598 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			598 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Function evaluator for LLVM IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Evaluator.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DiagnosticPrinter.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| #define DEBUG_TYPE "evaluator"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static inline bool
 | |
| isSimpleEnoughValueToCommit(Constant *C,
 | |
|                             SmallPtrSetImpl<Constant *> &SimpleConstants,
 | |
|                             const DataLayout &DL);
 | |
| 
 | |
| /// Return true if the specified constant can be handled by the code generator.
 | |
| /// We don't want to generate something like:
 | |
| ///   void *X = &X/42;
 | |
| /// because the code generator doesn't have a relocation that can handle that.
 | |
| ///
 | |
| /// This function should be called if C was not found (but just got inserted)
 | |
| /// in SimpleConstants to avoid having to rescan the same constants all the
 | |
| /// time.
 | |
| static bool
 | |
| isSimpleEnoughValueToCommitHelper(Constant *C,
 | |
|                                   SmallPtrSetImpl<Constant *> &SimpleConstants,
 | |
|                                   const DataLayout &DL) {
 | |
|   // Simple global addresses are supported, do not allow dllimport or
 | |
|   // thread-local globals.
 | |
|   if (auto *GV = dyn_cast<GlobalValue>(C))
 | |
|     return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
 | |
| 
 | |
|   // Simple integer, undef, constant aggregate zero, etc are all supported.
 | |
|   if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
 | |
|     return true;
 | |
| 
 | |
|   // Aggregate values are safe if all their elements are.
 | |
|   if (isa<ConstantAggregate>(C)) {
 | |
|     for (Value *Op : C->operands())
 | |
|       if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We don't know exactly what relocations are allowed in constant expressions,
 | |
|   // so we allow &global+constantoffset, which is safe and uniformly supported
 | |
|   // across targets.
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(C);
 | |
|   switch (CE->getOpcode()) {
 | |
|   case Instruction::BitCast:
 | |
|     // Bitcast is fine if the casted value is fine.
 | |
|     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | |
| 
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|     // int <=> ptr is fine if the int type is the same size as the
 | |
|     // pointer type.
 | |
|     if (DL.getTypeSizeInBits(CE->getType()) !=
 | |
|         DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
 | |
|       return false;
 | |
|     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | |
| 
 | |
|   // GEP is fine if it is simple + constant offset.
 | |
|   case Instruction::GetElementPtr:
 | |
|     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<ConstantInt>(CE->getOperand(i)))
 | |
|         return false;
 | |
|     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | |
| 
 | |
|   case Instruction::Add:
 | |
|     // We allow simple+cst.
 | |
|     if (!isa<ConstantInt>(CE->getOperand(1)))
 | |
|       return false;
 | |
|     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| isSimpleEnoughValueToCommit(Constant *C,
 | |
|                             SmallPtrSetImpl<Constant *> &SimpleConstants,
 | |
|                             const DataLayout &DL) {
 | |
|   // If we already checked this constant, we win.
 | |
|   if (!SimpleConstants.insert(C).second)
 | |
|     return true;
 | |
|   // Check the constant.
 | |
|   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
 | |
| }
 | |
| 
 | |
| /// Return true if this constant is simple enough for us to understand.  In
 | |
| /// particular, if it is a cast to anything other than from one pointer type to
 | |
| /// another pointer type, we punt.  We basically just support direct accesses to
 | |
| /// globals and GEP's of globals.  This should be kept up to date with
 | |
| /// CommitValueTo.
 | |
| static bool isSimpleEnoughPointerToCommit(Constant *C) {
 | |
|   // Conservatively, avoid aggregate types. This is because we don't
 | |
|   // want to worry about them partially overlapping other stores.
 | |
|   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
 | |
|     return false;
 | |
| 
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | |
|     // Do not allow weak/*_odr/linkonce linkage or external globals.
 | |
|     return GV->hasUniqueInitializer();
 | |
| 
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     // Handle a constantexpr gep.
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|         isa<GlobalVariable>(CE->getOperand(0)) &&
 | |
|         cast<GEPOperator>(CE)->isInBounds()) {
 | |
|       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
 | |
|       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
 | |
|       // external globals.
 | |
|       if (!GV->hasUniqueInitializer())
 | |
|         return false;
 | |
| 
 | |
|       // The first index must be zero.
