768 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			768 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s
 | |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND
 | |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL
 | |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC
 | |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE
 | |
| 
 | |
| target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
 | |
| 
 | |
| ; Make sure that we can handle multiple integer induction variables.
 | |
| ; CHECK-LABEL: @multi_int_induction(
 | |
| ; CHECK: vector.body:
 | |
| ; CHECK:  %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; CHECK:  %[[VAR:.*]] = trunc i64 %index to i32
 | |
| ; CHECK:  %offset.idx = add i32 190, %[[VAR]]
 | |
| define void @multi_int_induction(i32* %A, i32 %N) {
 | |
| for.body.lr.ph:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
 | |
|   %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
 | |
|   %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
 | |
|   store i32 %count.09, i32* %arrayidx2, align 4
 | |
|   %inc = add nsw i32 %count.09, 1
 | |
|   %indvars.iv.next = add i64 %indvars.iv, 1
 | |
|   %lftr.wideiv = trunc i64 %indvars.iv.next to i32
 | |
|   %exitcond = icmp ne i32 %lftr.wideiv, %N
 | |
|   br i1 %exitcond, label %for.body, label %for.end
 | |
| 
 | |
| for.end:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; Make sure we remove unneeded vectorization of induction variables.
 | |
| ; In order for instcombine to cleanup the vectorized induction variables that we
 | |
| ; create in the loop vectorizer we need to perform some form of redundancy
 | |
| ; elimination to get rid of multiple uses.
 | |
| 
 | |
| ; IND-LABEL: scalar_use
 | |
| 
 | |
| ; IND:     br label %vector.body
 | |
| ; IND:     vector.body:
 | |
| ;   Vectorized induction variable.
 | |
| ; IND-NOT:  insertelement <2 x i64>
 | |
| ; IND-NOT:  shufflevector <2 x i64>
 | |
| ; IND:     br {{.*}}, label %vector.body
 | |
| 
 | |
| define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
 | |
|   %ind.sum = add i64 %iv, %offset
 | |
|   %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum
 | |
|   %l1 = load float, float* %arr.idx, align 4
 | |
|   %ind.sum2 = add i64 %iv, %offset2
 | |
|   %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2
 | |
|   %l2 = load float, float* %arr.idx2, align 4
 | |
|   %m = fmul fast float %b, %l2
 | |
|   %ad = fadd fast float %l1, %m
 | |
|   store float %ad, float* %arr.idx, align 4
 | |
|   %iv.next = add nuw nsw i64 %iv, 1
 | |
|   %exitcond = icmp eq i64 %iv.next, %n
 | |
|   br i1 %exitcond, label %loopexit, label %for.body
 | |
| 
 | |
| loopexit:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; Make sure we don't create a vector induction phi node that is unused.
 | |
| ; Scalarize the step vectors instead.
 | |
| ;
 | |
| ; for (int i = 0; i < n; ++i)
 | |
| ;   sum += a[i];
 | |
| ;
 | |
| ; CHECK-LABEL: @scalarize_induction_variable_01(
 | |
| ; CHECK: vector.body:
 | |
| ; CHECK:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; CHECK:   %[[i0:.+]] = add i64 %index, 0
 | |
| ; CHECK:   getelementptr inbounds i64, i64* %a, i64 %[[i0]]
 | |
| ;
 | |
| ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01(
 | |
| ; UNROLL-NO-IC: vector.body:
 | |
| ; UNROLL-NO-IC:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; UNROLL-NO-IC:   %[[i0:.+]] = add i64 %index, 0
 | |
| ; UNROLL-NO-IC:   %[[i2:.+]] = add i64 %index, 2
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds i64, i64* %a, i64 %[[i0]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds i64, i64* %a, i64 %[[i2]]
 | |
| ;
 | |
| ; IND-LABEL: @scalarize_induction_variable_01(
 | |
| ; IND:     vector.body:
 | |
| ; IND:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; IND-NOT:   add i64 {{.*}}, 2
 | |
| ; IND:       getelementptr inbounds i64, i64* %a, i64 %index
 | |
| ;
 | |
| ; UNROLL-LABEL: @scalarize_induction_variable_01(
 | |
| ; UNROLL:     vector.body:
 | |
| ; UNROLL:       %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; UNROLL-NOT:   add i64 {{.*}}, 4
 | |
| ; UNROLL:       %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index
 | |
| ; UNROLL:       getelementptr i64, i64* %[[g1]], i64 2
 | |
| 
 | |
| define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
 | |
|   %sum = phi i64 [ %2, %for.body ], [ 0, %entry ]
 | |
|   %0 = getelementptr inbounds i64, i64* %a, i64 %i
 | |
|   %1 = load i64, i64* %0, align 8
 | |
|   %2 = add i64 %1, %sum
 | |
|   %i.next = add nuw nsw i64 %i, 1
 | |
|   %cond = icmp slt i64 %i.next, %n
 | |
|   br i1 %cond, label %for.body, label %for.end
 | |
| 
 | |
| for.end:
 | |
|   %3  = phi i64 [ %2, %for.body ]
 | |
|   ret i64 %3
 | |
| }
 | |
| 
 | |
| ; Make sure we scalarize the step vectors used for the pointer arithmetic. We
 | |
| ; can't easily simplify vectorized step vectors.
