1542 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1542 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs various transformations related to eliminating memcpy
 | 
						|
// calls, or transforming sets of stores into memset's.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/MemorySSA.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "memcpyopt"
 | 
						|
 | 
						|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
 | 
						|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
 | 
						|
STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
 | 
						|
STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
 | 
						|
STATISTIC(NumCallSlot,    "Number of call slot optimizations performed");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Represents a range of memset'd bytes with the ByteVal value.
 | 
						|
/// This allows us to analyze stores like:
 | 
						|
///   store 0 -> P+1
 | 
						|
///   store 0 -> P+0
 | 
						|
///   store 0 -> P+3
 | 
						|
///   store 0 -> P+2
 | 
						|
/// which sometimes happens with stores to arrays of structs etc.  When we see
 | 
						|
/// the first store, we make a range [1, 2).  The second store extends the range
 | 
						|
/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
 | 
						|
/// two ranges into [0, 3) which is memset'able.
 | 
						|
struct MemsetRange {
 | 
						|
  // Start/End - A semi range that describes the span that this range covers.
 | 
						|
  // The range is closed at the start and open at the end: [Start, End).
 | 
						|
  int64_t Start, End;
 | 
						|
 | 
						|
  /// StartPtr - The getelementptr instruction that points to the start of the
 | 
						|
  /// range.
 | 
						|
  Value *StartPtr;
 | 
						|
 | 
						|
  /// Alignment - The known alignment of the first store.
 | 
						|
  unsigned Alignment;
 | 
						|
 | 
						|
  /// TheStores - The actual stores that make up this range.
 | 
						|
  SmallVector<Instruction*, 16> TheStores;
 | 
						|
 | 
						|
  bool isProfitableToUseMemset(const DataLayout &DL) const;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
 | 
						|
  // If we found more than 4 stores to merge or 16 bytes, use memset.
 | 
						|
  if (TheStores.size() >= 4 || End-Start >= 16) return true;
 | 
						|
 | 
						|
  // If there is nothing to merge, don't do anything.
 | 
						|
  if (TheStores.size() < 2) return false;
 | 
						|
 | 
						|
  // If any of the stores are a memset, then it is always good to extend the
 | 
						|
  // memset.
 | 
						|
  for (Instruction *SI : TheStores)
 | 
						|
    if (!isa<StoreInst>(SI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Assume that the code generator is capable of merging pairs of stores
 | 
						|
  // together if it wants to.
 | 
						|
  if (TheStores.size() == 2) return false;
 | 
						|
 | 
						|
  // If we have fewer than 8 stores, it can still be worthwhile to do this.
 | 
						|
  // For example, merging 4 i8 stores into an i32 store is useful almost always.
 | 
						|
  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
 | 
						|
  // memset will be split into 2 32-bit stores anyway) and doing so can
 | 
						|
  // pessimize the llvm optimizer.
 | 
						|
  //
 | 
						|
  // Since we don't have perfect knowledge here, make some assumptions: assume
 | 
						|
  // the maximum GPR width is the same size as the largest legal integer
 | 
						|
  // size. If so, check to see whether we will end up actually reducing the
 | 
						|
  // number of stores used.
 | 
						|
  unsigned Bytes = unsigned(End-Start);
 | 
						|
  unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
 | 
						|
  if (MaxIntSize == 0)
 | 
						|
    MaxIntSize = 1;
 | 
						|
  unsigned NumPointerStores = Bytes / MaxIntSize;
 | 
						|
 | 
						|
  // Assume the remaining bytes if any are done a byte at a time.
 | 
						|
  unsigned NumByteStores = Bytes % MaxIntSize;
 | 
						|
 | 
						|
  // If we will reduce the # stores (according to this heuristic), do the
 | 
						|
  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
 | 
						|
  // etc.
 | 
						|
  return TheStores.size() > NumPointerStores+NumByteStores;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class MemsetRanges {
 | 
						|
  using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
 | 
						|
 | 
						|
  /// A sorted list of the memset ranges.
 | 
						|
  SmallVector<MemsetRange, 8> Ranges;
 | 
						|
 | 
						|
  const DataLayout &DL;
 | 
						|
 | 
						|
public:
 | 
						|
  MemsetRanges(const DataLayout &DL) : DL(DL) {}
 | 
						|
 | 
						|
  using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
 | 
						|
 | 
						|
  const_iterator begin() const { return Ranges.begin(); }
 | 
						|
  const_iterator end() const { return Ranges.end(); }
 | 
						|
  bool empty() const { return Ranges.empty(); }
 | 
						|
 | 
						|
  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
      addStore(OffsetFromFirst, SI);
 | 
						|
    else
 | 
						|
      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
 | 
						|
  }
 | 
						|
 | 
						|
  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
 | 
						|
    int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
 | 
						|
 | 
						|
    addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
 | 
						|
             SI->getAlign().value(), SI);
 | 
						|
  }
 | 
						|
 | 
						|
  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
 | 
						|
    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | 
						|
    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
 | 
						|
  }
 | 
						|
 | 
						|
  void addRange(int64_t Start, int64_t Size, Value *Ptr,
 | 
						|
                unsigned Alignment, Instruction *Inst);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Add a new store to the MemsetRanges data structure.  This adds a
 | 
						|
/// new range for the specified store at the specified offset, merging into
 | 
						|
/// existing ranges as appropriate.
 | 
						|
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
 | 
						|
                            unsigned Alignment, Instruction *Inst) {
 | 
						|
  int64_t End = Start+Size;
 | 
						|
 | 
						|
  range_iterator I = partition_point(
 | 
						|
      Ranges, [=](const MemsetRange &O) { return O.End < Start; });
 | 
						|
 | 
						|
  // We now know that I == E, in which case we didn't find anything to merge
 | 
						|
  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
 | 
						|
  // to insert a new range.  Handle this now.
 | 
						|
  if (I == Ranges.end() || End < I->Start) {
 | 
						|
    MemsetRange &R = *Ranges.insert(I, MemsetRange());
 | 
						|
    R.Start        = Start;
 | 
						|
    R.End          = End;
 | 
						|
    R.StartPtr     = Ptr;
 | 
						|
    R.Alignment    = Alignment;
 | 
						|
    R.TheStores.push_back(Inst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // This store overlaps with I, add it.
 | 
						|
  I->TheStores.push_back(Inst);
 | 
						|
 | 
						|
  // At this point, we may have an interval that completely contains our store.
 | 
						|
  // If so, just add it to the interval and return.
 | 
						|
  if (I->Start <= Start && I->End >= End)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
 | 
						|
  // but is not entirely contained within the range.
 | 
						|
 | 
						|
  // See if the range extends the start of the range.  In this case, it couldn't
 | 
						|
  // possibly cause it to join the prior range, because otherwise we would have
 | 
						|
  // stopped on *it*.
 | 
						|
  if (Start < I->Start) {
 | 
						|
    I->Start = Start;
 | 
						|
    I->StartPtr = Ptr;
 | 
						|
    I->Alignment = Alignment;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
 | 
						|
  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
 | 
						|
  // End.
