749 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			749 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements Loop Rotation Pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/LoopRotation.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CodeMetrics.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-rotate"
 | 
						|
 | 
						|
static cl::opt<unsigned> DefaultRotationThreshold(
 | 
						|
    "rotation-max-header-size", cl::init(16), cl::Hidden,
 | 
						|
    cl::desc("The default maximum header size for automatic loop rotation"));
 | 
						|
 | 
						|
STATISTIC(NumRotated, "Number of loops rotated");
 | 
						|
 | 
						|
namespace {
 | 
						|
/// A simple loop rotation transformation.
 | 
						|
class LoopRotate {
 | 
						|
  const unsigned MaxHeaderSize;
 | 
						|
  LoopInfo *LI;
 | 
						|
  const TargetTransformInfo *TTI;
 | 
						|
  AssumptionCache *AC;
 | 
						|
  DominatorTree *DT;
 | 
						|
  ScalarEvolution *SE;
 | 
						|
  const SimplifyQuery &SQ;
 | 
						|
 | 
						|
public:
 | 
						|
  LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
 | 
						|
             const TargetTransformInfo *TTI, AssumptionCache *AC,
 | 
						|
             DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ)
 | 
						|
      : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
 | 
						|
        SQ(SQ) {}
 | 
						|
  bool processLoop(Loop *L);
 | 
						|
 | 
						|
private:
 | 
						|
  bool rotateLoop(Loop *L, bool SimplifiedLatch);
 | 
						|
  bool simplifyLoopLatch(Loop *L);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
 | 
						|
/// old header into the preheader.  If there were uses of the values produced by
 | 
						|
/// these instruction that were outside of the loop, we have to insert PHI nodes
 | 
						|
/// to merge the two values.  Do this now.
 | 
						|
static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
 | 
						|
                                            BasicBlock *OrigPreheader,
 | 
						|
                                            ValueToValueMapTy &ValueMap,
 | 
						|
                                SmallVectorImpl<PHINode*> *InsertedPHIs) {
 | 
						|
  // Remove PHI node entries that are no longer live.
 | 
						|
  BasicBlock::iterator I, E = OrigHeader->end();
 | 
						|
  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
 | 
						|
 | 
						|
  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
 | 
						|
  // as necessary.
 | 
						|
  SSAUpdater SSA(InsertedPHIs);
 | 
						|
  for (I = OrigHeader->begin(); I != E; ++I) {
 | 
						|
    Value *OrigHeaderVal = &*I;
 | 
						|
 | 
						|
    // If there are no uses of the value (e.g. because it returns void), there
 | 
						|
    // is nothing to rewrite.
 | 
						|
    if (OrigHeaderVal->use_empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
 | 
						|
 | 
						|
    // The value now exits in two versions: the initial value in the preheader
 | 
						|
    // and the loop "next" value in the original header.
 | 
						|
    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
 | 
						|
    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
 | 
						|
    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
 | 
						|
 | 
						|
    // Visit each use of the OrigHeader instruction.
 | 
						|
    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
 | 
						|
                             UE = OrigHeaderVal->use_end();
 | 
						|
         UI != UE;) {
 | 
						|
      // Grab the use before incrementing the iterator.
 | 
						|
      Use &U = *UI;
 | 
						|
 | 
						|
      // Increment the iterator before removing the use from the list.
 | 
						|
      ++UI;
 | 
						|
 | 
						|
      // SSAUpdater can't handle a non-PHI use in the same block as an
 | 
						|
      // earlier def. We can easily handle those cases manually.
 | 
						|
      Instruction *UserInst = cast<Instruction>(U.getUser());
 | 
						|
      if (!isa<PHINode>(UserInst)) {
 | 
						|
        BasicBlock *UserBB = UserInst->getParent();
 | 
						|
 | 
						|
        // The original users in the OrigHeader are already using the
 | 
						|
        // original definitions.
 | 
						|
        if (UserBB == OrigHeader)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Users in the OrigPreHeader need to use the value to which the
 | 
						|
        // original definitions are mapped.
