1199 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1199 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetFrameLowering.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <cctype>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> DisableHazardRecognizer(
 | |
|   "disable-sched-hazard", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable hazard detection during preRA scheduling"));
 | |
| 
 | |
| TargetInstrInfo::~TargetInstrInfo() {
 | |
| }
 | |
| 
 | |
| const TargetRegisterClass*
 | |
| TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
 | |
|                              const TargetRegisterInfo *TRI,
 | |
|                              const MachineFunction &MF) const {
 | |
|   if (OpNum >= MCID.getNumOperands())
 | |
|     return nullptr;
 | |
| 
 | |
|   short RegClass = MCID.OpInfo[OpNum].RegClass;
 | |
|   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
 | |
|     return TRI->getPointerRegClass(MF, RegClass);
 | |
| 
 | |
|   // Instructions like INSERT_SUBREG do not have fixed register classes.
 | |
|   if (RegClass < 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise just look it up normally.
 | |
|   return TRI->getRegClass(RegClass);
 | |
| }
 | |
| 
 | |
| /// insertNoop - Insert a noop into the instruction stream at the specified
 | |
| /// point.
 | |
| void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator MI) const {
 | |
|   llvm_unreachable("Target didn't implement insertNoop!");
 | |
| }
 | |
| 
 | |
| /// Measure the specified inline asm to determine an approximation of its
 | |
| /// length.
 | |
| /// Comments (which run till the next SeparatorString or newline) do not
 | |
| /// count as an instruction.
 | |
| /// Any other non-whitespace text is considered an instruction, with
 | |
| /// multiple instructions separated by SeparatorString or newlines.
 | |
| /// Variable-length instructions are not handled here; this function
 | |
| /// may be overloaded in the target code to do that.
 | |
| unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
 | |
|                                              const MCAsmInfo &MAI) const {
 | |
|   // Count the number of instructions in the asm.
 | |
|   bool atInsnStart = true;
 | |
|   unsigned InstCount = 0;
 | |
|   for (; *Str; ++Str) {
 | |
|     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
 | |
|                                 strlen(MAI.getSeparatorString())) == 0) {
 | |
|       atInsnStart = true;
 | |
|     } else if (strncmp(Str, MAI.getCommentString().data(),
 | |
|                        MAI.getCommentString().size()) == 0) {
 | |
|       // Stop counting as an instruction after a comment until the next
 | |
|       // separator.
 | |
|       atInsnStart = false;
 | |
|     }
 | |
| 
 | |
|     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
 | |
|       ++InstCount;
 | |
|       atInsnStart = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return InstCount * MAI.getMaxInstLength();
 | |
| }
 | |
| 
 | |
| /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
 | |
| /// after it, replacing it with an unconditional branch to NewDest.
 | |
| void
 | |
| TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
 | |
|                                          MachineBasicBlock *NewDest) const {
 | |
|   MachineBasicBlock *MBB = Tail->getParent();
 | |
| 
 | |
|   // Remove all the old successors of MBB from the CFG.
 | |
|   while (!MBB->succ_empty())
 | |
|     MBB->removeSuccessor(MBB->succ_begin());
 | |
| 
 | |
|   // Save off the debug loc before erasing the instruction.
 | |
|   DebugLoc DL = Tail->getDebugLoc();
 | |
| 
 | |
|   // Remove all the dead instructions from the end of MBB.
 | |
|   MBB->erase(Tail, MBB->end());
 | |
| 
 | |
|   // If MBB isn't immediately before MBB, insert a branch to it.
 | |
|   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
 | |
|     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
 | |
|   MBB->addSuccessor(NewDest);
 | |
| }
 | |
| 
 | |
| MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
 | |
|                                                       bool NewMI, unsigned Idx1,
 | |
|                                                       unsigned Idx2) const {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   bool HasDef = MCID.getNumDefs();
 | |
|   if (HasDef && !MI.getOperand(0).isReg())
 | |
|     // No idea how to commute this instruction. Target should implement its own.
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
 | |
|   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
 | |
|   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
 | |
|          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
 | |
|          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
 | |
|   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
 | |
|          "This only knows how to commute register operands so far");
 | |
| 
 | |
|   unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
 | |
|   unsigned Reg1 = MI.getOperand(Idx1).getReg();
 | |
|   unsigned Reg2 = MI.getOperand(Idx2).getReg();
 | |
|   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
 | |
|   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
 | |
|   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
 | |
|   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
 | |
|   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
 | |
|   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
 | |
|   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
 | |
|   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
 | |
|   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
 | |
|   // If destination is tied to either of the commuted source register, then
 | |
|   // it must be updated.
 | |
|   if (HasDef && Reg0 == Reg1 &&
 | |
|       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
 | |
|     Reg2IsKill = false;
 | |
|     Reg0 = Reg2;
 | |
|     SubReg0 = SubReg2;
 | |
|   } else if (HasDef && Reg0 == Reg2 &&
 | |
|              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
 | |
|     Reg1IsKill = false;
 | |
|     Reg0 = Reg1;
 | |
|     SubReg0 = SubReg1;
 | |
|   }
 | |
| 
 | |
|   MachineInstr *CommutedMI = nullptr;
 | |
|   if (NewMI) {
 | |
|     // Create a new instruction.