 | 
						|
  if (End > I->End) {
 | 
						|
    I->End = End;
 | 
						|
    range_iterator NextI = I;
 | 
						|
    while (++NextI != Ranges.end() && End >= NextI->Start) {
 | 
						|
      // Merge the range in.
 | 
						|
      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
 | 
						|
      if (NextI->End > I->End)
 | 
						|
        I->End = NextI->End;
 | 
						|
      Ranges.erase(NextI);
 | 
						|
      NextI = I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         MemCpyOptLegacyPass Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class MemCpyOptLegacyPass : public FunctionPass {
 | 
						|
  MemCpyOptPass Impl;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  MemCpyOptLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
private:
 | 
						|
  // This transformation requires dominator postdominator info
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<MemoryDependenceWrapperPass>();
 | 
						|
    AU.addPreserved<MemoryDependenceWrapperPass>();
 | 
						|
    AU.addRequired<AAResultsWrapperPass>();
 | 
						|
    AU.addPreserved<AAResultsWrapperPass>();
 | 
						|
    AU.addPreserved<MemorySSAWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char MemCpyOptLegacyPass::ID = 0;
 | 
						|
 | 
						|
/// The public interface to this file...
 | 
						|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
void MemCpyOptPass::eraseInstruction(Instruction *I) {
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->removeMemoryAccess(I);
 | 
						|
  MD->removeInstruction(I);
 | 
						|
  I->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// When scanning forward over instructions, we look for some other patterns to
 | 
						|
/// fold away. In particular, this looks for stores to neighboring locations of
 | 
						|
/// memory. If it sees enough consecutive ones, it attempts to merge them
 | 
						|
/// together into a memcpy/memset.
 | 
						|
Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
 | 
						|
                                                 Value *StartPtr,
 | 
						|
                                                 Value *ByteVal) {
 | 
						|
  const DataLayout &DL = StartInst->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Okay, so we now have a single store that can be splatable.  Scan to find
 | 
						|
  // all subsequent stores of the same value to offset from the same pointer.
 | 
						|
  // Join these together into ranges, so we can decide whether contiguous blocks
 | 
						|
  // are stored.
 | 
						|
  MemsetRanges Ranges(DL);
 | 
						|
 | 
						|
  BasicBlock::iterator BI(StartInst);
 | 
						|
 | 
						|
  // Keeps track of the last memory use or def before the insertion point for
 | 
						|
  // the new memset. The new MemoryDef for the inserted memsets will be inserted
 | 
						|
  // after MemInsertPoint. It points to either LastMemDef or to the last user
 | 
						|
  // before the insertion point of the memset, if there are any such users.
 | 
						|
  MemoryUseOrDef *MemInsertPoint = nullptr;
 | 
						|
  // Keeps track of the last MemoryDef between StartInst and the insertion point
 | 
						|
  // for the new memset. This will become the defining access of the inserted
 | 
						|
  // memsets.
 | 
						|
  MemoryDef *LastMemDef = nullptr;
 | 
						|
  for (++BI; !BI->isTerminator(); ++BI) {
 | 
						|
    if (MSSAU) {
 | 
						|
      auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
 | 
						|
          MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
 | 
						|
      if (CurrentAcc) {
 | 
						|
        MemInsertPoint = CurrentAcc;
 | 
						|
        if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
 | 
						|
          LastMemDef = CurrentDef;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
 | 
						|
      // If the instruction is readnone, ignore it, otherwise bail out.  We
 | 
						|
      // don't even allow readonly here because we don't want something like:
 | 
						|
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
 | 
						|
      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
 | 
						|
      // If this is a store, see if we can merge it in.
 | 
						|
      if (!NextStore->isSimple()) break;
 | 
						|
 | 
						|
      Value *StoredVal = NextStore->getValueOperand();
 | 
						|
 | 
						|
      // Don't convert stores of non-integral pointer types to memsets (which
 | 
						|
      // stores integers).
 | 
						|
      if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Check to see if this stored value is of the same byte-splattable value.
 | 
						|
      Value *StoredByte = isBytewiseValue(StoredVal, DL);
 | 
						|
      if (isa<UndefValue>(ByteVal) && StoredByte)
 | 
						|
        ByteVal = StoredByte;
 | 
						|
      if (ByteVal != StoredByte)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Check to see if this store is to a constant offset from the start ptr.
 | 
						|
      Optional<int64_t> Offset =
 | 
						|
          isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
 | 
						|
      if (!Offset)
 | 
						|
        break;
 | 
						|
 | 
						|
      Ranges.addStore(*Offset, NextStore);
 | 
						|
    } else {
 | 
						|
      MemSetInst *MSI = cast<MemSetInst>(BI);
 | 
						|
 | 
						|
      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
 | 
						|
          !isa<ConstantInt>(MSI->getLength()))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Check to see if this store is to a constant offset from the start ptr.
 | 
						|
      Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
 | 
						|
      if (!Offset)
 | 
						|
        break;
 | 
						|
 | 
						|
      Ranges.addMemSet(*Offset, MSI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have no ranges, then we just had a single store with nothing that
 | 
						|
  // could be merged in.  This is a very common case of course.
 | 
						|
  if (Ranges.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we had at least one store that could be merged in, add the starting
 | 
						|
  // store as well.  We try to avoid this unless there is at least something
 | 
						|
  // interesting as a small compile-time optimization.
 | 
						|
  Ranges.addInst(0, StartInst);
 | 
						|
 | 
						|
  // If we create any memsets, we put it right before the first instruction that
 | 
						|
  // isn't part of the memset block.  This ensure that the memset is dominated
 | 
						|
  // by any addressing instruction needed by the start of the block.
 | 
						|
  IRBuilder<> Builder(&*BI);
 | 
						|
 | 
						|
  // Now that we have full information about ranges, loop over the ranges and
 | 
						|
  // emit memset's for anything big enough to be worthwhile.
 | 
						|
  Instruction *AMemSet = nullptr;
 | 
						|
  for (const MemsetRange &Range : Ranges) {
 | 
						|
    if (Range.TheStores.size() == 1) continue;
 | 
						|
 | 
						|
    // If it is profitable to lower this range to memset, do so now.
 | 
						|
    if (!Range.isProfitableToUseMemset(DL))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, we do want to transform this!  Create a new memset.
 | 
						|
    // Get the starting pointer of the block.
