555 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			555 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- UnrollLoopPeel.cpp - Loop peeling utilities -----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements some loop unrolling utilities for peeling loops
 | |
| // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
 | |
| // unrolling loops with compile-time constant trip counts.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/LoopSimplify.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| STATISTIC(NumPeeled, "Number of loops peeled");
 | |
| 
 | |
| static cl::opt<unsigned> UnrollPeelMaxCount(
 | |
|     "unroll-peel-max-count", cl::init(7), cl::Hidden,
 | |
|     cl::desc("Max average trip count which will cause loop peeling."));
 | |
| 
 | |
| static cl::opt<unsigned> UnrollForcePeelCount(
 | |
|     "unroll-force-peel-count", cl::init(0), cl::Hidden,
 | |
|     cl::desc("Force a peel count regardless of profiling information."));
 | |
| 
 | |
| // Designates that a Phi is estimated to become invariant after an "infinite"
 | |
| // number of loop iterations (i.e. only may become an invariant if the loop is
 | |
| // fully unrolled).
 | |
| static const unsigned InfiniteIterationsToInvariance = UINT_MAX;
 | |
| 
 | |
| // Check whether we are capable of peeling this loop.
 | |
| static bool canPeel(Loop *L) {
 | |
|   // Make sure the loop is in simplified form
 | |
|   if (!L->isLoopSimplifyForm())
 | |
|     return false;
 | |
| 
 | |
|   // Only peel loops that contain a single exit
 | |
|   if (!L->getExitingBlock() || !L->getUniqueExitBlock())
 | |
|     return false;
 | |
| 
 | |
|   // Don't try to peel loops where the latch is not the exiting block.
 | |
|   // This can be an indication of two different things:
 | |
|   // 1) The loop is not rotated.
 | |
|   // 2) The loop contains irreducible control flow that involves the latch.
 | |
|   if (L->getLoopLatch() != L->getExitingBlock())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // This function calculates the number of iterations after which the given Phi
 | |
| // becomes an invariant. The pre-calculated values are memorized in the map. The
 | |
| // function (shortcut is I) is calculated according to the following definition:
 | |
| // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
 | |
| //   If %y is a loop invariant, then I(%x) = 1.
 | |
| //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
 | |
| //   Otherwise, I(%x) is infinite.
 | |
| // TODO: Actually if %y is an expression that depends only on Phi %z and some
 | |
| //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
 | |
| //       looks like:
 | |
| //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
 | |
| //         %y = phi(0, 5),
 | |
| //         %a = %y + 1.
 | |
| static unsigned calculateIterationsToInvariance(
 | |
|     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
 | |
|     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
 | |
|   assert(Phi->getParent() == L->getHeader() &&
 | |
|          "Non-loop Phi should not be checked for turning into invariant.");
 | |
|   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
 | |
|   // If we already know the answer, take it from the map.
 | |
|   auto I = IterationsToInvariance.find(Phi);
 | |
|   if (I != IterationsToInvariance.end())
 | |
|     return I->second;
 | |
| 
 | |
|   // Otherwise we need to analyze the input from the back edge.
 | |
|   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
 | |
|   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
 | |
|   // cycles can never stop on an invariant.
 | |
|   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
 | |
|   unsigned ToInvariance = InfiniteIterationsToInvariance;
 | |
| 
 | |
|   if (L->isLoopInvariant(Input))
 | |
|     ToInvariance = 1u;
 | |
|   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
 | |
|     // Only consider Phis in header block.
 | |
|     if (IncPhi->getParent() != L->getHeader())
 | |
|       return InfiniteIterationsToInvariance;
 | |
|     // If the input becomes an invariant after X iterations, then our Phi
 | |
|     // becomes an invariant after X + 1 iterations.
 | |
|     unsigned InputToInvariance = calculateIterationsToInvariance(
 | |
|         IncPhi, L, BackEdge, IterationsToInvariance);
 | |
|     if (InputToInvariance != InfiniteIterationsToInvariance)
 | |
|       ToInvariance = InputToInvariance + 1u;
 | |
|   }
 | |
| 
 | |
|   // If we found that this Phi lies in an invariant chain, update the map.
 | |
|   if (ToInvariance != InfiniteIterationsToInvariance)
 | |
|     IterationsToInvariance[Phi] = ToInvariance;
 | |
|   return ToInvariance;
 | |
| }
 | |
| 
 | |
| // Return the number of iterations we want to peel off.
