1345 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1345 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include <cstdarg>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
using llvm::Value;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Scalar Expression Emitter
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
struct BinOpInfo {
 | 
						|
  Value *LHS;
 | 
						|
  Value *RHS;
 | 
						|
  QualType Ty;  // Computation Type.
 | 
						|
  const BinaryOperator *E;
 | 
						|
};
 | 
						|
 | 
						|
namespace {
 | 
						|
class VISIBILITY_HIDDEN ScalarExprEmitter
 | 
						|
  : public StmtVisitor<ScalarExprEmitter, Value*> {
 | 
						|
  CodeGenFunction &CGF;
 | 
						|
  CGBuilderTy &Builder;
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), 
 | 
						|
    Builder(CGF.Builder) {
 | 
						|
  }
 | 
						|
  
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                               Utilities
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
 | 
						|
  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
 | 
						|
 | 
						|
  Value *EmitLoadOfLValue(LValue LV, QualType T) {
 | 
						|
    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
 | 
						|
  }
 | 
						|
    
 | 
						|
  /// EmitLoadOfLValue - Given an expression with complex type that represents a
 | 
						|
  /// value l-value, this method emits the address of the l-value, then loads
 | 
						|
  /// and returns the result.
 | 
						|
  Value *EmitLoadOfLValue(const Expr *E) {
 | 
						|
    // FIXME: Volatile
 | 
						|
    return EmitLoadOfLValue(EmitLValue(E), E->getType());
 | 
						|
  }
 | 
						|
    
 | 
						|
  /// EmitConversionToBool - Convert the specified expression value to a
 | 
						|
  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
 | 
						|
  Value *EmitConversionToBool(Value *Src, QualType DstTy);
 | 
						|
    
 | 
						|
  /// EmitScalarConversion - Emit a conversion from the specified type to the
 | 
						|
  /// specified destination type, both of which are LLVM scalar types.
 | 
						|
  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
 | 
						|
 | 
						|
  /// EmitComplexToScalarConversion - Emit a conversion from the specified
 | 
						|
  /// complex type to the specified destination type, where the destination
 | 
						|
  /// type is an LLVM scalar type.
 | 
						|
  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
 | 
						|
                                       QualType SrcTy, QualType DstTy);
 | 
						|
    
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //                            Visitor Methods
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  Value *VisitStmt(Stmt *S) {
 | 
						|
    S->dump(CGF.getContext().getSourceManager());
 | 
						|
    assert(0 && "Stmt can't have complex result type!");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  Value *VisitExpr(Expr *S);
 | 
						|
  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
 | 
						|
 | 
						|
  // Leaves.
 | 
						|
  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
 | 
						|
    return llvm::ConstantInt::get(E->getValue());
 | 
						|
  }
 | 
						|
  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
 | 
						|
    return llvm::ConstantFP::get(E->getValue());
 | 
						|
  }
 | 
						|
  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
 | 
						|
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | 
						|
  }
 | 
						|
  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
 | 
						|
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | 
						|
  }
 | 
						|
  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
 | 
						|
    return llvm::Constant::getNullValue(ConvertType(E->getType()));
 | 
						|
  }
 | 
						|
  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
 | 
						|
    return llvm::ConstantInt::get(ConvertType(E->getType()),
 | 
						|
                                  CGF.getContext().typesAreCompatible(
 | 
						|
                                    E->getArgType1(), E->getArgType2()));
 | 
						|
  }
 | 
						|
  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
 | 
						|
  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
 | 
						|
    llvm::Value *V = 
 | 
						|
      llvm::ConstantInt::get(llvm::Type::Int32Ty,
 | 
						|
                             CGF.GetIDForAddrOfLabel(E->getLabel()));
 | 
						|
    
 | 
						|
    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
 | 
						|
  }
 | 
						|
    
 | 
						|
  // l-values.
 | 
						|
  Value *VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
 | 
						|
      return llvm::ConstantInt::get(EC->getInitVal());
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 
 | 
						|
    return CGF.EmitObjCSelectorExpr(E); 
 | 
						|
  }
 | 
						|
  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 
 | 
						|
    return CGF.EmitObjCProtocolExpr(E); 
 | 
						|
  }
 | 
						|
  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | 
						|
    return CGF.EmitObjCMessageExpr(E).getScalarVal();
 | 
						|
  }
 | 
						|
 | 
						|
  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
 | 
						|
  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
 | 
						|
  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
 | 
						|
  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
 | 
						|
  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  }
 | 
						|
  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
 | 
						|
  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
 | 
						|
 | 
						|
  Value *VisitInitListExpr(InitListExpr *E) {
 | 
						|
    unsigned NumInitElements = E->getNumInits();
 | 
						|
    
 | 
						|
    const llvm::VectorType *VType = 
 | 
						|
      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
 | 
						|
    
 | 
						|
    // We have a scalar in braces. Just use the first element.
 | 
						|
    if (!VType) 
 | 
						|
      return Visit(E->getInit(0));
 | 
						|
    
 | 
						|
    if (E->hadDesignators()) {
 | 
						|
      CGF.ErrorUnsupported(E, "initializer list with designators");
 | 
						|
      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned NumVectorElements = VType->getNumElements();
 | 
						|
    const llvm::Type *ElementType = VType->getElementType();
 | 
						|
 | 
						|
    // Emit individual vector element stores.
 | 
						|
    llvm::Value *V = llvm::UndefValue::get(VType);
 | 
						|
    
 | 
						|
    // Emit initializers
 | 
						|
    unsigned i;
 | 
						|
    for (i = 0; i < NumInitElements; ++i) {
 | 
						|
      Value *NewV = Visit(E->getInit(i));
 | 
						|
      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
 | 
						|
      V = Builder.CreateInsertElement(V, NewV, Idx);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Emit remaining default initializers
 | 
						|
    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
 | 
						|
      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
 | 
						|
      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
 | 
						|
      V = Builder.CreateInsertElement(V, NewV, Idx);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
 | 
						|
  Value *VisitCastExpr(const CastExpr *E) { 
 | 
						|
    return EmitCastExpr(E->getSubExpr(), E->getType());
 | 
						|
  }
 | 
						|
  Value *EmitCastExpr(const Expr *E, QualType T);
 | 
						|
 | 
						|
  Value *VisitCallExpr(const CallExpr *E) {
 | 
						|
    return CGF.EmitCallExpr(E).getScalarVal();
 | 
						|
  }
 | 
						|
 | 
						|
  Value *VisitStmtExpr(const StmtExpr *E);
 | 
						|
  