 | 
						|
    StartPtr = Range.StartPtr;
 | 
						|
 | 
						|
    AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
 | 
						|
                                   MaybeAlign(Range.Alignment));
 | 
						|
    LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
 | 
						|
                                                   : Range.TheStores) dbgs()
 | 
						|
                                              << *SI << '\n';
 | 
						|
               dbgs() << "With: " << *AMemSet << '\n');
 | 
						|
    if (!Range.TheStores.empty())
 | 
						|
      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
 | 
						|
 | 
						|
    if (MSSAU) {
 | 
						|
      assert(LastMemDef && MemInsertPoint &&
 | 
						|
             "Both LastMemDef and MemInsertPoint need to be set");
 | 
						|
      auto *NewDef =
 | 
						|
          cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
 | 
						|
                              ? MSSAU->createMemoryAccessBefore(
 | 
						|
                                    AMemSet, LastMemDef, MemInsertPoint)
 | 
						|
                              : MSSAU->createMemoryAccessAfter(
 | 
						|
                                    AMemSet, LastMemDef, MemInsertPoint));
 | 
						|
      MSSAU->insertDef(NewDef, /*RenameUses=*/true);
 | 
						|
      LastMemDef = NewDef;
 | 
						|
      MemInsertPoint = NewDef;
 | 
						|
    }
 | 
						|
 | 
						|
    // Zap all the stores.
 | 
						|
    for (Instruction *SI : Range.TheStores)
 | 
						|
      eraseInstruction(SI);
 | 
						|
 | 
						|
    ++NumMemSetInfer;
 | 
						|
  }
 | 
						|
 | 
						|
  return AMemSet;
 | 
						|
}
 | 
						|
 | 
						|
// This method try to lift a store instruction before position P.
 | 
						|
// It will lift the store and its argument + that anything that
 | 
						|
// may alias with these.
 | 
						|
// The method returns true if it was successful.
 | 
						|
bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
 | 
						|
  // If the store alias this position, early bail out.
 | 
						|
  MemoryLocation StoreLoc = MemoryLocation::get(SI);
 | 
						|
  if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Keep track of the arguments of all instruction we plan to lift
 | 
						|
  // so we can make sure to lift them as well if appropriate.
 | 
						|
  DenseSet<Instruction*> Args;
 | 
						|
  if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
 | 
						|
    if (Ptr->getParent() == SI->getParent())
 | 
						|
      Args.insert(Ptr);
 | 
						|
 | 
						|
  // Instruction to lift before P.
 | 
						|
  SmallVector<Instruction *, 8> ToLift{SI};
 | 
						|
 | 
						|
  // Memory locations of lifted instructions.
 | 
						|
  SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
 | 
						|
 | 
						|
  // Lifted calls.
 | 
						|
  SmallVector<const CallBase *, 8> Calls;
 | 
						|
 | 
						|
  const MemoryLocation LoadLoc = MemoryLocation::get(LI);
 | 
						|
 | 
						|
  for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
 | 
						|
    auto *C = &*I;
 | 
						|
 | 
						|
    // Make sure hoisting does not perform a store that was not guaranteed to
 | 
						|
    // happen.
 | 
						|
    if (!isGuaranteedToTransferExecutionToSuccessor(C))
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
 | 
						|
 | 
						|
    bool NeedLift = false;
 | 
						|
    if (Args.erase(C))
 | 
						|
      NeedLift = true;
 | 
						|
    else if (MayAlias) {
 | 
						|
      NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
 | 
						|
        return isModOrRefSet(AA->getModRefInfo(C, ML));
 | 
						|
      });
 | 
						|
 | 
						|
      if (!NeedLift)
 | 
						|
        NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
 | 
						|
          return isModOrRefSet(AA->getModRefInfo(C, Call));
 | 
						|
        });
 | 
						|
    }
 | 
						|
 | 
						|
    if (!NeedLift)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MayAlias) {
 | 
						|
      // Since LI is implicitly moved downwards past the lifted instructions,
 | 
						|
      // none of them may modify its source.
 | 
						|
      if (isModSet(AA->getModRefInfo(C, LoadLoc)))
 | 
						|
        return false;
 | 
						|
      else if (const auto *Call = dyn_cast<CallBase>(C)) {
 | 
						|
        // If we can't lift this before P, it's game over.
 | 
						|
        if (isModOrRefSet(AA->getModRefInfo(P, Call)))
 | 
						|
          return false;
 | 
						|
 | 
						|
        Calls.push_back(Call);
 | 
						|
      } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
 | 
						|
        // If we can't lift this before P, it's game over.
 | 
						|
        auto ML = MemoryLocation::get(C);
 | 
						|
        if (isModOrRefSet(AA->getModRefInfo(P, ML)))
 | 
						|
          return false;
 | 
						|
 | 
						|
        MemLocs.push_back(ML);
 | 
						|
      } else
 | 
						|
        // We don't know how to lift this instruction.
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ToLift.push_back(C);
 | 
						|
    for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
 | 
						|
      if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
 | 
						|
        if (A->getParent() == SI->getParent()) {
 | 
						|
          // Cannot hoist user of P above P
 | 
						|
          if(A == P) return false;
 | 
						|
          Args.insert(A);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find MSSA insertion point. Normally P will always have a corresponding
 | 
						|
  // memory access before which we can insert. However, with non-standard AA
 | 
						|
  // pipelines, there may be a mismatch between AA and MSSA, in which case we
 | 
						|
  // will scan for a memory access before P. In either case, we know for sure
 | 
						|
  // that at least the load will have a memory access.
 | 
						|
  // TODO: Simplify this once P will be determined by MSSA, in which case the
 | 
						|
  // discrepancy can no longer occur.
 | 
						|
  MemoryUseOrDef *MemInsertPoint = nullptr;
 | 
						|
  if (MSSAU) {
 | 
						|
    if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
 | 
						|
      MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
 | 
						|
    } else {
 | 
						|
      const Instruction *ConstP = P;
 | 
						|
      for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
 | 
						|
                                             ++LI->getReverseIterator())) {
 | 
						|
        if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
 | 
						|
          MemInsertPoint = MA;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We made it, we need to lift.
 | 
						|
  for (auto *I : llvm::reverse(ToLift)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
 | 
						|
    I->moveBefore(P);
 | 
						|
    if (MSSAU) {
 | 
						|
      assert(MemInsertPoint && "Must have found insert point");
 | 
						|
      if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
 | 
						|
        MSSAU->moveAfter(MA, MemInsertPoint);
 | 
						|
        MemInsertPoint = MA;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
 | 
						|
  if (!SI->isSimple()) return false;
 | 
						|
 | 
						|
  // Avoid merging nontemporal stores since the resulting
 | 
						|
  // memcpy/memset would not be able to preserve the nontemporal hint.
 | 
						|
  // In theory we could teach how to propagate the !nontemporal metadata to
 | 
						|
  // memset calls. However, that change would force the backend to
 | 
						|
  // conservatively expand !nontemporal memset calls back to sequences of
 | 
						|
  // store instructions (effectively undoing the merging).
 | 
						|
  if (SI->getMetadata(LLVMContext::MD_nontemporal))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = SI->getModule()->getDataLayout();
 | 
						|
 | 
						|
  Value *StoredVal = SI->getValueOperand();
 | 
						|
 | 
						|
  // Not all the transforms below are correct for non-integral pointers, bail
 | 
						|
  // until we've audited the individual pieces.