 | 
						|
        if (UserBB == OrigPreheader) {
 | 
						|
          U = OrigPreHeaderVal;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Anything else can be handled by SSAUpdater.
 | 
						|
      SSA.RewriteUse(U);
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
 | 
						|
    // intrinsics.
 | 
						|
    LLVMContext &C = OrigHeader->getContext();
 | 
						|
    if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) {
 | 
						|
      if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) {
 | 
						|
        for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E;) {
 | 
						|
          // Grab the use before incrementing the iterator. Otherwise, altering
 | 
						|
          // the Use will invalidate the iterator.
 | 
						|
          Use &U = *UI++;
 | 
						|
          DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser());
 | 
						|
          if (!UserInst)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // The original users in the OrigHeader are already using the original
 | 
						|
          // definitions.
 | 
						|
          BasicBlock *UserBB = UserInst->getParent();
 | 
						|
          if (UserBB == OrigHeader)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // Users in the OrigPreHeader need to use the value to which the
 | 
						|
          // original definitions are mapped and anything else can be handled by
 | 
						|
          // the SSAUpdater. To avoid adding PHINodes, check if the value is
 | 
						|
          // available in UserBB, if not substitute undef.
 | 
						|
          Value *NewVal;
 | 
						|
          if (UserBB == OrigPreheader)
 | 
						|
            NewVal = OrigPreHeaderVal;
 | 
						|
          else if (SSA.HasValueForBlock(UserBB))
 | 
						|
            NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
 | 
						|
          else
 | 
						|
            NewVal = UndefValue::get(OrigHeaderVal->getType());
 | 
						|
          U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Propagate dbg.value intrinsics through the newly inserted Phis.
 | 
						|
static void insertDebugValues(BasicBlock *OrigHeader,
 | 
						|
                              SmallVectorImpl<PHINode*> &InsertedPHIs) {
 | 
						|
  ValueToValueMapTy DbgValueMap;
 | 
						|
 | 
						|
  // Map existing PHI nodes to their dbg.values.
 | 
						|
  for (auto &I : *OrigHeader) {
 | 
						|
    if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) {
 | 
						|
      if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
 | 
						|
        DbgValueMap.insert({Loc, DbgII});
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Then iterate through the new PHIs and look to see if they use one of the
 | 
						|
  // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
 | 
						|
  // propagate the info through the new PHI.
 | 
						|
  LLVMContext &C = OrigHeader->getContext();
 | 
						|
  for (auto PHI : InsertedPHIs) {
 | 
						|
    for (auto VI : PHI->operand_values()) {
 | 
						|
      auto V = DbgValueMap.find(VI);
 | 
						|
      if (V != DbgValueMap.end()) {
 | 
						|
        auto *DbgII = cast<DbgInfoIntrinsic>(V->second);
 | 
						|
        Instruction *NewDbgII = DbgII->clone();
 | 
						|
        auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
 | 
						|
        NewDbgII->setOperand(0, PhiMAV);
 | 
						|
        BasicBlock *Parent = PHI->getParent();
 | 
						|
        NewDbgII->insertBefore(Parent->getFirstNonPHIOrDbgOrLifetime());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Rotate loop LP. Return true if the loop is rotated.
 | 
						|
///
 | 
						|
/// \param SimplifiedLatch is true if the latch was just folded into the final
 | 
						|
/// loop exit. In this case we may want to rotate even though the new latch is
 | 
						|
/// now an exiting branch. This rotation would have happened had the latch not
 | 
						|
/// been simplified. However, if SimplifiedLatch is false, then we avoid
 | 
						|
/// rotating loops in which the latch exits to avoid excessive or endless
 | 
						|
/// rotation. LoopRotate should be repeatable and converge to a canonical
 | 
						|
/// form. This property is satisfied because simplifying the loop latch can only
 | 
						|
/// happen once across multiple invocations of the LoopRotate pass.
 | 
						|
bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
 | 
						|
  // If the loop has only one block then there is not much to rotate.