 | 
						|
  // Unary Operators.
 | 
						|
  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
 | 
						|
  Value *VisitUnaryPostDec(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, false, false);
 | 
						|
  }
 | 
						|
  Value *VisitUnaryPostInc(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, true, false);
 | 
						|
  }
 | 
						|
  Value *VisitUnaryPreDec(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, false, true);
 | 
						|
  }
 | 
						|
  Value *VisitUnaryPreInc(const UnaryOperator *E) {
 | 
						|
    return VisitPrePostIncDec(E, true, true);
 | 
						|
  }
 | 
						|
  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
 | 
						|
    return EmitLValue(E->getSubExpr()).getAddress();
 | 
						|
  }
 | 
						|
  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
 | 
						|
  Value *VisitUnaryPlus(const UnaryOperator *E) {
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  }
 | 
						|
  Value *VisitUnaryMinus    (const UnaryOperator *E);
 | 
						|
  Value *VisitUnaryNot      (const UnaryOperator *E);
 | 
						|
  Value *VisitUnaryLNot     (const UnaryOperator *E);
 | 
						|
  Value *VisitUnaryReal     (const UnaryOperator *E);
 | 
						|
  Value *VisitUnaryImag     (const UnaryOperator *E);
 | 
						|
  Value *VisitUnaryExtension(const UnaryOperator *E) {
 | 
						|
    return Visit(E->getSubExpr());
 | 
						|
  }
 | 
						|
  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
 | 
						|
  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
 | 
						|
    return Visit(DAE->getExpr());
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Binary Operators.
 | 
						|
  Value *EmitMul(const BinOpInfo &Ops) {
 | 
						|
    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
 | 
						|
  }
 | 
						|
  Value *EmitDiv(const BinOpInfo &Ops);
 | 
						|
  Value *EmitRem(const BinOpInfo &Ops);
 | 
						|
  Value *EmitAdd(const BinOpInfo &Ops);
 | 
						|
  Value *EmitSub(const BinOpInfo &Ops);
 | 
						|
  Value *EmitShl(const BinOpInfo &Ops);
 | 
						|
  Value *EmitShr(const BinOpInfo &Ops);
 | 
						|
  Value *EmitAnd(const BinOpInfo &Ops) {
 | 
						|
    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
 | 
						|
  }
 | 
						|
  Value *EmitXor(const BinOpInfo &Ops) {
 | 
						|
    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
 | 
						|
  }
 | 
						|
  Value *EmitOr (const BinOpInfo &Ops) {
 | 
						|
    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
 | 
						|
  }
 | 
						|
 | 
						|
  BinOpInfo EmitBinOps(const BinaryOperator *E);
 | 
						|
  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
 | 
						|
                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
 | 
						|
 | 
						|
  // Binary operators and binary compound assignment operators.
 | 
						|
#define HANDLEBINOP(OP) \
 | 
						|
  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
 | 
						|
    return Emit ## OP(EmitBinOps(E));                                      \
 | 
						|
  }                                                                        \
 | 
						|
  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
 | 
						|
    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
 | 
						|
  }
 | 
						|
  HANDLEBINOP(Mul);
 | 
						|
  HANDLEBINOP(Div);
 | 
						|
  HANDLEBINOP(Rem);
 | 
						|
  HANDLEBINOP(Add);
 | 
						|
  HANDLEBINOP(Sub);
 | 
						|
  HANDLEBINOP(Shl);
 | 
						|
  HANDLEBINOP(Shr);
 | 
						|
  HANDLEBINOP(And);
 | 
						|
  HANDLEBINOP(Xor);
 | 
						|
  HANDLEBINOP(Or);
 | 
						|
#undef HANDLEBINOP
 | 
						|
 | 
						|
  // Comparisons.
 | 
						|
  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
 | 
						|
                     unsigned SICmpOpc, unsigned FCmpOpc);
 | 
						|
#define VISITCOMP(CODE, UI, SI, FP) \
 | 
						|
    Value *VisitBin##CODE(const BinaryOperator *E) { \
 | 
						|
      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
 | 
						|
                         llvm::FCmpInst::FP); }
 | 
						|
  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
 | 
						|
  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
 | 
						|
  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
 | 
						|
  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
 | 
						|
  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
 | 
						|
  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
 | 
						|
#undef VISITCOMP
 | 
						|
  
 | 
						|
  Value *VisitBinAssign     (const BinaryOperator *E);
 | 
						|
 | 
						|
  Value *VisitBinLAnd       (const BinaryOperator *E);
 | 
						|
  Value *VisitBinLOr        (const BinaryOperator *E);
 | 
						|
  Value *VisitBinComma      (const BinaryOperator *E);
 | 
						|
 | 
						|
  // Other Operators.
 | 
						|
  Value *VisitConditionalOperator(const ConditionalOperator *CO);
 | 
						|
  Value *VisitChooseExpr(ChooseExpr *CE);
 | 
						|
  Value *VisitOverloadExpr(OverloadExpr *OE);
 | 
						|
  Value *VisitVAArgExpr(VAArgExpr *VE);
 | 
						|
  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
 | 
						|
    return CGF.EmitObjCStringLiteral(E);
 | 
						|
  }
 | 
						|
  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
 | 
						|
};
 | 
						|
}  // end anonymous namespace.
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                Utilities
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// EmitConversionToBool - Convert the specified expression value to a
 | 
						|
/// boolean (i1) truth value.  This is equivalent to "Val != 0".
 | 
						|
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
 | 
						|
  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
 | 
						|
  
 | 
						|
  if (SrcType->isRealFloatingType()) {
 | 
						|
    // Compare against 0.0 for fp scalars.
 | 
						|
    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
 | 
						|
    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
 | 
						|
         "Unknown scalar type to convert");
 | 
						|
  