 | 
						|
  if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Load to store forwarding can be interpreted as memcpy.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
 | 
						|
    if (LI->isSimple() && LI->hasOneUse() &&
 | 
						|
        LI->getParent() == SI->getParent()) {
 | 
						|
 | 
						|
      auto *T = LI->getType();
 | 
						|
      if (T->isAggregateType()) {
 | 
						|
        MemoryLocation LoadLoc = MemoryLocation::get(LI);
 | 
						|
 | 
						|
        // We use alias analysis to check if an instruction may store to
 | 
						|
        // the memory we load from in between the load and the store. If
 | 
						|
        // such an instruction is found, we try to promote there instead
 | 
						|
        // of at the store position.
 | 
						|
        Instruction *P = SI;
 | 
						|
        for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
 | 
						|
          if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
 | 
						|
            P = &I;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // We found an instruction that may write to the loaded memory.
 | 
						|
        // We can try to promote at this position instead of the store
 | 
						|
        // position if nothing alias the store memory after this and the store
 | 
						|
        // destination is not in the range.
 | 
						|
        if (P && P != SI) {
 | 
						|
          if (!moveUp(SI, P, LI))
 | 
						|
            P = nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        // If a valid insertion position is found, then we can promote
 | 
						|
        // the load/store pair to a memcpy.
 | 
						|
        if (P) {
 | 
						|
          // If we load from memory that may alias the memory we store to,
 | 
						|
          // memmove must be used to preserve semantic. If not, memcpy can
 | 
						|
          // be used.
 | 
						|
          bool UseMemMove = false;
 | 
						|
          if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
 | 
						|
            UseMemMove = true;
 | 
						|
 | 
						|
          uint64_t Size = DL.getTypeStoreSize(T);
 | 
						|
 | 
						|
          IRBuilder<> Builder(P);
 | 
						|
          Instruction *M;
 | 
						|
          if (UseMemMove)
 | 
						|
            M = Builder.CreateMemMove(
 | 
						|
                SI->getPointerOperand(), SI->getAlign(),
 | 
						|
                LI->getPointerOperand(), LI->getAlign(), Size);
 | 
						|
          else
 | 
						|
            M = Builder.CreateMemCpy(
 | 
						|
                SI->getPointerOperand(), SI->getAlign(),
 | 
						|
                LI->getPointerOperand(), LI->getAlign(), Size);
 | 
						|
 | 
						|
          LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
 | 
						|
                            << *M << "\n");
 | 
						|
 | 
						|
          if (MSSAU) {
 | 
						|
            auto *LastDef =
 | 
						|
                cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
 | 
						|
            auto *NewAccess =
 | 
						|
                MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
 | 
						|
            MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
 | 
						|
          }
 | 
						|
 | 
						|
          eraseInstruction(SI);
 | 
						|
          eraseInstruction(LI);
 | 
						|
          ++NumMemCpyInstr;
 | 
						|
 | 
						|
          // Make sure we do not invalidate the iterator.
 | 
						|
          BBI = M->getIterator();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Detect cases where we're performing call slot forwarding, but
 | 
						|
      // happen to be using a load-store pair to implement it, rather than
 | 
						|
      // a memcpy.
 | 
						|
      MemDepResult ldep = MD->getDependency(LI);
 | 
						|
      CallInst *C = nullptr;
 | 
						|
      if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
 | 
						|
        C = dyn_cast<CallInst>(ldep.getInst());
 | 
						|
 | 
						|
      if (C) {
 | 
						|
        // Check that nothing touches the dest of the "copy" between
 | 
						|
        // the call and the store.
 | 
						|
        MemoryLocation StoreLoc = MemoryLocation::get(SI);
 | 
						|
        for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
 | 
						|
             I != E; --I) {
 | 
						|
          if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
 | 
						|
            C = nullptr;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (C) {
 | 
						|
        bool changed = performCallSlotOptzn(
 | 
						|
            LI, SI, SI->getPointerOperand()->stripPointerCasts(),
 | 
						|
            LI->getPointerOperand()->stripPointerCasts(),
 | 
						|
            DL.getTypeStoreSize(SI->getOperand(0)->getType()),
 | 
						|
            commonAlignment(SI->getAlign(), LI->getAlign()), C);
 | 
						|
        if (changed) {
 | 
						|
          eraseInstruction(SI);
 | 
						|
          eraseInstruction(LI);
 | 
						|
          ++NumMemCpyInstr;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // There are two cases that are interesting for this code to handle: memcpy
 | 
						|
  // and memset.  Right now we only handle memset.
 | 
						|
 | 
						|
  // Ensure that the value being stored is something that can be memset'able a
 | 
						|
  // byte at a time like "0" or "-1" or any width, as well as things like
 | 
						|
  // 0xA0A0A0A0 and 0.0.
 | 
						|
  auto *V = SI->getOperand(0);
 | 
						|
  if (Value *ByteVal = isBytewiseValue(V, DL)) {
 | 
						|
    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
 | 
						|
                                              ByteVal)) {
 | 
						|
      BBI = I->getIterator(); // Don't invalidate iterator.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an aggregate, we try to promote it to memset regardless
 | 
						|
    // of opportunity for merging as it can expose optimization opportunities
 | 
						|
    // in subsequent passes.
 | 
						|
    auto *T = V->getType();
 | 
						|
    if (T->isAggregateType()) {
 | 
						|
      uint64_t Size = DL.getTypeStoreSize(T);
 | 
						|
      IRBuilder<> Builder(SI);
 | 
						|
      auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
 | 
						|
                                     SI->getAlign());
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
 | 
						|
 | 
						|
      if (MSSAU) {
 | 
						|
        assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
 | 
						|
        auto *LastDef =
 | 
						|
            cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
 | 
						|
        auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
 | 
						|
        MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
 | 
						|
      }
 | 
						|
 | 
						|
      eraseInstruction(SI);
 | 
						|
      NumMemSetInfer++;
 | 
						|
 | 
						|
      // Make sure we do not invalidate the iterator.
 | 
						|
      BBI = M->getIterator();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
 | 
						|
  // See if there is another memset or store neighboring this memset which
 | 
						|
  // allows us to widen out the memset to do a single larger store.
 | 
						|
  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
 | 
						|
    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
 | 
						|
                                              MSI->getValue())) {
 | 
						|
      BBI = I->getIterator(); // Don't invalidate iterator.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Takes a memcpy and a call that it depends on,
 | 
						|
/// and checks for the possibility of a call slot optimization by having
 | 
						|
/// the call write its result directly into the destination of the memcpy.
 | 
						|
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
 | 
						|
                                         Instruction *cpyStore, Value *cpyDest,
 | 
						|
                                         Value *cpySrc, uint64_t cpyLen,
 | 
						|
                                         Align cpyAlign, CallInst *C) {
 | 
						|
  // The general transformation to keep in mind is
 | 
						|
  //
 | 
						|
  //   call @func(..., src, ...)
