322 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| #include <list>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| int f(rank<0>) { return 0; }
 | |
| int f(rank<1>) { return 1; }
 | |
| int f(rank<2>) { return 2; }
 | |
| int f(rank<4>) { return 4; }
 | |
| 
 | |
| TEST(STLExtrasTest, Rank) {
 | |
|   // We shouldn't get ambiguities and should select the overload of the same
 | |
|   // rank as the argument.
 | |
|   EXPECT_EQ(0, f(rank<0>()));
 | |
|   EXPECT_EQ(1, f(rank<1>()));
 | |
|   EXPECT_EQ(2, f(rank<2>()));
 | |
| 
 | |
|   // This overload is missing so we end up back at 2.
 | |
|   EXPECT_EQ(2, f(rank<3>()));
 | |
| 
 | |
|   // But going past 3 should work fine.
 | |
|   EXPECT_EQ(4, f(rank<4>()));
 | |
| 
 | |
|   // And we can even go higher and just fall back to the last overload.
 | |
|   EXPECT_EQ(4, f(rank<5>()));
 | |
|   EXPECT_EQ(4, f(rank<6>()));
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, EnumerateLValue) {
 | |
|   // Test that a simple LValue can be enumerated and gives correct results with
 | |
|   // multiple types, including the empty container.
 | |
|   std::vector<char> foo = {'a', 'b', 'c'};
 | |
|   typedef std::pair<std::size_t, char> CharPairType;
 | |
|   std::vector<CharPairType> CharResults;
 | |
| 
 | |
|   for (auto X : llvm::enumerate(foo)) {
 | |
|     CharResults.emplace_back(X.index(), X.value());
 | |
|   }
 | |
|   ASSERT_EQ(3u, CharResults.size());
 | |
|   EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
 | |
|   EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
 | |
|   EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
 | |
| 
 | |
|   // Test a const range of a different type.
 | |
|   typedef std::pair<std::size_t, int> IntPairType;
 | |
|   std::vector<IntPairType> IntResults;
 | |
|   const std::vector<int> bar = {1, 2, 3};
 | |
|   for (auto X : llvm::enumerate(bar)) {
 | |
|     IntResults.emplace_back(X.index(), X.value());
 | |
|   }
 | |
|   ASSERT_EQ(3u, IntResults.size());
 | |
|   EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
 | |
|   EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
 | |
|   EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
 | |
| 
 | |
|   // Test an empty range.
 | |
|   IntResults.clear();
 | |
|   const std::vector<int> baz{};
 | |
|   for (auto X : llvm::enumerate(baz)) {
 | |
|     IntResults.emplace_back(X.index(), X.value());
 | |
|   }
 | |
|   EXPECT_TRUE(IntResults.empty());
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, EnumerateModifyLValue) {
 | |
|   // Test that you can modify the underlying entries of an lvalue range through
 | |
|   // the enumeration iterator.
 | |
|   std::vector<char> foo = {'a', 'b', 'c'};
 | |
| 
 | |
|   for (auto X : llvm::enumerate(foo)) {
 | |
|     ++X.value();
 | |
|   }
 | |
|   EXPECT_EQ('b', foo[0]);
 | |
|   EXPECT_EQ('c', foo[1]);
 | |
|   EXPECT_EQ('d', foo[2]);
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, EnumerateRValueRef) {
 | |
|   // Test that an rvalue can be enumerated.
 | |
|   typedef std::pair<std::size_t, int> PairType;
 | |
|   std::vector<PairType> Results;
 | |
| 
 | |
|   auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
 | |
| 
 | |
|   for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
 | |
|     Results.emplace_back(X.index(), X.value());
 | |
|   }
 | |
| 
 | |
|   ASSERT_EQ(3u, Results.size());
 | |
|   EXPECT_EQ(PairType(0u, 1), Results[0]);
 | |
|   EXPECT_EQ(PairType(1u, 2), Results[1]);
 | |
|   EXPECT_EQ(PairType(2u, 3), Results[2]);
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, EnumerateModifyRValue) {
 | |
|   // Test that when enumerating an rvalue, modification still works (even if
 | |
|   // this isn't terribly useful, it at least shows that we haven't snuck an
 | |
|   // extra const in there somewhere.