 | 
						|
  // Because of the type rules of C, we often end up computing a logical value,
 | 
						|
  // then zero extending it to int, then wanting it as a logical value again.
 | 
						|
  // Optimize this common case.
 | 
						|
  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
 | 
						|
    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
 | 
						|
      Value *Result = ZI->getOperand(0);
 | 
						|
      // If there aren't any more uses, zap the instruction to save space.
 | 
						|
      // Note that there can be more uses, for example if this
 | 
						|
      // is the result of an assignment.
 | 
						|
      if (ZI->use_empty())
 | 
						|
        ZI->eraseFromParent();
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Compare against an integer or pointer null.
 | 
						|
  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
 | 
						|
  return Builder.CreateICmpNE(Src, Zero, "tobool");
 | 
						|
}
 | 
						|
 | 
						|
/// EmitScalarConversion - Emit a conversion from the specified type to the
 | 
						|
/// specified destination type, both of which are LLVM scalar types.
 | 
						|
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
 | 
						|
                                               QualType DstType) {
 | 
						|
  SrcType = CGF.getContext().getCanonicalType(SrcType);
 | 
						|
  DstType = CGF.getContext().getCanonicalType(DstType);
 | 
						|
  if (SrcType == DstType) return Src;
 | 
						|
  
 | 
						|
  if (DstType->isVoidType()) return 0;
 | 
						|
 | 
						|
  // Handle conversions to bool first, they are special: comparisons against 0.
 | 
						|
  if (DstType->isBooleanType())
 | 
						|
    return EmitConversionToBool(Src, SrcType);
 | 
						|
  
 | 
						|
  const llvm::Type *DstTy = ConvertType(DstType);
 | 
						|
 | 
						|
  // Ignore conversions like int -> uint.
 | 
						|
  if (Src->getType() == DstTy)
 | 
						|
    return Src;
 | 
						|
 | 
						|
  // Handle pointer conversions next: pointers can only be converted
 | 
						|
  // to/from other pointers and integers. Check for pointer types in
 | 
						|
  // terms of LLVM, as some native types (like Obj-C id) may map to a
 | 
						|
  // pointer type.
 | 
						|
  if (isa<llvm::PointerType>(DstTy)) {
 | 
						|
    // The source value may be an integer, or a pointer.
 | 
						|
    if (isa<llvm::PointerType>(Src->getType()))
 | 
						|
      return Builder.CreateBitCast(Src, DstTy, "conv");
 | 
						|
    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
 | 
						|
    return Builder.CreateIntToPtr(Src, DstTy, "conv");
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isa<llvm::PointerType>(Src->getType())) {
 | 
						|
    // Must be an ptr to int cast.
 | 
						|
    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
 | 
						|
    return Builder.CreatePtrToInt(Src, DstTy, "conv");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // A scalar can be splatted to an extended vector of the same element type
 | 
						|
  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
 | 
						|
      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
 | 
						|
    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(), 
 | 
						|
                          true);
 | 
						|
 | 
						|
  // Allow bitcast from vector to integer/fp of the same size.
 | 
						|
  if (isa<llvm::VectorType>(Src->getType()) ||
 | 
						|
      isa<llvm::VectorType>(DstTy))
 | 
						|
    return Builder.CreateBitCast(Src, DstTy, "conv");
 | 
						|
      
 | 
						|
  // Finally, we have the arithmetic types: real int/float.
 | 
						|
  if (isa<llvm::IntegerType>(Src->getType())) {
 | 
						|
    bool InputSigned = SrcType->isSignedIntegerType();
 | 
						|
    if (isa<llvm::IntegerType>(DstTy))
 | 
						|
      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
 | 
						|
    else if (InputSigned)
 | 
						|
      return Builder.CreateSIToFP(Src, DstTy, "conv");
 | 
						|
    else
 | 
						|
      return Builder.CreateUIToFP(Src, DstTy, "conv");
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
 | 
						|
  if (isa<llvm::IntegerType>(DstTy)) {
 | 
						|
    if (DstType->isSignedIntegerType())
 | 
						|
      return Builder.CreateFPToSI(Src, DstTy, "conv");
 | 
						|
    else
 | 
						|
      return Builder.CreateFPToUI(Src, DstTy, "conv");
 | 
						|
  }
 | 
						|
 | 
						|
  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
 | 
						|
  if (DstTy->getTypeID() < Src->getType()->getTypeID())
 | 
						|
    return Builder.CreateFPTrunc(Src, DstTy, "conv");
 | 
						|
  else
 | 
						|
    return Builder.CreateFPExt(Src, DstTy, "conv");
 | 
						|
}
 | 
						|
 | 
						|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
 | 
						|
/// complex type to the specified destination type, where the destination
 | 
						|
/// type is an LLVM scalar type.
 | 
						|
Value *ScalarExprEmitter::
 | 
						|
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
 | 
						|
                              QualType SrcTy, QualType DstTy) {
 | 
						|
  // Get the source element type.
 | 
						|
  SrcTy = SrcTy->getAsComplexType()->getElementType();
 | 
						|
  
 | 
						|
  // Handle conversions to bool first, they are special: comparisons against 0.
 | 
						|
  if (DstTy->isBooleanType()) {
 | 
						|
    //  Complex != 0  -> (Real != 0) | (Imag != 0)
 | 
						|
    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
 | 
						|
    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
 | 
						|
    return Builder.CreateOr(Src.first, Src.second, "tobool");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
 | 
						|
  // the imaginary part of the complex value is discarded and the value of the
 | 
						|
  // real part is converted according to the conversion rules for the
 | 
						|
  // corresponding real type. 
 | 
						|
  return EmitScalarConversion(Src.first, SrcTy, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Visitor Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitExpr(Expr *E) {
 | 
						|
  CGF.ErrorUnsupported(E, "scalar expression");
 | 
						|
  if (E->getType()->isVoidType())
 | 
						|
    return 0;
 | 
						|
  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
 | 
						|
  llvm::SmallVector<llvm::Constant*, 32> indices;
 | 
						|
  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
 | 
						|
    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
 | 
						|
  }
 | 
						|
  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
 | 
						|
  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
 | 
						|
  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
 | 
						|
  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
 | 
						|
  // Emit subscript expressions in rvalue context's.  For most cases, this just
 | 
						|
  // loads the lvalue formed by the subscript expr.  However, we have to be
 | 
						|
  // careful, because the base of a vector subscript is occasionally an rvalue,
 | 
						|
  // so we can't get it as an lvalue.
 | 
						|
  if (!E->getBase()->getType()->isVectorType())
 | 
						|
    return EmitLoadOfLValue(E);
 | 
						|
  