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //
 | 
						|
  // ->
 | 
						|
  //
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //   call @func(..., dest, ...)
 | 
						|
  //
 | 
						|
  // Since moving the memcpy is technically awkward, we additionally check that
 | 
						|
  // src only holds uninitialized values at the moment of the call, meaning that
 | 
						|
  // the memcpy can be discarded rather than moved.
 | 
						|
 | 
						|
  // Lifetime marks shouldn't be operated on.
 | 
						|
  if (Function *F = C->getCalledFunction())
 | 
						|
    if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Require that src be an alloca.  This simplifies the reasoning considerably.
 | 
						|
  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
 | 
						|
  if (!srcAlloca)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
 | 
						|
  if (!srcArraySize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
 | 
						|
  uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
 | 
						|
                     srcArraySize->getZExtValue();
 | 
						|
 | 
						|
  if (cpyLen < srcSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that accessing the first srcSize bytes of dest will not cause a
 | 
						|
  // trap.  Otherwise the transform is invalid since it might cause a trap
 | 
						|
  // to occur earlier than it otherwise would.
 | 
						|
  if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen),
 | 
						|
                                          DL, C, DT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that nothing can observe cpyDest being written early. There are
 | 
						|
  // a number of cases to consider:
 | 
						|
  //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
 | 
						|
  //     the transform.
 | 
						|
  //  2. C itself may not access cpyDest (prior to the transform). This is
 | 
						|
  //     checked further below.
 | 
						|
  //  3. If cpyDest is accessible to the caller of this function (potentially
 | 
						|
  //     captured and not based on an alloca), we need to ensure that we cannot
 | 
						|
  //     unwind between C and cpyStore. This is checked here.
 | 
						|
  //  4. If cpyDest is potentially captured, there may be accesses to it from
 | 
						|
  //     another thread. In this case, we need to check that cpyStore is
 | 
						|
  //     guaranteed to be executed if C is. As it is a non-atomic access, it
 | 
						|
  //     renders accesses from other threads undefined.
 | 
						|
  //     TODO: This is currently not checked.
 | 
						|
  // TODO: Check underlying object, so we can look through GEPs.
 | 
						|
  if (!isa<AllocaInst>(cpyDest)) {
 | 
						|
    assert(C->getParent() == cpyStore->getParent() &&
 | 
						|
           "call and copy must be in the same block");
 | 
						|
    for (const Instruction &I : make_range(C->getIterator(),
 | 
						|
                                           cpyStore->getIterator())) {
 | 
						|
      if (I.mayThrow())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that dest points to memory that is at least as aligned as src.
 | 
						|
  Align srcAlign = srcAlloca->getAlign();
 | 
						|
  bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
 | 
						|
  // If dest is not aligned enough and we can't increase its alignment then
 | 
						|
  // bail out.
 | 
						|
  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that src is not accessed except via the call and the memcpy.  This
 | 
						|
  // guarantees that it holds only undefined values when passed in (so the final
 | 
						|
  // memcpy can be dropped), that it is not read or written between the call and
 | 
						|
  // the memcpy, and that writing beyond the end of it is undefined.
 | 
						|
  SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
 | 
						|
                                   srcAlloca->user_end());
 | 
						|
  while (!srcUseList.empty()) {
 | 
						|
    User *U = srcUseList.pop_back_val();
 | 
						|
 | 
						|
    if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
 | 
						|
      for (User *UU : U->users())
 | 
						|
        srcUseList.push_back(UU);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
 | 
						|
      if (!G->hasAllZeroIndices())
 | 
						|
        return false;
 | 
						|
 | 
						|
      for (User *UU : U->users())
 | 
						|
        srcUseList.push_back(UU);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
 | 
						|
      if (IT->isLifetimeStartOrEnd())
 | 
						|
        continue;
 | 
						|
 | 
						|
    if (U != C && U != cpyLoad)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that src isn't captured by the called function since the
 | 
						|
  // transformation can cause aliasing issues in that case.
 | 
						|
  for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
 | 
						|
    if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Since we're changing the parameter to the callsite, we need to make sure
 | 
						|
  // that what would be the new parameter dominates the callsite.
 | 
						|
  // TODO: Support moving instructions like GEPs upwards.
 | 
						|
  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
 | 
						|
    if (!DT->dominates(cpyDestInst, C))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // In addition to knowing that the call does not access src in some
 | 
						|
  // unexpected manner, for example via a global, which we deduce from
 | 
						|
  // the use analysis, we also need to know that it does not sneakily
 | 
						|
  // access dest.  We rely on AA to figure this out for us.
 | 
						|
  ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
 | 
						|
  // If necessary, perform additional analysis.
 | 
						|
  if (isModOrRefSet(MR))
 | 
						|
    MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
 | 
						|
  if (isModOrRefSet(MR))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can't create address space casts here because we don't know if they're
 | 
						|
  // safe for the target.
 | 
						|
  if (cpySrc->getType()->getPointerAddressSpace() !=
 | 
						|
      cpyDest->getType()->getPointerAddressSpace())
 | 
						|
    return false;
 | 
						|
  for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
 | 
						|
    if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
 | 
						|
        cpySrc->getType()->getPointerAddressSpace() !=
 | 
						|
            C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
 | 
						|
      return false;
 | 
						|
 | 
						|
  // All the checks have passed, so do the transformation.
 | 
						|
  bool changedArgument = false;
 | 
						|
  for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
 | 
						|
    if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
 | 
						|
      Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
 | 
						|
        : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
 | 
						|
                                      cpyDest->getName(), C);
 | 
						|
      changedArgument = true;
 | 
						|
      if (C->getArgOperand(ArgI)->getType() == Dest->getType())
 | 
						|
        C->setArgOperand(ArgI, Dest);
 | 
						|
      else
 | 
						|
        C->setArgOperand(ArgI, CastInst::CreatePointerCast(
 | 
						|
                                   Dest, C->getArgOperand(ArgI)->getType(),
 | 
						|
                                   Dest->getName(), C));
 | 
						|
    }
 | 
						|
 | 
						|
  if (!changedArgument)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the destination wasn't sufficiently aligned then increase its alignment.
 | 
						|
  if (!isDestSufficientlyAligned) {
 | 
						|
    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
 | 
						|
    cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // Drop any cached information about the call, because we may have changed
 | 
						|
  // its dependence information by changing its parameter.
 | 
						|
  MD->removeInstruction(C);
 | 
						|
 | 
						|
  // Update AA metadata
 | 
						|
  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
 | 
						|
  // handled here, but combineMetadata doesn't support them yet
 | 
						|
  unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
 | 
						|
                         LLVMContext::MD_noalias,
 | 
						|
                         LLVMContext::MD_invariant_group,
 | 
						|
                         LLVMContext::MD_access_group};
 | 
						|
  combineMetadata(C, cpyLoad, KnownIDs, true);
 | 
						|
 | 
						|
  ++NumCallSlot;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
 | 
						|
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
 | 
						|
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
 | 
						|
                                                  MemCpyInst *MDep) {
 | 
						|
  // We can only transforms memcpy's where the dest of one is the source of the
 | 
						|
  // other.
