191 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
 | |
| ; RUN: opt < %s -instsimplify -S | FileCheck %s
 | |
| 
 | |
| ; If any bits of the shift amount are known to make it exceed or equal
 | |
| ; the number of bits in the type, the shift causes undefined behavior.
 | |
| 
 | |
| define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) {
 | |
| ; CHECK-LABEL: @shl_amount_is_known_bogus(
 | |
| ; CHECK-NEXT:    ret i32 undef
 | |
| ;
 | |
|   %or = or i32 %b, 32
 | |
|   %shl = shl i32 %a, %or
 | |
|   ret i32 %shl
 | |
| }
 | |
| 
 | |
| ; Check some weird types and the other shift ops.
 | |
| 
 | |
| define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) {
 | |
| ; CHECK-LABEL: @lshr_amount_is_known_bogus(
 | |
| ; CHECK-NEXT:    ret i31 undef
 | |
| ;
 | |
|   %or = or i31 %b, 31
 | |
|   %shr = lshr i31 %a, %or
 | |
|   ret i31 %shr
 | |
| }
 | |
| 
 | |
| define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) {
 | |
| ; CHECK-LABEL: @ashr_amount_is_known_bogus(
 | |
| ; CHECK-NEXT:    ret i33 undef
 | |
| ;
 | |
|   %or = or i33 %b, 33
 | |
|   %shr = ashr i33 %a, %or
 | |
|   ret i33 %shr
 | |
| }
 | |
| 
 | |
| 
 | |
| ; If all valid bits of the shift amount are known 0, there's no shift.
 | |
| ; It doesn't matter if high bits are set because that would be undefined.
 | |
| ; Therefore, the only possible valid result of these shifts is %a.
 | |
| 
 | |
| define i16 @ashr_amount_is_zero(i16 %a, i16 %b) {
 | |
| ; CHECK-LABEL: @ashr_amount_is_zero(
 | |
| ; CHECK-NEXT:    ret i16 %a
 | |
| ;
 | |
|   %and = and i16 %b, 65520 ; 0xfff0
 | |
|   %shr = ashr i16 %a, %and
 | |
|   ret i16 %shr
 | |
| }
 | |
| 
 | |
| define i300 @lshr_amount_is_zero(i300 %a, i300 %b) {
 | |
| ; CHECK-LABEL: @lshr_amount_is_zero(
 | |
| ; CHECK-NEXT:    ret i300 %a
 | |
| ;
 | |
|   %and = and i300 %b, 2048
 | |
|   %shr = lshr i300 %a, %and
 | |
|   ret i300 %shr
 | |
| }
 | |
| 
 | |
| define i9 @shl_amount_is_zero(i9 %a, i9 %b) {
 | |
| ; CHECK-LABEL: @shl_amount_is_zero(
 | |
| ; CHECK-NEXT:    ret i9 %a
 | |
| ;
 | |
|   %and = and i9 %b, 496 ; 0x1f0
 | |
|   %shl = shl i9 %a, %and
 | |
|   ret i9 %shl
 | |
| }
 | |
| 
 | |
| 
 | |
| ; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type.
 | |
| 
 | |
| define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) {
 | |
| ; CHECK-LABEL: @shl_amount_is_not_known_zero(
 | |
| ; CHECK-NEXT:    [[AND:%.*]] = and i9 %b, -8
 | |
| ; CHECK-NEXT:    [[SHL:%.*]] = shl i9 %a, [[AND]]
 | |
| ; CHECK-NEXT:    ret i9 [[SHL]]
 | |
| ;
 | |
|   %and = and i9 %b, 504 ; 0x1f8
 | |
|   %shl = shl i9 %a, %and
 | |
|   ret i9 %shl
 | |
| }
 | |
| 
 | |
| 
 | |
| ; For vectors, we need all scalar elements to meet the requirements to optimize.
 | |
| 
 | |
| define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
 | |
| ; CHECK-LABEL: @ashr_vector_bogus(
 | |
| ; CHECK-NEXT:    ret <2 x i32> undef
 | |
| ;
 | |
|   %or = or <2 x i32> %b, <i32 32, i32 32>
 | |
|   %shr = ashr <2 x i32> %a, %or
 | |
|   ret <2 x i32> %shr
 | |
| }
 | |
| 
 | |
| ; FIXME: This is undef, but computeKnownBits doesn't handle the union.