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
 | |
|       if (!CI || !CI->isZero()) return false;
 | |
| 
 | |
|       // The remaining indices must be compile-time known integers within the
 | |
|       // notional bounds of the corresponding static array types.
 | |
|       if (!CE->isGEPWithNoNotionalOverIndexing())
 | |
|         return false;
 | |
| 
 | |
|       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
 | |
| 
 | |
|     // A constantexpr bitcast from a pointer to another pointer is a no-op,
 | |
|     // and we know how to evaluate it by moving the bitcast from the pointer
 | |
|     // operand to the value operand.
 | |
|     } else if (CE->getOpcode() == Instruction::BitCast &&
 | |
|                isa<GlobalVariable>(CE->getOperand(0))) {
 | |
|       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
 | |
|       // external globals.
 | |
|       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return the value that would be computed by a load from P after the stores
 | |
| /// reflected by 'memory' have been performed.  If we can't decide, return null.
 | |
| Constant *Evaluator::ComputeLoadResult(Constant *P) {
 | |
|   // If this memory location has been recently stored, use the stored value: it
 | |
|   // is the most up-to-date.
 | |
|   DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
 | |
|   if (I != MutatedMemory.end()) return I->second;
 | |
| 
 | |
|   // Access it.
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
 | |
|     if (GV->hasDefinitiveInitializer())
 | |
|       return GV->getInitializer();
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Handle a constantexpr getelementptr.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|         isa<GlobalVariable>(CE->getOperand(0))) {
 | |
|       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
 | |
|       if (GV->hasDefinitiveInitializer())
 | |
|         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
 | |
|     }
 | |
| 
 | |
|   return nullptr;  // don't know how to evaluate.
 | |
| }
 | |
| 
 | |
| /// Evaluate all instructions in block BB, returning true if successful, false
 | |
| /// if we can't evaluate it.  NewBB returns the next BB that control flows into,
 | |
| /// or null upon return.
 | |
| bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
 | |
|                               BasicBlock *&NextBB) {
 | |
|   // This is the main evaluation loop.
 | |
|   while (1) {
 | |
|     Constant *InstResult = nullptr;
 | |
| 
 | |
|     DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
 | |
|       if (!SI->isSimple()) {
 | |
|         DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
 | |
|         return false;  // no volatile/atomic accesses.
 | |
|       }
 | |
|       Constant *Ptr = getVal(SI->getOperand(1));
 | |
|       if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
 | |
|         DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
 | |
|         Ptr = FoldedPtr;
 | |
|         DEBUG(dbgs() << "; To: " << *Ptr << "\n");
 | |
|       }
 | |
|       if (!isSimpleEnoughPointerToCommit(Ptr)) {
 | |
|         // If this is too complex for us to commit, reject it.
 | |
|         DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       Constant *Val = getVal(SI->getOperand(0));
 | |
| 
 | |
|       // If this might be too difficult for the backend to handle (e.g. the addr
 | |
|       // of one global variable divided by another) then we can't commit it.
 | |
|       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
 | |
|         DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
 | |
|               << "\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
 | |
|         if (CE->getOpcode() == Instruction::BitCast) {
 | |
|           DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
 | |
|           // If we're evaluating a store through a bitcast, then we need
 | |
|           // to pull the bitcast off the pointer type and push it onto the
 | |
|           // stored value.
 | |
|           Ptr = CE->getOperand(0);
 | |
| 
 | |
|           Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
| 
 | |
|           // In order to push the bitcast onto the stored value, a bitcast
 | |
|           // from NewTy to Val's type must be legal.  If it's not, we can try
 | |
|           // introspecting NewTy to find a legal conversion.
 | |
|           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
 | |
|             // If NewTy is a struct, we can convert the pointer to the struct
 | |
|             // into a pointer to its first member.
 | |
|             // FIXME: This could be extended to support arrays as well.
