1028 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1028 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Represent a range of possible values that may occur when the program is run
 | |
| // for an integral value.  This keeps track of a lower and upper bound for the
 | |
| // constant, which MAY wrap around the end of the numeric range.  To do this, it
 | |
| // keeps track of a [lower, upper) bound, which specifies an interval just like
 | |
| // STL iterators.  When used with boolean values, the following are important
 | |
| // ranges (other integral ranges use min/max values for special range values):
 | |
| //
 | |
| //  [F, F) = {}     = Empty set
 | |
| //  [T, F) = {T}
 | |
| //  [F, T) = {F}
 | |
| //  [T, T) = {F, T} = Full set
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Initialize a full (the default) or empty set for the specified type.
 | |
| ///
 | |
| ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
 | |
|   if (Full)
 | |
|     Lower = Upper = APInt::getMaxValue(BitWidth);
 | |
|   else
 | |
|     Lower = Upper = APInt::getMinValue(BitWidth);
 | |
| }
 | |
| 
 | |
| /// Initialize a range to hold the single specified value.
 | |
| ///
 | |
| ConstantRange::ConstantRange(APIntMoveTy V)
 | |
|     : Lower(std::move(V)), Upper(Lower + 1) {}
 | |
| 
 | |
| ConstantRange::ConstantRange(APIntMoveTy L, APIntMoveTy U)
 | |
|     : Lower(std::move(L)), Upper(std::move(U)) {
 | |
|   assert(Lower.getBitWidth() == Upper.getBitWidth() &&
 | |
|          "ConstantRange with unequal bit widths");
 | |
|   assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
 | |
|          "Lower == Upper, but they aren't min or max value!");
 | |
| }
 | |
| 
 | |
| ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
 | |
|                                                    const ConstantRange &CR) {
 | |
|   if (CR.isEmptySet())
 | |
|     return CR;
 | |
| 
 | |
|   uint32_t W = CR.getBitWidth();
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
 | |
|   case CmpInst::ICMP_EQ:
 | |
|     return CR;
 | |
|   case CmpInst::ICMP_NE:
 | |
|     if (CR.isSingleElement())
 | |
|       return ConstantRange(CR.getUpper(), CR.getLower());
 | |
|     return ConstantRange(W);
 | |
|   case CmpInst::ICMP_ULT: {
 | |
|     APInt UMax(CR.getUnsignedMax());
 | |
|     if (UMax.isMinValue())
 | |
|       return ConstantRange(W, /* empty */ false);
 | |
|     return ConstantRange(APInt::getMinValue(W), UMax);
 | |
|   }
 | |
|   case CmpInst::ICMP_SLT: {
 | |
|     APInt SMax(CR.getSignedMax());
 | |
|     if (SMax.isMinSignedValue())
 | |
|       return ConstantRange(W, /* empty */ false);
 | |
|     return ConstantRange(APInt::getSignedMinValue(W), SMax);
 | |
|   }
 | |
|   case CmpInst::ICMP_ULE: {
 | |
|     APInt UMax(CR.getUnsignedMax());
 | |
|     if (UMax.isMaxValue())
 | |
|       return ConstantRange(W);
 | |
|     return ConstantRange(APInt::getMinValue(W), UMax + 1);
 | |
|   }
 | |
|   case CmpInst::ICMP_SLE: {
 | |
|     APInt SMax(CR.getSignedMax());
 | |
|     if (SMax.isMaxSignedValue())
 | |
|       return ConstantRange(W);
 | |
|     return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
 | |
|   }
 | |
|   case CmpInst::ICMP_UGT: {
 | |
|     APInt UMin(CR.getUnsignedMin());
 | |
|     if (UMin.isMaxValue())
 | |
|       return ConstantRange(W, /* empty */ false);
 | |
|     return ConstantRange(UMin + 1, APInt::getNullValue(W));
 | |
|   }
 | |
|   case CmpInst::ICMP_SGT: {
 | |
|     APInt SMin(CR.getSignedMin());
 | |
|     if (SMin.isMaxSignedValue())
 | |
|       return ConstantRange(W, /* empty */ false);
 | |
|     return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
 | |
|   }
 | |
|   case CmpInst::ICMP_UGE: {
 | |
|     APInt UMin(CR.getUnsignedMin());
 | |
|     if (UMin.isMinValue())
 | |
|       return ConstantRange(W);
 | |
|     return ConstantRange(UMin, APInt::getNullValue(W));
 | |
|   }
 | |
|   case CmpInst::ICMP_SGE: {
 | |
|     APInt SMin(CR.getSignedMin());
 | |
|     if (SMin.isMinSignedValue())
 | |
|       return ConstantRange(W);
 | |
|     return ConstantRange(SMin, APInt::getSignedMinValue(W));
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
 | |
|                                                       const ConstantRange &CR) {
 | |
|   // Follows from De-Morgan's laws:
 | |
|   //
 | |
|   // ~(~A union ~B) == A intersect B.
