2801 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2801 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file is a part of AddressSanitizer, an address sanity checker.
 | 
						|
// Details of the algorithm:
 | 
						|
//  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/MC/MCSectionMachO.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Endian.h"
 | 
						|
#include "llvm/Support/SwapByteOrder.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Instrumentation.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/ModuleUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iomanip>
 | 
						|
#include <limits>
 | 
						|
#include <sstream>
 | 
						|
#include <string>
 | 
						|
#include <system_error>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "asan"
 | 
						|
 | 
						|
static const uint64_t kDefaultShadowScale = 3;
 | 
						|
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
 | 
						|
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
 | 
						|
static const uint64_t kDynamicShadowSentinel = ~(uint64_t)0;
 | 
						|
static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
 | 
						|
static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
 | 
						|
static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
 | 
						|
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
 | 
						|
static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
 | 
						|
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
 | 
						|
static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
 | 
						|
static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
 | 
						|
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
 | 
						|
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
 | 
						|
static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
 | 
						|
// The shadow memory space is dynamically allocated.
 | 
						|
static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
 | 
						|
 | 
						|
static const size_t kMinStackMallocSize = 1 << 6;   // 64B
 | 
						|
static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
 | 
						|
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
 | 
						|
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
 | 
						|
 | 
						|
static const char *const kAsanModuleCtorName = "asan.module_ctor";
 | 
						|
static const char *const kAsanModuleDtorName = "asan.module_dtor";
 | 
						|
static const uint64_t kAsanCtorAndDtorPriority = 1;
 | 
						|
static const char *const kAsanReportErrorTemplate = "__asan_report_";
 | 
						|
static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
 | 
						|
static const char *const kAsanUnregisterGlobalsName =
 | 
						|
    "__asan_unregister_globals";
 | 
						|
static const char *const kAsanRegisterImageGlobalsName =
 | 
						|
  "__asan_register_image_globals";
 | 
						|
static const char *const kAsanUnregisterImageGlobalsName =
 | 
						|
  "__asan_unregister_image_globals";
 | 
						|
static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
 | 
						|
static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
 | 
						|
static const char *const kAsanInitName = "__asan_init";
 | 
						|
static const char *const kAsanVersionCheckName =
 | 
						|
    "__asan_version_mismatch_check_v8";
 | 
						|
static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
 | 
						|
static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
 | 
						|
static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
 | 
						|
static const int kMaxAsanStackMallocSizeClass = 10;
 | 
						|
static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
 | 
						|
static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
 | 
						|
static const char *const kAsanGenPrefix = "__asan_gen_";
 | 
						|
static const char *const kODRGenPrefix = "__odr_asan_gen_";
 | 
						|
static const char *const kSanCovGenPrefix = "__sancov_gen_";
 | 
						|
static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
 | 
						|
static const char *const kAsanPoisonStackMemoryName =
 | 
						|
    "__asan_poison_stack_memory";
 | 
						|
static const char *const kAsanUnpoisonStackMemoryName =
 | 
						|
    "__asan_unpoison_stack_memory";
 | 
						|
static const char *const kAsanGlobalsRegisteredFlagName =
 | 
						|
    "__asan_globals_registered";
 | 
						|
 | 
						|
static const char *const kAsanOptionDetectUseAfterReturn =
 | 
						|
    "__asan_option_detect_stack_use_after_return";
 | 
						|
 | 
						|
static const char *const kAsanShadowMemoryDynamicAddress =
 | 
						|
    "__asan_shadow_memory_dynamic_address";
 | 
						|
 | 
						|
static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
 | 
						|
static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
 | 
						|
 | 
						|
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
 | 
						|
static const size_t kNumberOfAccessSizes = 5;
 | 
						|
 | 
						|
static const unsigned kAllocaRzSize = 32;
 | 
						|
 | 
						|
// Command-line flags.
 | 
						|
static cl::opt<bool> ClEnableKasan(
 | 
						|
    "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
static cl::opt<bool> ClRecover(
 | 
						|
    "asan-recover",
 | 
						|
    cl::desc("Enable recovery mode (continue-after-error)."),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
// This flag may need to be replaced with -f[no-]asan-reads.
 | 
						|
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
 | 
						|
                                       cl::desc("instrument read instructions"),
 | 
						|
                                       cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClInstrumentWrites(
 | 
						|
    "asan-instrument-writes", cl::desc("instrument write instructions"),
 | 
						|
    cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClInstrumentAtomics(
 | 
						|
    "asan-instrument-atomics",
 | 
						|
    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
 | 
						|
    cl::init(true));
 | 
						|
static cl::opt<bool> ClAlwaysSlowPath(
 | 
						|
    "asan-always-slow-path",
 | 
						|
    cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
 | 
						|
    cl::init(false));
 | 
						|
static cl::opt<bool> ClForceDynamicShadow(
 | 
						|
    "asan-force-dynamic-shadow",
 | 
						|
    cl::desc("Load shadow address into a local variable for each function"),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
// This flag limits the number of instructions to be instrumented
 | 
						|
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
 | 
						|
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
 | 
						|
// set it to 10000.
 | 
						|
static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
 | 
						|
    "asan-max-ins-per-bb", cl::init(10000),
 | 
						|
    cl::desc("maximal number of instructions to instrument in any given BB"),
 | 
						|
    cl::Hidden);
 | 
						|
// This flag may need to be replaced with -f[no]asan-stack.
 | 
						|
static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
 | 
						|
                             cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
 | 
						|
    "asan-max-inline-poisoning-size",
 | 
						|
    cl::desc(
 | 
						|
        "Inline shadow poisoning for blocks up to the given size in bytes."),
 | 
						|
    cl::Hidden, cl::init(64));
 | 
						|
static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
 | 
						|
                                      cl::desc("Check stack-use-after-return"),
 | 
						|
                                      cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
 | 
						|
                                     cl::desc("Check stack-use-after-scope"),
 | 
						|
                                     cl::Hidden, cl::init(false));
 | 
						|
// This flag may need to be replaced with -f[no]asan-globals.
 | 
						|
static cl::opt<bool> ClGlobals("asan-globals",
 | 
						|
                               cl::desc("Handle global objects"), cl::Hidden,
 | 
						|
                               cl::init(true));
 | 
						|
static cl::opt<bool> ClInitializers("asan-initialization-order",
 | 
						|
                                    cl::desc("Handle C++ initializer order"),
 | 
						|
                                    cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClInvalidPointerPairs(
 | 
						|
    "asan-detect-invalid-pointer-pair",
 | 
						|
    cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
 | 
						|
    cl::init(false));
 | 
						|
static cl::opt<unsigned> ClRealignStack(
 | 
						|
    "asan-realign-stack",
 | 
						|
    cl::desc("Realign stack to the value of this flag (power of two)"),
 | 
						|
    cl::Hidden, cl::init(32));
 | 
						|
static cl::opt<int> ClInstrumentationWithCallsThreshold(
 | 
						|
    "asan-instrumentation-with-call-threshold",
 | 
						|
    cl::desc(
 | 
						|
        "If the function being instrumented contains more than "
 | 
						|
        "this number of memory accesses, use callbacks instead of "
 | 
						|
        "inline checks (-1 means never use callbacks)."),
 | 
						|
    cl::Hidden, cl::init(7000));
 | 
						|
static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
 | 
						|
    "asan-memory-access-callback-prefix",
 | 
						|
    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
 | 
						|
    cl::init("__asan_"));
 | 
						|
static cl::opt<bool>
 | 
						|
    ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
 | 
						|
                               cl::desc("instrument dynamic allocas"),
 | 
						|
                               cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClSkipPromotableAllocas(
 | 
						|
    "asan-skip-promotable-allocas",
 | 
						|
    cl::desc("Do not instrument promotable allocas"), cl::Hidden,
 | 
						|
    cl::init(true));
 | 
						|
 | 
						|
// These flags allow to change the shadow mapping.
 | 
						|
// The shadow mapping looks like
 | 
						|
//    Shadow = (Mem >> scale) + offset
 | 
						|
static cl::opt<int> ClMappingScale("asan-mapping-scale",
 | 
						|
                                   cl::desc("scale of asan shadow mapping"),
 | 
						|
                                   cl::Hidden, cl::init(0));
 | 
						|
static cl::opt<unsigned long long> ClMappingOffset(
 | 
						|
    "asan-mapping-offset",
 | 
						|
    cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
 | 
						|
    cl::init(0));
 | 
						|
 | 
						|
// Optimization flags. Not user visible, used mostly for testing
 | 
						|
// and benchmarking the tool.
 | 
						|
static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
 | 
						|
                           cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClOptSameTemp(
 | 
						|
    "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
 | 
						|
    cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
 | 
						|
                                  cl::desc("Don't instrument scalar globals"),
 | 
						|
                                  cl::Hidden, cl::init(true));
 | 
						|
static cl::opt<bool> ClOptStack(
 | 
						|
    "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
 | 
						|
    cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> ClDynamicAllocaStack(
 | 
						|
    "asan-stack-dynamic-alloca",
 | 
						|
    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
 | 
						|
    cl::init(true));
 | 
						|
 | 
						|
static cl::opt<uint32_t> ClForceExperiment(
 | 
						|
    "asan-force-experiment",
 | 
						|
    cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
 | 
						|
    cl::init(0));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClUsePrivateAliasForGlobals("asan-use-private-alias",
 | 
						|
                                cl::desc("Use private aliases for global"
 | 
						|
                                         " variables"),
 | 
						|
                                cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    ClUseMachOGlobalsSection("asan-globals-live-support",
 | 
						|
                             cl::desc("Use linker features to support dead "
 | 
						|
                                      "code stripping of globals "
 | 
						|
                                      "(Mach-O only)"),
 | 
						|
                             cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
// Debug flags.
 | 
						|
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
 | 
						|
                            cl::init(0));
 | 
						|
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
 | 
						|
                                 cl::Hidden, cl::init(0));
 | 
						|
static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
 | 
						|
                                        cl::desc("Debug func"));
 | 
						|
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
 | 
						|
                               cl::Hidden, cl::init(-1));
 | 
						|
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
 | 
						|
                               cl::Hidden, cl::init(-1));
 | 
						|
 | 
						|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 | 
						|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
 | 
						|
STATISTIC(NumOptimizedAccessesToGlobalVar,
 | 
						|
          "Number of optimized accesses to global vars");
 | 
						|
STATISTIC(NumOptimizedAccessesToStackVar,
 | 
						|
          "Number of optimized accesses to stack vars");
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Frontend-provided metadata for source location.
 | 
						|
struct LocationMetadata {
 | 
						|
  StringRef Filename;
 | 
						|
  int LineNo;
 | 
						|
  int ColumnNo;
 | 
						|
 | 
						|
  LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
 | 
						|
 | 
						|
  bool empty() const { return Filename.empty(); }
 | 
						|
 | 
						|
  void parse(MDNode *MDN) {
 | 
						|
    assert(MDN->getNumOperands() == 3);
 | 
						|
    MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
 | 
						|
    Filename = DIFilename->getString();
 | 
						|
    LineNo =
 | 
						|
        mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
 | 
						|
    ColumnNo =
 | 
						|
        mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Frontend-provided metadata for global variables.
 | 
						|
class GlobalsMetadata {
 | 
						|
 public:
 | 
						|
  struct Entry {
 | 
						|
    Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
 | 
						|
    LocationMetadata SourceLoc;
 | 
						|
    StringRef Name;
 | 
						|
    bool IsDynInit;
 | 
						|
    bool IsBlacklisted;
 | 
						|
  };
 | 
						|
 | 
						|
  GlobalsMetadata() : inited_(false) {}
 | 
						|
 | 
						|
  void reset() {
 | 
						|
    inited_ = false;
 | 
						|
    Entries.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  void init(Module &M) {
 | 
						|
    assert(!inited_);
 | 
						|
    inited_ = true;
 | 
						|
    NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
 | 
						|
    if (!Globals) return;
 | 
						|
    for (auto MDN : Globals->operands()) {
 | 
						|
      // Metadata node contains the global and the fields of "Entry".
 | 
						|
      assert(MDN->getNumOperands() == 5);
 | 
						|
      auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
 | 
						|
      // The optimizer may optimize away a global entirely.
 | 
						|
      if (!GV) continue;
 | 
						|
      // We can already have an entry for GV if it was merged with another
 | 
						|
      // global.
 | 
						|
      Entry &E = Entries[GV];
 | 
						|
      if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
 | 
						|
        E.SourceLoc.parse(Loc);
 | 
						|
      if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
 | 
						|
        E.Name = Name->getString();
 | 
						|
      ConstantInt *IsDynInit =
 | 
						|
          mdconst::extract<ConstantInt>(MDN->getOperand(3));
 | 
						|
      E.IsDynInit |= IsDynInit->isOne();
 | 
						|
      ConstantInt *IsBlacklisted =
 | 
						|
          mdconst::extract<ConstantInt>(MDN->getOperand(4));
 | 
						|
      E.IsBlacklisted |= IsBlacklisted->isOne();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns metadata entry for a given global.
 | 
						|
  Entry get(GlobalVariable *G) const {
 | 
						|
    auto Pos = Entries.find(G);
 | 
						|
    return (Pos != Entries.end()) ? Pos->second : Entry();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  bool inited_;
 | 
						|
  DenseMap<GlobalVariable *, Entry> Entries;
 | 
						|
};
 | 
						|
 | 
						|
/// This struct defines the shadow mapping using the rule:
 | 
						|
///   shadow = (mem >> Scale) ADD-or-OR Offset.
 | 
						|
struct ShadowMapping {
 | 
						|
  int Scale;
 | 
						|
  uint64_t Offset;
 | 
						|
  bool OrShadowOffset;
 | 
						|
};
 | 
						|
 | 
						|
static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
 | 
						|
                                      bool IsKasan) {
 | 
						|
  bool IsAndroid = TargetTriple.isAndroid();
 | 
						|
  bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
 | 
						|
  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
 | 
						|
  bool IsLinux = TargetTriple.isOSLinux();
 | 
						|
  bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
 | 
						|
                 TargetTriple.getArch() == llvm::Triple::ppc64le;
 | 
						|
  bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz;
 | 
						|
  bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86;
 | 
						|
  bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
 | 
						|
  bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
 | 
						|
                  TargetTriple.getArch() == llvm::Triple::mipsel;
 | 
						|
  bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
 | 
						|
                  TargetTriple.getArch() == llvm::Triple::mips64el;
 | 
						|
  bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
 | 
						|
  bool IsWindows = TargetTriple.isOSWindows();
 | 
						|
 | 
						|
  ShadowMapping Mapping;
 | 
						|
 | 
						|
  if (LongSize == 32) {
 | 
						|
    // Android is always PIE, which means that the beginning of the address
 | 
						|
    // space is always available.