 | |
|   typedef std::pair<std::size_t, char> PairType;
 | |
|   std::vector<PairType> Results;
 | |
| 
 | |
|   for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
 | |
|     ++X.value();
 | |
|     Results.emplace_back(X.index(), X.value());
 | |
|   }
 | |
| 
 | |
|   ASSERT_EQ(3u, Results.size());
 | |
|   EXPECT_EQ(PairType(0u, '2'), Results[0]);
 | |
|   EXPECT_EQ(PairType(1u, '3'), Results[1]);
 | |
|   EXPECT_EQ(PairType(2u, '4'), Results[2]);
 | |
| }
 | |
| 
 | |
| template <bool B> struct CanMove {};
 | |
| template <> struct CanMove<false> {
 | |
|   CanMove(CanMove &&) = delete;
 | |
| 
 | |
|   CanMove() = default;
 | |
|   CanMove(const CanMove &) = default;
 | |
| };
 | |
| 
 | |
| template <bool B> struct CanCopy {};
 | |
| template <> struct CanCopy<false> {
 | |
|   CanCopy(const CanCopy &) = delete;
 | |
| 
 | |
|   CanCopy() = default;
 | |
|   CanCopy(CanCopy &&) = default;
 | |
| };
 | |
| 
 | |
| template <bool Moveable, bool Copyable>
 | |
| struct Range : CanMove<Moveable>, CanCopy<Copyable> {
 | |
|   explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
 | |
|   Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
 | |
|   Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
 | |
|     ++M;
 | |
|   }
 | |
|   ~Range() { ++D; }
 | |
| 
 | |
|   int &C;
 | |
|   int &M;
 | |
|   int &D;
 | |
| 
 | |
|   int *begin() { return nullptr; }
 | |
|   int *end() { return nullptr; }
 | |
| };
 | |
| 
 | |
| TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
 | |
|   // Test that when enumerating lvalues and rvalues, there are no surprise
 | |
|   // copies or moves.
 | |
| 
 | |
|   // With an rvalue, it should not be destroyed until the end of the scope.
 | |
|   int Copies = 0;
 | |
|   int Moves = 0;
 | |
|   int Destructors = 0;
 | |
|   {
 | |
|     auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
 | |
|     // Doesn't compile.  rvalue ranges must be moveable.
 | |
|     // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
 | |
|     EXPECT_EQ(0, Copies);
 | |
|     EXPECT_EQ(1, Moves);
 | |
|     EXPECT_EQ(1, Destructors);
 | |
|   }
 | |
|   EXPECT_EQ(0, Copies);
 | |
|   EXPECT_EQ(1, Moves);
 | |
|   EXPECT_EQ(2, Destructors);
 | |
| 
 | |
|   Copies = Moves = Destructors = 0;
 | |
|   // With an lvalue, it should not be destroyed even after the end of the scope.
 | |
|   // lvalue ranges need be neither copyable nor moveable.
 | |
|   Range<false, false> R(Copies, Moves, Destructors);
 | |
|   {
 | |
|     auto Enumerator = enumerate(R);
 | |
|     (void)Enumerator;
 | |
|     EXPECT_EQ(0, Copies);
 | |
|     EXPECT_EQ(0, Moves);
 | |
|     EXPECT_EQ(0, Destructors);
 | |
|   }
 | |
|   EXPECT_EQ(0, Copies);
 | |
|   EXPECT_EQ(0, Moves);
 | |
|   EXPECT_EQ(0, Destructors);
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, ApplyTuple) {
 | |
|   auto T = std::make_tuple(1, 3, 7);
 | |
|   auto U = llvm::apply_tuple(
 | |
|       [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
 | |
|       T);
 | |
| 
 | |
|   EXPECT_EQ(-2, std::get<0>(U));
 | |
|   EXPECT_EQ(-4, std::get<1>(U));
 | |
|   EXPECT_EQ(6, std::get<2>(U));
 | |
| 
 | |
|   auto V = llvm::apply_tuple(
 | |
|       [](int A, int B, int C) {
 | |
|         return std::make_tuple(std::make_pair(A, char('A' + A)),
 | |
|                                std::make_pair(B, char('A' + B)),
 | |
|                                std::make_pair(C, char('A' + C)));
 | |
|       },
 | |
|       T);
 | |
| 
 | |
|   EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
 | |