 | |
|             if (StructType *STy = dyn_cast<StructType>(NewTy)) {
 | |
|               NewTy = STy->getTypeAtIndex(0U);
 | |
| 
 | |
|               IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
 | |
|               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
 | |
|               Constant * const IdxList[] = {IdxZero, IdxZero};
 | |
| 
 | |
|               Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
 | |
|               if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI))
 | |
|                 Ptr = FoldedPtr;
 | |
| 
 | |
|             // If we can't improve the situation by introspecting NewTy,
 | |
|             // we have to give up.
 | |
|             } else {
 | |
|               DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
 | |
|                     "evaluate.\n");
 | |
|               return false;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // If we found compatible types, go ahead and push the bitcast
 | |
|           // onto the stored value.
 | |
|           Val = ConstantExpr::getBitCast(Val, NewTy);
 | |
| 
 | |
|           DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       MutatedMemory[Ptr] = Val;
 | |
|     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
 | |
|       InstResult = ConstantExpr::get(BO->getOpcode(),
 | |
|                                      getVal(BO->getOperand(0)),
 | |
|                                      getVal(BO->getOperand(1)));
 | |
|       DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
 | |
|             << "\n");
 | |
|     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
 | |
|                                             getVal(CI->getOperand(0)),
 | |
|                                             getVal(CI->getOperand(1)));
 | |
|       DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
 | |
|             << "\n");
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getCast(CI->getOpcode(),
 | |
|                                          getVal(CI->getOperand(0)),
 | |
|                                          CI->getType());
 | |
|       DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
 | |
|             << "\n");
 | |
|     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
 | |
|                                            getVal(SI->getOperand(1)),
 | |
|                                            getVal(SI->getOperand(2)));
 | |
|       DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
 | |
|             << "\n");
 | |
|     } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getExtractValue(
 | |
|           getVal(EVI->getAggregateOperand()), EVI->getIndices());
 | |
|       DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
 | |
|                    << "\n");
 | |
|     } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getInsertValue(
 | |
|           getVal(IVI->getAggregateOperand()),
 | |
|           getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
 | |
|       DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
 | |
|                    << "\n");
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
 | |
|       Constant *P = getVal(GEP->getOperand(0));
 | |
|       SmallVector<Constant*, 8> GEPOps;
 | |
|       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
 | |
|            i != e; ++i)
 | |
|         GEPOps.push_back(getVal(*i));
 | |
|       InstResult =
 | |
|           ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
 | |
|                                          cast<GEPOperator>(GEP)->isInBounds());
 | |
|       DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
 | |
|             << "\n");
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
 | |
| 
 | |
|       if (!LI->isSimple()) {
 | |
|         DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
 | |
|         return false;  // no volatile/atomic accesses.
 | |
|       }
 | |
| 
 | |
|       Constant *Ptr = getVal(LI->getOperand(0));
 | |
|       if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
 | |
|         Ptr = FoldedPtr;
 | |
|         DEBUG(dbgs() << "Found a constant pointer expression, constant "
 | |
|               "folding: " << *Ptr << "\n");
 | |
|       }
 | |
|       InstResult = ComputeLoadResult(Ptr);
 | |
|       if (!InstResult) {
 | |
|         DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
 | |
|               "\n");
 | |
|         return false; // Could not evaluate load.
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
 | |
|     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
 | |
|       if (AI->isArrayAllocation()) {
 | |
|         DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
 | |
|         return false;  // Cannot handle array allocs.
 | |
|       }
 | |
|       Type *Ty = AI->getAllocatedType();
 | |
|       AllocaTmps.push_back(
 | |
|           make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
 | |
|                                       UndefValue::get(Ty), AI->getName()));
 | |
|       InstResult = AllocaTmps.back().get();
 | |
|       DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
 | |
|     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
 | |
|       CallSite CS(&*CurInst);
 | |
| 
 | |
|       // Debug info can safely be ignored here.
 | |
|       if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
 | |
|         DEBUG(dbgs() << "Ignoring debug info.\n");
 | |
|         ++CurInst;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Cannot handle inline asm.