 | |
|   //
 | |
|   return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
 | |
|       .inverse();
 | |
| }
 | |
| 
 | |
| ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
 | |
|                                                  const APInt &C) {
 | |
|   // Computes the exact range that is equal to both the constant ranges returned
 | |
|   // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
 | |
|   // when RHS is a singleton such as an APInt and so the assert is valid.
 | |
|   // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
 | |
|   // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
 | |
|   //
 | |
|   assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
 | |
|   return makeAllowedICmpRegion(Pred, C);
 | |
| }
 | |
| 
 | |
| bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
 | |
|                                       APInt &RHS) const {
 | |
|   bool Success = false;
 | |
| 
 | |
|   if (isFullSet() || isEmptySet()) {
 | |
|     Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
 | |
|     RHS = APInt(getBitWidth(), 0);
 | |
|     Success = true;
 | |
|   } else if (auto *OnlyElt = getSingleElement()) {
 | |
|     Pred = CmpInst::ICMP_EQ;
 | |
|     RHS = *OnlyElt;
 | |
|     Success = true;
 | |
|   } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
 | |
|     Pred = CmpInst::ICMP_NE;
 | |
|     RHS = *OnlyMissingElt;
 | |
|     Success = true;
 | |
|   } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
 | |
|     Pred =
 | |
|         getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
 | |
|     RHS = getUpper();
 | |
|     Success = true;
 | |
|   } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
 | |
|     Pred =
 | |
|         getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
 | |
|     RHS = getLower();
 | |
|     Success = true;
 | |
|   }
 | |
| 
 | |
|   assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
 | |
|          "Bad result!");
 | |
| 
 | |
|   return Success;
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
 | |
|                                           const ConstantRange &Other,
 | |
|                                           unsigned NoWrapKind) {
 | |
|   typedef OverflowingBinaryOperator OBO;
 | |
| 
 | |
|   // Computes the intersection of CR0 and CR1.  It is different from
 | |
|   // intersectWith in that the ConstantRange returned will only contain elements
 | |
|   // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or
 | |
|   // not, of both X and Y).
 | |
|   auto SubsetIntersect =
 | |
|       [](const ConstantRange &CR0, const ConstantRange &CR1) {
 | |
|     return CR0.inverse().unionWith(CR1.inverse()).inverse();
 | |
|   };
 | |
| 
 | |
|   assert(BinOp >= Instruction::BinaryOpsBegin &&
 | |
|          BinOp < Instruction::BinaryOpsEnd && "Binary operators only!");
 | |
| 
 | |
|   assert((NoWrapKind == OBO::NoSignedWrap ||
 | |
|           NoWrapKind == OBO::NoUnsignedWrap ||
 | |
|           NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) &&
 | |
|          "NoWrapKind invalid!");
 | |
| 
 | |
|   unsigned BitWidth = Other.getBitWidth();
 | |
|   if (BinOp != Instruction::Add)
 | |
|     // Conservative answer: empty set
 | |
|     return ConstantRange(BitWidth, false);
 | |
| 
 | |
|   if (auto *C = Other.getSingleElement())
 | |
|     if (C->isMinValue())
 | |
|       // Full set: nothing signed / unsigned wraps when added to 0.
 | |
|       return ConstantRange(BitWidth);
 | |
| 
 | |
|   ConstantRange Result(BitWidth);
 | |
| 
 | |
|   if (NoWrapKind & OBO::NoUnsignedWrap)
 | |
|     Result =
 | |
|         SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth),
 | |
|                                               -Other.getUnsignedMax()));
 | |
| 
 | |
|   if (NoWrapKind & OBO::NoSignedWrap) {
 | |
|     APInt SignedMin = Other.getSignedMin();
 | |
|     APInt SignedMax = Other.getSignedMax();
 | |
| 
 | |
|     if (SignedMax.isStrictlyPositive())
 | |
|       Result = SubsetIntersect(
 | |
|           Result,
 | |
|           ConstantRange(APInt::getSignedMinValue(BitWidth),
 | |
|                         APInt::getSignedMinValue(BitWidth) - SignedMax));
 | |
| 
 | |
|     if (SignedMin.isNegative())
 | |
|       Result = SubsetIntersect(
 | |
|           Result, ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin,
 | |
|                                 APInt::getSignedMinValue(BitWidth)));
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// isFullSet - Return true if this set contains all of the elements possible
 | |
| /// for this data-type
 | |
| bool ConstantRange::isFullSet() const {
 | |
|   return Lower == Upper && Lower.isMaxValue();
 | |
| }
 | |
| 
 | |
| /// isEmptySet - Return true if this set contains no members.