|   EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
 | |
|   EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
 | |
| }
 | |
| 
 | |
| class apply_variadic {
 | |
|   static int apply_one(int X) { return X + 1; }
 | |
|   static char apply_one(char C) { return C + 1; }
 | |
|   static StringRef apply_one(StringRef S) { return S.drop_back(); }
 | |
| 
 | |
| public:
 | |
|   template <typename... Ts>
 | |
|   auto operator()(Ts &&... Items)
 | |
|       -> decltype(std::make_tuple(apply_one(Items)...)) {
 | |
|     return std::make_tuple(apply_one(Items)...);
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(STLExtrasTest, ApplyTupleVariadic) {
 | |
|   auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
 | |
|   auto Values = apply_tuple(apply_variadic(), Items);
 | |
| 
 | |
|   EXPECT_EQ(2, std::get<0>(Values));
 | |
|   EXPECT_EQ("Tes", std::get<1>(Values));
 | |
|   EXPECT_EQ('Y', std::get<2>(Values));
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, CountAdaptor) {
 | |
|   std::vector<int> v;
 | |
| 
 | |
|   v.push_back(1);
 | |
|   v.push_back(2);
 | |
|   v.push_back(1);
 | |
|   v.push_back(4);
 | |
|   v.push_back(3);
 | |
|   v.push_back(2);
 | |
|   v.push_back(1);
 | |
| 
 | |
|   EXPECT_EQ(3, count(v, 1));
 | |
|   EXPECT_EQ(2, count(v, 2));
 | |
|   EXPECT_EQ(1, count(v, 3));
 | |
|   EXPECT_EQ(1, count(v, 4));
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, ToVector) {
 | |
|   std::vector<char> v = {'a', 'b', 'c'};
 | |
|   auto Enumerated = to_vector<4>(enumerate(v));
 | |
|   ASSERT_EQ(3u, Enumerated.size());
 | |
|   for (size_t I = 0; I < v.size(); ++I) {
 | |
|     EXPECT_EQ(I, Enumerated[I].index());
 | |
|     EXPECT_EQ(v[I], Enumerated[I].value());
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, ConcatRange) {
 | |
|   std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
 | |
|   std::vector<int> Test;
 | |
| 
 | |
|   std::vector<int> V1234 = {1, 2, 3, 4};
 | |
|   std::list<int> L56 = {5, 6};
 | |
|   SmallVector<int, 2> SV78 = {7, 8};
 | |
| 
 | |
|   // Use concat across different sized ranges of different types with different
 | |
|   // iterators.
 | |
|   for (int &i : concat<int>(V1234, L56, SV78))
 | |
|     Test.push_back(i);
 | |
|   EXPECT_EQ(Expected, Test);
 | |
| 
 | |
|   // Use concat between a temporary, an L-value, and an R-value to make sure
 | |
|   // complex lifetimes work well.
 | |
|   Test.clear();
 | |
|   for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
 | |
|     Test.push_back(i);
 | |
|   EXPECT_EQ(Expected, Test);
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, PartitionAdaptor) {
 | |
|   std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
 | |
| 
 | |
|   auto I = partition(V, [](int i) { return i % 2 == 0; });
 | |
|   ASSERT_EQ(V.begin() + 4, I);
 | |
| 
 | |
|   // Sort the two halves as partition may have messed with the order.
 | |
|   std::sort(V.begin(), I);
 | |
|   std::sort(I, V.end());
 | |
| 
 | |
|   EXPECT_EQ(2, V[0]);
 | |
|   EXPECT_EQ(4, V[1]);
 | |
|   EXPECT_EQ(6, V[2]);
 | |
|   EXPECT_EQ(8, V[3]);
 | |
|   EXPECT_EQ(1, V[4]);
 | |
|   EXPECT_EQ(3, V[5]);
 | |
|   EXPECT_EQ(5, V[6]);
 | |
|   EXPECT_EQ(7, V[7]);
 | |
| }
 | |
| 
 | |
| TEST(STLExtrasTest, EraseIf) {
 | |
|   std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
 | |
| 
 | |
|   erase_if(V, [](int i) { return i % 2 == 0; });
 | |
|   EXPECT_EQ(4u, V.size());
 | |
|   EXPECT_EQ(1, V[0]);
 | |
|   EXPECT_EQ(3, V[1]);
 | |
|   EXPECT_EQ(5, V[2]);
 | |
|   EXPECT_EQ(7, V[3]);
 | |
| }
 | |
| 
 | |
| }
 |