new operands given.
 | 
						|
/// In the event of type mismatch, the type of the operands is correct.
 | 
						|
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
 | 
						|
  // We don't want to use the IRBuilder here because we want the replacement
 | 
						|
  // instructions to appear next to 'I', not the builder's insertion point.
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      BinaryOperator *BO = cast<BinaryOperator>(I);
 | 
						|
      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
 | 
						|
      BinaryOperator *New =
 | 
						|
          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
 | 
						|
                                 NewOps[0], NewOps[1], "", BO);
 | 
						|
      if (isa<OverflowingBinaryOperator>(BO)) {
 | 
						|
        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
 | 
						|
        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
 | 
						|
      }
 | 
						|
      if (isa<PossiblyExactOperator>(BO)) {
 | 
						|
        New->setIsExact(BO->isExact());
 | 
						|
      }
 | 
						|
      if (isa<FPMathOperator>(BO))
 | 
						|
        New->copyFastMathFlags(I);
 | 
						|
      return New;
 | 
						|
    }
 | 
						|
    case Instruction::ICmp:
 | 
						|
      assert(NewOps.size() == 2 && "icmp with #ops != 2");
 | 
						|
      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
 | 
						|
                          NewOps[0], NewOps[1]);
 | 
						|
    case Instruction::FCmp:
 | 
						|
      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
 | 
						|
      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
 | 
						|
                          NewOps[0], NewOps[1]);
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt: {
 | 
						|
      // It's possible that the mask has a different number of elements from
 | 
						|
      // the original cast. We recompute the destination type to match the mask.
 | 
						|
      Type *DestTy =
 | 
						|
          VectorType::get(I->getType()->getScalarType(),
 | 
						|
                          NewOps[0]->getType()->getVectorNumElements());
 | 
						|
      assert(NewOps.size() == 1 && "cast with #ops != 1");
 | 
						|
      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
 | 
						|
                              "", I);
 | 
						|
    }
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      Value *Ptr = NewOps[0];
 | 
						|
      ArrayRef<Value*> Idx = NewOps.slice(1);
 | 
						|
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
 | 
						|
          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
 | 
						|
      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
 | 
						|
      return GEP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("failed to rebuild vector instructions");
 | 
						|
}
 | 
						|
 | 
						|
Value *
 | 
						|
InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
 | 
						|
  // Mask.size() does not need to be equal to the number of vector elements.
 | 
						|
 | 
						|
  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
 | 
						|
                                           Mask.size()));
 | 
						|
  }
 | 
						|
  if (isa<ConstantAggregateZero>(V)) {
 | 
						|
    return ConstantAggregateZero::get(
 | 
						|
               VectorType::get(V->getType()->getScalarType(),
 | 
						|
                               Mask.size()));
 | 
						|
  }
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    SmallVector<Constant *, 16> MaskValues;
 | 
						|
    for (int i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
      if (Mask[i] == -1)
 | 
						|
        MaskValues.push_back(UndefValue::get(Builder.getInt32Ty()));
 | 
						|
      else
 | 
						|
        MaskValues.push_back(Builder.getInt32(Mask[i]));
 | 
						|
    }
 | 
						|
    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
 | 
						|
                                          ConstantVector::get(MaskValues));
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::Select:
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      SmallVector<Value*, 8> NewOps;
 | 
						|
      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
 | 
						|
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
        Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
 | 
						|
        NewOps.push_back(V);
 | 
						|
        NeedsRebuild |= (V != I->getOperand(i));
 | 
						|
      }
 | 
						|
      if (NeedsRebuild) {
 | 
						|
        return buildNew(I, NewOps);
 | 
						|
      }
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
    case Instruction::InsertElement: {
 | 
						|
      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
 | 
						|
 | 
						|
      // The insertelement was inserting at Element. Figure out which element
 | 
						|
      // that becomes after shuffling. The answer is guaranteed to be unique
 | 
						|
      // by CanEvaluateShuffled.
 | 
						|
      bool Found = false;
 | 
						|
      int Index = 0;
 | 
						|
      for (int e = Mask.size(); Index != e; ++Index) {
 | 
						|
        if (Mask[Index] == Element) {
 | 
						|
          Found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If element is not in Mask, no need to handle the operand 1 (element to
 | 
						|
      // be inserted). Just evaluate values in operand 0 according to Mask.