 | 
						|
    if (IsAndroid)
 | 
						|
      Mapping.Offset = 0;
 | 
						|
    else if (IsMIPS32)
 | 
						|
      Mapping.Offset = kMIPS32_ShadowOffset32;
 | 
						|
    else if (IsFreeBSD)
 | 
						|
      Mapping.Offset = kFreeBSD_ShadowOffset32;
 | 
						|
    else if (IsIOS)
 | 
						|
      // If we're targeting iOS and x86, the binary is built for iOS simulator.
 | 
						|
      Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
 | 
						|
    else if (IsWindows)
 | 
						|
      Mapping.Offset = kWindowsShadowOffset32;
 | 
						|
    else
 | 
						|
      Mapping.Offset = kDefaultShadowOffset32;
 | 
						|
  } else {  // LongSize == 64
 | 
						|
    if (IsPPC64)
 | 
						|
      Mapping.Offset = kPPC64_ShadowOffset64;
 | 
						|
    else if (IsSystemZ)
 | 
						|
      Mapping.Offset = kSystemZ_ShadowOffset64;
 | 
						|
    else if (IsFreeBSD)
 | 
						|
      Mapping.Offset = kFreeBSD_ShadowOffset64;
 | 
						|
    else if (IsLinux && IsX86_64) {
 | 
						|
      if (IsKasan)
 | 
						|
        Mapping.Offset = kLinuxKasan_ShadowOffset64;
 | 
						|
      else
 | 
						|
        Mapping.Offset = kSmallX86_64ShadowOffset;
 | 
						|
    } else if (IsWindows && IsX86_64) {
 | 
						|
      Mapping.Offset = kWindowsShadowOffset64;
 | 
						|
    } else if (IsMIPS64)
 | 
						|
      Mapping.Offset = kMIPS64_ShadowOffset64;
 | 
						|
    else if (IsIOS)
 | 
						|
      // If we're targeting iOS and x86, the binary is built for iOS simulator.
 | 
						|
      // We are using dynamic shadow offset on the 64-bit devices.
 | 
						|
      Mapping.Offset =
 | 
						|
        IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel;
 | 
						|
    else if (IsAArch64)
 | 
						|
      Mapping.Offset = kAArch64_ShadowOffset64;
 | 
						|
    else
 | 
						|
      Mapping.Offset = kDefaultShadowOffset64;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClForceDynamicShadow) {
 | 
						|
    Mapping.Offset = kDynamicShadowSentinel;
 | 
						|
  }
 | 
						|
 | 
						|
  Mapping.Scale = kDefaultShadowScale;
 | 
						|
  if (ClMappingScale.getNumOccurrences() > 0) {
 | 
						|
    Mapping.Scale = ClMappingScale;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClMappingOffset.getNumOccurrences() > 0) {
 | 
						|
    Mapping.Offset = ClMappingOffset;
 | 
						|
  }
 | 
						|
 | 
						|
  // OR-ing shadow offset if more efficient (at least on x86) if the offset
 | 
						|
  // is a power of two, but on ppc64 we have to use add since the shadow
 | 
						|
  // offset is not necessary 1/8-th of the address space.  On SystemZ,
 | 
						|
  // we could OR the constant in a single instruction, but it's more
 | 
						|
  // efficient to load it once and use indexed addressing.
 | 
						|
  Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ
 | 
						|
                           && !(Mapping.Offset & (Mapping.Offset - 1))
 | 
						|
                           && Mapping.Offset != kDynamicShadowSentinel;
 | 
						|
 | 
						|
  return Mapping;
 | 
						|
}
 | 
						|
 | 
						|
static size_t RedzoneSizeForScale(int MappingScale) {
 | 
						|
  // Redzone used for stack and globals is at least 32 bytes.
 | 
						|
  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
 | 
						|
  return std::max(32U, 1U << MappingScale);
 | 
						|
}
 | 
						|
 | 
						|
/// AddressSanitizer: instrument the code in module to find memory bugs.
 | 
						|
struct AddressSanitizer : public FunctionPass {
 | 
						|
  explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
 | 
						|
                            bool UseAfterScope = false)
 | 
						|
      : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
 | 
						|
        Recover(Recover || ClRecover),
 | 
						|
        UseAfterScope(UseAfterScope || ClUseAfterScope),
 | 
						|
        LocalDynamicShadow(nullptr) {
 | 
						|
    initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
  StringRef getPassName() const override {
 | 
						|
    return "AddressSanitizerFunctionPass";
 | 
						|
  }
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  }
 | 
						|
  uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
 | 
						|
    uint64_t ArraySize = 1;
 | 
						|
    if (AI.isArrayAllocation()) {
 | 
						|
      const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
 | 
						|
      assert(CI && "non-constant array size");
 | 
						|
      ArraySize = CI->getZExtValue();
 | 
						|
    }
 | 
						|
    Type *Ty = AI.getAllocatedType();
 | 
						|
    uint64_t SizeInBytes =
 | 
						|
        AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
 | 
						|
    return SizeInBytes * ArraySize;
 | 
						|
  }
 | 
						|
  /// Check if we want (and can) handle this alloca.
 | 
						|
  bool isInterestingAlloca(const AllocaInst &AI);
 | 
						|
 | 
						|
  /// If it is an interesting memory access, return the PointerOperand
 | 
						|
  /// and set IsWrite/Alignment. Otherwise return nullptr.
 | 
						|
  /// MaybeMask is an output parameter for the mask Value, if we're looking at a
 | 
						|
  /// masked load/store.
 | 
						|
  Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
 | 
						|
                                   uint64_t *TypeSize, unsigned *Alignment,
 | 
						|
                                   Value **MaybeMask = nullptr);
 | 
						|
  void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
 | 
						|
                     bool UseCalls, const DataLayout &DL);
 | 
						|
  void instrumentPointerComparisonOrSubtraction(Instruction *I);
 | 
						|
  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
 | 
						|
                         Value *Addr, uint32_t TypeSize, bool IsWrite,
 | 
						|
                         Value *SizeArgument, bool UseCalls, uint32_t Exp);
 | 
						|
  void instrumentUnusualSizeOrAlignment(Instruction *I,
 | 
						|
                                        Instruction *InsertBefore, Value *Addr,
 | 
						|
                                        uint32_t TypeSize, bool IsWrite,
 | 
						|
                                        Value *SizeArgument, bool UseCalls,
 | 
						|
                                        uint32_t Exp);
 | 
						|
  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | 
						|
                           Value *ShadowValue, uint32_t TypeSize);
 | 
						|
  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
 | 
						|
                                 bool IsWrite, size_t AccessSizeIndex,
 | 
						|
                                 Value *SizeArgument, uint32_t Exp);
 | 
						|
  void instrumentMemIntrinsic(MemIntrinsic *MI);
 | 
						|
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
 | 
						|
  void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
 | 
						|
  void markEscapedLocalAllocas(Function &F);
 | 
						|
  bool doInitialization(Module &M) override;
 | 
						|
  bool doFinalization(Module &M) override;
 | 
						|
  static char ID;  // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  DominatorTree &getDominatorTree() const { return *DT; }
 | 
						|
 | 
						|
 private:
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  bool LooksLikeCodeInBug11395(Instruction *I);
 | 
						|
  bool GlobalIsLinkerInitialized(GlobalVariable *G);
 | 
						|
  bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
 | 
						|
                    uint64_t TypeSize) const;
 | 
						|
 | 
						|
  /// Helper to cleanup per-function state.
 | 
						|
  struct FunctionStateRAII {
 | 
						|
    AddressSanitizer *Pass;
 | 
						|
    FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
 | 
						|
      assert(Pass->ProcessedAllocas.empty() &&
 | 
						|
             "last pass forgot to clear cache");
 | 
						|
      assert(!Pass->LocalDynamicShadow);
 | 
						|
    }
 | 
						|
    ~FunctionStateRAII() {
 | 
						|
      Pass->LocalDynamicShadow = nullptr;
 | 
						|
      Pass->ProcessedAllocas.clear();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  LLVMContext *C;
 | 
						|
  Triple TargetTriple;
 | 
						|
  int LongSize;
 | 
						|
  bool CompileKernel;
 | 
						|
  bool Recover;
 | 
						|
  bool UseAfterScope;
 | 
						|
  Type *IntptrTy;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
  DominatorTree *DT;
 | 
						|
  Function *AsanCtorFunction = nullptr;
 | 
						|
  Function *AsanInitFunction = nullptr;
 | 
						|
  Function *AsanHandleNoReturnFunc;
 | 
						|
  Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
 | 
						|
  // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
 | 
						|
  Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
 | 
						|
  Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
 | 
						|
  // This array is indexed by AccessIsWrite and Experiment.
 | 
						|
  Function *AsanErrorCallbackSized[2][2];
 | 
						|
  Function *AsanMemoryAccessCallbackSized[2][2];
 | 
						|
  Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
 | 
						|
  InlineAsm *EmptyAsm;
 | 
						|
  Value *LocalDynamicShadow;
 | 
						|
  GlobalsMetadata GlobalsMD;
 | 
						|
  DenseMap<const AllocaInst *, bool> ProcessedAllocas;
 | 
						|
 | 
						|
  friend struct FunctionStackPoisoner;
 | 
						|
};
 | 
						|
 | 
						|
class AddressSanitizerModule : public ModulePass {
 | 
						|
 public:
 | 
						|
  explicit AddressSanitizerModule(bool CompileKernel = false,
 | 
						|
                                  bool Recover = false)
 | 
						|
      : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
 | 
						|
        Recover(Recover || ClRecover) {}
 | 
						|
  bool runOnModule(Module &M) override;
 | 
						|
  static char ID;  // Pass identification, replacement for typeid
 | 
						|
  StringRef getPassName() const override { return "AddressSanitizerModule"; }
 | 
						|
 | 
						|
private:
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
 | 
						|
  void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
 | 
						|
                             ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
                             ArrayRef<Constant *> MetadataInitializers);
 | 
						|
  void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
 | 
						|
                              ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
                              ArrayRef<Constant *> MetadataInitializers);
 | 
						|
  void
 | 
						|
  InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
 | 
						|
                                     ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
                                     ArrayRef<Constant *> MetadataInitializers);
 | 
						|
 | 
						|
  GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
 | 
						|
                                       StringRef OriginalName);
 | 
						|
  void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata);
 | 
						|
  IRBuilder<> CreateAsanModuleDtor(Module &M);
 | 
						|
 | 
						|
  bool ShouldInstrumentGlobal(GlobalVariable *G);
 | 
						|
  bool ShouldUseMachOGlobalsSection() const;
 | 
						|
  StringRef getGlobalMetadataSection() const;
 | 
						|
  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
 | 
						|
  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
 | 
						|
  size_t MinRedzoneSizeForGlobal() const {
 | 
						|
    return RedzoneSizeForScale(Mapping.Scale);
 | 
						|
  }
 | 
						|
 | 
						|
  GlobalsMetadata GlobalsMD;
 | 
						|
  bool CompileKernel;
 | 
						|
  bool Recover;
 | 
						|
  Type *IntptrTy;
 | 
						|
  LLVMContext *C;
 | 
						|
  Triple TargetTriple;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
  Function *AsanPoisonGlobals;
 | 
						|
  Function *AsanUnpoisonGlobals;
 | 
						|
  Function *AsanRegisterGlobals;
 | 
						|
  Function *AsanUnregisterGlobals;
 | 
						|
  Function *AsanRegisterImageGlobals;
 | 
						|
  Function *AsanUnregisterImageGlobals;
 | 
						|
};
 | 
						|
 | 
						|
// Stack poisoning does not play well with exception handling.
 | 
						|
// When an exception is thrown, we essentially bypass the code
 | 
						|
// that unpoisones the stack. This is why the run-time library has
 | 
						|
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
 | 
						|
// stack in the interceptor. This however does not work inside the
 | 
						|
// actual function which catches the exception. Most likely because the
 | 
						|
// compiler hoists the load of the shadow value somewhere too high.
 | 
						|
// This causes asan to report a non-existing bug on 453.povray.
 | 
						|
// It sounds like an LLVM bug.
 | 
						|
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
 | 
						|
  Function &F;
 | 
						|
  AddressSanitizer &ASan;
 | 
						|
  DIBuilder DIB;
 | 
						|
  LLVMContext *C;
 | 
						|
  Type *IntptrTy;
 | 
						|
  Type *IntptrPtrTy;
 | 
						|
  ShadowMapping Mapping;
 | 
						|
 | 
						|
  SmallVector<AllocaInst *, 16> AllocaVec;
 | 
						|
  SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
 | 
						|
  SmallVector<Instruction *, 8> RetVec;
 | 
						|
  unsigned StackAlignment;
 | 
						|
 | 
						|
  Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
 | 
						|
      *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
 | 
						|
  Function *AsanSetShadowFunc[0x100] = {};
 | 
						|
  Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
 | 
						|
  Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
 | 
						|
 | 
						|
  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
 | 
						|
  struct AllocaPoisonCall {
 | 
						|
    IntrinsicInst *InsBefore;
 | 
						|
    AllocaInst *AI;
 | 
						|
    uint64_t Size;
 | 
						|
    bool DoPoison;
 | 
						|
  };
 | 
						|
  SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
 | 
						|
  SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
 | 
						|
 | 
						|
  SmallVector<AllocaInst *, 1> DynamicAllocaVec;
 | 
						|
  SmallVector<IntrinsicInst *, 1> StackRestoreVec;
 | 
						|
  AllocaInst *DynamicAllocaLayout = nullptr;
 | 
						|
  IntrinsicInst *LocalEscapeCall = nullptr;
 | 
						|
 | 
						|
  // Maps Value to an AllocaInst from which the Value is originated.