 | 
						|
  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If dep instruction is reading from our current input, then it is a noop
 | 
						|
  // transfer and substituting the input won't change this instruction.  Just
 | 
						|
  // ignore the input and let someone else zap MDep.  This handles cases like:
 | 
						|
  //    memcpy(a <- a)
 | 
						|
  //    memcpy(b <- a)
 | 
						|
  if (M->getSource() == MDep->getSource())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Second, the length of the memcpy's must be the same, or the preceding one
 | 
						|
  // must be larger than the following one.
 | 
						|
  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
 | 
						|
  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that the copied-from memory doesn't change in between the two
 | 
						|
  // transfers.  For example, in:
 | 
						|
  //    memcpy(a <- b)
 | 
						|
  //    *b = 42;
 | 
						|
  //    memcpy(c <- a)
 | 
						|
  // It would be invalid to transform the second memcpy into memcpy(c <- b).
 | 
						|
  //
 | 
						|
  // TODO: If the code between M and MDep is transparent to the destination "c",
 | 
						|
  // then we could still perform the xform by moving M up to the first memcpy.
 | 
						|
  //
 | 
						|
  // NOTE: This is conservative, it will stop on any read from the source loc,
 | 
						|
  // not just the defining memcpy.
 | 
						|
  MemDepResult SourceDep =
 | 
						|
      MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
 | 
						|
                                   M->getIterator(), M->getParent());
 | 
						|
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the dest of the second might alias the source of the first, then the
 | 
						|
  // source and dest might overlap.  We still want to eliminate the intermediate
 | 
						|
  // value, but we have to generate a memmove instead of memcpy.
 | 
						|
  bool UseMemMove = false;
 | 
						|
  if (!AA->isNoAlias(MemoryLocation::getForDest(M),
 | 
						|
                     MemoryLocation::getForSource(MDep)))
 | 
						|
    UseMemMove = true;
 | 
						|
 | 
						|
  // If all checks passed, then we can transform M.
 | 
						|
  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
 | 
						|
                    << *MDep << '\n' << *M << '\n');
 | 
						|
 | 
						|
  // TODO: Is this worth it if we're creating a less aligned memcpy? For
 | 
						|
  // example we could be moving from movaps -> movq on x86.
 | 
						|
  IRBuilder<> Builder(M);
 | 
						|
  Instruction *NewM;
 | 
						|
  if (UseMemMove)
 | 
						|
    NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
 | 
						|
                                 MDep->getRawSource(), MDep->getSourceAlign(),
 | 
						|
                                 M->getLength(), M->isVolatile());
 | 
						|
  else
 | 
						|
    NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
 | 
						|
                                MDep->getRawSource(), MDep->getSourceAlign(),
 | 
						|
                                M->getLength(), M->isVolatile());
 | 
						|
 | 
						|
  if (MSSAU) {
 | 
						|
    assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
 | 
						|
    auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
 | 
						|
    auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
 | 
						|
    MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove the instruction we're replacing.
 | 
						|
  eraseInstruction(M);
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// We've found that the (upward scanning) memory dependence of \p MemCpy is
 | 
						|
/// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
 | 
						|
/// weren't copied over by \p MemCpy.
 | 
						|
///
 | 
						|
/// In other words, transform:
 | 
						|
/// \code
 | 
						|
///   memset(dst, c, dst_size);
 | 
						|
///   memcpy(dst, src, src_size);
 | 
						|
/// \endcode
 | 
						|
/// into:
 | 
						|
/// \code
 | 
						|
///   memcpy(dst, src, src_size);
 | 
						|
///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
 | 
						|
/// \endcode
 | 
						|
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
 | 
						|
                                                  MemSetInst *MemSet) {
 | 
						|
  // We can only transform memset/memcpy with the same destination.
 | 
						|
  if (MemSet->getDest() != MemCpy->getDest())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that src and dst of the memcpy aren't the same. While memcpy
 | 
						|
  // operands cannot partially overlap, exact equality is allowed.
 | 
						|
  if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(),
 | 
						|
                                    LocationSize::precise(1)),
 | 
						|
                     MemoryLocation(MemCpy->getDest(),
 | 
						|
                                    LocationSize::precise(1))))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that there are no other dependencies on the memset destination.
 | 
						|
  MemDepResult DstDepInfo =
 | 
						|
      MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
 | 
						|
                                   MemCpy->getIterator(), MemCpy->getParent());
 | 
						|
  if (DstDepInfo.getInst() != MemSet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use the same i8* dest as the memcpy, killing the memset dest if different.
 | 
						|
  Value *Dest = MemCpy->getRawDest();
 | 
						|
  Value *DestSize = MemSet->getLength();
 | 
						|
  Value *SrcSize = MemCpy->getLength();
 | 
						|
 | 
						|
  // If the destination might be accessible by the caller, make sure we cannot
 | 
						|
  // unwind between the memset and the memcpy.
 | 
						|
  if (!MemCpy->getFunction()->doesNotThrow() &&
 | 
						|
      !isa<AllocaInst>(getUnderlyingObject(Dest))) {
 | 
						|
    for (const Instruction &I :
 | 
						|
         make_range(MemSet->getIterator(), MemCpy->getIterator())) {
 | 
						|
      if (I.mayThrow())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // By default, create an unaligned memset.
 | 
						|
  unsigned Align = 1;
 | 
						|
  // If Dest is aligned, and SrcSize is constant, use the minimum alignment
 | 
						|
  // of the sum.
 | 
						|
  const unsigned DestAlign =
 | 
						|
      std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
 | 
						|
  if (DestAlign > 1)
 | 
						|
    if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
 | 
						|
      Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
 | 
						|
 | 
						|
  IRBuilder<> Builder(MemCpy);
 | 
						|
 | 
						|
  // If the sizes have different types, zext the smaller one.
 | 
						|
  if (DestSize->getType() != SrcSize->getType()) {
 | 
						|
    if (DestSize->getType()->getIntegerBitWidth() >
 | 
						|
        SrcSize->getType()->getIntegerBitWidth())
 | 
						|
      SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
 | 
						|
    else
 | 
						|
      DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
 | 
						|
  Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
 | 
						|
  Value *MemsetLen = Builder.CreateSelect(
 | 
						|
      Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
 | 
						|
  Instruction *NewMemSet = Builder.CreateMemSet(
 | 
						|
      Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
 | 
						|
                        SrcSize),
 | 
						|
      MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
 | 
						|
 | 
						|
  if (MSSAU) {
 | 
						|
    assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
 | 
						|
           "MemCpy must be a MemoryDef");
 | 
						|
    // The new memset is inserted after the memcpy, but it is known that its
 | 
						|
    // defining access is the memset about to be removed which immediately
 | 
						|
    // precedes the memcpy.