 | |
| ///
 | |
| bool ConstantRange::isEmptySet() const {
 | |
|   return Lower == Upper && Lower.isMinValue();
 | |
| }
 | |
| 
 | |
| /// isWrappedSet - Return true if this set wraps around the top of the range,
 | |
| /// for example: [100, 8)
 | |
| ///
 | |
| bool ConstantRange::isWrappedSet() const {
 | |
|   return Lower.ugt(Upper);
 | |
| }
 | |
| 
 | |
| /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
 | |
| /// its bitwidth, for example: i8 [120, 140).
 | |
| ///
 | |
| bool ConstantRange::isSignWrappedSet() const {
 | |
|   return contains(APInt::getSignedMaxValue(getBitWidth())) &&
 | |
|          contains(APInt::getSignedMinValue(getBitWidth()));
 | |
| }
 | |
| 
 | |
| /// getSetSize - Return the number of elements in this set.
 | |
| ///
 | |
| APInt ConstantRange::getSetSize() const {
 | |
|   if (isFullSet()) {
 | |
|     APInt Size(getBitWidth()+1, 0);
 | |
|     Size.setBit(getBitWidth());
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   // This is also correct for wrapped sets.
 | |
|   return (Upper - Lower).zext(getBitWidth()+1);
 | |
| }
 | |
| 
 | |
| /// getUnsignedMax - Return the largest unsigned value contained in the
 | |
| /// ConstantRange.
 | |
| ///
 | |
| APInt ConstantRange::getUnsignedMax() const {
 | |
|   if (isFullSet() || isWrappedSet())
 | |
|     return APInt::getMaxValue(getBitWidth());
 | |
|   return getUpper() - 1;
 | |
| }
 | |
| 
 | |
| /// getUnsignedMin - Return the smallest unsigned value contained in the
 | |
| /// ConstantRange.
 | |
| ///
 | |
| APInt ConstantRange::getUnsignedMin() const {
 | |
|   if (isFullSet() || (isWrappedSet() && getUpper() != 0))
 | |
|     return APInt::getMinValue(getBitWidth());
 | |
|   return getLower();
 | |
| }
 | |
| 
 | |
| /// getSignedMax - Return the largest signed value contained in the
 | |
| /// ConstantRange.
 | |
| ///
 | |
| APInt ConstantRange::getSignedMax() const {
 | |
|   APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
 | |
|   if (!isWrappedSet()) {
 | |
|     if (getLower().sle(getUpper() - 1))
 | |
|       return getUpper() - 1;
 | |
|     return SignedMax;
 | |
|   }
 | |
|   if (getLower().isNegative() == getUpper().isNegative())
 | |
|     return SignedMax;
 | |
|   return getUpper() - 1;
 | |
| }
 | |
| 
 | |
| /// getSignedMin - Return the smallest signed value contained in the
 | |
| /// ConstantRange.
 | |
| ///
 | |
| APInt ConstantRange::getSignedMin() const {
 | |
|   APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
 | |
|   if (!isWrappedSet()) {
 | |
|     if (getLower().sle(getUpper() - 1))
 | |
|       return getLower();
 | |
|     return SignedMin;
 | |
|   }
 | |
|   if ((getUpper() - 1).slt(getLower())) {
 | |
|     if (getUpper() != SignedMin)
 | |
|       return SignedMin;
 | |
|   }
 | |
|   return getLower();
 | |
| }
 | |
| 
 | |
| /// contains - Return true if the specified value is in the set.
 | |
| ///
 | |
| bool ConstantRange::contains(const APInt &V) const {
 | |
|   if (Lower == Upper)
 | |
|     return isFullSet();
 | |
| 
 | |
|   if (!isWrappedSet())
 | |
|     return Lower.ule(V) && V.ult(Upper);
 | |
|   return Lower.ule(V) || V.ult(Upper);
 | |
| }
 | |
| 
 | |
| /// contains - Return true if the argument is a subset of this range.
 | |
| /// Two equal sets contain each other. The empty set contained by all other
 | |
| /// sets.
 | |
| ///
 | |
| bool ConstantRange::contains(const ConstantRange &Other) const {
 | |
|   if (isFullSet() || Other.isEmptySet()) return true;
 | |
|   if (isEmptySet() || Other.isFullSet()) return false;
 | |
| 
 | |
|   if (!isWrappedSet()) {
 | |
|     if (Other.isWrappedSet())
 | |
|       return false;
 | |
| 
 | |
|     return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
 | |
|   }
 | |
| 
 | |
|   if (!Other.isWrappedSet())
 | |
|     return Other.getUpper().ule(Upper) ||
 | |
|            Lower.ule(Other.getLower());
 | |
| 
 | |
|   return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
 | |
| }
 | |
| 
 | |
| /// subtract - Subtract the specified constant from the endpoints of this
 | |
| /// constant range.
 | |
| ConstantRange ConstantRange::subtract(const APInt &Val) const {
 | |
|   assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
 | |
|   // If the set is empty or full, don't modify the endpoints.