 | 
						|
  typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
 | 
						|
  AllocaForValueMapTy AllocaForValue;
 | 
						|
 | 
						|
  bool HasNonEmptyInlineAsm = false;
 | 
						|
  bool HasReturnsTwiceCall = false;
 | 
						|
  std::unique_ptr<CallInst> EmptyInlineAsm;
 | 
						|
 | 
						|
  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
 | 
						|
      : F(F),
 | 
						|
        ASan(ASan),
 | 
						|
        DIB(*F.getParent(), /*AllowUnresolved*/ false),
 | 
						|
        C(ASan.C),
 | 
						|
        IntptrTy(ASan.IntptrTy),
 | 
						|
        IntptrPtrTy(PointerType::get(IntptrTy, 0)),
 | 
						|
        Mapping(ASan.Mapping),
 | 
						|
        StackAlignment(1 << Mapping.Scale),
 | 
						|
        EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
 | 
						|
 | 
						|
  bool runOnFunction() {
 | 
						|
    if (!ClStack) return false;
 | 
						|
    // Collect alloca, ret, lifetime instructions etc.
 | 
						|
    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
 | 
						|
 | 
						|
    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
 | 
						|
 | 
						|
    initializeCallbacks(*F.getParent());
 | 
						|
 | 
						|
    processDynamicAllocas();
 | 
						|
    processStaticAllocas();
 | 
						|
 | 
						|
    if (ClDebugStack) {
 | 
						|
      DEBUG(dbgs() << F);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finds all Alloca instructions and puts
 | 
						|
  // poisoned red zones around all of them.
 | 
						|
  // Then unpoison everything back before the function returns.
 | 
						|
  void processStaticAllocas();
 | 
						|
  void processDynamicAllocas();
 | 
						|
 | 
						|
  void createDynamicAllocasInitStorage();
 | 
						|
 | 
						|
  // ----------------------- Visitors.
 | 
						|
  /// \brief Collect all Ret instructions.
 | 
						|
  void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
 | 
						|
 | 
						|
  /// \brief Collect all Resume instructions.
 | 
						|
  void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
 | 
						|
 | 
						|
  /// \brief Collect all CatchReturnInst instructions.
 | 
						|
  void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
 | 
						|
 | 
						|
  void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
 | 
						|
                                        Value *SavedStack) {
 | 
						|
    IRBuilder<> IRB(InstBefore);
 | 
						|
    Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
 | 
						|
    // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
 | 
						|
    // need to adjust extracted SP to compute the address of the most recent
 | 
						|
    // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
 | 
						|
    // this purpose.
 | 
						|
    if (!isa<ReturnInst>(InstBefore)) {
 | 
						|
      Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
 | 
						|
          InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
 | 
						|
          {IntptrTy});
 | 
						|
 | 
						|
      Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
 | 
						|
 | 
						|
      DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
 | 
						|
                                     DynamicAreaOffset);
 | 
						|
    }
 | 
						|
 | 
						|
    IRB.CreateCall(AsanAllocasUnpoisonFunc,
 | 
						|
                   {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
 | 
						|
  }
 | 
						|
 | 
						|
  // Unpoison dynamic allocas redzones.
 | 
						|
  void unpoisonDynamicAllocas() {
 | 
						|
    for (auto &Ret : RetVec)
 | 
						|
      unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
 | 
						|
 | 
						|
    for (auto &StackRestoreInst : StackRestoreVec)
 | 
						|
      unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
 | 
						|
                                       StackRestoreInst->getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Deploy and poison redzones around dynamic alloca call. To do this, we
 | 
						|
  // should replace this call with another one with changed parameters and
 | 
						|
  // replace all its uses with new address, so
 | 
						|
  //   addr = alloca type, old_size, align
 | 
						|
  // is replaced by
 | 
						|
  //   new_size = (old_size + additional_size) * sizeof(type)
 | 
						|
  //   tmp = alloca i8, new_size, max(align, 32)
 | 
						|
  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
 | 
						|
  // Additional_size is added to make new memory allocation contain not only
 | 
						|
  // requested memory, but also left, partial and right redzones.
 | 
						|
  void handleDynamicAllocaCall(AllocaInst *AI);
 | 
						|
 | 
						|
  /// \brief Collect Alloca instructions we want (and can) handle.
 | 
						|
  void visitAllocaInst(AllocaInst &AI) {
 | 
						|
    if (!ASan.isInterestingAlloca(AI)) {
 | 
						|
      if (AI.isStaticAlloca()) {
 | 
						|
        // Skip over allocas that are present *before* the first instrumented
 | 
						|
        // alloca, we don't want to move those around.
 | 
						|
        if (AllocaVec.empty())
 | 
						|
          return;
 | 
						|
 | 
						|
        StaticAllocasToMoveUp.push_back(&AI);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    StackAlignment = std::max(StackAlignment, AI.getAlignment());
 | 
						|
    if (!AI.isStaticAlloca())
 | 
						|
      DynamicAllocaVec.push_back(&AI);
 | 
						|
    else
 | 
						|
      AllocaVec.push_back(&AI);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Collect lifetime intrinsic calls to check for use-after-scope
 | 
						|
  /// errors.
 | 
						|
  void visitIntrinsicInst(IntrinsicInst &II) {
 | 
						|
    Intrinsic::ID ID = II.getIntrinsicID();
 | 
						|
    if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
 | 
						|
    if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
 | 
						|
    if (!ASan.UseAfterScope)
 | 
						|
      return;
 | 
						|
    if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
 | 
						|
      return;
 | 
						|
    // Found lifetime intrinsic, add ASan instrumentation if necessary.
 | 
						|
    ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
 | 
						|
    // If size argument is undefined, don't do anything.
 | 
						|
    if (Size->isMinusOne()) return;
 | 
						|
    // Check that size doesn't saturate uint64_t and can
 | 
						|
    // be stored in IntptrTy.
 | 
						|
    const uint64_t SizeValue = Size->getValue().getLimitedValue();
 | 
						|
    if (SizeValue == ~0ULL ||
 | 
						|
        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
 | 
						|
      return;
 | 
						|
    // Find alloca instruction that corresponds to llvm.lifetime argument.
 | 
						|
    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
 | 
						|
    if (!AI || !ASan.isInterestingAlloca(*AI))
 | 
						|
      return;
 | 
						|
    bool DoPoison = (ID == Intrinsic::lifetime_end);
 | 
						|
    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
 | 
						|
    if (AI->isStaticAlloca())
 | 
						|
      StaticAllocaPoisonCallVec.push_back(APC);
 | 
						|
    else if (ClInstrumentDynamicAllocas)
 | 
						|
      DynamicAllocaPoisonCallVec.push_back(APC);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitCallSite(CallSite CS) {
 | 
						|
    Instruction *I = CS.getInstruction();
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
      HasNonEmptyInlineAsm |=
 | 
						|
          CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
 | 
						|
      HasReturnsTwiceCall |= CI->canReturnTwice();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // ---------------------- Helpers.
 | 
						|
  void initializeCallbacks(Module &M);
 | 
						|
 | 
						|
  bool doesDominateAllExits(const Instruction *I) const {
 | 
						|
    for (auto Ret : RetVec) {
 | 
						|
      if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Finds alloca where the value comes from.
 | 
						|
  AllocaInst *findAllocaForValue(Value *V);
 | 
						|
 | 
						|
  // Copies bytes from ShadowBytes into shadow memory for indexes where
 | 
						|
  // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
 | 
						|
  // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
 | 
						|
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                    IRBuilder<> &IRB, Value *ShadowBase);
 | 
						|
  void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                    size_t Begin, size_t End, IRBuilder<> &IRB,
 | 
						|
                    Value *ShadowBase);
 | 
						|
  void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                          ArrayRef<uint8_t> ShadowBytes, size_t Begin,
 | 
						|
                          size_t End, IRBuilder<> &IRB, Value *ShadowBase);
 | 
						|
 | 
						|
  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
 | 
						|
 | 
						|
  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
 | 
						|
                               bool Dynamic);
 | 
						|
  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
 | 
						|
                     Instruction *ThenTerm, Value *ValueIfFalse);
 | 
						|
};
 | 
						|
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
char AddressSanitizer::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(
 | 
						|
    AddressSanitizer, "asan",
 | 
						|
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
 | 
						|
    false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(
 | 
						|
    AddressSanitizer, "asan",
 | 
						|
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
 | 
						|
    false)
 | 
						|
FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
 | 
						|
                                                       bool Recover,
 | 
						|
                                                       bool UseAfterScope) {
 | 
						|
  assert(!CompileKernel || Recover);
 | 
						|
  return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
 | 
						|
}
 | 
						|
 | 
						|
char AddressSanitizerModule::ID = 0;
 | 
						|
INITIALIZE_PASS(
 | 
						|
    AddressSanitizerModule, "asan-module",
 | 
						|
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
 | 
						|
    "ModulePass",
 | 
						|
    false, false)
 | 
						|
ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
 | 
						|
                                                   bool Recover) {
 | 
						|
  assert(!CompileKernel || Recover);
 | 
						|
  return new AddressSanitizerModule(CompileKernel, Recover);
 | 
						|
}
 | 
						|
 | 
						|
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
 | 
						|
  size_t Res = countTrailingZeros(TypeSize / 8);
 | 
						|
  assert(Res < kNumberOfAccessSizes);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
// \brief Create a constant for Str so that we can pass it to the run-time lib.
 | 
						|
static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
 | 
						|
                                                    bool AllowMerging) {
 | 
						|
  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
 | 
						|
  // We use private linkage for module-local strings. If they can be merged
 | 
						|
  // with another one, we set the unnamed_addr attribute.
 | 
						|
  GlobalVariable *GV =
 | 
						|
      new GlobalVariable(M, StrConst->getType(), true,
 | 
						|
                         GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
 | 
						|
  if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
 | 
						|
  GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a global describing a source location.
 | 
						|
static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
 | 
						|
                                                       LocationMetadata MD) {
 | 
						|
  Constant *LocData[] = {
 | 
						|
      createPrivateGlobalForString(M, MD.Filename, true),
 | 
						|
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
 | 
						|
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
 | 
						|
  };
 | 
						|
  auto LocStruct = ConstantStruct::getAnon(LocData);
 | 
						|
  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
 | 
						|
                               GlobalValue::PrivateLinkage, LocStruct,
 | 
						|
                               kAsanGenPrefix);
 | 
						|
  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check if \p G has been created by a trusted compiler pass.
 | 
						|
static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
 | 
						|
  // Do not instrument asan globals.
 | 
						|
  if (G->getName().startswith(kAsanGenPrefix) ||
 | 
						|
      G->getName().startswith(kSanCovGenPrefix) ||
 | 
						|
      G->getName().startswith(kODRGenPrefix))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Do not instrument gcov counter arrays.
 | 
						|
  if (G->getName() == "__llvm_gcov_ctr")
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
 | 
						|
  // Shadow >> scale
 | 
						|
  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
 | 
						|
  if (Mapping.Offset == 0) return Shadow;
 | 
						|
  // (Shadow >> scale) | offset
 | 
						|
  Value *ShadowBase;
 | 
						|
  if (LocalDynamicShadow)
 | 
						|
    ShadowBase = LocalDynamicShadow;
 | 
						|
  else
 | 
						|
    ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
 | 
						|
  if (Mapping.OrShadowOffset)
 | 
						|
    return IRB.CreateOr(Shadow, ShadowBase);
 | 
						|
  else
 | 
						|
    return IRB.CreateAdd(Shadow, ShadowBase);
 | 
						|
}
 | 
						|
 | 
						|
// Instrument memset/memmove/memcpy
 | 
						|
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
 | 
						|
  IRBuilder<> IRB(MI);
 | 
						|
  if (isa<MemTransferInst>(MI)) {
 | 
						|
    IRB.CreateCall(
 | 
						|
        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
 | 
						|
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | 
						|
         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
 | 
						|
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
 | 
						|
  } else if (isa<MemSetInst>(MI)) {
 | 
						|
    IRB.CreateCall(
 | 
						|
        AsanMemset,
 | 
						|
        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | 
						|
         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
 | 
						|
         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
 | 
						|
  }
 | 
						|
  MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Check if we want (and can) handle this alloca.
 | 
						|
bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
 | 
						|
  auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
 | 
						|
 | 
						|
  if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
 | 
						|
    return PreviouslySeenAllocaInfo->getSecond();
 | 
						|
 | 
						|
  bool IsInteresting =
 | 
						|
      (AI.getAllocatedType()->isSized() &&
 | 
						|
       // alloca() may be called with 0 size, ignore it.
 | 
						|
       ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
 | 
						|
       // We are only interested in allocas not promotable to registers.
 | 
						|
       // Promotable allocas are common under -O0.
 | 
						|
       (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
 | 
						|
       // inalloca allocas are not treated as static, and we don't want
 | 
						|
       // dynamic alloca instrumentation for them as well.
 | 
						|
       !AI.isUsedWithInAlloca());
 | 
						|
 | 
						|
  ProcessedAllocas[&AI] = IsInteresting;
 | 
						|
  return IsInteresting;
 | 
						|
}
 | 
						|
 | 
						|
Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
 | 
						|
                                                   bool *IsWrite,
 | 
						|
                                                   uint64_t *TypeSize,
 | 
						|
                                                   unsigned *Alignment,
 | 
						|
                                                   Value **MaybeMask) {
 | 
						|
  // Skip memory accesses inserted by another instrumentation.
 | 
						|
  if (I->getMetadata("nosanitize")) return nullptr;
 | 
						|
 | 
						|
  // Do not instrument the load fetching the dynamic shadow address.
 | 
						|
  if (LocalDynamicShadow == I)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *PtrOperand = nullptr;
 | 
						|
  const DataLayout &DL = I->getModule()->getDataLayout();
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    if (!ClInstrumentReads) return nullptr;
 | 
						|
    *IsWrite = false;
 | 
						|
    *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
 | 
						|
    *Alignment = LI->getAlignment();
 | 
						|
    PtrOperand = LI->getPointerOperand();
 | 
						|
  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
    if (!ClInstrumentWrites) return nullptr;
 | 
						|
    *IsWrite = true;
 | 
						|
    *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
 | 
						|
    *Alignment = SI->getAlignment();
 | 
						|
    PtrOperand = SI->getPointerOperand();
 | 
						|
  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
 | 
						|
    if (!ClInstrumentAtomics) return nullptr;
 | 
						|
    *IsWrite = true;
 | 
						|
    *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
 | 
						|
    *Alignment = 0;
 | 
						|
    PtrOperand = RMW->getPointerOperand();
 | 
						|
  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
 | 
						|
    if (!ClInstrumentAtomics) return nullptr;
 | 
						|
    *IsWrite = true;
 | 
						|
    *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
 | 
						|
    *Alignment = 0;
 | 
						|
    PtrOperand = XCHG->getPointerOperand();
 | 
						|
  } else if (auto CI = dyn_cast<CallInst>(I)) {
 | 
						|
    auto *F = dyn_cast<Function>(CI->getCalledValue());
 | 
						|
    if (F && (F->getName().startswith("llvm.masked.load.") ||
 | 
						|
              F->getName().startswith("llvm.masked.store."))) {
 | 
						|
      unsigned OpOffset = 0;
 | 
						|
      if (F->getName().startswith("llvm.masked.store.")) {
 | 
						|
        if (!ClInstrumentWrites)
 | 
						|
          return nullptr;
 | 
						|
        // Masked store has an initial operand for the value.