 | |
| void llvm::computePeelCount(Loop *L, unsigned LoopSize,
 | |
|                             TargetTransformInfo::UnrollingPreferences &UP,
 | |
|                             unsigned &TripCount) {
 | |
|   assert(LoopSize > 0 && "Zero loop size is not allowed!");
 | |
|   UP.PeelCount = 0;
 | |
|   if (!canPeel(L))
 | |
|     return;
 | |
| 
 | |
|   // Only try to peel innermost loops.
 | |
|   if (!L->empty())
 | |
|     return;
 | |
| 
 | |
|   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
 | |
|   // iterations of the loop. For this we compute the number for iterations after
 | |
|   // which every Phi is guaranteed to become an invariant, and try to peel the
 | |
|   // maximum number of iterations among these values, thus turning all those
 | |
|   // Phis into invariants.
 | |
|   // First, check that we can peel at least one iteration.
 | |
|   if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
 | |
|     // Store the pre-calculated values here.
 | |
|     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
 | |
|     // Now go through all Phis to calculate their the number of iterations they
 | |
|     // need to become invariants.
 | |
|     unsigned DesiredPeelCount = 0;
 | |
|     BasicBlock *BackEdge = L->getLoopLatch();
 | |
|     assert(BackEdge && "Loop is not in simplified form?");
 | |
|     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
 | |
|       PHINode *Phi = cast<PHINode>(&*BI);
 | |
|       unsigned ToInvariance = calculateIterationsToInvariance(
 | |
|           Phi, L, BackEdge, IterationsToInvariance);
 | |
|       if (ToInvariance != InfiniteIterationsToInvariance)
 | |
|         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
 | |
|     }
 | |
|     if (DesiredPeelCount > 0) {
 | |
|       // Pay respect to limitations implied by loop size and the max peel count.
 | |
|       unsigned MaxPeelCount = UnrollPeelMaxCount;
 | |
|       MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
 | |
|       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
 | |
|       // Consider max peel count limitation.
 | |
|       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
 | |
|       DEBUG(dbgs() << "Peel " << DesiredPeelCount << " iteration(s) to turn"
 | |
|                    << " some Phis into invariants.\n");
 | |
|       UP.PeelCount = DesiredPeelCount;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Bail if we know the statically calculated trip count.
 | |
|   // In this case we rather prefer partial unrolling.
 | |
|   if (TripCount)
 | |
|     return;
 | |
| 
 | |
|   // If the user provided a peel count, use that.
 | |
|   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
 | |
|   if (UserPeelCount) {
 | |
|     DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
 | |
|                  << " iterations.\n");
 | |
|     UP.PeelCount = UnrollForcePeelCount;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we don't know the trip count, but have reason to believe the average
 | |
|   // trip count is low, peeling should be beneficial, since we will usually
 | |
|   // hit the peeled section.
 | |
|   // We only do this in the presence of profile information, since otherwise
 | |
|   // our estimates of the trip count are not reliable enough.
 | |
|   if (UP.AllowPeeling && L->getHeader()->getParent()->getEntryCount()) {
 | |
|     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
 | |
|     if (!PeelCount)
 | |
|       return;
 | |
| 
 | |
|     DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
 | |
|                  << "\n");
 | |
| 
 | |
|     if (*PeelCount) {
 | |
|       if ((*PeelCount <= UnrollPeelMaxCount) &&
 | |
|           (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
 | |
|         DEBUG(dbgs() << "Peeling first " << *PeelCount << " iterations.\n");
 | |
|         UP.PeelCount = *PeelCount;
 | |
|         return;
 | |
|       }
 | |
|       DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
 | |
|       DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
 | |
|       DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) << "\n");
 | |
|       DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// \brief Update the branch weights of the latch of a peeled-off loop
 | |
| /// iteration.
 | |
| /// This sets the branch weights for the latch of the recently peeled off loop
 | |
| /// iteration correctly. 
 | |
| /// Our goal is to make sure that:
 | |
| /// a) The total weight of all the copies of the loop body is preserved.
 | |
| /// b) The total weight of the loop exit is preserved.
 | |
| /// c) The body weight is reasonably distributed between the peeled iterations.
 | |
| ///
 | |
| /// \param Header The copy of the header block that belongs to next iteration.
 | |
| /// \param LatchBR The copy of the latch branch that belongs to this iteration.
 | |
| /// \param IterNumber The serial number of the iteration that was just
 | |
| /// peeled off.
 | |
| /// \param AvgIters The average number of iterations we expect the loop to have.
 | |
| /// \param[in,out] PeeledHeaderWeight The total number of dynamic loop
 | |
| /// iterations that are unaccounted for. As an input, it represents the number
 | |
| /// of times we expect to enter the header of the iteration currently being
 | |
| /// peeled off. The output is the number of times we expect to enter the
 | |
| /// header of the next iteration.