 | 
						|
  // Handle the vector case.  The base must be a vector, the index must be an
 | 
						|
  // integer value.
 | 
						|
  Value *Base = Visit(E->getBase());
 | 
						|
  Value *Idx  = Visit(E->getIdx());
 | 
						|
  
 | 
						|
  // FIXME: Convert Idx to i32 type.
 | 
						|
  return Builder.CreateExtractElement(Base, Idx, "vecext");
 | 
						|
}
 | 
						|
 | 
						|
/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
 | 
						|
/// also handle things like function to pointer-to-function decay, and array to
 | 
						|
/// pointer decay.
 | 
						|
Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
 | 
						|
  const Expr *Op = E->getSubExpr();
 | 
						|
  
 | 
						|
  // If this is due to array->pointer conversion, emit the array expression as
 | 
						|
  // an l-value.
 | 
						|
  if (Op->getType()->isArrayType()) {
 | 
						|
    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
 | 
						|
    // will not true when we add support for VLAs.
 | 
						|
    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
 | 
						|
    
 | 
						|
    if (!(isa<llvm::PointerType>(V->getType()) &&
 | 
						|
          isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
 | 
						|
                               ->getElementType()))) {
 | 
						|
      CGF.ErrorUnsupported(E, "variable-length array cast", true);
 | 
						|
      if (E->getType()->isVoidType())
 | 
						|
        return 0;
 | 
						|
      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
 | 
						|
    }
 | 
						|
    V = Builder.CreateStructGEP(V, 0, "arraydecay");
 | 
						|
    
 | 
						|
    // The resultant pointer type can be implicitly casted to other pointer
 | 
						|
    // types as well (e.g. void*) and can be implicitly converted to integer.
 | 
						|
    const llvm::Type *DestTy = ConvertType(E->getType());
 | 
						|
    if (V->getType() != DestTy) {
 | 
						|
      if (isa<llvm::PointerType>(DestTy))
 | 
						|
        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
 | 
						|
      else {
 | 
						|
        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
 | 
						|
        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return V;
 | 
						|
    
 | 
						|
  } else if (E->getType()->isReferenceType()) {
 | 
						|
    return EmitLValue(Op).getAddress();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return EmitCastExpr(Op, E->getType());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
 | 
						|
// have to handle a more broad range of conversions than explicit casts, as they
 | 
						|
// handle things like function to ptr-to-function decay etc.
 | 
						|
Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
 | 
						|
  // Handle cases where the source is an non-complex type.
 | 
						|
  
 | 
						|
  if (!CGF.hasAggregateLLVMType(E->getType())) {
 | 
						|
    Value *Src = Visit(const_cast<Expr*>(E));
 | 
						|
 | 
						|
    // Use EmitScalarConversion to perform the conversion.
 | 
						|
    return EmitScalarConversion(Src, E->getType(), DestTy);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (E->getType()->isAnyComplexType()) {
 | 
						|
    // Handle cases where the source is a complex type.
 | 
						|
    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
 | 
						|
                                         DestTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
 | 
						|
  // evaluate the result and return.
 | 
						|
  CGF.EmitAggExpr(E, 0, false);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
 | 
						|
  return CGF.EmitCompoundStmt(*E->getSubStmt(),
 | 
						|
                              !E->getType()->isVoidType()).getScalarVal();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             Unary Operators
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
 | 
						|
                                             bool isInc, bool isPre) {
 | 
						|
  LValue LV = EmitLValue(E->getSubExpr());
 | 
						|
  // FIXME: Handle volatile!
 | 
						|
  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
 | 
						|
                                     E->getSubExpr()->getType()).getScalarVal();
 | 
						|
  
 | 
						|
  int AmountVal = isInc ? 1 : -1;
 | 
						|
  
 | 
						|
  Value *NextVal;
 | 
						|
  if (isa<llvm::PointerType>(InVal->getType())) {
 | 
						|
    // FIXME: This isn't right for VLAs.
 | 
						|
    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
 | 
						|
    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
 | 
						|
  } else {
 | 
						|
    // Add the inc/dec to the real part.
 | 
						|
    if (isa<llvm::IntegerType>(InVal->getType()))
 | 
						|
      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
 | 
						|
    else if (InVal->getType() == llvm::Type::FloatTy)
 | 
						|
      NextVal = 
 | 
						|
        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
 | 
						|
    else if (InVal->getType() == llvm::Type::DoubleTy)
 | 
						|
      NextVal = 
 | 
						|
        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
 | 
						|
    else {
 | 
						|
      llvm::APFloat F(static_cast<float>(AmountVal));
 | 
						|
      bool ignored;
 | 
						|
      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
 | 
						|
                &ignored);
 | 
						|
      NextVal = llvm::ConstantFP::get(F);
 | 
						|
    }
 | 
						|
    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Store the updated result through the lvalue.
 | 
						|
  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, 
 | 
						|
                             E->getSubExpr()->getType());
 | 
						|
 | 
						|
  // If this is a postinc, return the value read from memory, otherwise use the
 | 
						|
  // updated value.
 | 
						|
  return isPre ? NextVal : InVal;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
 | 
						|
  Value *Op = Visit(E->getSubExpr());
 | 
						|
  return Builder.CreateNeg(Op, "neg");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
 | 
						|
  Value *Op = Visit(E->getSubExpr());
 | 
						|
  return Builder.CreateNot(Op, "neg");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
 | 
						|
  // Compare operand to zero.
 | 
						|
  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
 | 
						|
  
 | 
						|
  // Invert value.
 | 
						|
  // TODO: Could dynamically modify easy computations here.  For example, if
 | 
						|
  // the operand is an icmp ne, turn into icmp eq.
 | 
						|
  BoolVal = Builder.CreateNot(BoolVal, "lnot");
 | 
						|
  
 | 
						|
  // ZExt result to int.
 | 
						|
  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
 | 
						|
}
 | 
						|
 | 
						|
/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
 | 
						|
/// argument of the sizeof expression as an integer.
 | 
						|
Value *
 | 
						|
ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
 | 
						|
  QualType RetType = E->getType();
 | 
						|
  assert(RetType->isIntegerType() && "Result type must be an integer!");
 | 
						|
  uint32_t ResultWidth = 
 | 
						|
    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
 | 
						|
 | 
						|
  QualType TypeToSize = E->getTypeOfArgument();
 | 
						|
  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
 | 
						|
  // for function types.
 | 
						|
  // FIXME: what is alignof a function type in gcc?
 | 
						|
  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
 | 
						|
    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
 | 
						|
  