 | 
						|
        OpOffset = 1;
 | 
						|
        *IsWrite = true;
 | 
						|
      } else {
 | 
						|
        if (!ClInstrumentReads)
 | 
						|
          return nullptr;
 | 
						|
        *IsWrite = false;
 | 
						|
      }
 | 
						|
 | 
						|
      auto BasePtr = CI->getOperand(0 + OpOffset);
 | 
						|
      auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
 | 
						|
      *TypeSize = DL.getTypeStoreSizeInBits(Ty);
 | 
						|
      if (auto AlignmentConstant =
 | 
						|
              dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
 | 
						|
        *Alignment = (unsigned)AlignmentConstant->getZExtValue();
 | 
						|
      else
 | 
						|
        *Alignment = 1; // No alignment guarantees. We probably got Undef
 | 
						|
      if (MaybeMask)
 | 
						|
        *MaybeMask = CI->getOperand(2 + OpOffset);
 | 
						|
      PtrOperand = BasePtr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not instrument acesses from different address spaces; we cannot deal
 | 
						|
  // with them.
 | 
						|
  if (PtrOperand) {
 | 
						|
    Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
 | 
						|
    if (PtrTy->getPointerAddressSpace() != 0)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat memory accesses to promotable allocas as non-interesting since they
 | 
						|
  // will not cause memory violations. This greatly speeds up the instrumented
 | 
						|
  // executable at -O0.
 | 
						|
  if (ClSkipPromotableAllocas)
 | 
						|
    if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
 | 
						|
      return isInterestingAlloca(*AI) ? AI : nullptr;
 | 
						|
 | 
						|
  return PtrOperand;
 | 
						|
}
 | 
						|
 | 
						|
static bool isPointerOperand(Value *V) {
 | 
						|
  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
 | 
						|
}
 | 
						|
 | 
						|
// This is a rough heuristic; it may cause both false positives and
 | 
						|
// false negatives. The proper implementation requires cooperation with
 | 
						|
// the frontend.
 | 
						|
static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
 | 
						|
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
 | 
						|
    if (!Cmp->isRelational()) return false;
 | 
						|
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | 
						|
    if (BO->getOpcode() != Instruction::Sub) return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return isPointerOperand(I->getOperand(0)) &&
 | 
						|
         isPointerOperand(I->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
 | 
						|
  // If a global variable does not have dynamic initialization we don't
 | 
						|
  // have to instrument it.  However, if a global does not have initializer
 | 
						|
  // at all, we assume it has dynamic initializer (in other TU).
 | 
						|
  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
 | 
						|
    Instruction *I) {
 | 
						|
  IRBuilder<> IRB(I);
 | 
						|
  Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
 | 
						|
  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
 | 
						|
  for (Value *&i : Param) {
 | 
						|
    if (i->getType()->isPointerTy())
 | 
						|
      i = IRB.CreatePointerCast(i, IntptrTy);
 | 
						|
  }
 | 
						|
  IRB.CreateCall(F, Param);
 | 
						|
}
 | 
						|
 | 
						|
static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
 | 
						|
                                Instruction *InsertBefore, Value *Addr,
 | 
						|
                                unsigned Alignment, unsigned Granularity,
 | 
						|
                                uint32_t TypeSize, bool IsWrite,
 | 
						|
                                Value *SizeArgument, bool UseCalls,
 | 
						|
                                uint32_t Exp) {
 | 
						|
  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
 | 
						|
  // if the data is properly aligned.
 | 
						|
  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
 | 
						|
       TypeSize == 128) &&
 | 
						|
      (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
 | 
						|
    return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
 | 
						|
                                   nullptr, UseCalls, Exp);
 | 
						|
  Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
 | 
						|
                                         IsWrite, nullptr, UseCalls, Exp);
 | 
						|
}
 | 
						|
 | 
						|
static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
 | 
						|
                                        const DataLayout &DL, Type *IntptrTy,
 | 
						|
                                        Value *Mask, Instruction *I,
 | 
						|
                                        Value *Addr, unsigned Alignment,
 | 
						|
                                        unsigned Granularity, uint32_t TypeSize,
 | 
						|
                                        bool IsWrite, Value *SizeArgument,
 | 
						|
                                        bool UseCalls, uint32_t Exp) {
 | 
						|
  auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
 | 
						|
  uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
 | 
						|
  unsigned Num = VTy->getVectorNumElements();
 | 
						|
  auto Zero = ConstantInt::get(IntptrTy, 0);
 | 
						|
  for (unsigned Idx = 0; Idx < Num; ++Idx) {
 | 
						|
    Value *InstrumentedAddress = nullptr;
 | 
						|
    Instruction *InsertBefore = I;
 | 
						|
    if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
 | 
						|
      // dyn_cast as we might get UndefValue
 | 
						|
      if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
 | 
						|
        if (Masked->isNullValue())
 | 
						|
          // Mask is constant false, so no instrumentation needed.
 | 
						|
          continue;
 | 
						|
        // If we have a true or undef value, fall through to doInstrumentAddress
 | 
						|
        // with InsertBefore == I
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      IRBuilder<> IRB(I);
 | 
						|
      Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
 | 
						|
      TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
 | 
						|
      InsertBefore = ThenTerm;
 | 
						|
    }
 | 
						|
 | 
						|
    IRBuilder<> IRB(InsertBefore);
 | 
						|
    InstrumentedAddress =
 | 
						|
        IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
 | 
						|
    doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
 | 
						|
                        Granularity, ElemTypeSize, IsWrite, SizeArgument,
 | 
						|
                        UseCalls, Exp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
 | 
						|
                                     Instruction *I, bool UseCalls,
 | 
						|
                                     const DataLayout &DL) {
 | 
						|
  bool IsWrite = false;
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  uint64_t TypeSize = 0;
 | 
						|
  Value *MaybeMask = nullptr;
 | 
						|
  Value *Addr =
 | 
						|
      isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
 | 
						|
  assert(Addr);
 | 
						|
 | 
						|
  // Optimization experiments.
 | 
						|
  // The experiments can be used to evaluate potential optimizations that remove
 | 
						|
  // instrumentation (assess false negatives). Instead of completely removing
 | 
						|
  // some instrumentation, you set Exp to a non-zero value (mask of optimization
 | 
						|
  // experiments that want to remove instrumentation of this instruction).
 | 
						|
  // If Exp is non-zero, this pass will emit special calls into runtime
 | 
						|
  // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
 | 
						|
  // make runtime terminate the program in a special way (with a different
 | 
						|
  // exit status). Then you run the new compiler on a buggy corpus, collect
 | 
						|
  // the special terminations (ideally, you don't see them at all -- no false
 | 
						|
  // negatives) and make the decision on the optimization.
 | 
						|
  uint32_t Exp = ClForceExperiment;
 | 
						|
 | 
						|
  if (ClOpt && ClOptGlobals) {
 | 
						|
    // If initialization order checking is disabled, a simple access to a
 | 
						|
    // dynamically initialized global is always valid.
 | 
						|
    GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
 | 
						|
    if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
 | 
						|
        isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
 | 
						|
      NumOptimizedAccessesToGlobalVar++;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClOpt && ClOptStack) {
 | 
						|
    // A direct inbounds access to a stack variable is always valid.
 | 
						|
    if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
 | 
						|
        isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
 | 
						|
      NumOptimizedAccessesToStackVar++;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsWrite)
 | 
						|
    NumInstrumentedWrites++;
 | 
						|
  else
 | 
						|
    NumInstrumentedReads++;
 | 
						|
 | 
						|
  unsigned Granularity = 1 << Mapping.Scale;
 | 
						|
  if (MaybeMask) {
 | 
						|
    instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
 | 
						|
                                Alignment, Granularity, TypeSize, IsWrite,
 | 
						|
                                nullptr, UseCalls, Exp);
 | 
						|
  } else {
 | 
						|
    doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
 | 
						|
                        IsWrite, nullptr, UseCalls, Exp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
 | 
						|
                                                 Value *Addr, bool IsWrite,
 | 
						|
                                                 size_t AccessSizeIndex,
 | 
						|
                                                 Value *SizeArgument,
 | 
						|
                                                 uint32_t Exp) {
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
 | 
						|
  CallInst *Call = nullptr;
 | 
						|
  if (SizeArgument) {
 | 
						|
    if (Exp == 0)
 | 
						|
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
 | 
						|
                            {Addr, SizeArgument});
 | 
						|
    else
 | 
						|
      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
 | 
						|
                            {Addr, SizeArgument, ExpVal});
 | 
						|
  } else {
 | 
						|
    if (Exp == 0)
 | 
						|
      Call =
 | 
						|
          IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
 | 
						|
    else
 | 
						|
      Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
 | 
						|
                            {Addr, ExpVal});
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't do Call->setDoesNotReturn() because the BB already has
 | 
						|
  // UnreachableInst at the end.
 | 
						|
  // This EmptyAsm is required to avoid callback merge.
 | 
						|
  IRB.CreateCall(EmptyAsm, {});
 | 
						|
  return Call;
 | 
						|
}
 | 
						|
 | 
						|
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | 
						|
                                           Value *ShadowValue,
 | 
						|
                                           uint32_t TypeSize) {
 | 
						|
  size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
 | 
						|
  // Addr & (Granularity - 1)
 | 
						|
  Value *LastAccessedByte =
 | 
						|
      IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
 | 
						|
  // (Addr & (Granularity - 1)) + size - 1
 | 
						|
  if (TypeSize / 8 > 1)
 | 
						|
    LastAccessedByte = IRB.CreateAdd(
 | 
						|
        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
 | 
						|
  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
 | 
						|
  LastAccessedByte =
 | 
						|
      IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
 | 
						|
  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
 | 
						|
  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
 | 
						|
                                         Instruction *InsertBefore, Value *Addr,
 | 
						|
                                         uint32_t TypeSize, bool IsWrite,
 | 
						|
                                         Value *SizeArgument, bool UseCalls,
 | 
						|
                                         uint32_t Exp) {
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | 
						|
  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
 | 
						|
 | 
						|
  if (UseCalls) {
 | 
						|
    if (Exp == 0)
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
 | 
						|
                     AddrLong);
 | 
						|
    else
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
 | 
						|
                     {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ShadowTy =
 | 
						|
      IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
 | 
						|
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
 | 
						|
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
 | 
						|
  Value *CmpVal = Constant::getNullValue(ShadowTy);
 | 
						|
  Value *ShadowValue =
 | 
						|
      IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
 | 
						|
 | 
						|
  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
 | 
						|
  size_t Granularity = 1ULL << Mapping.Scale;
 | 
						|
  TerminatorInst *CrashTerm = nullptr;
 | 
						|
 | 
						|
  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
 | 
						|
    // We use branch weights for the slow path check, to indicate that the slow
 | 
						|
    // path is rarely taken. This seems to be the case for SPEC benchmarks.
 | 
						|
    TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
 | 
						|
        Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
 | 
						|
    assert(cast<BranchInst>(CheckTerm)->isUnconditional());
 | 
						|
    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
 | 
						|
    IRB.SetInsertPoint(CheckTerm);
 | 
						|
    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
 | 
						|
    if (Recover) {
 | 
						|
      CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
 | 
						|
    } else {
 | 
						|
      BasicBlock *CrashBlock =
 | 
						|
        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
 | 
						|
      CrashTerm = new UnreachableInst(*C, CrashBlock);
 | 
						|
      BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
 | 
						|
      ReplaceInstWithInst(CheckTerm, NewTerm);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
 | 
						|
                                         AccessSizeIndex, SizeArgument, Exp);
 | 
						|
  Crash->setDebugLoc(OrigIns->getDebugLoc());
 | 
						|
}
 | 
						|
 | 
						|
// Instrument unusual size or unusual alignment.
 | 
						|
// We can not do it with a single check, so we do 1-byte check for the first
 | 
						|
// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
 | 
						|
// to report the actual access size.
 | 
						|
void AddressSanitizer::instrumentUnusualSizeOrAlignment(
 | 
						|
    Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
 | 
						|
    bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
 | 
						|
  IRBuilder<> IRB(InsertBefore);
 | 
						|
  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
 | 
						|
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | 
						|
  if (UseCalls) {
 | 
						|
    if (Exp == 0)
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
 | 
						|
                     {AddrLong, Size});
 | 
						|
    else
 | 
						|
      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
 | 
						|
                     {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
 | 
						|
  } else {
 | 
						|
    Value *LastByte = IRB.CreateIntToPtr(
 | 
						|
        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
 | 
						|
        Addr->getType());
 | 
						|
    instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
 | 
						|
    instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
 | 
						|
                                                  GlobalValue *ModuleName) {
 | 
						|
  // Set up the arguments to our poison/unpoison functions.
 | 
						|
  IRBuilder<> IRB(&GlobalInit.front(),
 | 
						|
                  GlobalInit.front().getFirstInsertionPt());
 | 
						|
 | 
						|
  // Add a call to poison all external globals before the given function starts.
 | 
						|
  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
 | 
						|
  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
 | 
						|
 | 
						|
  // Add calls to unpoison all globals before each return instruction.
 | 
						|
  for (auto &BB : GlobalInit.getBasicBlockList())
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
 | 
						|
      CallInst::Create(AsanUnpoisonGlobals, "", RI);
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::createInitializerPoisonCalls(
 | 
						|
    Module &M, GlobalValue *ModuleName) {
 | 
						|
  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
 | 
						|
 | 
						|
  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
 | 
						|
  for (Use &OP : CA->operands()) {
 | 
						|
    if (isa<ConstantAggregateZero>(OP)) continue;
 | 
						|
    ConstantStruct *CS = cast<ConstantStruct>(OP);
 | 
						|
 | 
						|
    // Must have a function or null ptr.