 | |
| static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
 | |
|                                 unsigned IterNumber, unsigned AvgIters,
 | |
|                                 uint64_t &PeeledHeaderWeight) {
 | |
| 
 | |
|   // FIXME: Pick a more realistic distribution.
 | |
|   // Currently the proportion of weight we assign to the fall-through
 | |
|   // side of the branch drops linearly with the iteration number, and we use
 | |
|   // a 0.9 fudge factor to make the drop-off less sharp...
 | |
|   if (PeeledHeaderWeight) {
 | |
|     uint64_t FallThruWeight =
 | |
|         PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9);
 | |
|     uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight;
 | |
|     PeeledHeaderWeight -= ExitWeight;
 | |
| 
 | |
|     unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
 | |
|     MDBuilder MDB(LatchBR->getContext());
 | |
|     MDNode *WeightNode =
 | |
|         HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight)
 | |
|                   : MDB.createBranchWeights(FallThruWeight, ExitWeight);
 | |
|     LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Clones the body of the loop L, putting it between \p InsertTop and \p
 | |
| /// InsertBot.
 | |
| /// \param IterNumber The serial number of the iteration currently being
 | |
| /// peeled off.
 | |
| /// \param Exit The exit block of the original loop.
 | |
| /// \param[out] NewBlocks A list of the the blocks in the newly created clone
 | |
| /// \param[out] VMap The value map between the loop and the new clone.
 | |
| /// \param LoopBlocks A helper for DFS-traversal of the loop.
 | |
| /// \param LVMap A value-map that maps instructions from the original loop to
 | |
| /// instructions in the last peeled-off iteration.
 | |
| static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop,
 | |
|                             BasicBlock *InsertBot, BasicBlock *Exit,
 | |
|                             SmallVectorImpl<BasicBlock *> &NewBlocks,
 | |
|                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
 | |
|                             ValueToValueMapTy &LVMap, DominatorTree *DT,
 | |
|                             LoopInfo *LI) {
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   BasicBlock *PreHeader = L->getLoopPreheader();
 | |
| 
 | |
|   Function *F = Header->getParent();
 | |
|   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | |
|   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | |
|   Loop *ParentLoop = L->getParentLoop();
 | |
| 
 | |
|   // For each block in the original loop, create a new copy,
 | |
|   // and update the value map with the newly created values.
 | |
|   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | |
|     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
 | |
|     NewBlocks.push_back(NewBB);
 | |
| 
 | |
|     if (ParentLoop)
 | |
|       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
| 
 | |
|     VMap[*BB] = NewBB;
 | |
| 
 | |
|     // If dominator tree is available, insert nodes to represent cloned blocks.
 | |
|     if (DT) {
 | |
|       if (Header == *BB)
 | |
|         DT->addNewBlock(NewBB, InsertTop);
 | |
|       else {
 | |
|         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
 | |
|         // VMap must contain entry for IDom, as the iteration order is RPO.
 | |
|         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Hook-up the control flow for the newly inserted blocks.
 | |
|   // The new header is hooked up directly to the "top", which is either
 | |
|   // the original loop preheader (for the first iteration) or the previous
 | |
|   // iteration's exiting block (for every other iteration)
 | |
|   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
 | |
| 
 | |
|   // Similarly, for the latch:
 | |
|   // The original exiting edge is still hooked up to the loop exit.
 | |
|   // The backedge now goes to the "bottom", which is either the loop's real
 | |
|   // header (for the last peeled iteration) or the copied header of the next
 | |
|   // iteration (for every other iteration)
 | |
|   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
 | |
|   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
 | |
|   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
 | |
|   LatchBR->setSuccessor(HeaderIdx, InsertBot);
 | |
|   LatchBR->setSuccessor(1 - HeaderIdx, Exit);
 | |
|   if (DT)
 | |
|     DT->changeImmediateDominator(InsertBot, NewLatch);
 | |
| 
 | |
|   // The new copy of the loop body starts with a bunch of PHI nodes
 | |
|   // that pick an incoming value from either the preheader, or the previous
 | |
|   // loop iteration. Since this copy is no longer part of the loop, we
 | |
|   // resolve this statically:
 | |
|   // For the first iteration, we use the value from the preheader directly.
 | |
|   // For any other iteration, we replace the phi with the value generated by
 | |
|   // the immediately preceding clone of the loop body (which represents
 | |
|   // the previous iteration).