 | |
|     MachineFunction &MF = *MI.getParent()->getParent();
 | |
|     CommutedMI = MF.CloneMachineInstr(&MI);
 | |
|   } else {
 | |
|     CommutedMI = &MI;
 | |
|   }
 | |
| 
 | |
|   if (HasDef) {
 | |
|     CommutedMI->getOperand(0).setReg(Reg0);
 | |
|     CommutedMI->getOperand(0).setSubReg(SubReg0);
 | |
|   }
 | |
|   CommutedMI->getOperand(Idx2).setReg(Reg1);
 | |
|   CommutedMI->getOperand(Idx1).setReg(Reg2);
 | |
|   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
 | |
|   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
 | |
|   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
 | |
|   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
 | |
|   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
 | |
|   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
 | |
|   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
 | |
|   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
 | |
|   return CommutedMI;
 | |
| }
 | |
| 
 | |
| MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
 | |
|                                                   unsigned OpIdx1,
 | |
|                                                   unsigned OpIdx2) const {
 | |
|   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
 | |
|   // any commutable operand, which is done in findCommutedOpIndices() method
 | |
|   // called below.
 | |
|   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
 | |
|       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
 | |
|     assert(MI.isCommutable() &&
 | |
|            "Precondition violation: MI must be commutable.");
 | |
|     return nullptr;
 | |
|   }
 | |
|   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
 | |
|                                            unsigned &ResultIdx2,
 | |
|                                            unsigned CommutableOpIdx1,
 | |
|                                            unsigned CommutableOpIdx2) {
 | |
|   if (ResultIdx1 == CommuteAnyOperandIndex &&
 | |
|       ResultIdx2 == CommuteAnyOperandIndex) {
 | |
|     ResultIdx1 = CommutableOpIdx1;
 | |
|     ResultIdx2 = CommutableOpIdx2;
 | |
|   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
 | |
|     if (ResultIdx2 == CommutableOpIdx1)
 | |
|       ResultIdx1 = CommutableOpIdx2;
 | |
|     else if (ResultIdx2 == CommutableOpIdx2)
 | |
|       ResultIdx1 = CommutableOpIdx1;
 | |
|     else
 | |
|       return false;
 | |
|   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
 | |
|     if (ResultIdx1 == CommutableOpIdx1)
 | |
|       ResultIdx2 = CommutableOpIdx2;
 | |
|     else if (ResultIdx1 == CommutableOpIdx2)
 | |
|       ResultIdx2 = CommutableOpIdx1;
 | |
|     else
 | |
|       return false;
 | |
|   } else
 | |
|     // Check that the result operand indices match the given commutable
 | |
|     // operand indices.
 | |
|     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
 | |
|            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
 | |
|                                             unsigned &SrcOpIdx1,
 | |
|                                             unsigned &SrcOpIdx2) const {
 | |
|   assert(!MI.isBundle() &&
 | |
|          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
 | |
| 
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   if (!MCID.isCommutable())
 | |
|     return false;
 | |
| 
 | |
|   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
 | |
|   // is not true, then the target must implement this.
 | |
|   unsigned CommutableOpIdx1 = MCID.getNumDefs();
 | |
|   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
 | |
|   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
 | |
|                             CommutableOpIdx1, CommutableOpIdx2))
 | |
|     return false;
 | |
| 
 | |
|   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
 | |
|     // No idea.
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
 | |
|   if (!MI.isTerminator()) return false;
 | |
| 
 | |
|   // Conditional branch is a special case.
 | |
|   if (MI.isBranch() && !MI.isBarrier())
 | |
|     return true;
 | |
|   if (!MI.isPredicable())
 | |
|     return true;
 | |
|   return !isPredicated(MI);
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::PredicateInstruction(
 | |
|     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   assert(!MI.isBundle() &&
 | |
|          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
 | |
| 
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   if (!MI.isPredicable())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     if (MCID.OpInfo[i].isPredicate()) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (MO.isReg()) {
 | |
|         MO.setReg(Pred[j].getReg());
 | |
|         MadeChange = true;
 | |
|       } else if (MO.isImm()) {
 | |
|         MO.setImm(Pred[j].getImm());
 | |
|         MadeChange = true;
 | |
|       } else if (MO.isMBB()) {
 | |
|         MO.setMBB(Pred[j].getMBB());
 | |
|         MadeChange = true;
 | |
|       }
 | |
|       ++j;
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr &MI,
 | |
|                                            const MachineMemOperand *&MMO,
 | |
|                                            int &FrameIndex) const {
 | |
|   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
 | |
|                                   oe = MI.memoperands_end();
 | |
|        o != oe; ++o) {
 | |
|     if ((*o)->isLoad()) {
 | |
|       if (const FixedStackPseudoSourceValue *Value =
 | |
|           dyn_cast_or_null<FixedStackPseudoSourceValue>(
 | |
|               (*o)->getPseudoValue())) {
 | |
|         FrameIndex = Value->getFrameIndex();
 | |
|         MMO = *o;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr &MI,
 | |
|                                           const MachineMemOperand *&MMO,
 | |
|                                           int &FrameIndex) const {
 | |
|   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
 | |
|                                   oe = MI.memoperands_end();
 | |
|        o != oe; ++o) {
 | |
|     if ((*o)->isStore()) {
 | |
|       if (const FixedStackPseudoSourceValue *Value =
 | |
|           dyn_cast_or_null<FixedStackPseudoSourceValue>(
 | |
|               (*o)->getPseudoValue())) {
 | |
|         FrameIndex = Value->getFrameIndex();
 | |
|         MMO = *o;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
 | |
|                                         unsigned SubIdx, unsigned &Size,
 | |
|                                         unsigned &Offset,
 | |
|                                         const MachineFunction &MF) const {
 | |
|   if (!SubIdx) {
 | |
|     Size = RC->getSize();
 | |
|     Offset = 0;
 | |
|     return true;
 | |
|   }
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
 | |
|   // Convert bit size to byte size to be consistent with
 | |
|   // MCRegisterClass::getSize().