 | 
						|
      if (!Found)
 | 
						|
        return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | 
						|
 | 
						|
      Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | 
						|
      return InsertElementInst::Create(V, I->getOperand(1),
 | 
						|
                                       Builder.getInt32(Index), "", I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("failed to reorder elements of vector instruction!");
 | 
						|
}
 | 
						|
 | 
						|
static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
 | 
						|
                                  bool &isLHSID, bool &isRHSID) {
 | 
						|
  isLHSID = isRHSID = true;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | 
						|
    if (Mask[i] < 0) continue;  // Ignore undef values.
 | 
						|
    // Is this an identity shuffle of the LHS value?
 | 
						|
    isLHSID &= (Mask[i] == (int)i);
 | 
						|
 | 
						|
    // Is this an identity shuffle of the RHS value?
 | 
						|
    isRHSID &= (Mask[i]-e == i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if the shuffle is extracting a contiguous range of values from
 | 
						|
// LHS, for example:
 | 
						|
//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 
						|
//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
 | 
						|
//   Shuffles to:  |EE|FF|GG|HH|
 | 
						|
//                 +--+--+--+--+
 | 
						|
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
 | 
						|
                                       SmallVector<int, 16> &Mask) {
 | 
						|
  unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
 | 
						|
  unsigned MaskElems = Mask.size();
 | 
						|
  unsigned BegIdx = Mask.front();
 | 
						|
  unsigned EndIdx = Mask.back();
 | 
						|
  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
 | 
						|
    return false;
 | 
						|
  for (unsigned I = 0; I != MaskElems; ++I)
 | 
						|
    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | 
						|
  Value *LHS = SVI.getOperand(0);
 | 
						|
  Value *RHS = SVI.getOperand(1);
 | 
						|
  SmallVector<int, 16> Mask = SVI.getShuffleMask();
 | 
						|
  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
 | 
						|
 | 
						|
  if (auto *V = SimplifyShuffleVectorInst(
 | 
						|
          LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
 | 
						|
    return replaceInstUsesWith(SVI, V);
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  unsigned VWidth = SVI.getType()->getVectorNumElements();
 | 
						|
 | 
						|
  APInt UndefElts(VWidth, 0);
 | 
						|
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
 | 
						|
    if (V != &SVI)
 | 
						|
      return replaceInstUsesWith(SVI, V);
 | 
						|
    LHS = SVI.getOperand(0);
 | 
						|
    RHS = SVI.getOperand(1);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned LHSWidth = LHS->getType()->getVectorNumElements();
 | 
						|
 | 
						|
  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
 | 
						|
  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
 | 
						|
  if (LHS == RHS || isa<UndefValue>(LHS)) {
 | 
						|
    if (isa<UndefValue>(LHS) && LHS == RHS) {
 | 
						|
      // shuffle(undef,undef,mask) -> undef.
 | 
						|
      Value *Result = (VWidth == LHSWidth)
 | 
						|
                      ? LHS : UndefValue::get(SVI.getType());
 | 
						|
      return replaceInstUsesWith(SVI, Result);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remap any references to RHS to use LHS.
 | 
						|
    SmallVector<Constant*, 16> Elts;
 | 
						|
    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
 | 
						|
      if (Mask[i] < 0) {
 | 
						|
        Elts.push_back(UndefValue::get(Int32Ty));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
 | 
						|
          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
 | 
						|
        Mask[i] = -1;     // Turn into undef.
 | 
						|
        Elts.push_back(UndefValue::get(Int32Ty));
 | 
						|
      } else {
 | 
						|
        Mask[i] = Mask[i] % e;  // Force to LHS.
 | 
						|
        Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SVI.setOperand(0, SVI.getOperand(1));
 | 
						|
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
 | 
						|
    SVI.setOperand(2, ConstantVector::get(Elts));
 | 
						|
    LHS = SVI.getOperand(0);
 | 
						|
    RHS = SVI.getOperand(1);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VWidth == LHSWidth) {
 | 
						|
    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
 | 
						|
    bool isLHSID, isRHSID;
 | 
						|
    recognizeIdentityMask(Mask, isLHSID, isRHSID);
 | 
						|
 | 
						|
    // Eliminate identity shuffles.