 | 
						|
    auto *LastDef =
 | 
						|
        cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
 | 
						|
    auto *NewAccess = MSSAU->createMemoryAccessBefore(
 | 
						|
        NewMemSet, LastDef->getDefiningAccess(), LastDef);
 | 
						|
    MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  eraseInstruction(MemSet);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the instruction has undefined content for the given Size,
 | 
						|
/// either because it was freshly alloca'd or started its lifetime.
 | 
						|
static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
 | 
						|
  if (isa<AllocaInst>(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | 
						|
    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | 
						|
      if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | 
						|
        if (LTSize->getZExtValue() >= Size->getZExtValue())
 | 
						|
          return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Transform memcpy to memset when its source was just memset.
 | 
						|
/// In other words, turn:
 | 
						|
/// \code
 | 
						|
///   memset(dst1, c, dst1_size);
 | 
						|
///   memcpy(dst2, dst1, dst2_size);
 | 
						|
/// \endcode
 | 
						|
/// into:
 | 
						|
/// \code
 | 
						|
///   memset(dst1, c, dst1_size);
 | 
						|
///   memset(dst2, c, dst2_size);
 | 
						|
/// \endcode
 | 
						|
/// When dst2_size <= dst1_size.
 | 
						|
///
 | 
						|
/// The \p MemCpy must have a Constant length.
 | 
						|
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
 | 
						|
                                               MemSetInst *MemSet) {
 | 
						|
  // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
 | 
						|
  // memcpying from the same address. Otherwise it is hard to reason about.
 | 
						|
  if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A known memset size is required.
 | 
						|
  ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
 | 
						|
  if (!MemSetSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the memcpy doesn't read any more than what the memset wrote.
 | 
						|
  // Don't worry about sizes larger than i64.
 | 
						|
  ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
 | 
						|
  if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
 | 
						|
    // If the memcpy is larger than the memset, but the memory was undef prior
 | 
						|
    // to the memset, we can just ignore the tail. Technically we're only
 | 
						|
    // interested in the bytes from MemSetSize..CopySize here, but as we can't
 | 
						|
    // easily represent this location, we use the full 0..CopySize range.
 | 
						|
    MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
 | 
						|
    MemDepResult DepInfo = MD->getPointerDependencyFrom(
 | 
						|
        MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
 | 
						|
    if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
 | 
						|
      CopySize = MemSetSize;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  IRBuilder<> Builder(MemCpy);
 | 
						|
  Instruction *NewM =
 | 
						|
      Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
 | 
						|
                           CopySize, MaybeAlign(MemCpy->getDestAlignment()));
 | 
						|
  if (MSSAU) {
 | 
						|
    auto *LastDef =
 | 
						|
        cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
 | 
						|
    auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
 | 
						|
    MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Perform simplification of memcpy's.  If we have memcpy A
 | 
						|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
 | 
						|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
 | 
						|
/// circumstances). This allows later passes to remove the first memcpy
 | 
						|
/// altogether.
 | 
						|
bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
 | 
						|
  // We can only optimize non-volatile memcpy's.
 | 
						|
  if (M->isVolatile()) return false;
 | 
						|
 | 
						|
  // If the source and destination of the memcpy are the same, then zap it.
 | 
						|
  if (M->getSource() == M->getDest()) {
 | 
						|
    ++BBI;
 | 
						|
    eraseInstruction(M);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If copying from a constant, try to turn the memcpy into a memset.
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
      if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
 | 
						|
                                           M->getModule()->getDataLayout())) {
 | 
						|
        IRBuilder<> Builder(M);
 | 
						|
        Instruction *NewM =
 | 
						|
            Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
 | 
						|
                                 MaybeAlign(M->getDestAlignment()), false);
 | 
						|
        if (MSSAU) {
 | 
						|
          auto *LastDef =
 | 
						|
              cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
 | 
						|
          auto *NewAccess =
 | 
						|
              MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
 | 
						|
          MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
 | 
						|
        }
 | 
						|
 | 
						|
        eraseInstruction(M);
 | 
						|
        ++NumCpyToSet;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
  MemDepResult DepInfo = MD->getDependency(M);
 | 
						|
 | 
						|
  // Try to turn a partially redundant memset + memcpy into
 | 
						|
  // memcpy + smaller memset.  We don't need the memcpy size for this.
 | 
						|
  if (DepInfo.isClobber())
 | 
						|
    if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
 | 
						|
      if (processMemSetMemCpyDependence(M, MDep))
 | 
						|
        return true;
 | 
						|
 | 
						|
  // The optimizations after this point require the memcpy size.
 | 
						|
  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!CopySize) return false;
 | 
						|
 | 
						|
  // There are four possible optimizations we can do for memcpy:
 | 
						|
  //   a) memcpy-memcpy xform which exposes redundance for DSE.
 | 
						|
  //   b) call-memcpy xform for return slot optimization.
 | 
						|
  //   c) memcpy from freshly alloca'd space or space that has just started its
 | 
						|
  //      lifetime copies undefined data, and we can therefore eliminate the
 | 
						|
  //      memcpy in favor of the data that was already at the destination.
 | 
						|
  //   d) memcpy from a just-memset'd source can be turned into memset.
 | 
						|
  if (DepInfo.isClobber()) {
 | 
						|
    if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
 | 
						|
      // FIXME: Can we pass in either of dest/src alignment here instead
 | 
						|
      // of conservatively taking the minimum?
 | 
						|
      Align Alignment = std::min(M->getDestAlign().valueOrOne(),
 | 
						|
                                 M->getSourceAlign().valueOrOne());
 | 
						|
      if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
 | 
						|
                               CopySize->getZExtValue(), Alignment, C)) {
 | 
						|
        eraseInstruction(M);
 | 
						|
        ++NumMemCpyInstr;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
 | 
						|
  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
 | 
						|
      SrcLoc, true, M->getIterator(), M->getParent());
 | 
						|
 | 
						|
  if (SrcDepInfo.isClobber()) {
 | 
						|
    if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
 | 
						|
      return processMemCpyMemCpyDependence(M, MDep);
 | 
						|
  } else if (SrcDepInfo.isDef()) {
 | 
						|
    if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
 | 
						|
      eraseInstruction(M);
 | 
						|
      ++NumMemCpyInstr;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SrcDepInfo.isClobber())
 | 
						|
    if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
 | 
						|
      if (performMemCpyToMemSetOptzn(M, MDep)) {
 | 
						|
        eraseInstruction(M);
 | 
						|
        ++NumCpyToSet;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
 | 
						|
/// not to alias.
 | 
						|
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
 | 
						|
  if (!TLI->has(LibFunc_memmove))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // See if the pointers alias.
 | 
						|
  if (!AA->isNoAlias(MemoryLocation::getForDest(M),
 | 
						|
                     MemoryLocation::getForSource(M)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
 | 
						|
                    << "\n");
 | 
						|
 | 
						|
  // If not, then we know we can transform this.
 | 
						|
  Type *ArgTys[3] = { M->getRawDest()->getType(),
 | 
						|
                      M->getRawSource()->getType(),
 | 
						|
                      M->getLength()->getType() };
 | 
						|
  M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
 | 
						|
                                                 Intrinsic::memcpy, ArgTys));
 | 
						|
 | 
						|
  // For MemorySSA nothing really changes (except that memcpy may imply stricter
 | 
						|
  // aliasing guarantees).