 | |
|   if (Lower == Upper) 
 | |
|     return *this;
 | |
|   return ConstantRange(Lower - Val, Upper - Val);
 | |
| }
 | |
| 
 | |
| /// \brief Subtract the specified range from this range (aka relative complement
 | |
| /// of the sets).
 | |
| ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
 | |
|   return intersectWith(CR.inverse());
 | |
| }
 | |
| 
 | |
| /// intersectWith - Return the range that results from the intersection of this
 | |
| /// range with another range.  The resultant range is guaranteed to include all
 | |
| /// elements contained in both input ranges, and to have the smallest possible
 | |
| /// set size that does so.  Because there may be two intersections with the
 | |
| /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
 | |
| ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
 | |
|   assert(getBitWidth() == CR.getBitWidth() && 
 | |
|          "ConstantRange types don't agree!");
 | |
| 
 | |
|   // Handle common cases.
 | |
|   if (   isEmptySet() || CR.isFullSet()) return *this;
 | |
|   if (CR.isEmptySet() ||    isFullSet()) return CR;
 | |
| 
 | |
|   if (!isWrappedSet() && CR.isWrappedSet())
 | |
|     return CR.intersectWith(*this);
 | |
| 
 | |
|   if (!isWrappedSet() && !CR.isWrappedSet()) {
 | |
|     if (Lower.ult(CR.Lower)) {
 | |
|       if (Upper.ule(CR.Lower))
 | |
|         return ConstantRange(getBitWidth(), false);
 | |
| 
 | |
|       if (Upper.ult(CR.Upper))
 | |
|         return ConstantRange(CR.Lower, Upper);
 | |
| 
 | |
|       return CR;
 | |
|     }
 | |
|     if (Upper.ult(CR.Upper))
 | |
|       return *this;
 | |
| 
 | |
|     if (Lower.ult(CR.Upper))
 | |
|       return ConstantRange(Lower, CR.Upper);
 | |
| 
 | |
|     return ConstantRange(getBitWidth(), false);
 | |
|   }
 | |
| 
 | |
|   if (isWrappedSet() && !CR.isWrappedSet()) {
 | |
|     if (CR.Lower.ult(Upper)) {
 | |
|       if (CR.Upper.ult(Upper))
 | |
|         return CR;
 | |
| 
 | |
|       if (CR.Upper.ule(Lower))
 | |
|         return ConstantRange(CR.Lower, Upper);
 | |
| 
 | |
|       if (getSetSize().ult(CR.getSetSize()))
 | |
|         return *this;
 | |
|       return CR;
 | |
|     }
 | |
|     if (CR.Lower.ult(Lower)) {
 | |
|       if (CR.Upper.ule(Lower))
 | |
|         return ConstantRange(getBitWidth(), false);
 | |
| 
 | |
|       return ConstantRange(Lower, CR.Upper);
 | |
|     }
 | |
|     return CR;
 | |
|   }
 | |
| 
 | |
|   if (CR.Upper.ult(Upper)) {
 | |
|     if (CR.Lower.ult(Upper)) {
 | |
|       if (getSetSize().ult(CR.getSetSize()))
 | |
|         return *this;
 | |
|       return CR;
 | |
|     }
 | |
| 
 | |
|     if (CR.Lower.ult(Lower))
 | |
|       return ConstantRange(Lower, CR.Upper);
 | |
| 
 | |
|     return CR;
 | |
|   }
 | |
|   if (CR.Upper.ule(Lower)) {
 | |
|     if (CR.Lower.ult(Lower))
 | |
|       return *this;
 | |
| 
 | |
|     return ConstantRange(CR.Lower, Upper);
 | |
|   }
 | |
|   if (getSetSize().ult(CR.getSetSize()))
 | |
|     return *this;
 | |
|   return CR;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// unionWith - Return the range that results from the union of this range with
 | |
| /// another range.  The resultant range is guaranteed to include the elements of
 | |
| /// both sets, but may contain more.  For example, [3, 9) union [12,15) is
 | |
| /// [3, 15), which includes 9, 10, and 11, which were not included in either
 | |
| /// set before.
 | |
| ///
 | |
| ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
 | |
|   assert(getBitWidth() == CR.getBitWidth() && 
 | |
|          "ConstantRange types don't agree!");
 | |
| 
 | |
|   if (   isFullSet() || CR.isEmptySet()) return *this;
 | |
|   if (CR.isFullSet() ||    isEmptySet()) return CR;
 | |
| 
 | |
|   if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
 | |
| 
 | |
|   if (!isWrappedSet() && !CR.isWrappedSet()) {
 | |
|     if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
 | |
|       // If the two ranges are disjoint, find the smaller gap and bridge it.