 | |
| ;
 | |
| ; float s = 0;
 | |
| ; for (int i ; 0; i < n; i += 8)
 | |
| ;   s += (a[i] + b[i] + 1.0f);
 | |
| ;
 | |
| ; CHECK-LABEL: @scalarize_induction_variable_02(
 | |
| ; CHECK: vector.body:
 | |
| ; CHECK:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; CHECK:   %offset.idx = shl i64 %index, 3
 | |
| ; CHECK:   %[[i0:.+]] = add i64 %offset.idx, 0
 | |
| ; CHECK:   %[[i1:.+]] = add i64 %offset.idx, 8
 | |
| ; CHECK:   getelementptr inbounds float, float* %a, i64 %[[i0]]
 | |
| ; CHECK:   getelementptr inbounds float, float* %a, i64 %[[i1]]
 | |
| ; CHECK:   getelementptr inbounds float, float* %b, i64 %[[i0]]
 | |
| ; CHECK:   getelementptr inbounds float, float* %b, i64 %[[i1]]
 | |
| ;
 | |
| ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02(
 | |
| ; UNROLL-NO-IC: vector.body:
 | |
| ; UNROLL-NO-IC:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; UNROLL-NO-IC:   %offset.idx = shl i64 %index, 3
 | |
| ; UNROLL-NO-IC:   %[[i0:.+]] = add i64 %offset.idx, 0
 | |
| ; UNROLL-NO-IC:   %[[i1:.+]] = add i64 %offset.idx, 8
 | |
| ; UNROLL-NO-IC:   %[[i2:.+]] = add i64 %offset.idx, 16
 | |
| ; UNROLL-NO-IC:   %[[i3:.+]] = add i64 %offset.idx, 24
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %a, i64 %[[i0]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %a, i64 %[[i1]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %a, i64 %[[i2]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %a, i64 %[[i3]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %b, i64 %[[i0]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %b, i64 %[[i1]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %b, i64 %[[i2]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds float, float* %b, i64 %[[i3]]
 | |
| ;
 | |
| ; IND-LABEL: @scalarize_induction_variable_02(
 | |
| ; IND: vector.body:
 | |
| ; IND:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; IND:   %[[i0:.+]] = shl i64 %index, 3
 | |
| ; IND:   %[[i1:.+]] = or i64 %[[i0]], 8
 | |
| ; IND:   getelementptr inbounds float, float* %a, i64 %[[i0]]
 | |
| ; IND:   getelementptr inbounds float, float* %a, i64 %[[i1]]
 | |
| ;
 | |
| ; UNROLL-LABEL: @scalarize_induction_variable_02(
 | |
| ; UNROLL: vector.body:
 | |
| ; UNROLL:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; UNROLL:   %[[i0:.+]] = shl i64 %index, 3
 | |
| ; UNROLL:   %[[i1:.+]] = or i64 %[[i0]], 8
 | |
| ; UNROLL:   %[[i2:.+]] = or i64 %[[i0]], 16
 | |
| ; UNROLL:   %[[i3:.+]] = or i64 %[[i0]], 24
 | |
| ; UNROLL:   getelementptr inbounds float, float* %a, i64 %[[i0]]
 | |