 | 
						|
  /// FIXME: This doesn't handle VLAs yet!
 | 
						|
  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
 | 
						|
  
 | 
						|
  uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
 | 
						|
  Val /= 8;  // Return size in bytes, not bits.
 | 
						|
  
 | 
						|
  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
 | 
						|
  Expr *Op = E->getSubExpr();
 | 
						|
  if (Op->getType()->isAnyComplexType())
 | 
						|
    return CGF.EmitComplexExpr(Op).first;
 | 
						|
  return Visit(Op);
 | 
						|
}
 | 
						|
Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
 | 
						|
  Expr *Op = E->getSubExpr();
 | 
						|
  if (Op->getType()->isAnyComplexType())
 | 
						|
    return CGF.EmitComplexExpr(Op).second;
 | 
						|
  
 | 
						|
  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
 | 
						|
  // effects are evaluated.
 | 
						|
  CGF.EmitScalarExpr(Op);
 | 
						|
  return llvm::Constant::getNullValue(ConvertType(E->getType()));
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
 | 
						|
{
 | 
						|
  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
 | 
						|
  
 | 
						|
  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
 | 
						|
  
 | 
						|
  uint32_t ResultWidth =
 | 
						|
    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
 | 
						|
  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           Binary Operators
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
 | 
						|
  BinOpInfo Result;
 | 
						|
  Result.LHS = Visit(E->getLHS());
 | 
						|
  Result.RHS = Visit(E->getRHS());
 | 
						|
  Result.Ty  = E->getType();
 | 
						|
  Result.E = E;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
 | 
						|
                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
 | 
						|
  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
 | 
						|
 | 
						|
  BinOpInfo OpInfo;
 | 
						|
 | 
						|
  // Load the LHS and RHS operands.
 | 
						|
  LValue LHSLV = EmitLValue(E->getLHS());
 | 
						|
  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
 | 
						|
 | 
						|
  // Determine the computation type.  If the RHS is complex, then this is one of
 | 
						|
  // the add/sub/mul/div operators.  All of these operators can be computed in
 | 
						|
  // with just their real component even though the computation domain really is
 | 
						|
  // complex.
 | 
						|
  QualType ComputeType = E->getComputationType();
 | 
						|
  
 | 
						|
  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
 | 
						|
  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
 | 
						|
    ComputeType = CT->getElementType();
 | 
						|
    
 | 
						|
    // Emit the RHS, only keeping the real component.
 | 
						|
    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
 | 
						|
    RHSTy = RHSTy->getAsComplexType()->getElementType();
 | 
						|
  } else {
 | 
						|
    // Otherwise the RHS is a simple scalar value.
 | 
						|
    OpInfo.RHS = Visit(E->getRHS());
 | 
						|
  }
 | 
						|
  
 | 
						|
  QualType LComputeTy, RComputeTy, ResultTy;
 | 
						|
 | 
						|
  // Compound assignment does not contain enough information about all
 | 
						|
  // the types involved for pointer arithmetic cases. Figure it out
 | 
						|
  // here for now.
 | 
						|
  if (E->getLHS()->getType()->isPointerType()) {
 | 
						|
    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr, 
 | 
						|
    assert((E->getOpcode() == BinaryOperator::AddAssign ||
 | 
						|
            E->getOpcode() == BinaryOperator::SubAssign) &&
 | 
						|
           "Invalid compound assignment operator on pointer type.");
 | 
						|
    LComputeTy = E->getLHS()->getType();
 | 
						|
    
 | 
						|
    if (E->getRHS()->getType()->isPointerType()) {    
 | 
						|
      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
 | 
						|
      // extension, the conversion from the pointer difference back to
 | 
						|
      // the LHS type is handled at the end.
 | 
						|
      assert(E->getOpcode() == BinaryOperator::SubAssign &&
 | 
						|
             "Invalid compound assignment operator on pointer type.");
 | 
						|
      RComputeTy = E->getLHS()->getType();
 | 
						|
      ResultTy = CGF.getContext().getPointerDiffType();
 | 
						|
    } else {
 | 
						|
      RComputeTy = E->getRHS()->getType();
 | 
						|
      ResultTy = LComputeTy;
 | 
						|
    }
 | 
						|
  } else if (E->getRHS()->getType()->isPointerType()) {
 | 
						|
    // Degenerate case of (int += ptr) allowed by GCC implicit cast
 | 
						|
    // extension.
 | 
						|
    assert(E->getOpcode() == BinaryOperator::AddAssign &&
 | 
						|
           "Invalid compound assignment operator on pointer type.");
 | 
						|
    LComputeTy = E->getLHS()->getType();
 | 
						|
    RComputeTy = E->getRHS()->getType();
 | 
						|
    ResultTy = RComputeTy;
 | 
						|
  } else {
 | 
						|
    LComputeTy = RComputeTy = ResultTy = ComputeType;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the LHS/RHS values to the computation type.
 | 
						|
  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
 | 
						|
  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
 | 
						|
  OpInfo.Ty = ResultTy;
 | 
						|
  OpInfo.E = E;
 | 
						|
  
 | 
						|
  // Expand the binary operator.
 | 
						|
  Value *Result = (this->*Func)(OpInfo);
 | 
						|
  
 | 
						|
  // Convert the result back to the LHS type.
 | 
						|
  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
 | 
						|
  
 | 
						|
  // Store the result value into the LHS lvalue. Bit-fields are
 | 
						|
  // handled specially because the result is altered by the store,
 | 
						|
  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
 | 
						|
  // the left operand after the assignment...'.
 | 
						|
  if (LHSLV.isBitfield())
 | 
						|
    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
 | 
						|
                                       &Result);
 | 
						|
  else
 | 
						|
    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
 | 
						|
  