 | 
						|
  if (L->getBlocks().size() == 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *OrigHeader = L->getHeader();
 | 
						|
  BasicBlock *OrigLatch = L->getLoopLatch();
 | 
						|
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
 | 
						|
  if (!BI || BI->isUnconditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the loop header is not one of the loop exiting blocks then
 | 
						|
  // either this loop is already rotated or it is not
 | 
						|
  // suitable for loop rotation transformations.
 | 
						|
  if (!L->isLoopExiting(OrigHeader))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the loop latch already contains a branch that leaves the loop then the
 | 
						|
  // loop is already rotated.
 | 
						|
  if (!OrigLatch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Rotate if either the loop latch does *not* exit the loop, or if the loop
 | 
						|
  // latch was just simplified.
 | 
						|
  if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check size of original header and reject loop if it is very big or we can't
 | 
						|
  // duplicate blocks inside it.
 | 
						|
  {
 | 
						|
    SmallPtrSet<const Value *, 32> EphValues;
 | 
						|
    CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | 
						|
 | 
						|
    CodeMetrics Metrics;
 | 
						|
    Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
 | 
						|
    if (Metrics.notDuplicatable) {
 | 
						|
      DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
 | 
						|
                   << " instructions: ";
 | 
						|
            L->dump());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (Metrics.convergent) {
 | 
						|
      DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
 | 
						|
                      "instructions: ";
 | 
						|
            L->dump());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (Metrics.NumInsts > MaxHeaderSize)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now, this loop is suitable for rotation.
 | 
						|
  BasicBlock *OrigPreheader = L->getLoopPreheader();
 | 
						|
 | 
						|
  // If the loop could not be converted to canonical form, it must have an
 | 
						|
  // indirectbr in it, just give up.
 | 
						|
  if (!OrigPreheader)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Anything ScalarEvolution may know about this loop or the PHI nodes
 | 
						|
  // in its header will soon be invalidated.
 | 
						|
  if (SE)
 | 
						|
    SE->forgetLoop(L);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
 | 
						|
 | 
						|
  // Find new Loop header. NewHeader is a Header's one and only successor
 | 
						|
  // that is inside loop.  Header's other successor is outside the
 | 
						|
  // loop.  Otherwise loop is not suitable for rotation.
 | 
						|
  BasicBlock *Exit = BI->getSuccessor(0);
 | 
						|
  BasicBlock *NewHeader = BI->getSuccessor(1);
 | 
						|
  if (L->contains(Exit))
 | 
						|
    std::swap(Exit, NewHeader);
 | 
						|
  assert(NewHeader && "Unable to determine new loop header");
 | 
						|
  assert(L->contains(NewHeader) && !L->contains(Exit) &&
 | 
						|
         "Unable to determine loop header and exit blocks");
 | 
						|
 | 
						|
  // This code assumes that the new header has exactly one predecessor.
 | 
						|
  // Remove any single-entry PHI nodes in it.
 | 
						|
  assert(NewHeader->getSinglePredecessor() &&
 | 
						|
         "New header doesn't have one pred!");
 | 
						|
  FoldSingleEntryPHINodes(NewHeader);
 | 
						|
 | 
						|
  // Begin by walking OrigHeader and populating ValueMap with an entry for
 | 
						|
  // each Instruction.
 | 
						|
  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
 | 
						|
  ValueToValueMapTy ValueMap;
 | 
						|
 | 
						|
  // For PHI nodes, the value available in OldPreHeader is just the
 | 
						|
  // incoming value from OldPreHeader.
 | 
						|
  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
 | 
						|
 | 
						|
  // For the rest of the instructions, either hoist to the OrigPreheader if
 | 
						|
  // possible or create a clone in the OldPreHeader if not.
 | 
						|
  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
 | 
						|
  while (I != E) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
 | 
						|
    // If the instruction's operands are invariant and it doesn't read or write
 | 
						|
    // memory, then it is safe to hoist.  Doing this doesn't change the order of
 | 
						|
    // execution in the preheader, but does prevent the instruction from
 | 
						|
    // executing in each iteration of the loop.  This means it is safe to hoist
 | 
						|
    // something that might trap, but isn't safe to hoist something that reads
 | 
						|
    // memory (without proving that the loop doesn't write).