 | |
|   if (BitSize % 8)
 | |
|     return false;
 | |
| 
 | |
|   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
 | |
|   if (BitOffset < 0 || BitOffset % 8)
 | |
|     return false;
 | |
| 
 | |
|   Size = BitSize /= 8;
 | |
|   Offset = (unsigned)BitOffset / 8;
 | |
| 
 | |
|   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
 | |
| 
 | |
|   if (!MF.getDataLayout().isLittleEndian()) {
 | |
|     Offset = RC->getSize() - (Offset + Size);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock::iterator I,
 | |
|                                     unsigned DestReg, unsigned SubIdx,
 | |
|                                     const MachineInstr &Orig,
 | |
|                                     const TargetRegisterInfo &TRI) const {
 | |
|   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
 | |
|   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
 | |
|   MBB.insert(I, MI);
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
 | |
|                                        const MachineInstr &MI1,
 | |
|                                        const MachineRegisterInfo *MRI) const {
 | |
|   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
 | |
| }
 | |
| 
 | |
| MachineInstr *TargetInstrInfo::duplicate(MachineInstr &Orig,
 | |
|                                          MachineFunction &MF) const {
 | |
|   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
 | |
|   return MF.CloneMachineInstr(&Orig);
 | |
| }
 | |
| 
 | |
| // If the COPY instruction in MI can be folded to a stack operation, return
 | |
| // the register class to use.
 | |
| static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
 | |
|                                               unsigned FoldIdx) {
 | |
|   assert(MI.isCopy() && "MI must be a COPY instruction");
 | |
|   if (MI.getNumOperands() != 2)
 | |
|     return nullptr;
 | |
|   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
 | |
| 
 | |
|   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
 | |
|   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
 | |
| 
 | |
|   if (FoldOp.getSubReg() || LiveOp.getSubReg())
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned FoldReg = FoldOp.getReg();
 | |
|   unsigned LiveReg = LiveOp.getReg();
 | |
| 
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
 | |
|          "Cannot fold physregs");
 | |
| 
 | |
|   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
 | |
| 
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
 | |
|     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
 | |
| 
 | |
|   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
 | |
|     return RC;
 | |
| 
 | |
|   // FIXME: Allow folding when register classes are memory compatible.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
 | |
|   llvm_unreachable("Not a MachO target");
 | |
| }
 | |
| 
 | |
| static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
 | |
|                                     ArrayRef<unsigned> Ops, int FrameIndex,
 | |
|                                     const TargetInstrInfo &TII) {
 | |
|   unsigned StartIdx = 0;
 | |
|   switch (MI.getOpcode()) {
 | |
|   case TargetOpcode::STACKMAP: {
 | |
|     // StackMapLiveValues are foldable
 | |
|     StartIdx = StackMapOpers(&MI).getVarIdx();
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::PATCHPOINT: {
 | |
|     // For PatchPoint, the call args are not foldable (even if reported in the
 | |
|     // stackmap e.g. via anyregcc).
 | |
|     StartIdx = PatchPointOpers(&MI).getVarIdx();
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::STATEPOINT: {
 | |
|     // For statepoints, fold deopt and gc arguments, but not call arguments.
 | |
|     StartIdx = StatepointOpers(&MI).getVarIdx();
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("unexpected stackmap opcode");
 | |
|   }
 | |
| 
 | |
|   // Return false if any operands requested for folding are not foldable (not
 | |
|   // part of the stackmap's live values).
 | |
|   for (unsigned Op : Ops) {
 | |
|     if (Op < StartIdx)
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   MachineInstr *NewMI =
 | |
|       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(MF, NewMI);
 | |
| 
 | |
|   // No need to fold return, the meta data, and function arguments
 | |
|   for (unsigned i = 0; i < StartIdx; ++i)
 | |
|     MIB.add(MI.getOperand(i));
 | |
| 
 | |
|   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (is_contained(Ops, i)) {
 | |
|       unsigned SpillSize;
 | |
|       unsigned SpillOffset;
 | |
|       // Compute the spill slot size and offset.
 | |
|       const TargetRegisterClass *RC =
 | |
|         MF.getRegInfo().getRegClass(MO.getReg());
 | |
|       bool Valid =
 | |
|           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
 | |
|       if (!Valid)
 | |
|         report_fatal_error("cannot spill patchpoint subregister operand");
 | |
|       MIB.addImm(StackMaps::IndirectMemRefOp);
 | |
|       MIB.addImm(SpillSize);
 | |
|       MIB.addFrameIndex(FrameIndex);
 | |
|       MIB.addImm(SpillOffset);
 | |
|     }
 | |
|     else
 | |
|       MIB.add(MO);
 | |
|   }
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
 | |
| /// slot into the specified machine instruction for the specified operand(s).