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
 | 
						|
  if (Ops.LHS->getType()->isFPOrFPVector())
 | 
						|
    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
 | 
						|
  else if (Ops.Ty->isUnsignedIntegerType())
 | 
						|
    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
 | 
						|
  else
 | 
						|
    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
 | 
						|
  // Rem in C can't be a floating point type: C99 6.5.5p2.
 | 
						|
  if (Ops.Ty->isUnsignedIntegerType())
 | 
						|
    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
 | 
						|
  else
 | 
						|
    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
 | 
						|
  if (!Ops.Ty->isPointerType())
 | 
						|
    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
 | 
						|
  
 | 
						|
  // FIXME: What about a pointer to a VLA?
 | 
						|
  Value *Ptr, *Idx;
 | 
						|
  Expr *IdxExp;
 | 
						|
  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
 | 
						|
    Ptr = Ops.LHS;
 | 
						|
    Idx = Ops.RHS;
 | 
						|
    IdxExp = Ops.E->getRHS();
 | 
						|
  } else {                                           // int + pointer
 | 
						|
    Ptr = Ops.RHS;
 | 
						|
    Idx = Ops.LHS;
 | 
						|
    IdxExp = Ops.E->getLHS();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
 | 
						|
  if (Width < CGF.LLVMPointerWidth) {
 | 
						|
    // Zero or sign extend the pointer value based on whether the index is
 | 
						|
    // signed or not.
 | 
						|
    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
 | 
						|
    if (IdxExp->getType()->isSignedIntegerType())
 | 
						|
      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
 | 
						|
    else
 | 
						|
      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
 | 
						|
  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
 | 
						|
    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
 | 
						|
 | 
						|
  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
 | 
						|
    // pointer - int
 | 
						|
    Value *Idx = Ops.RHS;
 | 
						|
    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
 | 
						|
    if (Width < CGF.LLVMPointerWidth) {
 | 
						|
      // Zero or sign extend the pointer value based on whether the index is
 | 
						|
      // signed or not.
 | 
						|
      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
 | 
						|
      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
 | 
						|
        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
 | 
						|
      else
 | 
						|
        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
 | 
						|
    }
 | 
						|
    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
 | 
						|
    
 | 
						|
    // FIXME: The pointer could point to a VLA.
 | 
						|
    // The GNU void* - int case is automatically handled here because
 | 
						|
    // our LLVM type for void* is i8*.
 | 
						|
    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
 | 
						|
  } else {
 | 
						|
    // pointer - pointer
 | 
						|
    Value *LHS = Ops.LHS;
 | 
						|
    Value *RHS = Ops.RHS;
 | 
						|
  
 | 
						|
    const QualType LHSType = Ops.E->getLHS()->getType();
 | 
						|
    const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
 | 
						|
    uint64_t ElementSize;
 | 
						|
 | 
						|
    // Handle GCC extension for pointer arithmetic on void* types.
 | 
						|
    if (LHSElementType->isVoidType()) {
 | 
						|
      ElementSize = 1;
 | 
						|
    } else {
 | 
						|
      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
 | 
						|
    }
 | 
						|
    
 | 
						|
    const llvm::Type *ResultType = ConvertType(Ops.Ty);
 | 
						|
    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
 | 
						|
    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
 | 
						|
    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
 | 
						|
    
 | 
						|
    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
 | 
						|
    // remainder.  As such, we handle common power-of-two cases here to generate
 | 
						|
    // better code. See PR2247.
 | 
						|
    if (llvm::isPowerOf2_64(ElementSize)) {
 | 
						|
      Value *ShAmt =
 | 
						|
        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
 | 
						|
      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, do a full sdiv.
 | 
						|
    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
 | 
						|
    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
 | 
						|
  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
 | 
						|
  // RHS to the same size as the LHS.
 | 
						|
  Value *RHS = Ops.RHS;
 | 
						|
  if (Ops.LHS->getType() != RHS->getType())
 | 
						|
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
 | 
						|
  
 | 
						|
  return Builder.CreateShl(Ops.LHS, RHS, "shl");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
 | 
						|
  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
 | 
						|
  // RHS to the same size as the LHS.
 | 
						|
  Value *RHS = Ops.RHS;
 | 
						|
  if (Ops.LHS->getType() != RHS->getType())
 | 
						|
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
 | 
						|
  
 | 
						|
  if (Ops.Ty->isUnsignedIntegerType())
 | 
						|
    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
 | 
						|
  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
 | 
						|
                                      unsigned SICmpOpc, unsigned FCmpOpc) {
 | 
						|
  Value *Result;
 | 
						|
  QualType LHSTy = E->getLHS()->getType();
 | 
						|
  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
 | 
						|
    Value *LHS = Visit(E->getLHS());
 | 
						|
    Value *RHS = Visit(E->getRHS());
 | 
						|
    
 | 
						|
    if (LHS->getType()->isFloatingPoint()) {
 | 
						|
      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
 | 
						|
                                  LHS, RHS, "cmp");
 | 
						|
    } else if (LHSTy->isSignedIntegerType()) {
 | 
						|
      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
 | 
						|
                                  LHS, RHS, "cmp");
 | 
						|
    } else {
 | 
						|
      // Unsigned integers and pointers.
 | 
						|
      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | 
						|
                                  LHS, RHS, "cmp");
 | 
						|
    }
 | 
						|
  } else if (LHSTy->isVectorType()) {
 | 
						|
    Value *LHS = Visit(E->getLHS());
 | 
						|
    Value *RHS = Visit(E->getRHS());
 | 
						|
    
 | 
						|
    if (LHS->getType()->isFPOrFPVector()) {
 | 
						|
      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
 | 
						|
                                  LHS, RHS, "cmp");
 | 
						|
    } else if (LHSTy->isUnsignedIntegerType()) {
 | 
						|
      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
 | 
						|
                                  LHS, RHS, "cmp");
 | 
						|
    } else {
 | 
						|
      // Signed integers and pointers.
 | 
						|
      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
 | 
						|
                                  LHS, RHS, "cmp");
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  } else {
 | 
						|
    // Complex Comparison: can only be an equality comparison.
 | 
						|
    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
 | 
						|
    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
 | 
						|
    
 | 
						|
    QualType CETy = LHSTy->getAsComplexType()->getElementType();
 | 
						|
    