| ; UNROLL:   getelementptr inbounds float, float* %a, i64 %[[i1]]
 | |
| ; UNROLL:   getelementptr inbounds float, float* %a, i64 %[[i2]]
 | |
| ; UNROLL:   getelementptr inbounds float, float* %a, i64 %[[i3]]
 | |
| 
 | |
| define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
 | |
|   %s = phi float [ 0.0, %entry ], [ %6, %for.body ]
 | |
|   %0 = getelementptr inbounds float, float* %a, i64 %i
 | |
|   %1 = load float, float* %0, align 4
 | |
|   %2 = getelementptr inbounds float, float* %b, i64 %i
 | |
|   %3 = load float, float* %2, align 4
 | |
|   %4 = fadd fast float %s, 1.0
 | |
|   %5 = fadd fast float %4, %1
 | |
|   %6 = fadd fast float %5, %3
 | |
|   %i.next = add nuw nsw i64 %i, 8
 | |
|   %cond = icmp slt i64 %i.next, %n
 | |
|   br i1 %cond, label %for.body, label %for.end
 | |
| 
 | |
| for.end:
 | |
|   %s.lcssa = phi float [ %6, %for.body ]
 | |
|   ret float %s.lcssa
 | |
| }
 | |
| 
 | |
| ; Make sure we scalarize the step vectors used for the pointer arithmetic. We
 | |
| ; can't easily simplify vectorized step vectors. (Interleaved accesses.)
 | |
| ;
 | |
| ; for (int i = 0; i < n; ++i)
 | |
| ;   a[i].f ^= y;
 | |
| ;
 | |
| ; INTERLEAVE-LABEL: @scalarize_induction_variable_03(
 | |
| ; INTERLEAVE: vector.body:
 | |
| ; INTERLEAVE:   %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; INTERLEAVE:   %[[i1:.+]] = or i64 %[[i0]], 1
 | |
| ; INTERLEAVE:   %[[i2:.+]] = or i64 %[[i0]], 2
 | |
| ; INTERLEAVE:   %[[i3:.+]] = or i64 %[[i0]], 3
 | |
| ; INTERLEAVE:   %[[i4:.+]] = or i64 %[[i0]], 4
 | |
| ; INTERLEAVE:   %[[i5:.+]] = or i64 %[[i0]], 5
 | |
| ; INTERLEAVE:   %[[i6:.+]] = or i64 %[[i0]], 6
 | |
| ; INTERLEAVE:   %[[i7:.+]] = or i64 %[[i0]], 7
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1
 | |
| 
 | |
| %pair.i32 = type { i32, i32 }
 | |
| define void @scalarize_induction_variable_03(%pair.i32 *%p, i32 %y, i64 %n) {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %i  = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
 | |
|   %f = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1
 | |
|   %0 = load i32, i32* %f, align 8
 | |
|   %1 = xor i32 %0, %y
 | |
|   store i32 %1, i32* %f, align 8
 | |
|   %i.next = add nuw nsw i64 %i, 1
 | |
|   %cond = icmp slt i64 %i.next, %n
 | |
|   br i1 %cond, label %for.body, label %for.end
 | |
| 
 | |
| for.end:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; Make sure we scalarize the step vectors used for the pointer arithmetic. We
 | |
| ; can't easily simplify vectorized step vectors. (Interleaved accesses.)