 | |
|       if (isa<InlineAsm>(CS.getCalledValue())) {
 | |
|         DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
 | |
|         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
 | |
|           if (MSI->isVolatile()) {
 | |
|             DEBUG(dbgs() << "Can not optimize a volatile memset " <<
 | |
|                   "intrinsic.\n");
 | |
|             return false;
 | |
|           }
 | |
|           Constant *Ptr = getVal(MSI->getDest());
 | |
|           Constant *Val = getVal(MSI->getValue());
 | |
|           Constant *DestVal = ComputeLoadResult(getVal(Ptr));
 | |
|           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
 | |
|             // This memset is a no-op.
 | |
|             DEBUG(dbgs() << "Ignoring no-op memset.\n");
 | |
|             ++CurInst;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|             II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|           DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
 | |
|           ++CurInst;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
 | |
|           // We don't insert an entry into Values, as it doesn't have a
 | |
|           // meaningful return value.
 | |
|           if (!II->use_empty()) {
 | |
|             DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
 | |
|             return false;
 | |
|           }
 | |
|           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
 | |
|           Value *PtrArg = getVal(II->getArgOperand(1));
 | |
|           Value *Ptr = PtrArg->stripPointerCasts();
 | |
|           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
 | |
|             Type *ElemTy = GV->getValueType();
 | |
|             if (!Size->isMinusOne() &&
 | |
|                 Size->getValue().getLimitedValue() >=
 | |
|                     DL.getTypeStoreSize(ElemTy)) {
 | |
|               Invariants.insert(GV);
 | |
|               DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
 | |
|                     << "\n");
 | |
|             } else {
 | |
|               DEBUG(dbgs() << "Found a global var, but can not treat it as an "
 | |
|                     "invariant.\n");
 | |
|             }
 | |
|           }
 | |
|           // Continue even if we do nothing.
 | |
|           ++CurInst;
 | |
|           continue;
 | |
|         } else if (II->getIntrinsicID() == Intrinsic::assume) {
 | |
|           DEBUG(dbgs() << "Skipping assume intrinsic.\n");
 | |
|           ++CurInst;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Resolve function pointers.
 | |
|       Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
 | |
|       if (!Callee || Callee->isInterposable()) {
 | |
|         DEBUG(dbgs() << "Can not resolve function pointer.\n");
 | |
|         return false;  // Cannot resolve.
 | |
|       }
 | |
| 
 | |
|       SmallVector<Constant*, 8> Formals;
 | |
|       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
 | |
|         Formals.push_back(getVal(*i));
 | |
| 
 | |
|       if (Callee->isDeclaration()) {
 | |
|         // If this is a function we can constant fold, do it.
 | |
|         if (Constant *C = ConstantFoldCall(CS, Callee, Formals, TLI)) {
 | |
|           InstResult = C;
 | |
|           DEBUG(dbgs() << "Constant folded function call. Result: " <<
 | |
|                 *InstResult << "\n");
 | |
|         } else {
 | |
|           DEBUG(dbgs() << "Can not constant fold function call.\n");
 | |
|           return false;
 | |
|         }
 | |
|       } else {
 | |
|         if (Callee->getFunctionType()->isVarArg()) {
 | |
|           DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         Constant *RetVal = nullptr;
 | |
|         // Execute the call, if successful, use the return value.
 | |
|         ValueStack.emplace_back();
 | |
|         if (!EvaluateFunction(Callee, RetVal, Formals)) {
 | |
|           DEBUG(dbgs() << "Failed to evaluate function.\n");
 | |
|           return false;
 | |
|         }
 | |
|         ValueStack.pop_back();
 | |
|         InstResult = RetVal;
 | |
| 
 | |
|         if (InstResult) {
 | |
|           DEBUG(dbgs() << "Successfully evaluated function. Result: "
 | |
|                        << *InstResult << "\n\n");
 | |
|         } else {
 | |
|           DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
 | |
|         }
 | |
|       }
 | |
|     } else if (isa<TerminatorInst>(CurInst)) {
 | |
|       DEBUG(dbgs() << "Found a terminator instruction.\n");
 | |
| 
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
 | |
|         if (BI->isUnconditional()) {
 | |
|           NextBB = BI->getSuccessor(0);
 | |
|         } else {
 | |
|           ConstantInt *Cond =
 | |
|             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
 | |
|           if (!Cond) return false;  // Cannot determine.