 | 
						|
    Value *ResultR, *ResultI;
 | 
						|
    if (CETy->isRealFloatingType()) {
 | 
						|
      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
 | 
						|
                                   LHS.first, RHS.first, "cmp.r");
 | 
						|
      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
 | 
						|
                                   LHS.second, RHS.second, "cmp.i");
 | 
						|
    } else {
 | 
						|
      // Complex comparisons can only be equality comparisons.  As such, signed
 | 
						|
      // and unsigned opcodes are the same.
 | 
						|
      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | 
						|
                                   LHS.first, RHS.first, "cmp.r");
 | 
						|
      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | 
						|
                                   LHS.second, RHS.second, "cmp.i");
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (E->getOpcode() == BinaryOperator::EQ) {
 | 
						|
      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
 | 
						|
    } else {
 | 
						|
      assert(E->getOpcode() == BinaryOperator::NE &&
 | 
						|
             "Complex comparison other than == or != ?");
 | 
						|
      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // ZExt result to int.
 | 
						|
  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
 | 
						|
  LValue LHS = EmitLValue(E->getLHS());
 | 
						|
  Value *RHS = Visit(E->getRHS());
 | 
						|
  
 | 
						|
  // Store the value into the LHS.  Bit-fields are handled specially
 | 
						|
  // because the result is altered by the store, i.e., [C99 6.5.16p1]
 | 
						|
  // 'An assignment expression has the value of the left operand after
 | 
						|
  // the assignment...'.  
 | 
						|
  // FIXME: Volatility!
 | 
						|
  if (LHS.isBitfield())
 | 
						|
    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
 | 
						|
                                       &RHS);
 | 
						|
  else
 | 
						|
    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
 | 
						|
 | 
						|
  // Return the RHS.
 | 
						|
  return RHS;
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
 | 
						|
  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
 | 
						|
  // If we have 1 && X, just emit X without inserting the control flow.
 | 
						|
  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
 | 
						|
    if (Cond == 1) { // If we have 1 && X, just emit X.
 | 
						|
      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | 
						|
      // ZExt result to int.
 | 
						|
      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
 | 
						|
    }
 | 
						|
    
 | 
						|
    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
 | 
						|
    if (!CGF.ContainsLabel(E->getRHS()))
 | 
						|
      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
 | 
						|
  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
 | 
						|
 | 
						|
  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
 | 
						|
  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
 | 
						|
 | 
						|
  // Any edges into the ContBlock are now from an (indeterminate number of)
 | 
						|
  // edges from this first condition.  All of these values will be false.  Start
 | 
						|
  // setting up the PHI node in the Cont Block for this.
 | 
						|
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
 | 
						|
  PN->reserveOperandSpace(2);  // Normal case, two inputs.
 | 
						|
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
 | 
						|
       PI != PE; ++PI)
 | 
						|
    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
 | 
						|
  
 | 
						|
  CGF.EmitBlock(RHSBlock);
 | 
						|
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | 
						|
  
 | 
						|
  // Reaquire the RHS block, as there may be subblocks inserted.
 | 
						|
  RHSBlock = Builder.GetInsertBlock();
 | 
						|
 | 
						|
  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
 | 
						|
  // into the phi node for the edge with the value of RHSCond.
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
  PN->addIncoming(RHSCond, RHSBlock);
 | 
						|
  
 | 
						|
  // ZExt result to int.
 | 
						|
  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
 | 
						|
  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
 | 
						|
  // If we have 0 || X, just emit X without inserting the control flow.
 | 
						|
  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
 | 
						|
    if (Cond == -1) { // If we have 0 || X, just emit X.
 | 
						|
      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | 
						|
      // ZExt result to int.
 | 
						|
      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
 | 
						|
    }
 | 
						|
    
 | 
						|
    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
 | 
						|
    if (!CGF.ContainsLabel(E->getRHS()))
 | 
						|
      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
 | 
						|
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
 | 
						|
  
 | 
						|
  // Branch on the LHS first.  If it is true, go to the success (cont) block.
 | 
						|
  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
 | 
						|
 | 
						|
  // Any edges into the ContBlock are now from an (indeterminate number of)
 | 
						|
  // edges from this first condition.  All of these values will be true.  Start
 | 
						|
  // setting up the PHI node in the Cont Block for this.
 | 
						|
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
 | 
						|
  PN->reserveOperandSpace(2);  // Normal case, two inputs.
 | 
						|
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
 | 
						|
       PI != PE; ++PI)
 | 
						|
    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
 | 
						|
 | 
						|
  // Emit the RHS condition as a bool value.
 | 
						|
  CGF.EmitBlock(RHSBlock);
 | 
						|
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | 
						|
  
 | 
						|
  // Reaquire the RHS block, as there may be subblocks inserted.
 | 
						|
  RHSBlock = Builder.GetInsertBlock();
 | 
						|
  
 | 
						|
  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
 | 
						|
  // into the phi node for the edge with the value of RHSCond.
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
  PN->addIncoming(RHSCond, RHSBlock);
 | 
						|
  
 | 
						|
  // ZExt result to int.
 | 
						|
  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
 | 
						|
  CGF.EmitStmt(E->getLHS());
 | 
						|
  CGF.EnsureInsertPoint();
 | 
						|
  return Visit(E->getRHS());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             Other Operators
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
 | 
						|
/// expression is cheap enough and side-effect-free enough to evaluate
 | 
						|
/// unconditionally instead of conditionally.  This is used to convert control
 | 
						|
/// flow into selects in some cases.
 | 
						|
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
 | 
						|
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
 | 
						|
    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
 | 
						|
  
 | 
						|
  // TODO: Allow anything we can constant fold to an integer or fp constant.
 | 
						|
  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
 | 
						|
      isa<FloatingLiteral>(E))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // Non-volatile automatic variables too, to get "cond ? X : Y" where
 | 
						|
  // X and Y are local variables.
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
 | 
						|
      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
 | 
						|
        return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Value *ScalarExprEmitter::
 | 
						|
VisitConditionalOperator(const ConditionalOperator *E) {
 | 
						|
  // If the condition constant folds and can be elided, try to avoid emitting
 | 
						|
  // the condition and the dead arm.
 | 
						|
  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
 | 
						|
    Expr *Live = E->getLHS(), *Dead = E->getRHS();
 | 
						|
    if (Cond == -1)
 | 
						|
      std::swap(Live, Dead);
 | 
						|
    