 | 
						|
    if (isLHSID) return replaceInstUsesWith(SVI, LHS);
 | 
						|
    if (isRHSID) return replaceInstUsesWith(SVI, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
 | 
						|
    Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
 | 
						|
    return replaceInstUsesWith(SVI, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
 | 
						|
  // a non-vector type. We can instead bitcast the original vector followed by
 | 
						|
  // an extract of the desired element:
 | 
						|
  //
 | 
						|
  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
 | 
						|
  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
 | 
						|
  //   %1 = bitcast <4 x i8> %sroa to i32
 | 
						|
  // Becomes:
 | 
						|
  //   %bc = bitcast <16 x i8> %in to <4 x i32>
 | 
						|
  //   %ext = extractelement <4 x i32> %bc, i32 0
 | 
						|
  //
 | 
						|
  // If the shuffle is extracting a contiguous range of values from the input
 | 
						|
  // vector then each use which is a bitcast of the extracted size can be
 | 
						|
  // replaced. This will work if the vector types are compatible, and the begin
 | 
						|
  // index is aligned to a value in the casted vector type. If the begin index
 | 
						|
  // isn't aligned then we can shuffle the original vector (keeping the same
 | 
						|
  // vector type) before extracting.
 | 
						|
  //
 | 
						|
  // This code will bail out if the target type is fundamentally incompatible
 | 
						|
  // with vectors of the source type.
 | 
						|
  //
 | 
						|
  // Example of <16 x i8>, target type i32:
 | 
						|
  // Index range [4,8):         v-----------v Will work.
 | 
						|
  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 
						|
  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 | 
						|
  //     <4 x i32>: |           |           |           |           |
 | 
						|
  //                +-----------+-----------+-----------+-----------+
 | 
						|
  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
 | 
						|
  // Target type i40:           ^--------------^ Won't work, bail.
 | 
						|
  if (isShuffleExtractingFromLHS(SVI, Mask)) {
 | 
						|
    Value *V = LHS;
 | 
						|
    unsigned MaskElems = Mask.size();
 | 
						|
    VectorType *SrcTy = cast<VectorType>(V->getType());
 | 
						|
    unsigned VecBitWidth = SrcTy->getBitWidth();
 | 
						|
    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
 | 
						|
    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
 | 
						|
    unsigned SrcNumElems = SrcTy->getNumElements();
 | 
						|
    SmallVector<BitCastInst *, 8> BCs;
 | 
						|
    DenseMap<Type *, Value *> NewBCs;
 | 
						|
    for (User *U : SVI.users())
 | 
						|
      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
 | 
						|
        if (!BC->use_empty())
 | 
						|
          // Only visit bitcasts that weren't previously handled.
 | 
						|
          BCs.push_back(BC);
 | 
						|
    for (BitCastInst *BC : BCs) {
 | 
						|
      unsigned BegIdx = Mask.front();
 | 
						|
      Type *TgtTy = BC->getDestTy();
 | 
						|
      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
 | 
						|
      if (!TgtElemBitWidth)
 | 
						|
        continue;
 | 
						|
      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
 | 
						|
      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
 | 
						|
      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
 | 
						|
      if (!VecBitWidthsEqual)
 | 
						|
        continue;
 | 
						|
      if (!VectorType::isValidElementType(TgtTy))
 | 
						|
        continue;
 | 
						|
      VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
 | 
						|
      if (!BegIsAligned) {
 | 
						|
        // Shuffle the input so [0,NumElements) contains the output, and
 | 
						|
        // [NumElems,SrcNumElems) is undef.
 | 
						|
        SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
 | 
						|
                                                UndefValue::get(Int32Ty));
 | 
						|
        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
 | 
						|
          ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
 | 
						|
        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
 | 
						|
                                        ConstantVector::get(ShuffleMask),
 | 
						|
                                        SVI.getName() + ".extract");
 | 
						|
        BegIdx = 0;
 | 
						|
      }
 | 
						|
      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
 | 
						|
      assert(SrcElemsPerTgtElem);
 | 
						|
      BegIdx /= SrcElemsPerTgtElem;
 | 
						|
      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
 | 
						|
      auto *NewBC =
 | 
						|
          BCAlreadyExists
 | 
						|
              ? NewBCs[CastSrcTy]
 | 
						|
              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
 | 
						|
      if (!BCAlreadyExists)
 | 
						|
        NewBCs[CastSrcTy] = NewBC;
 | 
						|
      auto *Ext = Builder.CreateExtractElement(
 | 
						|
          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
 | 
						|
      // The shufflevector isn't being replaced: the bitcast that used it
 | 
						|
      // is. InstCombine will visit the newly-created instructions.