 | |
| 
 | |
|           NextBB = BI->getSuccessor(!Cond->getZExtValue());
 | |
|         }
 | |
|       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
 | |
|         ConstantInt *Val =
 | |
|           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
 | |
|         if (!Val) return false;  // Cannot determine.
 | |
|         NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
 | |
|       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
 | |
|         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
 | |
|         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
 | |
|           NextBB = BA->getBasicBlock();
 | |
|         else
 | |
|           return false;  // Cannot determine.
 | |
|       } else if (isa<ReturnInst>(CurInst)) {
 | |
|         NextBB = nullptr;
 | |
|       } else {
 | |
|         // invoke, unwind, resume, unreachable.
 | |
|         DEBUG(dbgs() << "Can not handle terminator.");
 | |
|         return false;  // Cannot handle this terminator.
 | |
|       }
 | |
| 
 | |
|       // We succeeded at evaluating this block!
 | |
|       DEBUG(dbgs() << "Successfully evaluated block.\n");
 | |
|       return true;
 | |
|     } else {
 | |
|       // Did not know how to evaluate this!
 | |
|       DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
 | |
|             "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!CurInst->use_empty()) {
 | |
|       if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI))
 | |
|         InstResult = FoldedInstResult;
 | |
| 
 | |
|       setVal(&*CurInst, InstResult);
 | |
|     }
 | |
| 
 | |
|     // If we just processed an invoke, we finished evaluating the block.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
 | |
|       NextBB = II->getNormalDest();
 | |
|       DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Advance program counter.
 | |
|     ++CurInst;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Evaluate a call to function F, returning true if successful, false if we
 | |
| /// can't evaluate it.  ActualArgs contains the formal arguments for the
 | |
| /// function.
 | |
| bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
 | |
|                                  const SmallVectorImpl<Constant*> &ActualArgs) {
 | |
|   // Check to see if this function is already executing (recursion).  If so,
 | |
|   // bail out.  TODO: we might want to accept limited recursion.
 | |
|   if (is_contained(CallStack, F))
 | |
|     return false;
 | |
| 
 | |
|   CallStack.push_back(F);
 | |
| 
 | |
|   // Initialize arguments to the incoming values specified.
 | |
|   unsigned ArgNo = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
 | |
|        ++AI, ++ArgNo)
 | |
|     setVal(&*AI, ActualArgs[ArgNo]);
 | |
| 
 | |
|   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
 | |
|   // we can only evaluate any one basic block at most once.  This set keeps
 | |
|   // track of what we have executed so we can detect recursive cases etc.
 | |
|   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
 | |
| 
 | |
|   // CurBB - The current basic block we're evaluating.
 | |
|   BasicBlock *CurBB = &F->front();
 | |
| 
 | |
|   BasicBlock::iterator CurInst = CurBB->begin();
 | |
| 
 | |
|   while (1) {
 | |
|     BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
 | |
|     DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
 | |
| 
 | |
|     if (!EvaluateBlock(CurInst, NextBB))
 | |
|       return false;
 | |
| 
 | |
|     if (!NextBB) {
 | |
|       // Successfully running until there's no next block means that we found
 | |
|       // the return.  Fill it the return value and pop the call stack.
 | |
|       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
 | |
|       if (RI->getNumOperands())
 | |
|         RetVal = getVal(RI->getOperand(0));
 | |
|       CallStack.pop_back();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Okay, we succeeded in evaluating this control flow.  See if we have
 | |
|     // executed the new block before.  If so, we have a looping function,
 | |
|     // which we cannot evaluate in reasonable time.
 | |
|     if (!ExecutedBlocks.insert(NextBB).second)
 | |
|       return false;  // looped!
 | |
| 
 | |
|     // Okay, we have never been in this block before.  Check to see if there
 | |
|     // are any PHI nodes.  If so, evaluate them with information about where
 | |
|     // we came from.
 | |
|     PHINode *PN = nullptr;
 | |
|     for (CurInst = NextBB->begin();
 | |
|          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
 | |
|       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
 | |
| 
 | |
|     // Advance to the next block.
 | |
|     CurBB = NextBB;
 | |
|   }
 | |
| }
 | |
| 
 |