 | 
						|
    if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
 | 
						|
        !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) &&
 | 
						|
        !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
 | 
						|
      Inst->moveBefore(LoopEntryBranch);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, create a duplicate of the instruction.
 | 
						|
    Instruction *C = Inst->clone();
 | 
						|
 | 
						|
    // Eagerly remap the operands of the instruction.
 | 
						|
    RemapInstruction(C, ValueMap,
 | 
						|
                     RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | 
						|
 | 
						|
    // With the operands remapped, see if the instruction constant folds or is
 | 
						|
    // otherwise simplifyable.  This commonly occurs because the entry from PHI
 | 
						|
    // nodes allows icmps and other instructions to fold.
 | 
						|
    Value *V = SimplifyInstruction(C, SQ);
 | 
						|
    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
 | 
						|
      // If so, then delete the temporary instruction and stick the folded value
 | 
						|
      // in the map.
 | 
						|
      ValueMap[Inst] = V;
 | 
						|
      if (!C->mayHaveSideEffects()) {
 | 
						|
        C->deleteValue();
 | 
						|
        C = nullptr;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ValueMap[Inst] = C;
 | 
						|
    }
 | 
						|
    if (C) {
 | 
						|
      // Otherwise, stick the new instruction into the new block!
 | 
						|
      C->setName(Inst->getName());
 | 
						|
      C->insertBefore(LoopEntryBranch);
 | 
						|
 | 
						|
      if (auto *II = dyn_cast<IntrinsicInst>(C))
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::assume)
 | 
						|
          AC->registerAssumption(II);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Along with all the other instructions, we just cloned OrigHeader's
 | 
						|
  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
 | 
						|
  // successors by duplicating their incoming values for OrigHeader.
 | 
						|
  TerminatorInst *TI = OrigHeader->getTerminator();
 | 
						|
  for (BasicBlock *SuccBB : TI->successors())
 | 
						|
    for (BasicBlock::iterator BI = SuccBB->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | 
						|
      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
 | 
						|
 | 
						|
  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
 | 
						|
  // OrigPreHeader's old terminator (the original branch into the loop), and
 | 
						|
  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
 | 
						|
  LoopEntryBranch->eraseFromParent();
 | 
						|
 | 
						|
 | 
						|
  SmallVector<PHINode*, 2> InsertedPHIs;
 | 
						|
  // If there were any uses of instructions in the duplicated block outside the
 | 
						|
  // loop, update them, inserting PHI nodes as required
 | 
						|
  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
 | 
						|
                                  &InsertedPHIs);
 | 
						|
 | 
						|
  // Attach dbg.value intrinsics to the new phis if that phi uses a value that
 | 
						|
  // previously had debug metadata attached. This keeps the debug info
 | 
						|
  // up-to-date in the loop body.
 | 
						|
  if (!InsertedPHIs.empty())
 | 
						|
    insertDebugValues(OrigHeader, InsertedPHIs);
 | 
						|
 | 
						|
  // NewHeader is now the header of the loop.
 | 
						|
  L->moveToHeader(NewHeader);
 | 
						|
  assert(L->getHeader() == NewHeader && "Latch block is our new header");
 | 
						|
 | 
						|
  // At this point, we've finished our major CFG changes.  As part of cloning
 | 
						|
  // the loop into the preheader we've simplified instructions and the
 | 
						|
  // duplicated conditional branch may now be branching on a constant.  If it is
 | 
						|
  // branching on a constant and if that constant means that we enter the loop,
 | 
						|
  // then we fold away the cond branch to an uncond branch.  This simplifies the
 | 
						|
  // loop in cases important for nested loops, and it also means we don't have
 | 
						|
  // to split as many edges.
 | 
						|
  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
 | 
						|
  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
 | 
						|
  if (!isa<ConstantInt>(PHBI->getCondition()) ||
 | 
						|
      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
 | 
						|
          NewHeader) {
 | 
						|
    // The conditional branch can't be folded, handle the general case.
 | 
						|
    // Update DominatorTree to reflect the CFG change we just made.  Then split
 | 
						|
    // edges as necessary to preserve LoopSimplify form.