 | 
						|
      replaceInstUsesWith(*BC, Ext);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the LHS is a shufflevector itself, see if we can combine it with this
 | 
						|
  // one without producing an unusual shuffle.
 | 
						|
  // Cases that might be simplified:
 | 
						|
  // 1.
 | 
						|
  // x1=shuffle(v1,v2,mask1)
 | 
						|
  //  x=shuffle(x1,undef,mask)
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,undef,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
 | 
						|
  // 2.
 | 
						|
  // x1=shuffle(v1,undef,mask1)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v1.size() == mask1.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,x2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
 | 
						|
  // 3.
 | 
						|
  // x2=shuffle(v2,undef,mask2)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v2.size() == mask2.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(x1,v2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size())
 | 
						|
  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
 | 
						|
  // 4.
 | 
						|
  // x1=shuffle(v1,undef,mask1)
 | 
						|
  // x2=shuffle(v2,undef,mask2)
 | 
						|
  //  x=shuffle(x1,x2,mask)
 | 
						|
  // where v1.size() == v2.size()
 | 
						|
  //        ==>
 | 
						|
  //  x=shuffle(v1,v2,newMask)
 | 
						|
  // newMask[i] = (mask[i] < x1.size())
 | 
						|
  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
 | 
						|
  //
 | 
						|
  // Here we are really conservative:
 | 
						|
  // we are absolutely afraid of producing a shuffle mask not in the input
 | 
						|
  // program, because the code gen may not be smart enough to turn a merged
 | 
						|
  // shuffle into two specific shuffles: it may produce worse code.  As such,
 | 
						|
  // we only merge two shuffles if the result is either a splat or one of the
 | 
						|
  // input shuffle masks.  In this case, merging the shuffles just removes
 | 
						|
  // one instruction, which we know is safe.  This is good for things like
 | 
						|
  // turning: (splat(splat)) -> splat, or
 | 
						|
  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
 | 
						|
  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
 | 
						|
  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
 | 
						|
  if (LHSShuffle)
 | 
						|
    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
 | 
						|
      LHSShuffle = nullptr;
 | 
						|
  if (RHSShuffle)
 | 
						|
    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
 | 
						|
      RHSShuffle = nullptr;
 | 
						|
  if (!LHSShuffle && !RHSShuffle)
 | 
						|
    return MadeChange ? &SVI : nullptr;
 | 
						|
 | 
						|
  Value* LHSOp0 = nullptr;
 | 
						|
  Value* LHSOp1 = nullptr;
 | 
						|
  Value* RHSOp0 = nullptr;
 | 
						|
  unsigned LHSOp0Width = 0;
 | 
						|
  unsigned RHSOp0Width = 0;
 | 
						|
  if (LHSShuffle) {
 | 
						|
    LHSOp0 = LHSShuffle->getOperand(0);
 | 
						|
    LHSOp1 = LHSShuffle->getOperand(1);
 | 
						|
    LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
 | 
						|
  }
 | 
						|
  if (RHSShuffle) {
 | 
						|
    RHSOp0 = RHSShuffle->getOperand(0);
 | 
						|
    RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
 | 
						|
  }
 | 
						|
  Value* newLHS = LHS;
 | 
						|
  Value* newRHS = RHS;
 | 
						|
  if (LHSShuffle) {
 | 
						|
    // case 1
 | 
						|
    if (isa<UndefValue>(RHS)) {
 | 
						|
      newLHS = LHSOp0;
 | 
						|
      newRHS = LHSOp1;
 | 
						|
    }
 | 
						|
    // case 2 or 4
 | 
						|
    else if (LHSOp0Width == LHSWidth) {
 | 
						|
      newLHS = LHSOp0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // case 3 or 4
 | 
						|
  if (RHSShuffle && RHSOp0Width == LHSWidth) {
 | 
						|
    newRHS = RHSOp0;
 | 
						|
  }
 | 
						|
  // case 4
 | 
						|
  if (LHSOp0 == RHSOp0) {
 | 
						|
    newLHS = LHSOp0;
 | 
						|
    newRHS = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (newLHS == LHS && newRHS == RHS)
 | 
						|
    return MadeChange ? &SVI : nullptr;
 | 
						|
 | 
						|
  SmallVector<int, 16> LHSMask;
 | 
						|
  SmallVector<int, 16> RHSMask;
 | 
						|
  if (newLHS != LHS)
 | 
						|
    LHSMask = LHSShuffle->getShuffleMask();
 | 
						|
  if (RHSShuffle && newRHS != RHS)
 | 
						|
    RHSMask = RHSShuffle->getShuffleMask();
 | 
						|
 | 
						|
  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
 | 
						|
  SmallVector<int, 16> newMask;
 | 
						|
  bool isSplat = true;
 | 
						|
  int SplatElt = -1;
 | 
						|
  // Create a new mask for the new ShuffleVectorInst so that the new
 | 
						|
  // ShuffleVectorInst is equivalent to the original one.