 | |
| /// If this is possible, a new instruction is returned with the specified
 | |
| /// operand folded, otherwise NULL is returned. The client is responsible for
 | |
| /// removing the old instruction and adding the new one in the instruction
 | |
| /// stream.
 | |
| MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
 | |
|                                                  ArrayRef<unsigned> Ops, int FI,
 | |
|                                                  LiveIntervals *LIS) const {
 | |
|   auto Flags = MachineMemOperand::MONone;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     if (MI.getOperand(Ops[i]).isDef())
 | |
|       Flags |= MachineMemOperand::MOStore;
 | |
|     else
 | |
|       Flags |= MachineMemOperand::MOLoad;
 | |
| 
 | |
|   MachineBasicBlock *MBB = MI.getParent();
 | |
|   assert(MBB && "foldMemoryOperand needs an inserted instruction");
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
| 
 | |
|   // If we're not folding a load into a subreg, the size of the load is the
 | |
|   // size of the spill slot. But if we are, we need to figure out what the
 | |
|   // actual load size is.
 | |
|   int64_t MemSize = 0;
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
| 
 | |
|   if (Flags & MachineMemOperand::MOStore) {
 | |
|     MemSize = MFI.getObjectSize(FI);
 | |
|   } else {
 | |
|     for (unsigned Idx : Ops) {
 | |
|       int64_t OpSize = MFI.getObjectSize(FI);
 | |
| 
 | |
|       if (auto SubReg = MI.getOperand(Idx).getSubReg()) {
 | |
|         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
 | |
|         if (SubRegSize > 0 && !(SubRegSize % 8))
 | |
|           OpSize = SubRegSize / 8;
 | |
|       }
 | |
| 
 | |
|       MemSize = std::max(MemSize, OpSize);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(MemSize && "Did not expect a zero-sized stack slot");
 | |
| 
 | |
|   MachineInstr *NewMI = nullptr;
 | |
| 
 | |
|   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
 | |
|       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
 | |
|       MI.getOpcode() == TargetOpcode::STATEPOINT) {
 | |
|     // Fold stackmap/patchpoint.
 | |
|     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
 | |
|     if (NewMI)
 | |
|       MBB->insert(MI, NewMI);
 | |
|   } else {
 | |
|     // Ask the target to do the actual folding.
 | |
|     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS);
 | |
|   }
 | |
| 
 | |
|   if (NewMI) {
 | |
|     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
 | |
|     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
 | |
|     assert((!(Flags & MachineMemOperand::MOStore) ||
 | |
|             NewMI->mayStore()) &&
 | |
|            "Folded a def to a non-store!");
 | |
|     assert((!(Flags & MachineMemOperand::MOLoad) ||
 | |
|             NewMI->mayLoad()) &&
 | |
|            "Folded a use to a non-load!");
 | |
|     assert(MFI.getObjectOffset(FI) != -1);
 | |
|     MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
 | |
|         MFI.getObjectAlignment(FI));
 | |
|     NewMI->addMemOperand(MF, MMO);
 | |
| 
 | |
|     return NewMI;
 | |
|   }
 | |
| 
 | |
|   // Straight COPY may fold as load/store.
 | |
|   if (!MI.isCopy() || Ops.size() != 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
 | |
|   if (!RC)
 | |
|     return nullptr;
 | |
| 
 | |
|   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
 | |
|   MachineBasicBlock::iterator Pos = MI;
 | |
| 
 | |
|   if (Flags == MachineMemOperand::MOStore)
 | |
|     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
 | |
|   else
 | |
|     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
 | |
|   return &*--Pos;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::hasReassociableOperands(
 | |
|     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
 | |
|   const MachineOperand &Op1 = Inst.getOperand(1);
 | |
|   const MachineOperand &Op2 = Inst.getOperand(2);
 | |
|   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | |
| 
 | |
|   // We need virtual register definitions for the operands that we will
 | |
|   // reassociate.
 | |
|   MachineInstr *MI1 = nullptr;
 | |
|   MachineInstr *MI2 = nullptr;
 | |
|   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
 | |
|     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
 | |
|   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
 | |
|     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
 | |
| 
 | |
|   // And they need to be in the trace (otherwise, they won't have a depth).
 | |
|   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
 | |
|                                              bool &Commuted) const {
 | |
|   const MachineBasicBlock *MBB = Inst.getParent();
 | |
|   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | |
|   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
 | |
|   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
 | |
|   unsigned AssocOpcode = Inst.getOpcode();
 | |
| 
 | |
|   // If only one operand has the same opcode and it's the second source operand,
 | |
|   // the operands must be commuted.
 | |
|   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
 | |
|   if (Commuted)
 | |
|     std::swap(MI1, MI2);
 | |
| 
 | |
|   // 1. The previous instruction must be the same type as Inst.
 | |
|   // 2. The previous instruction must have virtual register definitions for its
 | |
|   //    operands in the same basic block as Inst.
 | |
|   // 3. The previous instruction's result must only be used by Inst.
 | |
|   return MI1->getOpcode() == AssocOpcode &&
 | |
|          hasReassociableOperands(*MI1, MBB) &&
 | |
|          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
 | |
| }
 | |
| 
 | |
| // 1. The operation must be associative and commutative.
 | |
| // 2. The instruction must have virtual register definitions for its
 | |
| //    operands in the same basic block.
 | |
| // 3. The instruction must have a reassociable sibling.