 | |
| define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
 | |
| ; CHECK-LABEL: @shl_vector_bogus(
 | |
| ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> %b, <i32 32, i32 64>
 | |
| ; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[OR]]
 | |
| ; CHECK-NEXT:    ret <2 x i32> [[SHL]]
 | |
| ;
 | |
|   %or = or <2 x i32> %b, <i32 32, i32 64>
 | |
|   %shl = shl <2 x i32> %a, %or
 | |
|   ret <2 x i32> %shl
 | |
| }
 | |
| 
 | |
| define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) {
 | |
| ; CHECK-LABEL: @lshr_vector_zero(
 | |
| ; CHECK-NEXT:    ret <2 x i32> %a
 | |
| ;
 | |
|   %and = and <2 x i32> %b, <i32 64, i32 256>
 | |
|   %shr = lshr <2 x i32> %a, %and
 | |
|   ret <2 x i32> %shr
 | |
| }
 | |
| 
 | |
| ; Make sure that weird vector types work too.
 | |
| define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) {
 | |
| ; CHECK-LABEL: @shl_vector_zero(
 | |
| ; CHECK-NEXT:    ret <2 x i15> %a
 | |
| ;
 | |
|   %and = and <2 x i15> %b, <i15 1024, i15 1024>
 | |
|   %shl = shl <2 x i15> %a, %and
 | |
|   ret <2 x i15> %shl
 | |
| }
 | |
| 
 | |
| define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) {
 | |
| ; CHECK-LABEL: @shl_vector_for_real(
 | |
| ; CHECK-NEXT:    [[AND:%.*]] = and <2 x i32> %b, <i32 3, i32 3>
 | |
| ; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[AND]]
 | |
| ; CHECK-NEXT:    ret <2 x i32> [[SHL]]
 | |
| ;
 | |
|   %and = and <2 x i32> %b, <i32 3, i32 3> ; a necessary mask op
 | |
|   %shl = shl <2 x i32> %a, %and
 | |
|   ret <2 x i32> %shl
 | |
| }
 | |
| 
 | |
| 
 | |
| ; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0.
 | |
| ; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a.
 | |
| 
 | |
| define i1 @shl_i1(i1 %a, i1 %b) {
 | |
| ; CHECK-LABEL: @shl_i1(
 | |
| ; CHECK-NEXT:    ret i1 %a
 | |
| ;
 | |
|   %shl = shl i1 %a, %b
 | |
|   ret i1 %shl
 | |
| }
 | |
| 
 | |
| ; Simplify count leading/trailing zeros to zero if all valid bits are shifted out.
 | |
| 
 | |
| declare i32 @llvm.cttz.i32(i32, i1) nounwind readnone
 | |
| declare i32 @llvm.ctlz.i32(i32, i1) nounwind readnone
 | |
| declare <2 x i8> @llvm.cttz.v2i8(<2 x i8>, i1) nounwind readnone
 | |
| declare <2 x i8> @llvm.ctlz.v2i8(<2 x i8>, i1) nounwind readnone
 | |
| 
 | |
| define i32 @lshr_ctlz_zero_is_undef(i32 %x) {
 | |
| ; CHECK-LABEL: @lshr_ctlz_zero_is_undef(
 | |
| ; CHECK-NEXT:    ret i32 0
 | |
| ;
 | |
|   %ct = call i32 @llvm.ctlz.i32(i32 %x, i1 true)
 | |
|   %sh = lshr i32 %ct, 5
 | |
|   ret i32 %sh
 | |
| }
 | |
| 
 | |
| define i32 @lshr_cttz_zero_is_undef(i32 %x) {
 | |
| ; CHECK-LABEL: @lshr_cttz_zero_is_undef(
 | |
| ; CHECK-NEXT:    ret i32 0
 | |
| ;
 | |
|   %ct = call i32 @llvm.cttz.i32(i32 %x, i1 true)
 | |
|   %sh = lshr i32 %ct, 5
 | |
|   ret i32 %sh
 | |
| }
 | |
| 
 | |
| define <2 x i8> @lshr_ctlz_zero_is_undef_splat_vec(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @lshr_ctlz_zero_is_undef_splat_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i8> zeroinitializer
 | |
| ;
 | |
|   %ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
 | |
|   %sh = lshr <2 x i8> %ct, <i8 3, i8 3>
 | |
|   ret <2 x i8> %sh
 | |
| }
 | |
| 
 | |
| define <2 x i8> @lshr_cttz_zero_is_undef_splat_vec(<2 x i8> %x) {
 | |
| ; CHECK-LABEL: @lshr_cttz_zero_is_undef_splat_vec(
 | |
| ; CHECK-NEXT:    ret <2 x i8> zeroinitializer
 | |
| ;
 | |
|   %ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
 | |
|   %sh = lshr <2 x i8> %ct, <i8 3, i8 3>
 | |
|   ret <2 x i8> %sh
 | |
| }
 | |
| 
 |