 | 
						|
 | 
						|
  // MemDep may have over conservative information about this instruction, just
 | 
						|
  // conservatively flush it from the cache.
 | 
						|
  MD->removeInstruction(M);
 | 
						|
 | 
						|
  ++NumMoveToCpy;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This is called on every byval argument in call sites.
 | 
						|
bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
 | 
						|
  const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
 | 
						|
  // Find out what feeds this byval argument.
 | 
						|
  Value *ByValArg = CB.getArgOperand(ArgNo);
 | 
						|
  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
 | 
						|
  uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
 | 
						|
  MemDepResult DepInfo = MD->getPointerDependencyFrom(
 | 
						|
      MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
 | 
						|
      CB.getIterator(), CB.getParent());
 | 
						|
  if (!DepInfo.isClobber())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
 | 
						|
  // a memcpy, see if we can byval from the source of the memcpy instead of the
 | 
						|
  // result.
 | 
						|
  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
 | 
						|
  if (!MDep || MDep->isVolatile() ||
 | 
						|
      ByValArg->stripPointerCasts() != MDep->getDest())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The length of the memcpy must be larger or equal to the size of the byval.
 | 
						|
  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
 | 
						|
  if (!C1 || C1->getValue().getZExtValue() < ByValSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the alignment of the byval.  If the call doesn't specify the alignment,
 | 
						|
  // then it is some target specific value that we can't know.
 | 
						|
  MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
 | 
						|
  if (!ByValAlign) return false;
 | 
						|
 | 
						|
  // If it is greater than the memcpy, then we check to see if we can force the
 | 
						|
  // source of the memcpy to the alignment we need.  If we fail, we bail out.
 | 
						|
  MaybeAlign MemDepAlign = MDep->getSourceAlign();
 | 
						|
  if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
 | 
						|
      getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
 | 
						|
                                 DT) < *ByValAlign)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The address space of the memcpy source must match the byval argument
 | 
						|
  if (MDep->getSource()->getType()->getPointerAddressSpace() !=
 | 
						|
      ByValArg->getType()->getPointerAddressSpace())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that the copied-from memory doesn't change in between the memcpy and
 | 
						|
  // the byval call.
 | 
						|
  //    memcpy(a <- b)
 | 
						|
  //    *b = 42;
 | 
						|
  //    foo(*a)
 | 
						|
  // It would be invalid to transform the second memcpy into foo(*b).
 | 
						|
  //
 | 
						|
  // NOTE: This is conservative, it will stop on any read from the source loc,
 | 
						|
  // not just the defining memcpy.
 | 
						|
  MemDepResult SourceDep = MD->getPointerDependencyFrom(
 | 
						|
      MemoryLocation::getForSource(MDep), false,
 | 
						|
      CB.getIterator(), MDep->getParent());
 | 
						|
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *TmpCast = MDep->getSource();
 | 
						|
  if (MDep->getSource()->getType() != ByValArg->getType()) {
 | 
						|
    BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
 | 
						|
                                              "tmpcast", &CB);
 | 
						|
    // Set the tmpcast's DebugLoc to MDep's
 | 
						|
    TmpBitCast->setDebugLoc(MDep->getDebugLoc());
 | 
						|
    TmpCast = TmpBitCast;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
 | 
						|
                    << "  " << *MDep << "\n"
 | 
						|
                    << "  " << CB << "\n");
 | 
						|
 | 
						|
  // Otherwise we're good!  Update the byval argument.
 | 
						|
  CB.setArgOperand(ArgNo, TmpCast);
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Executes one iteration of MemCpyOptPass.
 | 
						|
bool MemCpyOptPass::iterateOnFunction(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Walk all instruction in the function.
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    // Skip unreachable blocks. For example processStore assumes that an
 | 
						|
    // instruction in a BB can't be dominated by a later instruction in the
 | 
						|
    // same BB (which is a scenario that can happen for an unreachable BB that
 | 
						|
    // has itself as a predecessor).
 | 
						|
    if (!DT->isReachableFromEntry(&BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
 | 
						|
        // Avoid invalidating the iterator.
 | 
						|
      Instruction *I = &*BI++;
 | 
						|
 | 
						|
      bool RepeatInstruction = false;
 | 
						|
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
        MadeChange |= processStore(SI, BI);
 | 
						|
      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
 | 
						|
        RepeatInstruction = processMemSet(M, BI);
 | 
						|
      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
 | 
						|
        RepeatInstruction = processMemCpy(M, BI);
 | 
						|
      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
 | 
						|
        RepeatInstruction = processMemMove(M);
 | 
						|
      else if (auto *CB = dyn_cast<CallBase>(I)) {
 | 
						|
        for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
 | 
						|
          if (CB->isByValArgument(i))
 | 
						|
            MadeChange |= processByValArgument(*CB, i);
 | 
						|
      }
 | 
						|
 | 
						|
      // Reprocess the instruction if desired.
 | 
						|
      if (RepeatInstruction) {
 | 
						|
        if (BI != BB.begin())
 | 
						|
          --BI;
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
 | 
						|
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  auto *AA = &AM.getResult<AAManager>(F);
 | 
						|
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
 | 
						|
 | 
						|
  bool MadeChange =
 | 
						|
      runImpl(F, &MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
 | 
						|
  if (!MadeChange)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserve<MemoryDependenceAnalysis>();
 | 
						|
  if (MSSA)
 | 
						|
    PA.preserve<MemorySSAAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
 | 
						|
                            TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
 | 
						|
                            AssumptionCache *AC_, DominatorTree *DT_,
 | 
						|
                            MemorySSA *MSSA_) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  MD = MD_;
 | 
						|
  TLI = TLI_;
 | 
						|
  AA = AA_;
 | 
						|
  AC = AC_;
 | 
						|
  DT = DT_;
 | 
						|
  MemorySSAUpdater MSSAU_(MSSA_);
 | 
						|
  MSSAU = MSSA_ ? &MSSAU_ : nullptr;
 | 
						|
  // If we don't have at least memset and memcpy, there is little point of doing
 | 
						|
  // anything here.  These are required by a freestanding implementation, so if
 | 
						|
  // even they are disabled, there is no point in trying hard.
 | 
						|
  if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    if (!iterateOnFunction(F))
 | 
						|
      break;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MSSA_ && VerifyMemorySSA)
 | 
						|
    MSSA_->verifyMemorySSA();
 | 
						|
 | 
						|
  MD = nullptr;
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// This is the main transformation entry point for a function.
 | 
						|
bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | 
						|
  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
  auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
 | 
						|
 | 
						|
  return Impl.runImpl(F, MD, TLI, AA, AC, DT,
 | 
						|
                      MSSAWP ? &MSSAWP->getMSSA() : nullptr);
 | 
						|
}
 |