 | |
| bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
 | |
|                                                bool &Commuted) const {
 | |
|   return isAssociativeAndCommutative(Inst) &&
 | |
|          hasReassociableOperands(Inst, Inst.getParent()) &&
 | |
|          hasReassociableSibling(Inst, Commuted);
 | |
| }
 | |
| 
 | |
| // The concept of the reassociation pass is that these operations can benefit
 | |
| // from this kind of transformation:
 | |
| //
 | |
| // A = ? op ?
 | |
| // B = A op X (Prev)
 | |
| // C = B op Y (Root)
 | |
| // -->
 | |
| // A = ? op ?
 | |
| // B = X op Y
 | |
| // C = A op B
 | |
| //
 | |
| // breaking the dependency between A and B, allowing them to be executed in
 | |
| // parallel (or back-to-back in a pipeline) instead of depending on each other.
 | |
| 
 | |
| // FIXME: This has the potential to be expensive (compile time) while not
 | |
| // improving the code at all. Some ways to limit the overhead:
 | |
| // 1. Track successful transforms; bail out if hit rate gets too low.
 | |
| // 2. Only enable at -O3 or some other non-default optimization level.
 | |
| // 3. Pre-screen pattern candidates here: if an operand of the previous
 | |
| //    instruction is known to not increase the critical path, then don't match
 | |
| //    that pattern.
 | |
| bool TargetInstrInfo::getMachineCombinerPatterns(
 | |
|     MachineInstr &Root,
 | |
|     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
 | |
|   bool Commute;
 | |
|   if (isReassociationCandidate(Root, Commute)) {
 | |
|     // We found a sequence of instructions that may be suitable for a
 | |
|     // reassociation of operands to increase ILP. Specify each commutation
 | |
|     // possibility for the Prev instruction in the sequence and let the
 | |
|     // machine combiner decide if changing the operands is worthwhile.
 | |
|     if (Commute) {
 | |
|       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
 | |
|       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
 | |
|     } else {
 | |
|       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
 | |
|       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| /// Return true when a code sequence can improve loop throughput.
 | |
| bool
 | |
| TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
 | |
|   return false;
 | |
| }
 | |
| /// Attempt the reassociation transformation to reduce critical path length.
 | |
| /// See the above comments before getMachineCombinerPatterns().
 | |
| void TargetInstrInfo::reassociateOps(
 | |
|     MachineInstr &Root, MachineInstr &Prev,
 | |
|     MachineCombinerPattern Pattern,
 | |
|     SmallVectorImpl<MachineInstr *> &InsInstrs,
 | |
|     SmallVectorImpl<MachineInstr *> &DelInstrs,
 | |
|     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
 | |
|   MachineFunction *MF = Root.getParent()->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | |
|   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
 | |
| 
 | |
|   // This array encodes the operand index for each parameter because the
 | |
|   // operands may be commuted. Each row corresponds to a pattern value,
 | |
|   // and each column specifies the index of A, B, X, Y.
 | |
|   unsigned OpIdx[4][4] = {
 | |
|     { 1, 1, 2, 2 },
 | |
|     { 1, 2, 2, 1 },
 | |
|     { 2, 1, 1, 2 },
 | |
|     { 2, 2, 1, 1 }
 | |
|   };
 | |
| 
 | |
|   int Row;
 | |
|   switch (Pattern) {
 | |
|   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
 | |
|   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
 | |
|   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
 | |
|   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
 | |
|   default: llvm_unreachable("unexpected MachineCombinerPattern");
 | |
|   }
 | |
| 
 | |
|   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
 | |
|   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
 | |
|   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
 | |
|   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
 | |
|   MachineOperand &OpC = Root.getOperand(0);
 | |
| 
 | |
|   unsigned RegA = OpA.getReg();
 | |
|   unsigned RegB = OpB.getReg();
 | |
|   unsigned RegX = OpX.getReg();
 | |
|   unsigned RegY = OpY.getReg();
 | |
|   unsigned RegC = OpC.getReg();
 | |
| 
 | |
|   if (TargetRegisterInfo::isVirtualRegister(RegA))
 | |
|     MRI.constrainRegClass(RegA, RC);
 | |
|   if (TargetRegisterInfo::isVirtualRegister(RegB))
 | |
|     MRI.constrainRegClass(RegB, RC);
 | |
|   if (TargetRegisterInfo::isVirtualRegister(RegX))
 | |
|     MRI.constrainRegClass(RegX, RC);
 | |
|   if (TargetRegisterInfo::isVirtualRegister(RegY))
 | |
|     MRI.constrainRegClass(RegY, RC);
 | |
|   if (TargetRegisterInfo::isVirtualRegister(RegC))
 | |
|     MRI.constrainRegClass(RegC, RC);
 | |
| 
 | |
|   // Create a new virtual register for the result of (X op Y) instead of
 | |
|   // recycling RegB because the MachineCombiner's computation of the critical
 | |
|   // path requires a new register definition rather than an existing one.
 | |
|   unsigned NewVR = MRI.createVirtualRegister(RC);
 | |
|   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
 | |
| 
 | |
|   unsigned Opcode = Root.getOpcode();
 | |
|   bool KillA = OpA.isKill();
 | |
|   bool KillX = OpX.isKill();
 | |
|   bool KillY = OpY.isKill();
 | |
| 
 | |
|   // Create new instructions for insertion.