 | |
|       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
 | |
|       if (d1.ult(d2))
 | |
|         return ConstantRange(Lower, CR.Upper);
 | |
|       return ConstantRange(CR.Lower, Upper);
 | |
|     }
 | |
| 
 | |
|     APInt L = Lower, U = Upper;
 | |
|     if (CR.Lower.ult(L))
 | |
|       L = CR.Lower;
 | |
|     if ((CR.Upper - 1).ugt(U - 1))
 | |
|       U = CR.Upper;
 | |
| 
 | |
|     if (L == 0 && U == 0)
 | |
|       return ConstantRange(getBitWidth());
 | |
| 
 | |
|     return ConstantRange(L, U);
 | |
|   }
 | |
| 
 | |
|   if (!CR.isWrappedSet()) {
 | |
|     // ------U   L-----  and  ------U   L----- : this
 | |
|     //   L--U                            L--U  : CR
 | |
|     if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
 | |
|       return *this;
 | |
| 
 | |
|     // ------U   L----- : this
 | |
|     //    L---------U   : CR
 | |
|     if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
 | |
|       return ConstantRange(getBitWidth());
 | |
| 
 | |
|     // ----U       L---- : this
 | |
|     //       L---U       : CR
 | |
|     //    <d1>  <d2>
 | |
|     if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
 | |
|       APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
 | |
|       if (d1.ult(d2))
 | |
|         return ConstantRange(Lower, CR.Upper);
 | |
|       return ConstantRange(CR.Lower, Upper);
 | |
|     }
 | |
| 
 | |
|     // ----U     L----- : this
 | |
|     //        L----U    : CR
 | |
|     if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
 | |
|       return ConstantRange(CR.Lower, Upper);
 | |
| 
 | |
|     // ------U    L---- : this
 | |
|     //    L-----U       : CR
 | |
|     assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
 | |
|            "ConstantRange::unionWith missed a case with one range wrapped");
 | |
|     return ConstantRange(Lower, CR.Upper);
 | |
|   }
 | |
| 
 | |
|   // ------U    L----  and  ------U    L---- : this
 | |
|   // -U  L-----------  and  ------------U  L : CR
 | |
|   if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
 | |
|     return ConstantRange(getBitWidth());
 | |
| 
 | |
|   APInt L = Lower, U = Upper;
 | |
|   if (CR.Upper.ugt(U))
 | |
|     U = CR.Upper;
 | |
|   if (CR.Lower.ult(L))
 | |
|     L = CR.Lower;
 | |
| 
 | |
|   return ConstantRange(L, U);
 | |
| }
 | |
| 
 | |
| ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
 | |
|                                     uint32_t ResultBitWidth) const {
 | |
|   switch (CastOp) {
 | |
|   default:
 | |
|     llvm_unreachable("unsupported cast type");
 | |
|   case Instruction::Trunc:
 | |
|     return truncate(ResultBitWidth);
 | |
|   case Instruction::SExt:
 | |
|     return signExtend(ResultBitWidth);
 | |
|   case Instruction::ZExt:
 | |
|     return zeroExtend(ResultBitWidth);
 | |
|   case Instruction::BitCast:
 | |
|     return *this;
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|     if (getBitWidth() == ResultBitWidth)
 | |
|       return *this;
 | |
|     else
 | |
|       return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   case Instruction::UIToFP: {
 | |
|     // TODO: use input range if available
 | |
|     auto BW = getBitWidth();
 | |
|     APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
 | |
|     APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
 | |
|     return ConstantRange(Min, Max);
 | |
|   }
 | |
|   case Instruction::SIToFP: {
 | |
|     // TODO: use input range if available
 | |
|     auto BW = getBitWidth();
 | |
|     APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
 | |
|     APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
 | |
|     return ConstantRange(SMin, SMax);
 | |
|   }
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     // Conservatively return full set.
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// zeroExtend - Return a new range in the specified integer type, which must
 | |
| /// be strictly larger than the current type.  The returned range will
 | |
| /// correspond to the possible range of values as if the source range had been
 | |
| /// zero extended.
 | |
| ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
 | |
|   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
 | |
| 
 | |
|   unsigned SrcTySize = getBitWidth();
 | |
|   assert(SrcTySize < DstTySize && "Not a value extension");
 | |
|   if (isFullSet() || isWrappedSet()) {
 | |
|     // Change into [0, 1 << src bit width)
 | |
|     APInt LowerExt(DstTySize, 0);
 | |
|     if (!Upper) // special case: [X, 0) -- not really wrapping around
 | |
|       LowerExt = Lower.zext(DstTySize);
 | |
|     return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
 | |
|   }
 | |
| 
 | |
|   return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
 | |
| }
 | |
| 
 | |
| /// signExtend - Return a new range in the specified integer type, which must
 | |
| /// be strictly larger than the current type.  The returned range will
 | |
| /// correspond to the possible range of values as if the source range had been
 | |
| /// sign extended.