 | 
						|
    if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
 | 
						|
      if (F->getName() == kAsanModuleCtorName) continue;
 | 
						|
      ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
 | 
						|
      // Don't instrument CTORs that will run before asan.module_ctor.
 | 
						|
      if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
 | 
						|
      poisonOneInitializer(*F, ModuleName);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
 | 
						|
  Type *Ty = G->getValueType();
 | 
						|
  DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
 | 
						|
 | 
						|
  if (GlobalsMD.get(G).IsBlacklisted) return false;
 | 
						|
  if (!Ty->isSized()) return false;
 | 
						|
  if (!G->hasInitializer()) return false;
 | 
						|
  if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
 | 
						|
  // Touch only those globals that will not be defined in other modules.
 | 
						|
  // Don't handle ODR linkage types and COMDATs since other modules may be built
 | 
						|
  // without ASan.
 | 
						|
  if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
 | 
						|
      G->getLinkage() != GlobalVariable::PrivateLinkage &&
 | 
						|
      G->getLinkage() != GlobalVariable::InternalLinkage)
 | 
						|
    return false;
 | 
						|
  if (G->hasComdat()) return false;
 | 
						|
  // Two problems with thread-locals:
 | 
						|
  //   - The address of the main thread's copy can't be computed at link-time.
 | 
						|
  //   - Need to poison all copies, not just the main thread's one.
 | 
						|
  if (G->isThreadLocal()) return false;
 | 
						|
  // For now, just ignore this Global if the alignment is large.
 | 
						|
  if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
 | 
						|
 | 
						|
  if (G->hasSection()) {
 | 
						|
    StringRef Section = G->getSection();
 | 
						|
 | 
						|
    // Globals from llvm.metadata aren't emitted, do not instrument them.
 | 
						|
    if (Section == "llvm.metadata") return false;
 | 
						|
    // Do not instrument globals from special LLVM sections.
 | 
						|
    if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
 | 
						|
 | 
						|
    // Do not instrument function pointers to initialization and termination
 | 
						|
    // routines: dynamic linker will not properly handle redzones.
 | 
						|
    if (Section.startswith(".preinit_array") ||
 | 
						|
        Section.startswith(".init_array") ||
 | 
						|
        Section.startswith(".fini_array")) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Callbacks put into the CRT initializer/terminator sections
 | 
						|
    // should not be instrumented.
 | 
						|
    // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
 | 
						|
    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
 | 
						|
    if (Section.startswith(".CRT")) {
 | 
						|
      DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TargetTriple.isOSBinFormatMachO()) {
 | 
						|
      StringRef ParsedSegment, ParsedSection;
 | 
						|
      unsigned TAA = 0, StubSize = 0;
 | 
						|
      bool TAAParsed;
 | 
						|
      std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
 | 
						|
          Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
 | 
						|
      assert(ErrorCode.empty() && "Invalid section specifier.");
 | 
						|
 | 
						|
      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
 | 
						|
      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
 | 
						|
      // them.
 | 
						|
      if (ParsedSegment == "__OBJC" ||
 | 
						|
          (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
 | 
						|
        DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
 | 
						|
      // Constant CFString instances are compiled in the following way:
 | 
						|
      //  -- the string buffer is emitted into
 | 
						|
      //     __TEXT,__cstring,cstring_literals
 | 
						|
      //  -- the constant NSConstantString structure referencing that buffer
 | 
						|
      //     is placed into __DATA,__cfstring
 | 
						|
      // Therefore there's no point in placing redzones into __DATA,__cfstring.
 | 
						|
      // Moreover, it causes the linker to crash on OS X 10.7
 | 
						|
      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
 | 
						|
        DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // The linker merges the contents of cstring_literals and removes the
 | 
						|
      // trailing zeroes.
 | 
						|
      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
 | 
						|
        DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// On Mach-O platforms, we emit global metadata in a separate section of the
 | 
						|
// binary in order to allow the linker to properly dead strip. This is only
 | 
						|
// supported on recent versions of ld64.
 | 
						|
bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
 | 
						|
  if (!ClUseMachOGlobalsSection)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!TargetTriple.isOSBinFormatMachO())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
 | 
						|
    return true;
 | 
						|
  if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
 | 
						|
    return true;
 | 
						|
  if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
StringRef AddressSanitizerModule::getGlobalMetadataSection() const {
 | 
						|
  switch (TargetTriple.getObjectFormat()) {
 | 
						|
  case Triple::COFF:  return ".ASAN$GL";
 | 
						|
  case Triple::ELF:   return "asan_globals";
 | 
						|
  case Triple::MachO: return "__DATA,__asan_globals,regular";
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unsupported object format");
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
 | 
						|
  // Declare our poisoning and unpoisoning functions.
 | 
						|
  AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
 | 
						|
  AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
  AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
 | 
						|
  AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
 | 
						|
  // Declare functions that register/unregister globals.
 | 
						|
  AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | 
						|
  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
  AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
 | 
						|
      M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
 | 
						|
                            IntptrTy, IntptrTy, nullptr));
 | 
						|
  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
 | 
						|
  // Declare the functions that find globals in a shared object and then invoke
 | 
						|
  // the (un)register function on them.
 | 
						|
  AsanRegisterImageGlobals =
 | 
						|
      checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
          kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
 | 
						|
  AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
 | 
						|
  AsanUnregisterImageGlobals =
 | 
						|
      checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
          kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
 | 
						|
  AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
 | 
						|
}
 | 
						|
 | 
						|
// Put the metadata and the instrumented global in the same group. This ensures
 | 
						|
// that the metadata is discarded if the instrumented global is discarded.
 | 
						|
void AddressSanitizerModule::SetComdatForGlobalMetadata(
 | 
						|
    GlobalVariable *G, GlobalVariable *Metadata) {
 | 
						|
  Module &M = *G->getParent();
 | 
						|
  Comdat *C = G->getComdat();
 | 
						|
  if (!C) {
 | 
						|
    if (!G->hasName()) {
 | 
						|
      // If G is unnamed, it must be internal. Give it an artificial name
 | 
						|
      // so we can put it in a comdat.
 | 
						|
      assert(G->hasLocalLinkage());
 | 
						|
      G->setName(Twine(kAsanGenPrefix) + "_anon_global");
 | 
						|
    }
 | 
						|
    C = M.getOrInsertComdat(G->getName());
 | 
						|
    // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF.
 | 
						|
    if (TargetTriple.isOSBinFormatCOFF())
 | 
						|
      C->setSelectionKind(Comdat::NoDuplicates);
 | 
						|
    G->setComdat(C);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(G->hasComdat());
 | 
						|
  Metadata->setComdat(G->getComdat());
 | 
						|
}
 | 
						|
 | 
						|
// Create a separate metadata global and put it in the appropriate ASan
 | 
						|
// global registration section.
 | 
						|
GlobalVariable *
 | 
						|
AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer,
 | 
						|
                                             StringRef OriginalName) {
 | 
						|
  GlobalVariable *Metadata =
 | 
						|
      new GlobalVariable(M, Initializer->getType(), false,
 | 
						|
                         GlobalVariable::InternalLinkage, Initializer,
 | 
						|
                         Twine("__asan_global_") +
 | 
						|
                             GlobalValue::getRealLinkageName(OriginalName));
 | 
						|
  Metadata->setSection(getGlobalMetadataSection());
 | 
						|
  return Metadata;
 | 
						|
}
 | 
						|
 | 
						|
IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) {
 | 
						|
  Function *AsanDtorFunction =
 | 
						|
      Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
 | 
						|
                       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
 | 
						|
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
 | 
						|
  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
 | 
						|
 | 
						|
  return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::InstrumentGlobalsCOFF(
 | 
						|
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
    ArrayRef<Constant *> MetadataInitializers) {
 | 
						|
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | 
						|
  auto &DL = M.getDataLayout();
 | 
						|
 | 
						|
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | 
						|
    Constant *Initializer = MetadataInitializers[i];
 | 
						|
    GlobalVariable *G = ExtendedGlobals[i];
 | 
						|
    GlobalVariable *Metadata =
 | 
						|
        CreateMetadataGlobal(M, Initializer, G->getName());
 | 
						|
 | 
						|
    // The MSVC linker always inserts padding when linking incrementally. We
 | 
						|
    // cope with that by aligning each struct to its size, which must be a power
 | 
						|
    // of two.
 | 
						|
    unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
 | 
						|
    assert(isPowerOf2_32(SizeOfGlobalStruct) &&
 | 
						|
           "global metadata will not be padded appropriately");
 | 
						|
    Metadata->setAlignment(SizeOfGlobalStruct);
 | 
						|
 | 
						|
    SetComdatForGlobalMetadata(G, Metadata);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::InstrumentGlobalsMachO(
 | 
						|
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
    ArrayRef<Constant *> MetadataInitializers) {
 | 
						|
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | 
						|
 | 
						|
  // On recent Mach-O platforms, use a structure which binds the liveness of
 | 
						|
  // the global variable to the metadata struct. Keep the list of "Liveness" GV
 | 
						|
  // created to be added to llvm.compiler.used
 | 
						|
  StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr);
 | 
						|
  SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
 | 
						|
 | 
						|
  for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | 
						|
    Constant *Initializer = MetadataInitializers[i];
 | 
						|
    GlobalVariable *G = ExtendedGlobals[i];
 | 
						|
    GlobalVariable *Metadata =
 | 
						|
        CreateMetadataGlobal(M, Initializer, G->getName());
 | 
						|
 | 
						|
    // On recent Mach-O platforms, we emit the global metadata in a way that
 | 
						|
    // allows the linker to properly strip dead globals.
 | 
						|
    auto LivenessBinder = ConstantStruct::get(
 | 
						|
        LivenessTy, Initializer->getAggregateElement(0u),
 | 
						|
        ConstantExpr::getPointerCast(Metadata, IntptrTy), nullptr);
 | 
						|
    GlobalVariable *Liveness = new GlobalVariable(
 | 
						|
        M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
 | 
						|
        Twine("__asan_binder_") + G->getName());
 | 
						|
    Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
 | 
						|
    LivenessGlobals[i] = Liveness;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update llvm.compiler.used, adding the new liveness globals. This is
 | 
						|
  // needed so that during LTO these variables stay alive. The alternative
 | 
						|
  // would be to have the linker handling the LTO symbols, but libLTO
 | 
						|
  // current API does not expose access to the section for each symbol.
 | 
						|
  if (!LivenessGlobals.empty())
 | 
						|
    appendToCompilerUsed(M, LivenessGlobals);
 | 
						|
 | 
						|
  // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
 | 
						|
  // to look up the loaded image that contains it. Second, we can store in it
 | 
						|
  // whether registration has already occurred, to prevent duplicate
 | 
						|
  // registration.
 | 
						|
  //
 | 
						|
  // common linkage ensures that there is only one global per shared library.
 | 
						|
  GlobalVariable *RegisteredFlag = new GlobalVariable(
 | 
						|
      M, IntptrTy, false, GlobalVariable::CommonLinkage,
 | 
						|
      ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
 | 
						|
  RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
 | 
						|
 | 
						|
  IRB.CreateCall(AsanRegisterImageGlobals,
 | 
						|
                 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
 | 
						|
 | 
						|
  // We also need to unregister globals at the end, e.g., when a shared library
 | 
						|
  // gets closed.
 | 
						|
  IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
 | 
						|
  IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
 | 
						|
                      {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray(
 | 
						|
    IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | 
						|
    ArrayRef<Constant *> MetadataInitializers) {
 | 
						|
  assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | 
						|
  unsigned N = ExtendedGlobals.size();
 | 
						|
  assert(N > 0);
 | 
						|
 | 
						|
  // On platforms that don't have a custom metadata section, we emit an array
 | 
						|
  // of global metadata structures.
 | 
						|
  ArrayType *ArrayOfGlobalStructTy =
 | 
						|
      ArrayType::get(MetadataInitializers[0]->getType(), N);
 | 
						|
  auto AllGlobals = new GlobalVariable(
 | 
						|
      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
 | 
						|
      ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
 | 
						|
 | 
						|
  IRB.CreateCall(AsanRegisterGlobals,
 | 
						|
                 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | 
						|
                  ConstantInt::get(IntptrTy, N)});
 | 
						|
 | 
						|
  // We also need to unregister globals at the end, e.g., when a shared library
 | 
						|
  // gets closed.
 | 
						|
  IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
 | 
						|
  IRB_Dtor.CreateCall(AsanUnregisterGlobals,
 | 
						|
                      {IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | 
						|
                       ConstantInt::get(IntptrTy, N)});
 | 
						|
}
 | 
						|
 | 
						|
// This function replaces all global variables with new variables that have
 | 
						|
// trailing redzones. It also creates a function that poisons
 | 
						|
// redzones and inserts this function into llvm.global_ctors.
 | 
						|
bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
 | 
						|
  GlobalsMD.init(M);
 | 
						|
 | 
						|
  SmallVector<GlobalVariable *, 16> GlobalsToChange;
 | 
						|
 | 
						|
  for (auto &G : M.globals()) {
 | 
						|
    if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
 | 
						|
  }
 | 
						|
 | 
						|
  size_t n = GlobalsToChange.size();
 | 
						|
  if (n == 0) return false;
 | 
						|
 | 
						|
  auto &DL = M.getDataLayout();
 | 
						|
 | 
						|
  // A global is described by a structure
 | 
						|
  //   size_t beg;
 | 
						|
  //   size_t size;
 | 
						|
  //   size_t size_with_redzone;
 | 
						|
  //   const char *name;
 | 
						|
  //   const char *module_name;
 | 
						|
  //   size_t has_dynamic_init;
 | 
						|
  //   void *source_location;
 | 
						|
  //   size_t odr_indicator;
 | 
						|
  // We initialize an array of such structures and pass it to a run-time call.
 | 
						|
  StructType *GlobalStructTy =
 | 
						|
      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
 | 
						|
                      IntptrTy, IntptrTy, IntptrTy, nullptr);
 | 
						|
  SmallVector<GlobalVariable *, 16> NewGlobals(n);
 | 
						|
  SmallVector<Constant *, 16> Initializers(n);
 | 
						|
 | 
						|
  bool HasDynamicallyInitializedGlobals = false;
 | 
						|
 | 
						|
  // We shouldn't merge same module names, as this string serves as unique
 | 
						|
  // module ID in runtime.