 | |
| ;
 | |
| ; for (int i = 0; i < n; ++i)
 | |
| ;   p[i].f = a[i * 4]
 | |
| ;
 | |
| ; INTERLEAVE-LABEL: @scalarize_induction_variable_04(
 | |
| ; INTERLEAVE: vector.body:
 | |
| ; INTERLEAVE:   %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; INTERLEAVE:   %[[i1:.+]] = or i64 %[[i0]], 1
 | |
| ; INTERLEAVE:   %[[i2:.+]] = or i64 %[[i0]], 2
 | |
| ; INTERLEAVE:   %[[i3:.+]] = or i64 %[[i0]], 3
 | |
| ; INTERLEAVE:   %[[i4:.+]] = or i64 %[[i0]], 4
 | |
| ; INTERLEAVE:   %[[i5:.+]] = or i64 %[[i0]], 5
 | |
| ; INTERLEAVE:   %[[i6:.+]] = or i64 %[[i0]], 6
 | |
| ; INTERLEAVE:   %[[i7:.+]] = or i64 %[[i0]], 7
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1
 | |
| ; INTERLEAVE:   getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1
 | |
| 
 | |
| define void @scalarize_induction_variable_04(i32* %a, %pair.i32* %p, i32 %n) {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %i = phi i64 [ %i.next, %for.body ], [ 0, %entry]
 | |
|   %0 = shl nsw i64 %i, 2
 | |
|   %1 = getelementptr inbounds i32, i32* %a, i64 %0
 | |
|   %2 = load i32, i32* %1, align 1
 | |
|   %3 = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1
 | |
|   store i32 %2, i32* %3, align 1
 | |
|   %i.next = add nuw nsw i64 %i, 1
 | |
|   %4 = trunc i64 %i.next to i32
 | |
|   %cond = icmp eq i32 %4, %n
 | |
|   br i1 %cond, label %for.end, label %for.body
 | |
| 
 | |
| for.end:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; PR30542. Ensure we generate all the scalar steps for the induction variable.
 | |
| ; The scalar induction variable is used by a getelementptr instruction
 | |
| ; (uniform), and a udiv (non-uniform).
 | |
| ;
 | |
| ; int sum = 0;
 | |
| ; for (int i = 0; i < n; ++i) {
 | |
| ;   int x = a[i];
 | |
| ;   if (c)
 | |
| ;     x /= i;
 | |
| ;   sum += x;
 | |
| ; }
 | |
| ;
 | |
| ; CHECK-LABEL: @scalarize_induction_variable_05(
 | |
| ; CHECK: vector.body:
 | |
| ; CHECK:   %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue2 ]
 | |
| ; CHECK:   %[[I0:.+]] = add i32 %index, 0
 | |
| ; CHECK:   getelementptr inbounds i32, i32* %a, i32 %[[I0]]
 | |
| ; CHECK: pred.udiv.if:
 | |
| ; CHECK:   udiv i32 {{.*}}, %[[I0]]
 | |
| ; CHECK: pred.udiv.if1:
 | |
| ; CHECK:   %[[I1:.+]] = add i32 %index, 1
 | |
| ; CHECK:   udiv i32 {{.*}}, %[[I1]]
 | |
| ;
 | |
| ; UNROLL-NO_IC-LABEL: @scalarize_induction_variable_05(
 | |
| ; UNROLL-NO-IC: vector.body:
 | |
| ; UNROLL-NO-IC:   %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue11 ]
 | |
| ; UNROLL-NO-IC:   %[[I0:.+]] = add i32 %index, 0
 | |
| ; UNROLL-NO-IC:   %[[I2:.+]] = add i32 %index, 2
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds i32, i32* %a, i32 %[[I0]]
 | |
| ; UNROLL-NO-IC:   getelementptr inbounds i32, i32* %a, i32 %[[I2]]
 | |
| ; UNROLL-NO-IC: pred.udiv.if:
 | |
| ; UNROLL-NO-IC:   udiv i32 {{.*}}, %[[I0]]
 | |
| ; UNROLL-NO-IC: pred.udiv.if6:
 | |
| ; UNROLL-NO-IC:   %[[I1:.+]] = add i32 %index, 1
 | |
| ; UNROLL-NO-IC:   udiv i32 {{.*}}, %[[I1]]
 | |
| ; UNROLL-NO-IC: pred.udiv.if8:
 | |
| ; UNROLL-NO-IC:   udiv i32 {{.*}}, %[[I2]]
 | |
| ; UNROLL-NO-IC: pred.udiv.if10:
 | |
| ; UNROLL-NO-IC:   %[[I3:.+]] = add i32 %index, 3
 | |
| ; UNROLL-NO-IC:   udiv i32 {{.*}}, %[[I3]]
 | |
| ;
 | |
| ; IND-LABEL: @scalarize_induction_variable_05(
 | |
| ; IND: vector.body:
 | |
| ; IND:   %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue2 ]
 | |
| ; IND:   %[[E0:.+]] = sext i32 %index to i64