 | 
						|
  for (unsigned i = 0; i < VWidth; ++i) {
 | 
						|
    int eltMask;
 | 
						|
    if (Mask[i] < 0) {
 | 
						|
      // This element is an undef value.
 | 
						|
      eltMask = -1;
 | 
						|
    } else if (Mask[i] < (int)LHSWidth) {
 | 
						|
      // This element is from left hand side vector operand.
 | 
						|
      //
 | 
						|
      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
 | 
						|
      // new mask value for the element.
 | 
						|
      if (newLHS != LHS) {
 | 
						|
        eltMask = LHSMask[Mask[i]];
 | 
						|
        // If the value selected is an undef value, explicitly specify it
 | 
						|
        // with a -1 mask value.
 | 
						|
        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
 | 
						|
          eltMask = -1;
 | 
						|
      } else
 | 
						|
        eltMask = Mask[i];
 | 
						|
    } else {
 | 
						|
      // This element is from right hand side vector operand
 | 
						|
      //
 | 
						|
      // If the value selected is an undef value, explicitly specify it
 | 
						|
      // with a -1 mask value. (case 1)
 | 
						|
      if (isa<UndefValue>(RHS))
 | 
						|
        eltMask = -1;
 | 
						|
      // If RHS is going to be replaced (case 3 or 4), calculate the
 | 
						|
      // new mask value for the element.
 | 
						|
      else if (newRHS != RHS) {
 | 
						|
        eltMask = RHSMask[Mask[i]-LHSWidth];
 | 
						|
        // If the value selected is an undef value, explicitly specify it
 | 
						|
        // with a -1 mask value.
 | 
						|
        if (eltMask >= (int)RHSOp0Width) {
 | 
						|
          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
 | 
						|
                 && "should have been check above");
 | 
						|
          eltMask = -1;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        eltMask = Mask[i]-LHSWidth;
 | 
						|
 | 
						|
      // If LHS's width is changed, shift the mask value accordingly.
 | 
						|
      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
 | 
						|
      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
 | 
						|
      // If newRHS == newLHS, we want to remap any references from newRHS to
 | 
						|
      // newLHS so that we can properly identify splats that may occur due to
 | 
						|
      // obfuscation across the two vectors.
 | 
						|
      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
 | 
						|
        eltMask += newLHSWidth;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this could still be a splat.
 | 
						|
    if (eltMask >= 0) {
 | 
						|
      if (SplatElt >= 0 && SplatElt != eltMask)
 | 
						|
        isSplat = false;
 | 
						|
      SplatElt = eltMask;
 | 
						|
    }
 | 
						|
 | 
						|
    newMask.push_back(eltMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the result mask is equal to one of the original shuffle masks,
 | 
						|
  // or is a splat, do the replacement.
 | 
						|
  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
 | 
						|
    SmallVector<Constant*, 16> Elts;
 | 
						|
    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
 | 
						|
      if (newMask[i] < 0) {
 | 
						|
        Elts.push_back(UndefValue::get(Int32Ty));
 | 
						|
      } else {
 | 
						|
        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!newRHS)
 | 
						|
      newRHS = UndefValue::get(newLHS->getType());
 | 
						|
    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
 | 
						|
  }
 | 
						|
 | 
						|
  // If the result mask is an identity, replace uses of this instruction with
 | 
						|
  // corresponding argument.
 | 
						|
  bool isLHSID, isRHSID;
 | 
						|
  recognizeIdentityMask(newMask, isLHSID, isRHSID);
 | 
						|
  if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
 | 
						|
  if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
 | 
						|
 | 
						|
  return MadeChange ? &SVI : nullptr;
 | 
						|
}
 |