 | |
| ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
 | |
|   if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
 | |
| 
 | |
|   unsigned SrcTySize = getBitWidth();
 | |
|   assert(SrcTySize < DstTySize && "Not a value extension");
 | |
| 
 | |
|   // special case: [X, INT_MIN) -- not really wrapping around
 | |
|   if (Upper.isMinSignedValue())
 | |
|     return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
 | |
| 
 | |
|   if (isFullSet() || isSignWrappedSet()) {
 | |
|     return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
 | |
|                          APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
 | |
|   }
 | |
| 
 | |
|   return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
 | |
| }
 | |
| 
 | |
| /// truncate - Return a new range in the specified integer type, which must be
 | |
| /// strictly smaller than the current type.  The returned range will
 | |
| /// correspond to the possible range of values as if the source range had been
 | |
| /// truncated to the specified type.
 | |
| ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
 | |
|   assert(getBitWidth() > DstTySize && "Not a value truncation");
 | |
|   if (isEmptySet())
 | |
|     return ConstantRange(DstTySize, /*isFullSet=*/false);
 | |
|   if (isFullSet())
 | |
|     return ConstantRange(DstTySize, /*isFullSet=*/true);
 | |
| 
 | |
|   APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
 | |
|   APInt MaxBitValue(getBitWidth(), 0);
 | |
|   MaxBitValue.setBit(DstTySize);
 | |
| 
 | |
|   APInt LowerDiv(Lower), UpperDiv(Upper);
 | |
|   ConstantRange Union(DstTySize, /*isFullSet=*/false);
 | |
| 
 | |
|   // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
 | |
|   // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
 | |
|   // then we do the union with [MaxValue, Upper)
 | |
|   if (isWrappedSet()) {
 | |
|     // If Upper is greater than Max Value, it covers the whole truncated range.
 | |
|     if (Upper.uge(MaxValue))
 | |
|       return ConstantRange(DstTySize, /*isFullSet=*/true);
 | |
| 
 | |
|     Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
 | |
|     UpperDiv = APInt::getMaxValue(getBitWidth());
 | |
| 
 | |
|     // Union covers the MaxValue case, so return if the remaining range is just
 | |
|     // MaxValue.
 | |
|     if (LowerDiv == UpperDiv)
 | |
|       return Union;
 | |
|   }
 | |
| 
 | |
|   // Chop off the most significant bits that are past the destination bitwidth.
 | |
|   if (LowerDiv.uge(MaxValue)) {
 | |
|     APInt Div(getBitWidth(), 0);
 | |
|     APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
 | |
|     UpperDiv = UpperDiv - MaxBitValue * Div;
 | |
|   }
 | |
| 
 | |
|   if (UpperDiv.ule(MaxValue))
 | |
|     return ConstantRange(LowerDiv.trunc(DstTySize),
 | |
|                          UpperDiv.trunc(DstTySize)).unionWith(Union);
 | |
| 
 | |
|   // The truncated value wraps around. Check if we can do better than fullset.
 | |
|   APInt UpperModulo = UpperDiv - MaxBitValue;
 | |
|   if (UpperModulo.ult(LowerDiv))
 | |
|     return ConstantRange(LowerDiv.trunc(DstTySize),
 | |
|                          UpperModulo.trunc(DstTySize)).unionWith(Union);
 | |
| 
 | |
|   return ConstantRange(DstTySize, /*isFullSet=*/true);
 | |
| }
 | |
| 
 | |
| /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
 | |
| /// value is zero extended, truncated, or left alone to make it that width.
 | |
| ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
 | |
|   unsigned SrcTySize = getBitWidth();
 | |
|   if (SrcTySize > DstTySize)
 | |
|     return truncate(DstTySize);
 | |
|   if (SrcTySize < DstTySize)
 | |
|     return zeroExtend(DstTySize);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
 | |
| /// value is sign extended, truncated, or left alone to make it that width.
 | |
| ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
 | |
|   unsigned SrcTySize = getBitWidth();
 | |
|   if (SrcTySize > DstTySize)
 | |
|     return truncate(DstTySize);
 | |
|   if (SrcTySize < DstTySize)
 | |
|     return signExtend(DstTySize);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
 | |
|                                       const ConstantRange &Other) const {
 | |
|   assert(BinOp >= Instruction::BinaryOpsBegin &&
 | |
|          BinOp < Instruction::BinaryOpsEnd && "Binary operators only!");
 | |
| 
 | |
|   switch (BinOp) {
 | |
|   case Instruction::Add:
 | |
|     return add(Other);
 | |
|   case Instruction::Sub:
 | |
|     return sub(Other);
 | |
|   case Instruction::Mul:
 | |
|     return multiply(Other);
 | |
|   case Instruction::UDiv:
 | |
|     return udiv(Other);
 | |
|   case Instruction::Shl:
 | |
|     return shl(Other);
 | |
|   case Instruction::LShr:
 | |
|     return lshr(Other);
 | |
|   case Instruction::And:
 | |
|     return binaryAnd(Other);
 | |
|   case Instruction::Or:
 | |
|     return binaryOr(Other);
 | |
|   // Note: floating point operations applied to abstract ranges are just
 | |
|   // ideal integer operations with a lossy representation
 | |
|   case Instruction::FAdd:
 | |
|     return add(Other);
 | |
|   case Instruction::FSub:
 | |
|     return sub(Other);
 | |
|   case Instruction::FMul:
 | |
|     return multiply(Other);
 | |
|   default:
 | |
|     // Conservatively return full set.