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
 | |
|     if (IterNumber == 0) {
 | |
|       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
 | |
|     } else {
 | |
|       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
 | |
|       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
 | |
|       if (LatchInst && L->contains(LatchInst))
 | |
|         VMap[&*I] = LVMap[LatchInst];
 | |
|       else
 | |
|         VMap[&*I] = LatchVal;
 | |
|     }
 | |
|     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
 | |
|   }
 | |
| 
 | |
|   // Fix up the outgoing values - we need to add a value for the iteration
 | |
|   // we've just created. Note that this must happen *after* the incoming
 | |
|   // values are adjusted, since the value going out of the latch may also be
 | |
|   // a value coming into the header.
 | |
|   for (BasicBlock::iterator I = Exit->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PHI = cast<PHINode>(I);
 | |
|     Value *LatchVal = PHI->getIncomingValueForBlock(Latch);
 | |
|     Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
 | |
|     if (LatchInst && L->contains(LatchInst))
 | |
|       LatchVal = VMap[LatchVal];
 | |
|     PHI->addIncoming(LatchVal, cast<BasicBlock>(VMap[Latch]));
 | |
|   }
 | |
| 
 | |
|   // LastValueMap is updated with the values for the current loop
 | |
|   // which are used the next time this function is called.
 | |
|   for (const auto &KV : VMap)
 | |
|     LVMap[KV.first] = KV.second;
 | |
| }
 | |
| 
 | |
| /// \brief Peel off the first \p PeelCount iterations of loop \p L.
 | |
| ///
 | |
| /// Note that this does not peel them off as a single straight-line block.
 | |
| /// Rather, each iteration is peeled off separately, and needs to check the
 | |
| /// exit condition.
 | |
| /// For loops that dynamically execute \p PeelCount iterations or less
 | |
| /// this provides a benefit, since the peeled off iterations, which account
 | |
| /// for the bulk of dynamic execution, can be further simplified by scalar
 | |
| /// optimizations.
 | |
| bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
 | |
|                     ScalarEvolution *SE, DominatorTree *DT,
 | |
|                     AssumptionCache *AC, bool PreserveLCSSA) {
 | |
|   if (!canPeel(L))
 | |
|     return false;
 | |
| 
 | |
|   LoopBlocksDFS LoopBlocks(L);
 | |
|   LoopBlocks.perform(LI);
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *PreHeader = L->getLoopPreheader();
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   BasicBlock *Exit = L->getUniqueExitBlock();
 | |
| 
 | |
|   Function *F = Header->getParent();
 | |
| 
 | |
|   // Set up all the necessary basic blocks. It is convenient to split the
 | |
|   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
 | |
|   // body, and a new preheader for the "real" loop.
 | |
| 
 | |
|   // Peeling the first iteration transforms.
 | |
|   //
 | |
|   // PreHeader:
 | |
|   // ...
 | |
|   // Header:
 | |
|   //   LoopBody
 | |
|   //   If (cond) goto Header
 | |
|   // Exit:
 | |
|   //
 | |
|   // into
 | |
|   //
 | |
|   // InsertTop:
 | |
|   //   LoopBody
 | |
|   //   If (!cond) goto Exit
 | |
|   // InsertBot:
 | |
|   // NewPreHeader:
 | |
|   // ...
 | |
|   // Header:
 | |
|   //  LoopBody
 | |
|   //  If (cond) goto Header
 | |
|   // Exit:
 | |
|   //
 | |
|   // Each following iteration will split the current bottom anchor in two,
 | |
|   // and put the new copy of the loop body between these two blocks. That is,
 | |
|   // after peeling another iteration from the example above, we'll split 
 | |
|   // InsertBot, and get:
 | |
|   //
 | |
|   // InsertTop:
 | |
|   //   LoopBody
 | |
|   //   If (!cond) goto Exit
 | |
|   // InsertBot:
 | |
|   //   LoopBody
 | |
|   //   If (!cond) goto Exit
 | |
|   // InsertBot.next:
 | |
|   // NewPreHeader:
 | |
|   // ...
 | |
|   // Header:
 | |
|   //  LoopBody
 | |
|   //  If (cond) goto Header
 | |
|   // Exit:
 | |
| 
 | |
|   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
 | |
|   BasicBlock *InsertBot =
 | |
|       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
 | |
|   BasicBlock *NewPreHeader =
 | |
|       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
 | |
| 
 | |
|   InsertTop->setName(Header->getName() + ".peel.begin");
 | |
|   InsertBot->setName(Header->getName() + ".peel.next");
 | |
|   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
 | |
| 
 | |
|   ValueToValueMapTy LVMap;
 | |
| 
 | |
|   // If we have branch weight information, we'll want to update it for the
 | |
|   // newly created branches.