 | 
						|
  GlobalVariable *ModuleName = createPrivateGlobalForString(
 | 
						|
      M, M.getModuleIdentifier(), /*AllowMerging*/ false);
 | 
						|
 | 
						|
  for (size_t i = 0; i < n; i++) {
 | 
						|
    static const uint64_t kMaxGlobalRedzone = 1 << 18;
 | 
						|
    GlobalVariable *G = GlobalsToChange[i];
 | 
						|
 | 
						|
    auto MD = GlobalsMD.get(G);
 | 
						|
    StringRef NameForGlobal = G->getName();
 | 
						|
    // Create string holding the global name (use global name from metadata
 | 
						|
    // if it's available, otherwise just write the name of global variable).
 | 
						|
    GlobalVariable *Name = createPrivateGlobalForString(
 | 
						|
        M, MD.Name.empty() ? NameForGlobal : MD.Name,
 | 
						|
        /*AllowMerging*/ true);
 | 
						|
 | 
						|
    Type *Ty = G->getValueType();
 | 
						|
    uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
 | 
						|
    uint64_t MinRZ = MinRedzoneSizeForGlobal();
 | 
						|
    // MinRZ <= RZ <= kMaxGlobalRedzone
 | 
						|
    // and trying to make RZ to be ~ 1/4 of SizeInBytes.
 | 
						|
    uint64_t RZ = std::max(
 | 
						|
        MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
 | 
						|
    uint64_t RightRedzoneSize = RZ;
 | 
						|
    // Round up to MinRZ
 | 
						|
    if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
 | 
						|
    assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
 | 
						|
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
 | 
						|
 | 
						|
    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
 | 
						|
    Constant *NewInitializer =
 | 
						|
        ConstantStruct::get(NewTy, G->getInitializer(),
 | 
						|
                            Constant::getNullValue(RightRedZoneTy), nullptr);
 | 
						|
 | 
						|
    // Create a new global variable with enough space for a redzone.
 | 
						|
    GlobalValue::LinkageTypes Linkage = G->getLinkage();
 | 
						|
    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
 | 
						|
      Linkage = GlobalValue::InternalLinkage;
 | 
						|
    GlobalVariable *NewGlobal =
 | 
						|
        new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
 | 
						|
                           "", G, G->getThreadLocalMode());
 | 
						|
    NewGlobal->copyAttributesFrom(G);
 | 
						|
    NewGlobal->setAlignment(MinRZ);
 | 
						|
 | 
						|
    // Move null-terminated C strings to "__asan_cstring" section on Darwin.
 | 
						|
    if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
 | 
						|
        G->isConstant()) {
 | 
						|
      auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
 | 
						|
      if (Seq && Seq->isCString())
 | 
						|
        NewGlobal->setSection("__TEXT,__asan_cstring,regular");
 | 
						|
    }
 | 
						|
 | 
						|
    // Transfer the debug info.  The payload starts at offset zero so we can
 | 
						|
    // copy the debug info over as is.
 | 
						|
    SmallVector<DIGlobalVariableExpression *, 1> GVs;
 | 
						|
    G->getDebugInfo(GVs);
 | 
						|
    for (auto *GV : GVs)
 | 
						|
      NewGlobal->addDebugInfo(GV);
 | 
						|
 | 
						|
    Value *Indices2[2];
 | 
						|
    Indices2[0] = IRB.getInt32(0);
 | 
						|
    Indices2[1] = IRB.getInt32(0);
 | 
						|
 | 
						|
    G->replaceAllUsesWith(
 | 
						|
        ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
 | 
						|
    NewGlobal->takeName(G);
 | 
						|
    G->eraseFromParent();
 | 
						|
    NewGlobals[i] = NewGlobal;
 | 
						|
 | 
						|
    Constant *SourceLoc;
 | 
						|
    if (!MD.SourceLoc.empty()) {
 | 
						|
      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
 | 
						|
      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
 | 
						|
    } else {
 | 
						|
      SourceLoc = ConstantInt::get(IntptrTy, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
 | 
						|
    GlobalValue *InstrumentedGlobal = NewGlobal;
 | 
						|
 | 
						|
    bool CanUsePrivateAliases =
 | 
						|
        TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
 | 
						|
        TargetTriple.isOSBinFormatWasm();
 | 
						|
    if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
 | 
						|
      // Create local alias for NewGlobal to avoid crash on ODR between
 | 
						|
      // instrumented and non-instrumented libraries.
 | 
						|
      auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
 | 
						|
                                     NameForGlobal + M.getName(), NewGlobal);
 | 
						|
 | 
						|
      // With local aliases, we need to provide another externally visible
 | 
						|
      // symbol __odr_asan_XXX to detect ODR violation.
 | 
						|
      auto *ODRIndicatorSym =
 | 
						|
          new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
 | 
						|
                             Constant::getNullValue(IRB.getInt8Ty()),
 | 
						|
                             kODRGenPrefix + NameForGlobal, nullptr,
 | 
						|
                             NewGlobal->getThreadLocalMode());
 | 
						|
 | 
						|
      // Set meaningful attributes for indicator symbol.
 | 
						|
      ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
 | 
						|
      ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
 | 
						|
      ODRIndicatorSym->setAlignment(1);
 | 
						|
      ODRIndicator = ODRIndicatorSym;
 | 
						|
      InstrumentedGlobal = GA;
 | 
						|
    }
 | 
						|
 | 
						|
    Constant *Initializer = ConstantStruct::get(
 | 
						|
        GlobalStructTy,
 | 
						|
        ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
 | 
						|
        ConstantInt::get(IntptrTy, SizeInBytes),
 | 
						|
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
 | 
						|
        ConstantExpr::getPointerCast(Name, IntptrTy),
 | 
						|
        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
 | 
						|
        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
 | 
						|
        ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr);
 | 
						|
 | 
						|
    if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
 | 
						|
 | 
						|
    Initializers[i] = Initializer;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TargetTriple.isOSBinFormatCOFF()) {
 | 
						|
    InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
 | 
						|
  } else if (ShouldUseMachOGlobalsSection()) {
 | 
						|
    InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
 | 
						|
  } else {
 | 
						|
    InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create calls for poisoning before initializers run and unpoisoning after.
 | 
						|
  if (HasDynamicallyInitializedGlobals)
 | 
						|
    createInitializerPoisonCalls(M, ModuleName);
 | 
						|
 | 
						|
  DEBUG(dbgs() << M);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizerModule::runOnModule(Module &M) {
 | 
						|
  C = &(M.getContext());
 | 
						|
  int LongSize = M.getDataLayout().getPointerSizeInBits();
 | 
						|
  IntptrTy = Type::getIntNTy(*C, LongSize);
 | 
						|
  TargetTriple = Triple(M.getTargetTriple());
 | 
						|
  Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
 | 
						|
  initializeCallbacks(M);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // TODO(glider): temporarily disabled globals instrumentation for KASan.
 | 
						|
  if (ClGlobals && !CompileKernel) {
 | 
						|
    Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
 | 
						|
    assert(CtorFunc);
 | 
						|
    IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
 | 
						|
    Changed |= InstrumentGlobals(IRB, M);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  // Create __asan_report* callbacks.
 | 
						|
  // IsWrite, TypeSize and Exp are encoded in the function name.
 | 
						|
  for (int Exp = 0; Exp < 2; Exp++) {
 | 
						|
    for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
 | 
						|
      const std::string TypeStr = AccessIsWrite ? "store" : "load";
 | 
						|
      const std::string ExpStr = Exp ? "exp_" : "";
 | 
						|
      const std::string SuffixStr = CompileKernel ? "N" : "_n";
 | 
						|
      const std::string EndingStr = Recover ? "_noabort" : "";
 | 
						|
      Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
 | 
						|
      AsanErrorCallbackSized[AccessIsWrite][Exp] =
 | 
						|
          checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
              kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
 | 
						|
              IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
 | 
						|
      AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
 | 
						|
          checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
              ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
 | 
						|
              IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
 | 
						|
      for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
 | 
						|
           AccessSizeIndex++) {
 | 
						|
        const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
 | 
						|
        AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
 | 
						|
            checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
                kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
 | 
						|
                IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
 | 
						|
        AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
 | 
						|
            checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
                ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
 | 
						|
                IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const std::string MemIntrinCallbackPrefix =
 | 
						|
      CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
 | 
						|
  AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
 | 
						|
      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
 | 
						|
  AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
 | 
						|
      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
 | 
						|
  AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
 | 
						|
      IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
 | 
						|
 | 
						|
  AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
 | 
						|
      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
 | 
						|
 | 
						|
  AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | 
						|
  AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | 
						|
  // We insert an empty inline asm after __asan_report* to avoid callback merge.
 | 
						|
  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
 | 
						|
                            StringRef(""), StringRef(""),
 | 
						|
                            /*hasSideEffects=*/true);
 | 
						|
}
 | 
						|
 | 
						|
// virtual
 | 
						|
bool AddressSanitizer::doInitialization(Module &M) {
 | 
						|
  // Initialize the private fields. No one has accessed them before.
 | 
						|
 | 
						|
  GlobalsMD.init(M);
 | 
						|
 | 
						|
  C = &(M.getContext());
 | 
						|
  LongSize = M.getDataLayout().getPointerSizeInBits();
 | 
						|
  IntptrTy = Type::getIntNTy(*C, LongSize);
 | 
						|
  TargetTriple = Triple(M.getTargetTriple());
 | 
						|
 | 
						|
  if (!CompileKernel) {
 | 
						|
    std::tie(AsanCtorFunction, AsanInitFunction) =
 | 
						|
        createSanitizerCtorAndInitFunctions(
 | 
						|
            M, kAsanModuleCtorName, kAsanInitName,
 | 
						|
            /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
 | 
						|
    appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
 | 
						|
  }
 | 
						|
  Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::doFinalization(Module &M) {
 | 
						|
  GlobalsMD.reset();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
 | 
						|
  // For each NSObject descendant having a +load method, this method is invoked
 | 
						|
  // by the ObjC runtime before any of the static constructors is called.
 | 
						|
  // Therefore we need to instrument such methods with a call to __asan_init
 | 
						|
  // at the beginning in order to initialize our runtime before any access to
 | 
						|
  // the shadow memory.
 | 
						|
  // We cannot just ignore these methods, because they may call other
 | 
						|
  // instrumented functions.
 | 
						|
  if (F.getName().find(" load]") != std::string::npos) {
 | 
						|
    IRBuilder<> IRB(&F.front(), F.front().begin());
 | 
						|
    IRB.CreateCall(AsanInitFunction, {});
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
 | 
						|
  // Generate code only when dynamic addressing is needed.
 | 
						|
  if (Mapping.Offset != kDynamicShadowSentinel)
 | 
						|
    return;
 | 
						|
 | 
						|
  IRBuilder<> IRB(&F.front().front());
 | 
						|
  Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
 | 
						|
      kAsanShadowMemoryDynamicAddress, IntptrTy);
 | 
						|
  LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress);
 | 
						|
}
 | 
						|
 | 
						|
void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
 | 
						|
  // Find the one possible call to llvm.localescape and pre-mark allocas passed
 | 
						|
  // to it as uninteresting. This assumes we haven't started processing allocas
 | 
						|
  // yet. This check is done up front because iterating the use list in
 | 
						|
  // isInterestingAlloca would be algorithmically slower.
 | 
						|
  assert(ProcessedAllocas.empty() && "must process localescape before allocas");
 | 
						|
 | 
						|
  // Try to get the declaration of llvm.localescape. If it's not in the module,
 | 
						|
  // we can exit early.
 | 
						|
  if (!F.getParent()->getFunction("llvm.localescape")) return;
 | 
						|
 | 
						|
  // Look for a call to llvm.localescape call in the entry block. It can't be in
 | 
						|
  // any other block.
 | 
						|
  for (Instruction &I : F.getEntryBlock()) {
 | 
						|
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
 | 
						|
    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
 | 
						|
      // We found a call. Mark all the allocas passed in as uninteresting.
 | 
						|
      for (Value *Arg : II->arg_operands()) {
 | 
						|
        AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
 | 
						|
        assert(AI && AI->isStaticAlloca() &&
 | 
						|
               "non-static alloca arg to localescape");
 | 
						|
        ProcessedAllocas[AI] = false;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AddressSanitizer::runOnFunction(Function &F) {
 | 
						|
  if (&F == AsanCtorFunction) return false;
 | 
						|
  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
 | 
						|
  if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
 | 
						|
  if (F.getName().startswith("__asan_")) return false;
 | 
						|
 | 
						|
  bool FunctionModified = false;
 | 
						|
 | 
						|
  // If needed, insert __asan_init before checking for SanitizeAddress attr.
 | 
						|
  // This function needs to be called even if the function body is not
 | 
						|
  // instrumented.  
 | 
						|
  if (maybeInsertAsanInitAtFunctionEntry(F))
 | 
						|
    FunctionModified = true;
 | 
						|
  
 | 
						|
  // Leave if the function doesn't need instrumentation.
 | 
						|
  if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
 | 
						|
 | 
						|
  initializeCallbacks(*F.getParent());
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
 | 
						|
  FunctionStateRAII CleanupObj(this);
 | 
						|
 | 
						|
  maybeInsertDynamicShadowAtFunctionEntry(F);
 | 
						|
 | 
						|
  // We can't instrument allocas used with llvm.localescape. Only static allocas
 | 
						|
  // can be passed to that intrinsic.
 | 
						|
  markEscapedLocalAllocas(F);
 | 
						|
 | 
						|
  // We want to instrument every address only once per basic block (unless there
 | 
						|
  // are calls between uses).
 | 
						|
  SmallSet<Value *, 16> TempsToInstrument;
 | 
						|
  SmallVector<Instruction *, 16> ToInstrument;
 | 
						|
  SmallVector<Instruction *, 8> NoReturnCalls;
 | 
						|
  SmallVector<BasicBlock *, 16> AllBlocks;
 | 
						|
  SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
 | 
						|
  int NumAllocas = 0;
 | 
						|
  bool IsWrite;
 | 
						|
  unsigned Alignment;
 | 
						|
  uint64_t TypeSize;
 | 
						|
  const TargetLibraryInfo *TLI =
 | 
						|
      &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
 | 
						|
  // Fill the set of memory operations to instrument.
 | 
						|
  for (auto &BB : F) {
 | 
						|
    AllBlocks.push_back(&BB);
 | 
						|
    TempsToInstrument.clear();
 | 
						|
    int NumInsnsPerBB = 0;
 | 
						|
    for (auto &Inst : BB) {
 | 
						|
      if (LooksLikeCodeInBug11395(&Inst)) return false;
 | 
						|
      Value *MaybeMask = nullptr;
 | 
						|
      if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
 | 
						|
                                                  &Alignment, &MaybeMask)) {
 | 
						|
        if (ClOpt && ClOptSameTemp) {
 | 
						|
          // If we have a mask, skip instrumentation if we've already
 | 
						|
          // instrumented the full object. But don't add to TempsToInstrument
 | 
						|
          // because we might get another load/store with a different mask.
 | 
						|
          if (MaybeMask) {
 | 
						|
            if (TempsToInstrument.count(Addr))
 | 
						|
              continue; // We've seen this (whole) temp in the current BB.
 | 
						|
          } else {
 | 
						|
            if (!TempsToInstrument.insert(Addr).second)
 | 
						|
              continue; // We've seen this temp in the current BB.