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::add(const ConstantRange &Other) const {
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   if (isFullSet() || Other.isFullSet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
 | |
|   APInt NewLower = getLower() + Other.getLower();
 | |
|   APInt NewUpper = getUpper() + Other.getUpper() - 1;
 | |
|   if (NewLower == NewUpper)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   ConstantRange X = ConstantRange(NewLower, NewUpper);
 | |
|   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
 | |
|     // We've wrapped, therefore, full set.
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   return X;
 | |
| }
 | |
| 
 | |
| ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const {
 | |
|   // Calculate the subset of this range such that "X + Other" is
 | |
|   // guaranteed not to wrap (overflow) for all X in this subset.
 | |
|   // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are
 | |
|   // passing a single element range.
 | |
|   auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add,
 | |
|                                       ConstantRange(Other),
 | |
|                                       OverflowingBinaryOperator::NoSignedWrap);
 | |
|   auto NSWConstrainedRange = intersectWith(NSWRange);
 | |
| 
 | |
|   return NSWConstrainedRange.add(ConstantRange(Other));
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::sub(const ConstantRange &Other) const {
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   if (isFullSet() || Other.isFullSet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
 | |
|   APInt NewLower = getLower() - Other.getUpper() + 1;
 | |
|   APInt NewUpper = getUpper() - Other.getLower();
 | |
|   if (NewLower == NewUpper)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   ConstantRange X = ConstantRange(NewLower, NewUpper);
 | |
|   if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
 | |
|     // We've wrapped, therefore, full set.
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   return X;
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::multiply(const ConstantRange &Other) const {
 | |
|   // TODO: If either operand is a single element and the multiply is known to
 | |
|   // be non-wrapping, round the result min and max value to the appropriate
 | |
|   // multiple of that element. If wrapping is possible, at least adjust the
 | |
|   // range according to the greatest power-of-two factor of the single element.
 | |
| 
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
| 
 | |
|   // Multiplication is signedness-independent. However different ranges can be
 | |
|   // obtained depending on how the input ranges are treated. These different
 | |
|   // ranges are all conservatively correct, but one might be better than the
 | |
|   // other. We calculate two ranges; one treating the inputs as unsigned
 | |
|   // and the other signed, then return the smallest of these ranges.
 | |
| 
 | |
|   // Unsigned range first.
 | |
|   APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
 | |
|   APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
 | |
|   APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
 | |
|   APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
 | |
| 
 | |
|   ConstantRange Result_zext = ConstantRange(this_min * Other_min,
 | |
|                                             this_max * Other_max + 1);
 | |
|   ConstantRange UR = Result_zext.truncate(getBitWidth());
 | |
| 
 | |
|   // If the unsigned range doesn't wrap, and isn't negative then it's a range
 | |
|   // from one positive number to another which is as good as we can generate.
 | |
|   // In this case, skip the extra work of generating signed ranges which aren't
 | |
|   // going to be better than this range.
 | |
|   if (!UR.isWrappedSet() && UR.getLower().isNonNegative())
 | |
|     return UR;
 | |
| 
 | |
|   // Now the signed range. Because we could be dealing with negative numbers
 | |
|   // here, the lower bound is the smallest of the cartesian product of the
 | |
|   // lower and upper ranges; for example:
 | |
|   //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
 | |
|   // Similarly for the upper bound, swapping min for max.