 | |
|   MachineInstrBuilder MIB1 =
 | |
|       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
 | |
|           .addReg(RegX, getKillRegState(KillX))
 | |
|           .addReg(RegY, getKillRegState(KillY));
 | |
|   MachineInstrBuilder MIB2 =
 | |
|       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
 | |
|           .addReg(RegA, getKillRegState(KillA))
 | |
|           .addReg(NewVR, getKillRegState(true));
 | |
| 
 | |
|   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
 | |
| 
 | |
|   // Record new instructions for insertion and old instructions for deletion.
 | |
|   InsInstrs.push_back(MIB1);
 | |
|   InsInstrs.push_back(MIB2);
 | |
|   DelInstrs.push_back(&Prev);
 | |
|   DelInstrs.push_back(&Root);
 | |
| }
 | |
| 
 | |
| void TargetInstrInfo::genAlternativeCodeSequence(
 | |
|     MachineInstr &Root, MachineCombinerPattern Pattern,
 | |
|     SmallVectorImpl<MachineInstr *> &InsInstrs,
 | |
|     SmallVectorImpl<MachineInstr *> &DelInstrs,
 | |
|     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
 | |
|   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
 | |
| 
 | |
|   // Select the previous instruction in the sequence based on the input pattern.
 | |
|   MachineInstr *Prev = nullptr;
 | |
|   switch (Pattern) {
 | |
|   case MachineCombinerPattern::REASSOC_AX_BY:
 | |
|   case MachineCombinerPattern::REASSOC_XA_BY:
 | |
|     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
 | |
|     break;
 | |
|   case MachineCombinerPattern::REASSOC_AX_YB:
 | |
|   case MachineCombinerPattern::REASSOC_XA_YB:
 | |
|     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert(Prev && "Unknown pattern for machine combiner");
 | |
| 
 | |
|   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
 | |
| }
 | |
| 
 | |
| /// foldMemoryOperand - Same as the previous version except it allows folding
 | |
| /// of any load and store from / to any address, not just from a specific
 | |
| /// stack slot.
 | |
| MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
 | |
|                                                  ArrayRef<unsigned> Ops,
 | |
|                                                  MachineInstr &LoadMI,
 | |
|                                                  LiveIntervals *LIS) const {
 | |
|   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     assert(MI.getOperand(Ops[i]).isUse() && "Folding load into def!");
 | |
| #endif
 | |
|   MachineBasicBlock &MBB = *MI.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
| 
 | |
|   // Ask the target to do the actual folding.
 | |
|   MachineInstr *NewMI = nullptr;
 | |
|   int FrameIndex = 0;
 | |
| 
 | |
|   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
 | |
|        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
 | |
|        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
 | |
|       isLoadFromStackSlot(LoadMI, FrameIndex)) {
 | |
|     // Fold stackmap/patchpoint.
 | |
|     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
 | |
|     if (NewMI)
 | |
|       NewMI = &*MBB.insert(MI, NewMI);
 | |
|   } else {
 | |
|     // Ask the target to do the actual folding.
 | |
|     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
 | |
|   }
 | |
| 
 | |
|   if (!NewMI) return nullptr;
 | |
| 
 | |
|   // Copy the memoperands from the load to the folded instruction.
 | |
|   if (MI.memoperands_empty()) {
 | |
|     NewMI->setMemRefs(LoadMI.memoperands_begin(), LoadMI.memoperands_end());
 | |
|   }
 | |
|   else {
 | |
|     // Handle the rare case of folding multiple loads.
 | |
|     NewMI->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
 | |
|     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
 | |
|                                     E = LoadMI.memoperands_end();
 | |
|          I != E; ++I) {
 | |
|       NewMI->addMemOperand(MF, *I);
 | |
|     }
 | |
|   }
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
 | |
|     const MachineInstr &MI, AliasAnalysis *AA) const {
 | |
|   const MachineFunction &MF = *MI.getParent()->getParent();
 | |
|   const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   // Remat clients assume operand 0 is the defined register.
 | |
|   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
 | |
|     return false;
 | |
|   unsigned DefReg = MI.getOperand(0).getReg();
 | |
| 
 | |
|   // A sub-register definition can only be rematerialized if the instruction
 | |
|   // doesn't read the other parts of the register.  Otherwise it is really a
 | |
|   // read-modify-write operation on the full virtual register which cannot be
 | |
|   // moved safely.
 | |
|   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
 | |
|       MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg))
 | |
|     return false;
 | |
| 
 | |
|   // A load from a fixed stack slot can be rematerialized. This may be
 | |
|   // redundant with subsequent checks, but it's target-independent,
 | |
|   // simple, and a common case.
 | |
|   int FrameIdx = 0;
 | |
|   if (isLoadFromStackSlot(MI, FrameIdx) &&
 | |
|       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
 | |
|     return true;
 | |
| 
 | |
|   // Avoid instructions obviously unsafe for remat.
 | |
|   if (MI.isNotDuplicable() || MI.mayStore() || MI.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   // Don't remat inline asm. We have no idea how expensive it is
 | |
|   // even if it's side effect free.
 | |
|   if (MI.isInlineAsm())
 | |
|     return false;
 | |
| 
 | |
|   // Avoid instructions which load from potentially varying memory.
 | |
|   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
 | |
|     return false;
 | |
| 
 | |
|   // If any of the registers accessed are non-constant, conservatively assume
 | |
|   // the instruction is not rematerializable.