 | 
						|
    // If the dead side doesn't have labels we need, and if the Live side isn't
 | 
						|
    // the gnu missing ?: extension (which we could handle, but don't bother
 | 
						|
    // to), just emit the Live part.
 | 
						|
    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
 | 
						|
        Live)                                   // Live part isn't missing.
 | 
						|
      return Visit(Live);
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // If this is a really simple expression (like x ? 4 : 5), emit this as a
 | 
						|
  // select instead of as control flow.  We can only do this if it is cheap and
 | 
						|
  // safe to evaluate the LHS and RHS unconditionally.
 | 
						|
  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
 | 
						|
      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
 | 
						|
    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
 | 
						|
    llvm::Value *LHS = Visit(E->getLHS());
 | 
						|
    llvm::Value *RHS = Visit(E->getRHS());
 | 
						|
    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
 | 
						|
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
 | 
						|
  Value *CondVal = 0;
 | 
						|
 | 
						|
  // If we have the GNU missing condition extension, evaluate the conditional
 | 
						|
  // and then convert it to bool the hard way.  We do this explicitly
 | 
						|
  // because we need the unconverted value for the missing middle value of
 | 
						|
  // the ?:.
 | 
						|
  if (E->getLHS() == 0) {
 | 
						|
    CondVal = CGF.EmitScalarExpr(E->getCond());
 | 
						|
    Value *CondBoolVal =
 | 
						|
      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
 | 
						|
                               CGF.getContext().BoolTy);
 | 
						|
    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
 | 
						|
  } else {
 | 
						|
    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
 | 
						|
    // the branch on bool.
 | 
						|
    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
 | 
						|
  }
 | 
						|
  
 | 
						|
  CGF.EmitBlock(LHSBlock);
 | 
						|
  
 | 
						|
  // Handle the GNU extension for missing LHS.
 | 
						|
  Value *LHS;
 | 
						|
  if (E->getLHS())
 | 
						|
    LHS = Visit(E->getLHS());
 | 
						|
  else    // Perform promotions, to handle cases like "short ?: int"
 | 
						|
    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
 | 
						|
  
 | 
						|
  LHSBlock = Builder.GetInsertBlock();
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
  
 | 
						|
  CGF.EmitBlock(RHSBlock);
 | 
						|
  
 | 
						|
  Value *RHS = Visit(E->getRHS());
 | 
						|
  RHSBlock = Builder.GetInsertBlock();
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
  
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
  
 | 
						|
  if (!LHS || !RHS) {
 | 
						|
    assert(E->getType()->isVoidType() && "Non-void value should have a value");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Create a PHI node for the real part.
 | 
						|
  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
 | 
						|
  PN->reserveOperandSpace(2);
 | 
						|
  PN->addIncoming(LHS, LHSBlock);
 | 
						|
  PN->addIncoming(RHS, RHSBlock);
 | 
						|
  return PN;
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
 | 
						|
  // Emit the LHS or RHS as appropriate.
 | 
						|
  return
 | 
						|
    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
 | 
						|
  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
 | 
						|
                          E->arg_end(CGF.getContext())).getScalarVal();
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
 | 
						|
  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
 | 
						|
 | 
						|
  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
 | 
						|
 | 
						|
  // If EmitVAArg fails, we fall back to the LLVM instruction.
 | 
						|
  if (!ArgPtr) 
 | 
						|
    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
 | 
						|
 | 
						|
  // FIXME: volatile?
 | 
						|
  return Builder.CreateLoad(ArgPtr);
 | 
						|
}
 | 
						|
 | 
						|
Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
 | 
						|
  std::string str;
 | 
						|
  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
 | 
						|
  
 | 
						|
  llvm::Constant *C = llvm::ConstantArray::get(str);
 | 
						|
  C = new llvm::GlobalVariable(C->getType(), true, 
 | 
						|
                               llvm::GlobalValue::InternalLinkage,
 | 
						|
                               C, ".str", &CGF.CGM.getModule());
 | 
						|
  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
 | 
						|
  llvm::Constant *Zeros[] = { Zero, Zero };
 | 
						|
  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
 | 
						|
  
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Entry Point into this File
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// EmitComplexExpr - Emit the computation of the specified expression of
 | 
						|
/// complex type, ignoring the result.
 | 
						|
Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
 | 
						|
  assert(E && !hasAggregateLLVMType(E->getType()) &&
 | 
						|
         "Invalid scalar expression to emit");
 | 
						|
  
 | 
						|
  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
 | 
						|
}
 | 
						|
 | 
						|
/// EmitScalarConversion - Emit a conversion from the specified type to the
 | 
						|
/// specified destination type, both of which are LLVM scalar types.
 | 
						|
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
 | 
						|
                                             QualType DstTy) {
 | 
						|
  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
 | 
						|
         "Invalid scalar expression to emit");
 | 
						|
  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
 | 
						|
/// complex type to the specified destination type, where the destination
 | 
						|
/// type is an LLVM scalar type.
 | 
						|
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
 | 
						|
                                                      QualType SrcTy,
 | 
						|
                                                      QualType DstTy) {
 | 
						|
  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
 | 
						|
         "Invalid complex -> scalar conversion");
 | 
						|
  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
 | 
						|
                                                                DstTy);
 | 
						|
}
 | 
						|
 | 
						|
Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
 | 
						|
  assert(V1->getType() == V2->getType() &&
 | 
						|
         "Vector operands must be of the same type");
 | 
						|
  unsigned NumElements = 
 | 
						|
    cast<llvm::VectorType>(V1->getType())->getNumElements();
 | 
						|
  
 | 
						|
  va_list va;
 | 
						|
  va_start(va, V2);
 | 
						|
  
 | 
						|
  llvm::SmallVector<llvm::Constant*, 16> Args;
 | 
						|
  for (unsigned i = 0; i < NumElements; i++) {
 | 
						|
    int n = va_arg(va, int);
 | 
						|
    assert(n >= 0 && n < (int)NumElements * 2 && 
 | 
						|
           "Vector shuffle index out of bounds!");
 | 
						|
    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
 | 
						|
  }
 | 
						|
  
 | 
						|
  const char *Name = va_arg(va, const char *);
 | 
						|
  va_end(va);
 | 
						|
  
 | 
						|
  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
 | 
						|
  
 | 
						|
  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals, 
 | 
						|
                                         unsigned NumVals, bool isSplat) {
 | 
						|
  llvm::Value *Vec
 | 
						|
    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = NumVals; i != e; ++i) {
 | 
						|
    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
 | 
						|
    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
 | 
						|
    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Vec;  
 | 
						|
}
 |