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (ClInvalidPointerPairs &&
 | 
						|
                 isInterestingPointerComparisonOrSubtraction(&Inst)) {
 | 
						|
        PointerComparisonsOrSubtracts.push_back(&Inst);
 | 
						|
        continue;
 | 
						|
      } else if (isa<MemIntrinsic>(Inst)) {
 | 
						|
        // ok, take it.
 | 
						|
      } else {
 | 
						|
        if (isa<AllocaInst>(Inst)) NumAllocas++;
 | 
						|
        CallSite CS(&Inst);
 | 
						|
        if (CS) {
 | 
						|
          // A call inside BB.
 | 
						|
          TempsToInstrument.clear();
 | 
						|
          if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
 | 
						|
        }
 | 
						|
        if (CallInst *CI = dyn_cast<CallInst>(&Inst))
 | 
						|
          maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ToInstrument.push_back(&Inst);
 | 
						|
      NumInsnsPerBB++;
 | 
						|
      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool UseCalls =
 | 
						|
      CompileKernel ||
 | 
						|
      (ClInstrumentationWithCallsThreshold >= 0 &&
 | 
						|
       ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
 | 
						|
  const DataLayout &DL = F.getParent()->getDataLayout();
 | 
						|
  ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
 | 
						|
                                     /*RoundToAlign=*/true);
 | 
						|
 | 
						|
  // Instrument.
 | 
						|
  int NumInstrumented = 0;
 | 
						|
  for (auto Inst : ToInstrument) {
 | 
						|
    if (ClDebugMin < 0 || ClDebugMax < 0 ||
 | 
						|
        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
 | 
						|
      if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
 | 
						|
        instrumentMop(ObjSizeVis, Inst, UseCalls,
 | 
						|
                      F.getParent()->getDataLayout());
 | 
						|
      else
 | 
						|
        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
 | 
						|
    }
 | 
						|
    NumInstrumented++;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionStackPoisoner FSP(F, *this);
 | 
						|
  bool ChangedStack = FSP.runOnFunction();
 | 
						|
 | 
						|
  // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
 | 
						|
  // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
 | 
						|
  for (auto CI : NoReturnCalls) {
 | 
						|
    IRBuilder<> IRB(CI);
 | 
						|
    IRB.CreateCall(AsanHandleNoReturnFunc, {});
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto Inst : PointerComparisonsOrSubtracts) {
 | 
						|
    instrumentPointerComparisonOrSubtraction(Inst);
 | 
						|
    NumInstrumented++;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
 | 
						|
    FunctionModified = true;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
 | 
						|
               << F << "\n");
 | 
						|
 | 
						|
  return FunctionModified;
 | 
						|
}
 | 
						|
 | 
						|
// Workaround for bug 11395: we don't want to instrument stack in functions
 | 
						|
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
 | 
						|
// FIXME: remove once the bug 11395 is fixed.
 | 
						|
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
 | 
						|
  if (LongSize != 32) return false;
 | 
						|
  CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
  if (!CI || !CI->isInlineAsm()) return false;
 | 
						|
  if (CI->getNumArgOperands() <= 5) return false;
 | 
						|
  // We have inline assembly with quite a few arguments.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::initializeCallbacks(Module &M) {
 | 
						|
  IRBuilder<> IRB(*C);
 | 
						|
  for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
 | 
						|
    std::string Suffix = itostr(i);
 | 
						|
    AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
 | 
						|
        M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
 | 
						|
                              IntptrTy, nullptr));
 | 
						|
    AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
 | 
						|
        M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
 | 
						|
                              IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | 
						|
  }
 | 
						|
  if (ASan.UseAfterScope) {
 | 
						|
    AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
 | 
						|
        M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
 | 
						|
                              IntptrTy, IntptrTy, nullptr));
 | 
						|
    AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
 | 
						|
        M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
 | 
						|
                              IntptrTy, IntptrTy, nullptr));
 | 
						|
  }
 | 
						|
 | 
						|
  for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
 | 
						|
    std::ostringstream Name;
 | 
						|
    Name << kAsanSetShadowPrefix;
 | 
						|
    Name << std::setw(2) << std::setfill('0') << std::hex << Val;
 | 
						|
    AsanSetShadowFunc[Val] =
 | 
						|
        checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
            Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | 
						|
  }
 | 
						|
 | 
						|
  AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
      kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | 
						|
  AsanAllocasUnpoisonFunc =
 | 
						|
      checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | 
						|
          kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                                               ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                                               size_t Begin, size_t End,
 | 
						|
                                               IRBuilder<> &IRB,
 | 
						|
                                               Value *ShadowBase) {
 | 
						|
  if (Begin >= End)
 | 
						|
    return;
 | 
						|
 | 
						|
  const size_t LargestStoreSizeInBytes =
 | 
						|
      std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
 | 
						|
 | 
						|
  const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
 | 
						|
 | 
						|
  // Poison given range in shadow using larges store size with out leading and
 | 
						|
  // trailing zeros in ShadowMask. Zeros never change, so they need neither
 | 
						|
  // poisoning nor up-poisoning. Still we don't mind if some of them get into a
 | 
						|
  // middle of a store.
 | 
						|
  for (size_t i = Begin; i < End;) {
 | 
						|
    if (!ShadowMask[i]) {
 | 
						|
      assert(!ShadowBytes[i]);
 | 
						|
      ++i;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t StoreSizeInBytes = LargestStoreSizeInBytes;
 | 
						|
    // Fit store size into the range.
 | 
						|
    while (StoreSizeInBytes > End - i)
 | 
						|
      StoreSizeInBytes /= 2;
 | 
						|
 | 
						|
    // Minimize store size by trimming trailing zeros.
 | 
						|
    for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
 | 
						|
      while (j <= StoreSizeInBytes / 2)
 | 
						|
        StoreSizeInBytes /= 2;
 | 
						|
    }
 | 
						|
 | 
						|
    uint64_t Val = 0;
 | 
						|
    for (size_t j = 0; j < StoreSizeInBytes; j++) {
 | 
						|
      if (IsLittleEndian)
 | 
						|
        Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
 | 
						|
      else
 | 
						|
        Val = (Val << 8) | ShadowBytes[i + j];
 | 
						|
    }
 | 
						|
 | 
						|
    Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
 | 
						|
    Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
 | 
						|
    IRB.CreateAlignedStore(
 | 
						|
        Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
 | 
						|
 | 
						|
    i += StoreSizeInBytes;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                                         ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                                         IRBuilder<> &IRB, Value *ShadowBase) {
 | 
						|
  copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
 | 
						|
                                         ArrayRef<uint8_t> ShadowBytes,
 | 
						|
                                         size_t Begin, size_t End,
 | 
						|
                                         IRBuilder<> &IRB, Value *ShadowBase) {
 | 
						|
  assert(ShadowMask.size() == ShadowBytes.size());
 | 
						|
  size_t Done = Begin;
 | 
						|
  for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
 | 
						|
    if (!ShadowMask[i]) {
 | 
						|
      assert(!ShadowBytes[i]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    uint8_t Val = ShadowBytes[i];
 | 
						|
    if (!AsanSetShadowFunc[Val])
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip same values.
 | 
						|
    for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
 | 
						|
    }
 | 
						|
 | 
						|
    if (j - i >= ClMaxInlinePoisoningSize) {
 | 
						|
      copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
 | 
						|
      IRB.CreateCall(AsanSetShadowFunc[Val],
 | 
						|
                     {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
 | 
						|
                      ConstantInt::get(IntptrTy, j - i)});
 | 
						|
      Done = j;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
 | 
						|
}
 | 
						|
 | 
						|
// Fake stack allocator (asan_fake_stack.h) has 11 size classes
 | 
						|
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
 | 
						|
static int StackMallocSizeClass(uint64_t LocalStackSize) {
 | 
						|
  assert(LocalStackSize <= kMaxStackMallocSize);
 | 
						|
  uint64_t MaxSize = kMinStackMallocSize;
 | 
						|
  for (int i = 0;; i++, MaxSize *= 2)
 | 
						|
    if (LocalStackSize <= MaxSize) return i;
 | 
						|
  llvm_unreachable("impossible LocalStackSize");
 | 
						|
}
 | 
						|
 | 
						|
PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
 | 
						|
                                          Value *ValueIfTrue,
 | 
						|
                                          Instruction *ThenTerm,
 | 
						|
                                          Value *ValueIfFalse) {
 | 
						|
  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
 | 
						|
  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
 | 
						|
  PHI->addIncoming(ValueIfFalse, CondBlock);
 | 
						|
  BasicBlock *ThenBlock = ThenTerm->getParent();
 | 
						|
  PHI->addIncoming(ValueIfTrue, ThenBlock);
 | 
						|
  return PHI;
 | 
						|
}
 | 
						|
 | 
						|
Value *FunctionStackPoisoner::createAllocaForLayout(
 | 
						|
    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
 | 
						|
  AllocaInst *Alloca;
 | 
						|
  if (Dynamic) {
 | 
						|
    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
 | 
						|
                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
 | 
						|
                              "MyAlloca");
 | 
						|
  } else {
 | 
						|
    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
 | 
						|
                              nullptr, "MyAlloca");
 | 
						|
    assert(Alloca->isStaticAlloca());
 | 
						|
  }
 | 
						|
  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
 | 
						|
  size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
 | 
						|
  Alloca->setAlignment(FrameAlignment);
 | 
						|
  return IRB.CreatePointerCast(Alloca, IntptrTy);
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
 | 
						|
  BasicBlock &FirstBB = *F.begin();
 | 
						|
  IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
 | 
						|
  DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
 | 
						|
  IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
 | 
						|
  DynamicAllocaLayout->setAlignment(32);
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::processDynamicAllocas() {
 | 
						|
  if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
 | 
						|
    assert(DynamicAllocaPoisonCallVec.empty());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert poison calls for lifetime intrinsics for dynamic allocas.
 | 
						|
  for (const auto &APC : DynamicAllocaPoisonCallVec) {
 | 
						|
    assert(APC.InsBefore);
 | 
						|
    assert(APC.AI);
 | 
						|
    assert(ASan.isInterestingAlloca(*APC.AI));
 | 
						|
    assert(!APC.AI->isStaticAlloca());
 | 
						|
 | 
						|
    IRBuilder<> IRB(APC.InsBefore);
 | 
						|
    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
 | 
						|
    // Dynamic allocas will be unpoisoned unconditionally below in
 | 
						|
    // unpoisonDynamicAllocas.
 | 
						|
    // Flag that we need unpoison static allocas.
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle dynamic allocas.
 | 
						|
  createDynamicAllocasInitStorage();
 | 
						|
  for (auto &AI : DynamicAllocaVec)
 | 
						|
    handleDynamicAllocaCall(AI);
 | 
						|
  unpoisonDynamicAllocas();
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::processStaticAllocas() {
 | 
						|
  if (AllocaVec.empty()) {
 | 
						|
    assert(StaticAllocaPoisonCallVec.empty());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  int StackMallocIdx = -1;
 | 
						|
  DebugLoc EntryDebugLocation;
 | 
						|
  if (auto SP = F.getSubprogram())
 | 
						|
    EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
 | 
						|
 | 
						|
  Instruction *InsBefore = AllocaVec[0];
 | 
						|
  IRBuilder<> IRB(InsBefore);
 | 
						|
  IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
 | 
						|
  // Make sure non-instrumented allocas stay in the entry block. Otherwise,
 | 
						|
  // debug info is broken, because only entry-block allocas are treated as
 | 
						|
  // regular stack slots.
 | 
						|
  auto InsBeforeB = InsBefore->getParent();
 | 
						|
  assert(InsBeforeB == &F.getEntryBlock());
 | 
						|
  for (auto *AI : StaticAllocasToMoveUp)
 | 
						|
    if (AI->getParent() == InsBeforeB)
 | 
						|
      AI->moveBefore(InsBefore);
 | 
						|
 | 
						|
  // If we have a call to llvm.localescape, keep it in the entry block.
 | 
						|
  if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
 | 
						|
 | 
						|
  SmallVector<ASanStackVariableDescription, 16> SVD;
 | 
						|
  SVD.reserve(AllocaVec.size());
 | 
						|
  for (AllocaInst *AI : AllocaVec) {
 | 
						|
    ASanStackVariableDescription D = {AI->getName().data(),
 | 
						|
                                      ASan.getAllocaSizeInBytes(*AI),
 | 
						|
                                      0,
 | 
						|
                                      AI->getAlignment(),
 | 
						|
                                      AI,
 | 
						|
                                      0,
 | 
						|
                                      0};
 | 
						|
    SVD.push_back(D);
 | 
						|
  }
 | 
						|
 | 
						|
  // Minimal header size (left redzone) is 4 pointers,
 | 
						|
  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
 | 
						|
  size_t MinHeaderSize = ASan.LongSize / 2;
 | 
						|
  const ASanStackFrameLayout &L =
 | 
						|
      ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize);
 | 
						|
 | 
						|
  // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
 | 
						|
  DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
 | 
						|
  for (auto &Desc : SVD)
 | 
						|
    AllocaToSVDMap[Desc.AI] = &Desc;
 | 
						|
 | 
						|
  // Update SVD with information from lifetime intrinsics.