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
| 
 | |
|     // Check for a well-behaved physical register.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse()) {
 | |
|         // If the physreg has no defs anywhere, it's just an ambient register
 | |
|         // and we can freely move its uses. Alternatively, if it's allocatable,
 | |
|         // it could get allocated to something with a def during allocation.
 | |
|         if (!MRI.isConstantPhysReg(Reg))
 | |
|           return false;
 | |
|       } else {
 | |
|         // A physreg def. We can't remat it.
 | |
|         return false;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Only allow one virtual-register def.  There may be multiple defs of the
 | |
|     // same virtual register, though.
 | |
|     if (MO.isDef() && Reg != DefReg)
 | |
|       return false;
 | |
| 
 | |
|     // Don't allow any virtual-register uses. Rematting an instruction with
 | |
|     // virtual register uses would length the live ranges of the uses, which
 | |
|     // is not necessarily a good idea, certainly not "trivial".
 | |
|     if (MO.isUse())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Everything checked out.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
 | |
|   const MachineFunction *MF = MI.getParent()->getParent();
 | |
|   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
 | |
|   bool StackGrowsDown =
 | |
|     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
 | |
| 
 | |
|   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
 | |
|   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
 | |
| 
 | |
|   if (MI.getOpcode() != FrameSetupOpcode &&
 | |
|       MI.getOpcode() != FrameDestroyOpcode)
 | |
|     return 0;
 | |
| 
 | |
|   int SPAdj = MI.getOperand(0).getImm();
 | |
|   SPAdj = TFI->alignSPAdjust(SPAdj);
 | |
| 
 | |
|   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
 | |
|       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
 | |
|     SPAdj = -SPAdj;
 | |
| 
 | |
|   return SPAdj;
 | |
| }
 | |
| 
 | |
| /// isSchedulingBoundary - Test if the given instruction should be
 | |
| /// considered a scheduling boundary. This primarily includes labels
 | |
| /// and terminators.
 | |
| bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
 | |
|                                            const MachineBasicBlock *MBB,
 | |
|                                            const MachineFunction &MF) const {
 | |
|   // Terminators and labels can't be scheduled around.
 | |
|   if (MI.isTerminator() || MI.isPosition())
 | |
|     return true;
 | |
| 
 | |
|   // Don't attempt to schedule around any instruction that defines
 | |
|   // a stack-oriented pointer, as it's unlikely to be profitable. This
 | |
|   // saves compile time, because it doesn't require every single
 | |
|   // stack slot reference to depend on the instruction that does the
 | |
|   // modification.
 | |
|   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
 | |
| }
 | |
| 
 | |
| // Provide a global flag for disabling the PreRA hazard recognizer that targets
 | |
| // may choose to honor.
 | |
| bool TargetInstrInfo::usePreRAHazardRecognizer() const {
 | |
|   return !DisableHazardRecognizer;
 | |
| }
 | |
| 
 | |
| // Default implementation of CreateTargetRAHazardRecognizer.
 | |
| ScheduleHazardRecognizer *TargetInstrInfo::
 | |
| CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
 | |
|                              const ScheduleDAG *DAG) const {
 | |
|   // Dummy hazard recognizer allows all instructions to issue.
 | |
|   return new ScheduleHazardRecognizer();
 | |
| }
 | |
| 
 | |
| // Default implementation of CreateTargetMIHazardRecognizer.
 | |
| ScheduleHazardRecognizer *TargetInstrInfo::
 | |
| CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
 | |
|                                const ScheduleDAG *DAG) const {
 | |
|   return (ScheduleHazardRecognizer *)
 | |
|     new ScoreboardHazardRecognizer(II, DAG, "misched");
 | |
| }
 | |
| 
 | |
| // Default implementation of CreateTargetPostRAHazardRecognizer.
 | |
| ScheduleHazardRecognizer *TargetInstrInfo::
 | |
| CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | |
|                                    const ScheduleDAG *DAG) const {
 | |
|   return (ScheduleHazardRecognizer *)
 | |
|     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  SelectionDAG latency interface.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int
 | |
| TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                    SDNode *DefNode, unsigned DefIdx,
 | |
|                                    SDNode *UseNode, unsigned UseIdx) const {
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return -1;
 | |
| 
 | |
|   if (!DefNode->isMachineOpcode())
 | |
|     return -1;
 | |
| 
 | |
|   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
 | |
|   if (!UseNode->isMachineOpcode())
 | |
|     return ItinData->getOperandCycle(DefClass, DefIdx);
 | |
|   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
 | |
|   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
 | |
| }
 | |
| 
 | |
| int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                      SDNode *N) const {
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return 1;
 | |
| 
 | |
|   if (!N->isMachineOpcode())
 | |
|     return 1;
 | |
| 
 | |
|   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  MachineInstr latency interface.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
 | |
|                                          const MachineInstr &MI) const {
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return 1;
 | |
| 
 | |
|   unsigned Class = MI.getDesc().getSchedClass();
 | |
|   int UOps = ItinData->Itineraries[Class].NumMicroOps;
 | |
|   if (UOps >= 0)
 | |
|     return UOps;
 | |
| 
 | |
|   // The # of u-ops is dynamically determined. The specific target should
 | |
|   // override this function to return the right number.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// Return the default expected latency for a def based on it's opcode.
