176 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a MachineFunctionPass that inserts the appropriate
 | |
| // XRay instrumentation instructions. We look for XRay-specific attributes
 | |
| // on the function to determine whether we should insert the replacement
 | |
| // operations.
 | |
| //
 | |
| //===---------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| struct XRayInstrumentation : public MachineFunctionPass {
 | |
|   static char ID;
 | |
| 
 | |
|   XRayInstrumentation() : MachineFunctionPass(ID) {
 | |
|     initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
| private:
 | |
|   // Replace the original RET instruction with the exit sled code ("patchable
 | |
|   //   ret" pseudo-instruction), so that at runtime XRay can replace the sled
 | |
|   //   with a code jumping to XRay trampoline, which calls the tracing handler
 | |
|   //   and, in the end, issues the RET instruction.
 | |
|   // This is the approach to go on CPUs which have a single RET instruction,
 | |
|   //   like x86/x86_64.
 | |
|   void replaceRetWithPatchableRet(MachineFunction &MF,
 | |
|     const TargetInstrInfo *TII);
 | |
| 
 | |
|   // Prepend the original return instruction with the exit sled code ("patchable
 | |
|   //   function exit" pseudo-instruction), preserving the original return
 | |
|   //   instruction just after the exit sled code.
 | |
|   // This is the approach to go on CPUs which have multiple options for the
 | |
|   //   return instruction, like ARM. For such CPUs we can't just jump into the
 | |
|   //   XRay trampoline and issue a single return instruction there. We rather
 | |
|   //   have to call the trampoline and return from it to the original return
 | |
|   //   instruction of the function being instrumented.
 | |
|   void prependRetWithPatchableExit(MachineFunction &MF,
 | |
|     const TargetInstrInfo *TII);
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| void XRayInstrumentation::replaceRetWithPatchableRet(MachineFunction &MF,
 | |
|   const TargetInstrInfo *TII)
 | |
| {
 | |
|   // We look for *all* terminators and returns, then replace those with
 | |
|   // PATCHABLE_RET instructions.
 | |
|   SmallVector<MachineInstr *, 4> Terminators;
 | |
|   for (auto &MBB : MF) {
 | |
|     for (auto &T : MBB.terminators()) {
 | |
|       unsigned Opc = 0;
 | |
|       if (T.isReturn() && T.getOpcode() == TII->getReturnOpcode()) {
 | |
|         // Replace return instructions with:
 | |
|         //   PATCHABLE_RET <Opcode>, <Operand>...
 | |
|         Opc = TargetOpcode::PATCHABLE_RET;
 | |
|       }
 | |
|       if (TII->isTailCall(T)) {
 | |
|         // Treat the tail call as a return instruction, which has a
 | |
|         // different-looking sled than the normal return case.
 | |
|         Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
 | |
|       }
 | |
|       if (Opc != 0) {
 | |
|         auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
 | |
|                        .addImm(T.getOpcode());
 | |
|         for (auto &MO : T.operands())
 | |
|           MIB.add(MO);
 | |
|         Terminators.push_back(&T);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto &I : Terminators)
 | |
|     I->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void XRayInstrumentation::prependRetWithPatchableExit(MachineFunction &MF,
 | |
|   const TargetInstrInfo *TII)
 | |
| {
 | |
|   for (auto &MBB : MF) {
 | |
|     for (auto &T : MBB.terminators()) {
 | |
|       unsigned Opc = 0;
 | |
|       if (T.isReturn()) {
 | |
|         Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
 | |
|       }
 | |
|       if (TII->isTailCall(T)) {
 | |
|         Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
 | |
|       }
 | |
|       if (Opc != 0) {
 | |
|         // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
 | |
|         //   PATCHABLE_TAIL_CALL .
 | |
|         BuildMI(MBB, T, T.getDebugLoc(),TII->get(Opc));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
 | |
|   auto &F = *MF.getFunction();
 | |
|   auto InstrAttr = F.getFnAttribute("function-instrument");
 | |
|   bool AlwaysInstrument = !InstrAttr.hasAttribute(Attribute::None) &&
 | |
|                           InstrAttr.isStringAttribute() &&
 | |
|                           InstrAttr.getValueAsString() == "xray-always";
 | |
|   Attribute Attr = F.getFnAttribute("xray-instruction-threshold");
 | |
|   unsigned XRayThreshold = 0;
 | |
|   if (!AlwaysInstrument) {
 | |
|     if (Attr.hasAttribute(Attribute::None) || !Attr.isStringAttribute())
 | |
|       return false; // XRay threshold attribute not found.
 | |
|     if (Attr.getValueAsString().getAsInteger(10, XRayThreshold))
 | |
|       return false; // Invalid value for threshold.
 | |
|     if (F.size() < XRayThreshold)
 | |
|       return false; // Function is too small.
 | |
|   }
 | |
| 
 | |
|   // We look for the first non-empty MachineBasicBlock, so that we can insert
 | |
|   // the function instrumentation in the appropriate place.
 | |
|   auto MBI =
 | |
|       find_if(MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
 | |
|   if (MBI == MF.end())
 | |
|     return false; // The function is empty.
 | |
| 
 | |
|   auto *TII = MF.getSubtarget().getInstrInfo();
 | |
|   auto &FirstMBB = *MBI;
 | |
|   auto &FirstMI = *FirstMBB.begin();
 | |
| 
 | |
|   if (!MF.getSubtarget().isXRaySupported()) {
 | |
|     FirstMI.emitError("An attempt to perform XRay instrumentation for an"
 | |
|       " unsupported target.");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Do the loop triviality analysis here or in an earlier pass.
 | |
| 
 | |
|   // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
 | |
|   // MachineFunction.
 | |
|   BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
 | |
|           TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
 | |
| 
 | |
|   switch (MF.getTarget().getTargetTriple().getArch()) {
 | |
|   case Triple::ArchType::arm:
 | |
|   case Triple::ArchType::thumb:
 | |
|   case Triple::ArchType::aarch64:
 | |
|     // For the architectures which don't have a single return instruction
 | |
|     prependRetWithPatchableExit(MF, TII);
 | |
|     break;
 | |
|   default:
 | |
|     // For the architectures that have a single return instruction (such as
 | |
|     //   RETQ on x86_64).
 | |
|     replaceRetWithPatchableRet(MF, TII);
 | |
|     break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| char XRayInstrumentation::ID = 0;
 | |
| char &llvm::XRayInstrumentationID = XRayInstrumentation::ID;
 | |
| INITIALIZE_PASS(XRayInstrumentation, "xray-instrumentation", "Insert XRay ops",
 | |
|                 false, false)
 |