 | 
						|
  for (const auto &APC : StaticAllocaPoisonCallVec) {
 | 
						|
    assert(APC.InsBefore);
 | 
						|
    assert(APC.AI);
 | 
						|
    assert(ASan.isInterestingAlloca(*APC.AI));
 | 
						|
    assert(APC.AI->isStaticAlloca());
 | 
						|
 | 
						|
    ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
 | 
						|
    Desc.LifetimeSize = Desc.Size;
 | 
						|
    if (const DILocation *FnLoc = EntryDebugLocation.get()) {
 | 
						|
      if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
 | 
						|
        if (LifetimeLoc->getFile() == FnLoc->getFile())
 | 
						|
          if (unsigned Line = LifetimeLoc->getLine())
 | 
						|
            Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto DescriptionString = ComputeASanStackFrameDescription(SVD);
 | 
						|
  DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
 | 
						|
  uint64_t LocalStackSize = L.FrameSize;
 | 
						|
  bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
 | 
						|
                       LocalStackSize <= kMaxStackMallocSize;
 | 
						|
  bool DoDynamicAlloca = ClDynamicAllocaStack;
 | 
						|
  // Don't do dynamic alloca or stack malloc if:
 | 
						|
  // 1) There is inline asm: too often it makes assumptions on which registers
 | 
						|
  //    are available.
 | 
						|
  // 2) There is a returns_twice call (typically setjmp), which is
 | 
						|
  //    optimization-hostile, and doesn't play well with introduced indirect
 | 
						|
  //    register-relative calculation of local variable addresses.
 | 
						|
  DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
 | 
						|
  DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
 | 
						|
 | 
						|
  Value *StaticAlloca =
 | 
						|
      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
 | 
						|
 | 
						|
  Value *FakeStack;
 | 
						|
  Value *LocalStackBase;
 | 
						|
 | 
						|
  if (DoStackMalloc) {
 | 
						|
    // void *FakeStack = __asan_option_detect_stack_use_after_return
 | 
						|
    //     ? __asan_stack_malloc_N(LocalStackSize)
 | 
						|
    //     : nullptr;
 | 
						|
    // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
 | 
						|
    Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
 | 
						|
        kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
 | 
						|
    Value *UseAfterReturnIsEnabled =
 | 
						|
        IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
 | 
						|
                         Constant::getNullValue(IRB.getInt32Ty()));
 | 
						|
    Instruction *Term =
 | 
						|
        SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
 | 
						|
    IRBuilder<> IRBIf(Term);
 | 
						|
    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
    StackMallocIdx = StackMallocSizeClass(LocalStackSize);
 | 
						|
    assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
 | 
						|
    Value *FakeStackValue =
 | 
						|
        IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
 | 
						|
                         ConstantInt::get(IntptrTy, LocalStackSize));
 | 
						|
    IRB.SetInsertPoint(InsBefore);
 | 
						|
    IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
    FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
 | 
						|
                          ConstantInt::get(IntptrTy, 0));
 | 
						|
 | 
						|
    Value *NoFakeStack =
 | 
						|
        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
 | 
						|
    Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
 | 
						|
    IRBIf.SetInsertPoint(Term);
 | 
						|
    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
    Value *AllocaValue =
 | 
						|
        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
 | 
						|
    IRB.SetInsertPoint(InsBefore);
 | 
						|
    IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | 
						|
    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
 | 
						|
  } else {
 | 
						|
    // void *FakeStack = nullptr;
 | 
						|
    // void *LocalStackBase = alloca(LocalStackSize);
 | 
						|
    FakeStack = ConstantInt::get(IntptrTy, 0);
 | 
						|
    LocalStackBase =
 | 
						|
        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace Alloca instructions with base+offset.
 | 
						|
  for (const auto &Desc : SVD) {
 | 
						|
    AllocaInst *AI = Desc.AI;
 | 
						|
    Value *NewAllocaPtr = IRB.CreateIntToPtr(
 | 
						|
        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
 | 
						|
        AI->getType());
 | 
						|
    replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
 | 
						|
    AI->replaceAllUsesWith(NewAllocaPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // The left-most redzone has enough space for at least 4 pointers.
 | 
						|
  // Write the Magic value to redzone[0].
 | 
						|
  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
 | 
						|
  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
 | 
						|
                  BasePlus0);
 | 
						|
  // Write the frame description constant to redzone[1].
 | 
						|
  Value *BasePlus1 = IRB.CreateIntToPtr(
 | 
						|
      IRB.CreateAdd(LocalStackBase,
 | 
						|
                    ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
 | 
						|
      IntptrPtrTy);
 | 
						|
  GlobalVariable *StackDescriptionGlobal =
 | 
						|
      createPrivateGlobalForString(*F.getParent(), DescriptionString,
 | 
						|
                                   /*AllowMerging*/ true);
 | 
						|
  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
 | 
						|
  IRB.CreateStore(Description, BasePlus1);
 | 
						|
  // Write the PC to redzone[2].
 | 
						|
  Value *BasePlus2 = IRB.CreateIntToPtr(
 | 
						|
      IRB.CreateAdd(LocalStackBase,
 | 
						|
                    ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
 | 
						|
      IntptrPtrTy);
 | 
						|
  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
 | 
						|
 | 
						|
  const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
 | 
						|
 | 
						|
  // Poison the stack red zones at the entry.
 | 
						|
  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
 | 
						|
  // As mask we must use most poisoned case: red zones and after scope.
 | 
						|
  // As bytes we can use either the same or just red zones only.
 | 
						|
  copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
 | 
						|
 | 
						|
  if (!StaticAllocaPoisonCallVec.empty()) {
 | 
						|
    const auto &ShadowInScope = GetShadowBytes(SVD, L);
 | 
						|
 | 
						|
    // Poison static allocas near lifetime intrinsics.
 | 
						|
    for (const auto &APC : StaticAllocaPoisonCallVec) {
 | 
						|
      const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
 | 
						|
      assert(Desc.Offset % L.Granularity == 0);
 | 
						|
      size_t Begin = Desc.Offset / L.Granularity;
 | 
						|
      size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
 | 
						|
 | 
						|
      IRBuilder<> IRB(APC.InsBefore);
 | 
						|
      copyToShadow(ShadowAfterScope,
 | 
						|
                   APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
 | 
						|
                   IRB, ShadowBase);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
 | 
						|
  SmallVector<uint8_t, 64> ShadowAfterReturn;
 | 
						|
 | 
						|
  // (Un)poison the stack before all ret instructions.
 | 
						|
  for (auto Ret : RetVec) {
 | 
						|
    IRBuilder<> IRBRet(Ret);
 | 
						|
    // Mark the current frame as retired.
 | 
						|
    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
 | 
						|
                       BasePlus0);
 | 
						|
    if (DoStackMalloc) {
 | 
						|
      assert(StackMallocIdx >= 0);
 | 
						|
      // if FakeStack != 0  // LocalStackBase == FakeStack
 | 
						|
      //     // In use-after-return mode, poison the whole stack frame.
 | 
						|
      //     if StackMallocIdx <= 4
 | 
						|
      //         // For small sizes inline the whole thing:
 | 
						|
      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
 | 
						|
      //         **SavedFlagPtr(FakeStack) = 0
 | 
						|
      //     else
 | 
						|
      //         __asan_stack_free_N(FakeStack, LocalStackSize)
 | 
						|
      // else
 | 
						|
      //     <This is not a fake stack; unpoison the redzones>
 | 
						|
      Value *Cmp =
 | 
						|
          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
 | 
						|
      TerminatorInst *ThenTerm, *ElseTerm;
 | 
						|
      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
 | 
						|
 | 
						|
      IRBuilder<> IRBPoison(ThenTerm);
 | 
						|
      if (StackMallocIdx <= 4) {
 | 
						|
        int ClassSize = kMinStackMallocSize << StackMallocIdx;
 | 
						|
        ShadowAfterReturn.resize(ClassSize / L.Granularity,
 | 
						|
                                 kAsanStackUseAfterReturnMagic);
 | 
						|
        copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
 | 
						|
                     ShadowBase);
 | 
						|
        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
 | 
						|
            FakeStack,
 | 
						|
            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
 | 
						|
        Value *SavedFlagPtr = IRBPoison.CreateLoad(
 | 
						|
            IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
 | 
						|
        IRBPoison.CreateStore(
 | 
						|
            Constant::getNullValue(IRBPoison.getInt8Ty()),
 | 
						|
            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
 | 
						|
      } else {
 | 
						|
        // For larger frames call __asan_stack_free_*.
 | 
						|
        IRBPoison.CreateCall(
 | 
						|
            AsanStackFreeFunc[StackMallocIdx],
 | 
						|
            {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
 | 
						|
      }
 | 
						|
 | 
						|
      IRBuilder<> IRBElse(ElseTerm);
 | 
						|
      copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
 | 
						|
    } else {
 | 
						|
      copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We are done. Remove the old unused alloca instructions.
 | 
						|
  for (auto AI : AllocaVec) AI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
 | 
						|
                                         IRBuilder<> &IRB, bool DoPoison) {
 | 
						|
  // For now just insert the call to ASan runtime.
 | 
						|
  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
 | 
						|
  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
 | 
						|
  IRB.CreateCall(
 | 
						|
      DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
 | 
						|
      {AddrArg, SizeArg});
 | 
						|
}
 | 
						|
 | 
						|
// Handling llvm.lifetime intrinsics for a given %alloca:
 | 
						|
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
 | 
						|
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
 | 
						|
//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
 | 
						|
//     could be poisoned by previous llvm.lifetime.end instruction, as the
 | 
						|
//     variable may go in and out of scope several times, e.g. in loops).
 | 
						|
// (3) if we poisoned at least one %alloca in a function,
 | 
						|
//     unpoison the whole stack frame at function exit.
 | 
						|
 | 
						|
AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | 
						|
    // We're interested only in allocas we can handle.
 | 
						|
    return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
 | 
						|
  // See if we've already calculated (or started to calculate) alloca for a
 | 
						|
  // given value.
 | 
						|
  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
 | 
						|
  if (I != AllocaForValue.end()) return I->second;
 | 
						|
  // Store 0 while we're calculating alloca for value V to avoid
 | 
						|
  // infinite recursion if the value references itself.
 | 
						|
  AllocaForValue[V] = nullptr;
 | 
						|
  AllocaInst *Res = nullptr;
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
    Res = findAllocaForValue(CI->getOperand(0));
 | 
						|
  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
    for (Value *IncValue : PN->incoming_values()) {
 | 
						|
      // Allow self-referencing phi-nodes.
 | 
						|
      if (IncValue == PN) continue;
 | 
						|
      AllocaInst *IncValueAI = findAllocaForValue(IncValue);
 | 
						|
      // AI for incoming values should exist and should all be equal.
 | 
						|
      if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
 | 
						|
        return nullptr;
 | 
						|
      Res = IncValueAI;
 | 
						|
    }
 | 
						|
  } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
 | 
						|
    Res = findAllocaForValue(EP->getPointerOperand());
 | 
						|
  } else {
 | 
						|
    DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V << "\n");
 | 
						|
  }
 | 
						|
  if (Res) AllocaForValue[V] = Res;
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
 | 
						|
  IRBuilder<> IRB(AI);
 | 
						|
 | 
						|
  const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
 | 
						|
  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
 | 
						|
 | 
						|
  Value *Zero = Constant::getNullValue(IntptrTy);
 | 
						|
  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
 | 
						|
  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
 | 
						|
 | 
						|
  // Since we need to extend alloca with additional memory to locate
 | 
						|
  // redzones, and OldSize is number of allocated blocks with
 | 
						|
  // ElementSize size, get allocated memory size in bytes by
 | 
						|
  // OldSize * ElementSize.
 | 
						|
  const unsigned ElementSize =
 | 
						|
      F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
 | 
						|
  Value *OldSize =
 | 
						|
      IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
 | 
						|
                    ConstantInt::get(IntptrTy, ElementSize));
 | 
						|
 | 
						|
  // PartialSize = OldSize % 32
 | 
						|
  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
 | 
						|
 | 
						|
  // Misalign = kAllocaRzSize - PartialSize;
 | 
						|
  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
 | 
						|
 | 
						|
  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
 | 
						|
  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
 | 
						|
  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
 | 
						|
 | 
						|
  // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
 | 
						|
  // Align is added to locate left redzone, PartialPadding for possible
 | 
						|
  // partial redzone and kAllocaRzSize for right redzone respectively.
 | 
						|
  Value *AdditionalChunkSize = IRB.CreateAdd(
 | 
						|
      ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
 | 
						|
 | 
						|
  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
 | 
						|
 | 
						|
  // Insert new alloca with new NewSize and Align params.
 | 
						|
  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
 | 
						|
  NewAlloca->setAlignment(Align);
 | 
						|
 | 
						|
  // NewAddress = Address + Align
 | 
						|
  Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
 | 
						|
                                    ConstantInt::get(IntptrTy, Align));
 | 
						|
 | 
						|
  // Insert __asan_alloca_poison call for new created alloca.
 | 
						|
  IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
 | 
						|
 | 
						|
  // Store the last alloca's address to DynamicAllocaLayout. We'll need this
 | 
						|
  // for unpoisoning stuff.
 | 
						|
  IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
 | 
						|
 | 
						|
  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
 | 
						|
 | 
						|
  // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
 | 
						|
  AI->replaceAllUsesWith(NewAddressPtr);
 | 
						|
 | 
						|
  // We are done. Erase old alloca from parent.
 | 
						|
  AI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
// isSafeAccess returns true if Addr is always inbounds with respect to its
 | 
						|
// base object. For example, it is a field access or an array access with
 | 
						|
// constant inbounds index.
 | 
						|
bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
 | 
						|
                                    Value *Addr, uint64_t TypeSize) const {
 | 
						|
  SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
 | 
						|
  if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
 | 
						|
  uint64_t Size = SizeOffset.first.getZExtValue();
 | 
						|
  int64_t Offset = SizeOffset.second.getSExtValue();
 | 
						|
  // Three checks are required to ensure safety:
 | 
						|
  // . Offset >= 0  (since the offset is given from the base ptr)
 | 
						|
  // . Size >= Offset  (unsigned)
 | 
						|
  // . Size - Offset >= NeededSize  (unsigned)
 | 
						|
  return Offset >= 0 && Size >= uint64_t(Offset) &&
 | 
						|
         Size - uint64_t(Offset) >= TypeSize / 8;
 | 
						|
}
 |