 | 
						|
    if (DT) {
 | 
						|
      // Everything that was dominated by the old loop header is now dominated
 | 
						|
      // by the original loop preheader. Conceptually the header was merged
 | 
						|
      // into the preheader, even though we reuse the actual block as a new
 | 
						|
      // loop latch.
 | 
						|
      DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
 | 
						|
      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
 | 
						|
                                                   OrigHeaderNode->end());
 | 
						|
      DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
 | 
						|
      for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
 | 
						|
        DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
 | 
						|
 | 
						|
      assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
 | 
						|
      assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
 | 
						|
 | 
						|
      // Update OrigHeader to be dominated by the new header block.
 | 
						|
      DT->changeImmediateDominator(OrigHeader, OrigLatch);
 | 
						|
    }
 | 
						|
 | 
						|
    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
 | 
						|
    // thus is not a preheader anymore.
 | 
						|
    // Split the edge to form a real preheader.
 | 
						|
    BasicBlock *NewPH = SplitCriticalEdge(
 | 
						|
        OrigPreheader, NewHeader,
 | 
						|
        CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
 | 
						|
    NewPH->setName(NewHeader->getName() + ".lr.ph");
 | 
						|
 | 
						|
    // Preserve canonical loop form, which means that 'Exit' should have only
 | 
						|
    // one predecessor. Note that Exit could be an exit block for multiple
 | 
						|
    // nested loops, causing both of the edges to now be critical and need to
 | 
						|
    // be split.
 | 
						|
    SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
 | 
						|
    bool SplitLatchEdge = false;
 | 
						|
    for (BasicBlock *ExitPred : ExitPreds) {
 | 
						|
      // We only need to split loop exit edges.
 | 
						|
      Loop *PredLoop = LI->getLoopFor(ExitPred);
 | 
						|
      if (!PredLoop || PredLoop->contains(Exit))
 | 
						|
        continue;
 | 
						|
      if (isa<IndirectBrInst>(ExitPred->getTerminator()))
 | 
						|
        continue;
 | 
						|
      SplitLatchEdge |= L->getLoopLatch() == ExitPred;
 | 
						|
      BasicBlock *ExitSplit = SplitCriticalEdge(
 | 
						|
          ExitPred, Exit,
 | 
						|
          CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
 | 
						|
      ExitSplit->moveBefore(Exit);
 | 
						|
    }
 | 
						|
    assert(SplitLatchEdge &&
 | 
						|
           "Despite splitting all preds, failed to split latch exit?");
 | 
						|
  } else {
 | 
						|
    // We can fold the conditional branch in the preheader, this makes things
 | 
						|
    // simpler. The first step is to remove the extra edge to the Exit block.
 | 
						|
    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
 | 
						|
    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
 | 
						|
    NewBI->setDebugLoc(PHBI->getDebugLoc());
 | 
						|
    PHBI->eraseFromParent();
 | 
						|
 | 
						|
    // With our CFG finalized, update DomTree if it is available.
 | 
						|
    if (DT) {
 | 
						|
      // Update OrigHeader to be dominated by the new header block.
 | 
						|
      DT->changeImmediateDominator(NewHeader, OrigPreheader);
 | 
						|
      DT->changeImmediateDominator(OrigHeader, OrigLatch);
 | 
						|
 | 
						|
      // Brute force incremental dominator tree update. Call
 | 
						|
      // findNearestCommonDominator on all CFG predecessors of each child of the
 | 
						|
      // original header.
 | 
						|
      DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
 | 
						|
      SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
 | 
						|
                                                   OrigHeaderNode->end());
 | 
						|
      bool Changed;
 | 
						|
      do {
 | 
						|
        Changed = false;
 | 
						|
        for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
 | 
						|
          DomTreeNode *Node = HeaderChildren[I];
 | 
						|
          BasicBlock *BB = Node->getBlock();
 | 
						|
 | 
						|
          BasicBlock *NearestDom = nullptr;
 | 
						|
          for (BasicBlock *Pred : predecessors(BB)) {
 | 
						|
            // Consider only reachable basic blocks.