 | |
| 
 | |
|   this_min = getSignedMin().sext(getBitWidth() * 2);
 | |
|   this_max = getSignedMax().sext(getBitWidth() * 2);
 | |
|   Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
 | |
|   Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
 | |
|   
 | |
|   auto L = {this_min * Other_min, this_min * Other_max,
 | |
|             this_max * Other_min, this_max * Other_max};
 | |
|   auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
 | |
|   ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
 | |
|   ConstantRange SR = Result_sext.truncate(getBitWidth());
 | |
| 
 | |
|   return UR.getSetSize().ult(SR.getSetSize()) ? UR : SR;
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::smax(const ConstantRange &Other) const {
 | |
|   // X smax Y is: range(smax(X_smin, Y_smin),
 | |
|   //                    smax(X_smax, Y_smax))
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
 | |
|   APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
 | |
|   if (NewU == NewL)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   return ConstantRange(NewL, NewU);
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::umax(const ConstantRange &Other) const {
 | |
|   // X umax Y is: range(umax(X_umin, Y_umin),
 | |
|   //                    umax(X_umax, Y_umax))
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
 | |
|   APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
 | |
|   if (NewU == NewL)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   return ConstantRange(NewL, NewU);
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::smin(const ConstantRange &Other) const {
 | |
|   // X smin Y is: range(smin(X_smin, Y_smin),
 | |
|   //                    smin(X_smax, Y_smax))
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
 | |
|   APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
 | |
|   if (NewU == NewL)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   return ConstantRange(NewL, NewU);
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::umin(const ConstantRange &Other) const {
 | |
|   // X umin Y is: range(umin(X_umin, Y_umin),
 | |
|   //                    umin(X_umax, Y_umax))
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
 | |
|   APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
 | |
|   if (NewU == NewL)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   return ConstantRange(NewL, NewU);
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::udiv(const ConstantRange &RHS) const {
 | |
|   if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   if (RHS.isFullSet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
 | |
| 
 | |
|   APInt RHS_umin = RHS.getUnsignedMin();
 | |
|   if (RHS_umin == 0) {
 | |
|     // We want the lowest value in RHS excluding zero. Usually that would be 1
 | |
|     // except for a range in the form of [X, 1) in which case it would be X.
 | |
|     if (RHS.getUpper() == 1)
 | |
|       RHS_umin = RHS.getLower();
 | |
|     else
 | |
|       RHS_umin = APInt(getBitWidth(), 1);
 | |
|   }
 | |
| 
 | |
|   APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
 | |
| 
 | |
|   // If the LHS is Full and the RHS is a wrapped interval containing 1 then
 | |
|   // this could occur.
 | |
|   if (Lower == Upper)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   return ConstantRange(Lower, Upper);
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::binaryAnd(const ConstantRange &Other) const {
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
| 
 | |
|   // TODO: replace this with something less conservative
 | |
| 
 | |
|   APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
 | |
|   if (umin.isAllOnesValue())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::binaryOr(const ConstantRange &Other) const {
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
| 
 | |
|   // TODO: replace this with something less conservative
 | |
| 
 | |
|   APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
 | |
|   if (umax.isMinValue())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   return ConstantRange(umax, APInt::getNullValue(getBitWidth()));
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::shl(const ConstantRange &Other) const {
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
| 
 | |
|   APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
 | |
|   APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
 | |
| 
 | |
|   // there's no overflow!
 | |
|   APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
 | |
|   if (Zeros.ugt(Other.getUnsignedMax()))
 | |
|     return ConstantRange(min, max + 1);
 | |
| 
 | |
|   // FIXME: implement the other tricky cases
 | |
|   return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| }
 | |
| 
 | |
| ConstantRange
 | |
| ConstantRange::lshr(const ConstantRange &Other) const {
 | |
|   if (isEmptySet() || Other.isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   
 | |
|   APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
 | |
|   APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
 | |
|   if (min == max + 1)
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
| 
 | |
|   return ConstantRange(min, max + 1);
 | |
| }
 | |
| 
 | |
| ConstantRange ConstantRange::inverse() const {
 | |
|   if (isFullSet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/false);
 | |
|   if (isEmptySet())
 | |
|     return ConstantRange(getBitWidth(), /*isFullSet=*/true);
 | |
|   return ConstantRange(Upper, Lower);
 | |
| }
 | |
| 
 | |
| /// print - Print out the bounds to a stream...
 | |
| ///
 | |
| void ConstantRange::print(raw_ostream &OS) const {
 | |
|   if (isFullSet())
 | |
|     OS << "full-set";
 | |
|   else if (isEmptySet())
 | |
|     OS << "empty-set";
 | |
|   else
 | |
|     OS << "[" << Lower << "," << Upper << ")";
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| /// dump - Allow printing from a debugger easily...
 | |
| ///
 | |
| LLVM_DUMP_METHOD void ConstantRange::dump() const {
 | |
|   print(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
 | |
|   const unsigned NumRanges = Ranges.getNumOperands() / 2;
 | |
|   assert(NumRanges >= 1 && "Must have at least one range!");
 | |
|   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
 | |
| 
 | |
|   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
 | |
|   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
 | |
| 
 | |
|   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
 | |
| 
 | |
|   for (unsigned i = 1; i < NumRanges; ++i) {
 | |
|     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
 | |
|     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
 | |
| 
 | |
|     // Note: unionWith will potentially create a range that contains values not
 | |
|     // contained in any of the original N ranges.
 | |
|     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
 | |
|   }
 | |
| 
 | |
|   return CR;
 | |
| }
 |