 | |
|   BranchInst *LatchBR =
 | |
|       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
 | |
|   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
 | |
| 
 | |
|   uint64_t TrueWeight, FalseWeight;
 | |
|   uint64_t ExitWeight = 0, CurHeaderWeight = 0;
 | |
|   if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
 | |
|     ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
 | |
|     // The # of times the loop body executes is the sum of the exit block
 | |
|     // weight and the # of times the backedges are taken.
 | |
|     CurHeaderWeight = TrueWeight + FalseWeight;
 | |
|   }
 | |
| 
 | |
|   // For each peeled-off iteration, make a copy of the loop.
 | |
|   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
 | |
|     SmallVector<BasicBlock *, 8> NewBlocks;
 | |
|     ValueToValueMapTy VMap;
 | |
| 
 | |
|     // Subtract the exit weight from the current header weight -- the exit
 | |
|     // weight is exactly the weight of the previous iteration's header.
 | |
|     // FIXME: due to the way the distribution is constructed, we need a
 | |
|     // guard here to make sure we don't end up with non-positive weights.
 | |
|     if (ExitWeight < CurHeaderWeight)
 | |
|       CurHeaderWeight -= ExitWeight;
 | |
|     else
 | |
|       CurHeaderWeight = 1;
 | |
| 
 | |
|     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit,
 | |
|                     NewBlocks, LoopBlocks, VMap, LVMap, DT, LI);
 | |
| 
 | |
|     // Remap to use values from the current iteration instead of the
 | |
|     // previous one.
 | |
|     remapInstructionsInBlocks(NewBlocks, VMap);
 | |
| 
 | |
|     if (DT) {
 | |
|       // Latches of the cloned loops dominate over the loop exit, so idom of the
 | |
|       // latter is the first cloned loop body, as original PreHeader dominates
 | |
|       // the original loop body.
 | |
|       if (Iter == 0)
 | |
|         DT->changeImmediateDominator(Exit, cast<BasicBlock>(LVMap[Latch]));
 | |
| #ifndef NDEBUG
 | |
|       if (VerifyDomInfo)
 | |
|         DT->verifyDomTree();
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     updateBranchWeights(InsertBot, cast<BranchInst>(VMap[LatchBR]), Iter,
 | |
|                         PeelCount, ExitWeight);
 | |
| 
 | |
|     InsertTop = InsertBot;
 | |
|     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
 | |
|     InsertBot->setName(Header->getName() + ".peel.next");
 | |
| 
 | |
|     F->getBasicBlockList().splice(InsertTop->getIterator(),
 | |
|                                   F->getBasicBlockList(),
 | |
|                                   NewBlocks[0]->getIterator(), F->end());
 | |
|   }
 | |
| 
 | |
|   // Now adjust the phi nodes in the loop header to get their initial values
 | |
|   // from the last peeled-off iteration instead of the preheader.
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PHI = cast<PHINode>(I);
 | |
|     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
 | |
|     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
 | |
|     if (LatchInst && L->contains(LatchInst))
 | |
|       NewVal = LVMap[LatchInst];
 | |
| 
 | |
|     PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal);
 | |
|   }
 | |
| 
 | |
|   // Adjust the branch weights on the loop exit.
 | |
|   if (ExitWeight) {
 | |
|     // The backedge count is the difference of current header weight and
 | |
|     // current loop exit weight. If the current header weight is smaller than
 | |
|     // the current loop exit weight, we mark the loop backedge weight as 1.
 | |
|     uint64_t BackEdgeWeight = 0;
 | |
|     if (ExitWeight < CurHeaderWeight)
 | |
|       BackEdgeWeight = CurHeaderWeight - ExitWeight;
 | |
|     else
 | |
|       BackEdgeWeight = 1;
 | |
|     MDBuilder MDB(LatchBR->getContext());
 | |
|     MDNode *WeightNode =
 | |
|         HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
 | |
|                   : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
 | |
|     LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
 | |
|   }
 | |
| 
 | |
|   // If the loop is nested, we changed the parent loop, update SE.
 | |
|   if (Loop *ParentLoop = L->getParentLoop()) {
 | |
|     SE->forgetLoop(ParentLoop);
 | |
| 
 | |
|     // FIXME: Incrementally update loop-simplify
 | |
|     simplifyLoop(ParentLoop, DT, LI, SE, AC, PreserveLCSSA);
 | |
|   } else {
 | |
|     // FIXME: Incrementally update loop-simplify
 | |
|     simplifyLoop(L, DT, LI, SE, AC, PreserveLCSSA);
 | |
|   }
 | |
| 
 | |
|   NumPeeled++;
 | |
| 
 | |
|   return true;
 | |
| }
 |