 | 
						|
            if (!DT->getNode(Pred))
 | 
						|
              continue;
 | 
						|
 | 
						|
            if (!NearestDom) {
 | 
						|
              NearestDom = Pred;
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
 | 
						|
            NearestDom = DT->findNearestCommonDominator(NearestDom, Pred);
 | 
						|
            assert(NearestDom && "No NearestCommonDominator found");
 | 
						|
          }
 | 
						|
 | 
						|
          assert(NearestDom && "Nearest dominator not found");
 | 
						|
 | 
						|
          // Remember if this changes the DomTree.
 | 
						|
          if (Node->getIDom()->getBlock() != NearestDom) {
 | 
						|
            DT->changeImmediateDominator(BB, NearestDom);
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If the dominator changed, this may have an effect on other
 | 
						|
        // predecessors, continue until we reach a fixpoint.
 | 
						|
      } while (Changed);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
 | 
						|
  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
 | 
						|
 | 
						|
  // Now that the CFG and DomTree are in a consistent state again, try to merge
 | 
						|
  // the OrigHeader block into OrigLatch.  This will succeed if they are
 | 
						|
  // connected by an unconditional branch.  This is just a cleanup so the
 | 
						|
  // emitted code isn't too gross in this common case.
 | 
						|
  MergeBlockIntoPredecessor(OrigHeader, DT, LI);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LoopRotation: into "; L->dump());
 | 
						|
 | 
						|
  ++NumRotated;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the instructions in this range may be safely and cheaply
 | 
						|
/// speculated. This is not an important enough situation to develop complex
 | 
						|
/// heuristics. We handle a single arithmetic instruction along with any type
 | 
						|
/// conversions.
 | 
						|
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
 | 
						|
                                  BasicBlock::iterator End, Loop *L) {
 | 
						|
  bool seenIncrement = false;
 | 
						|
  bool MultiExitLoop = false;
 | 
						|
 | 
						|
  if (!L->getExitingBlock())
 | 
						|
    MultiExitLoop = true;
 | 
						|
 | 
						|
  for (BasicBlock::iterator I = Begin; I != End; ++I) {
 | 
						|
 | 
						|
    if (!isSafeToSpeculativelyExecute(&*I))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (isa<DbgInfoIntrinsic>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      // GEPs are cheap if all indices are constant.
 | 
						|
      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
 | 
						|
        return false;
 | 
						|
      // fall-thru to increment case
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr: {
 | 
						|
      Value *IVOpnd =
 | 
						|
          !isa<Constant>(I->getOperand(0))
 | 
						|
              ? I->getOperand(0)
 | 
						|
              : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
 | 
						|
      if (!IVOpnd)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // If increment operand is used outside of the loop, this speculation
 | 
						|
      // could cause extra live range interference.
 | 
						|
      if (MultiExitLoop) {
 | 
						|
        for (User *UseI : IVOpnd->users()) {
 | 
						|
          auto *UserInst = cast<Instruction>(UseI);
 | 
						|
          if (!L->contains(UserInst))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (seenIncrement)
 | 
						|
        return false;
 | 
						|
      seenIncrement = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
      // ignore type conversions
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Fold the loop tail into the loop exit by speculating the loop tail
 | 
						|
/// instructions. Typically, this is a single post-increment. In the case of a
 | 
						|
/// simple 2-block loop, hoisting the increment can be much better than
 | 
						|
/// duplicating the entire loop header. In the case of loops with early exits,
 | 
						|
/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
 | 
						|
/// canonical form so downstream passes can handle it.
 | 
						|
///
 | 
						|
/// I don't believe this invalidates SCEV.
 | 
						|
bool LoopRotate::simplifyLoopLatch(Loop *L) {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  if (!Latch || Latch->hasAddressTaken())
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
  if (!Jmp || !Jmp->isUnconditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *LastExit = Latch->getSinglePredecessor();
 | 
						|
  if (!LastExit || !L->isLoopExiting(LastExit))
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
 | 
						|
  if (!BI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
 | 
						|
               << LastExit->getName() << "\n");
 | 
						|
 | 
						|
  // Hoist the instructions from Latch into LastExit.