 | |
| unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
 | |
|                                             const MachineInstr &DefMI) const {
 | |
|   if (DefMI.isTransient())
 | |
|     return 0;
 | |
|   if (DefMI.mayLoad())
 | |
|     return SchedModel.LoadLatency;
 | |
|   if (isHighLatencyDef(DefMI.getOpcode()))
 | |
|     return SchedModel.HighLatency;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | |
|                                           const MachineInstr &MI,
 | |
|                                           unsigned *PredCost) const {
 | |
|   // Default to one cycle for no itinerary. However, an "empty" itinerary may
 | |
|   // still have a MinLatency property, which getStageLatency checks.
 | |
|   if (!ItinData)
 | |
|     return MI.mayLoad() ? 2 : 1;
 | |
| 
 | |
|   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
 | |
|                                        const MachineInstr &DefMI,
 | |
|                                        unsigned DefIdx) const {
 | |
|   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
 | |
|   if (!ItinData || ItinData->isEmpty())
 | |
|     return false;
 | |
| 
 | |
|   unsigned DefClass = DefMI.getDesc().getSchedClass();
 | |
|   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
 | |
|   return (DefCycle != -1 && DefCycle <= 1);
 | |
| }
 | |
| 
 | |
| /// Both DefMI and UseMI must be valid.  By default, call directly to the
 | |
| /// itinerary. This may be overriden by the target.
 | |
| int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | |
|                                        const MachineInstr &DefMI,
 | |
|                                        unsigned DefIdx,
 | |
|                                        const MachineInstr &UseMI,
 | |
|                                        unsigned UseIdx) const {
 | |
|   unsigned DefClass = DefMI.getDesc().getSchedClass();
 | |
|   unsigned UseClass = UseMI.getDesc().getSchedClass();
 | |
|   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
 | |
| }
 | |
| 
 | |
| /// If we can determine the operand latency from the def only, without itinerary
 | |
| /// lookup, do so. Otherwise return -1.
 | |
| int TargetInstrInfo::computeDefOperandLatency(
 | |
|     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
 | |
| 
 | |
|   // Let the target hook getInstrLatency handle missing itineraries.
 | |
|   if (!ItinData)
 | |
|     return getInstrLatency(ItinData, DefMI);
 | |
| 
 | |
|   if(ItinData->isEmpty())
 | |
|     return defaultDefLatency(ItinData->SchedModel, DefMI);
 | |
| 
 | |
|   // ...operand lookup required
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::getRegSequenceInputs(
 | |
|     const MachineInstr &MI, unsigned DefIdx,
 | |
|     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
 | |
|   assert((MI.isRegSequence() ||
 | |
|           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
 | |
| 
 | |
|   if (!MI.isRegSequence())
 | |
|     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
 | |
| 
 | |
|   // We are looking at:
 | |
|   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
 | |
|   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
 | |
|   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
 | |
|        OpIdx += 2) {
 | |
|     const MachineOperand &MOReg = MI.getOperand(OpIdx);
 | |
|     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
 | |
|     assert(MOSubIdx.isImm() &&
 | |
|            "One of the subindex of the reg_sequence is not an immediate");
 | |
|     // Record Reg:SubReg, SubIdx.
 | |
|     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
 | |
|                                             (unsigned)MOSubIdx.getImm()));
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::getExtractSubregInputs(
 | |
|     const MachineInstr &MI, unsigned DefIdx,
 | |
|     RegSubRegPairAndIdx &InputReg) const {
 | |
|   assert((MI.isExtractSubreg() ||
 | |
|       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
 | |
| 
 | |
|   if (!MI.isExtractSubreg())
 | |
|     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
 | |
| 
 | |
|   // We are looking at:
 | |
|   // Def = EXTRACT_SUBREG v0.sub1, sub0.
 | |
|   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
 | |
|   const MachineOperand &MOReg = MI.getOperand(1);
 | |
|   const MachineOperand &MOSubIdx = MI.getOperand(2);
 | |
|   assert(MOSubIdx.isImm() &&
 | |
|          "The subindex of the extract_subreg is not an immediate");
 | |
| 
 | |
|   InputReg.Reg = MOReg.getReg();
 | |
|   InputReg.SubReg = MOReg.getSubReg();
 | |
|   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TargetInstrInfo::getInsertSubregInputs(
 | |
|     const MachineInstr &MI, unsigned DefIdx,
 | |
|     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
 | |
|   assert((MI.isInsertSubreg() ||
 | |
|       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
 | |
| 
 | |
|   if (!MI.isInsertSubreg())
 | |
|     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
 | |
| 
 | |
|   // We are looking at:
 | |
|   // Def = INSERT_SEQUENCE v0, v1, sub0.
 | |
|   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
 | |
|   const MachineOperand &MOBaseReg = MI.getOperand(1);
 | |
|   const MachineOperand &MOInsertedReg = MI.getOperand(2);
 | |
|   const MachineOperand &MOSubIdx = MI.getOperand(3);
 | |
|   assert(MOSubIdx.isImm() &&
 | |
|          "One of the subindex of the reg_sequence is not an immediate");
 | |
|   BaseReg.Reg = MOBaseReg.getReg();
 | |
|   BaseReg.SubReg = MOBaseReg.getSubReg();
 | |
| 
 | |
|   InsertedReg.Reg = MOInsertedReg.getReg();
 | |
|   InsertedReg.SubReg = MOInsertedReg.getSubReg();
 | |
|   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
 | |
|   return true;
 | |
| }
 |