 | 
						|
  LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
 | 
						|
                                 Latch->begin(), Jmp->getIterator());
 | 
						|
 | 
						|
  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
 | 
						|
  BasicBlock *Header = Jmp->getSuccessor(0);
 | 
						|
  assert(Header == L->getHeader() && "expected a backward branch");
 | 
						|
 | 
						|
  // Remove Latch from the CFG so that LastExit becomes the new Latch.
 | 
						|
  BI->setSuccessor(FallThruPath, Header);
 | 
						|
  Latch->replaceSuccessorsPhiUsesWith(LastExit);
 | 
						|
  Jmp->eraseFromParent();
 | 
						|
 | 
						|
  // Nuke the Latch block.
 | 
						|
  assert(Latch->empty() && "unable to evacuate Latch");
 | 
						|
  LI->removeBlock(Latch);
 | 
						|
  if (DT)
 | 
						|
    DT->eraseNode(Latch);
 | 
						|
  Latch->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Rotate \c L, and return true if any modification was made.
 | 
						|
bool LoopRotate::processLoop(Loop *L) {
 | 
						|
  // Save the loop metadata.
 | 
						|
  MDNode *LoopMD = L->getLoopID();
 | 
						|
 | 
						|
  // Simplify the loop latch before attempting to rotate the header
 | 
						|
  // upward. Rotation may not be needed if the loop tail can be folded into the
 | 
						|
  // loop exit.
 | 
						|
  bool SimplifiedLatch = simplifyLoopLatch(L);
 | 
						|
 | 
						|
  bool MadeChange = rotateLoop(L, SimplifiedLatch);
 | 
						|
  assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
 | 
						|
         "Loop latch should be exiting after loop-rotate.");
 | 
						|
 | 
						|
  // Restore the loop metadata.
 | 
						|
  // NB! We presume LoopRotation DOESN'T ADD its own metadata.
 | 
						|
  if ((MadeChange || SimplifiedLatch) && LoopMD)
 | 
						|
    L->setLoopID(LoopMD);
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
LoopRotatePass::LoopRotatePass(bool EnableHeaderDuplication)
 | 
						|
    : EnableHeaderDuplication(EnableHeaderDuplication) {}
 | 
						|
 | 
						|
PreservedAnalyses LoopRotatePass::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                                      LoopStandardAnalysisResults &AR,
 | 
						|
                                      LPMUpdater &) {
 | 
						|
  int Threshold = EnableHeaderDuplication ? DefaultRotationThreshold : 0;
 | 
						|
  const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
 | 
						|
  const SimplifyQuery SQ = getBestSimplifyQuery(AR, DL);
 | 
						|
  LoopRotate LR(Threshold, &AR.LI, &AR.TTI, &AR.AC, &AR.DT, &AR.SE,
 | 
						|
                SQ);
 | 
						|
 | 
						|
  bool Changed = LR.processLoop(&L);
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  return getLoopPassPreservedAnalyses();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class LoopRotateLegacyPass : public LoopPass {
 | 
						|
  unsigned MaxHeaderSize;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID; // Pass ID, replacement for typeid
 | 
						|
  LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
 | 
						|
    initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
    if (SpecifiedMaxHeaderSize == -1)
 | 
						|
      MaxHeaderSize = DefaultRotationThreshold;
 | 
						|
    else
 | 
						|
      MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // LCSSA form makes instruction renaming easier.
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | 
						|
    if (skipLoop(L))
 | 
						|
      return false;
 | 
						|
    Function &F = *L->getHeader()->getParent();
 | 
						|
 | 
						|
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
    auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
 | 
						|
    auto *SE = SEWP ? &SEWP->getSE() : nullptr;
 | 
						|
    const SimplifyQuery SQ = getBestSimplifyQuery(*this, F);
 | 
						|
    LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE, SQ);
 | 
						|
    return LR.processLoop(L);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char LoopRotateLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false,
 | 
						|
                    false)
 | 
						|
 | 
						|
Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
 | 
						|
  return new LoopRotateLegacyPass(MaxHeaderSize);
 | 
						|
}
 |