 | |
| ; IND:   getelementptr inbounds i32, i32* %a, i64 %[[E0]]
 | |
| ; IND: pred.udiv.if:
 | |
| ; IND:   udiv i32 {{.*}}, %index
 | |
| ; IND: pred.udiv.if1:
 | |
| ; IND:   %[[I1:.+]] = or i32 %index, 1
 | |
| ; IND:   udiv i32 {{.*}}, %[[I1]]
 | |
| ;
 | |
| ; UNROLL-LABEL: @scalarize_induction_variable_05(
 | |
| ; UNROLL: vector.body:
 | |
| ; UNROLL:   %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue11 ]
 | |
| ; UNROLL:   %[[I2:.+]] = or i32 %index, 2
 | |
| ; UNROLL:   %[[E0:.+]] = sext i32 %index to i64
 | |
| ; UNROLL:   %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %[[E0]]
 | |
| ; UNROLL:   getelementptr i32, i32* %[[G0]], i64 2
 | |
| ; UNROLL: pred.udiv.if:
 | |
| ; UNROLL:   udiv i32 {{.*}}, %index
 | |
| ; UNROLL: pred.udiv.if6:
 | |
| ; UNROLL:   %[[I1:.+]] = or i32 %index, 1
 | |
| ; UNROLL:   udiv i32 {{.*}}, %[[I1]]
 | |
| ; UNROLL: pred.udiv.if8:
 | |
| ; UNROLL:   udiv i32 {{.*}}, %[[I2]]
 | |
| ; UNROLL: pred.udiv.if10:
 | |
| ; UNROLL:   %[[I3:.+]] = or i32 %index, 3
 | |
| ; UNROLL:   udiv i32 {{.*}}, %[[I3]]
 | |
| 
 | |
| define i32 @scalarize_induction_variable_05(i32* %a, i32 %x, i1 %c, i32 %n) {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %i = phi i32 [ 0, %entry ], [ %i.next, %if.end ]
 | |
|   %sum = phi i32 [ 0, %entry ], [ %tmp4, %if.end ]
 | |
|   %tmp0 = getelementptr inbounds i32, i32* %a, i32 %i
 | |
|   %tmp1 = load i32, i32* %tmp0, align 4
 | |
|   br i1 %c, label %if.then, label %if.end
 | |
| 
 | |
| if.then:
 | |
|   %tmp2 = udiv i32 %tmp1, %i
 | |
|   br label %if.end
 | |
| 
 | |
| if.end:
 | |
|   %tmp3 = phi i32 [ %tmp2, %if.then ], [ %tmp1, %for.body ]
 | |
|   %tmp4 = add i32 %tmp3, %sum
 | |
|   %i.next = add nuw nsw i32 %i, 1
 | |
|   %cond = icmp slt i32 %i.next, %n
 | |
|   br i1 %cond, label %for.body, label %for.end
 | |
| 
 | |
| for.end:
 | |
|   %tmp5  = phi i32 [ %tmp4, %if.end ]
 | |
|   ret i32 %tmp5
 | |
| }
 | |
| 
 | |
| ; Ensure we generate both a vector and a scalar induction variable. In this
 | |
| ; test, the induction variable is used by an instruction that will be
 | |
| ; vectorized (trunc) as well as an instruction that will remain in scalar form
 | |
| ; (gepelementptr).
 | |
| ;
 | |
| ; CHECK-LABEL: @iv_vector_and_scalar_users(
 | |
| ; CHECK: vector.body:
 | |
| ; CHECK:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; CHECK:   %vec.ind = phi <2 x i64> [ <i64 0, i64 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
 | |
| ; CHECK:   %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ]
 | |
| ; CHECK:   %[[i0:.+]] = add i64 %index, 0
 | |
| ; CHECK:   %[[i1:.+]] = add i64 %index, 1
 | |
| ; CHECK:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i0]], i32 1
 | |
| ; CHECK:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
 | |
| ; CHECK:   %index.next = add i64 %index, 2
 | |
| ; CHECK:   %vec.ind.next = add <2 x i64> %vec.ind, <i64 2, i64 2>
 | |
| ; CHECK:   %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2>
 | |
| ;
 | |
| ; IND-LABEL: @iv_vector_and_scalar_users(
 | |
| ; IND: vector.body:
 | |
| ; IND:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; IND:   %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ]
 | |
| ; IND:   %[[i1:.+]] = or i64 %index, 1
 | |
| ; IND:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1
 | |
| ; IND:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
 | |
| ; IND:   %index.next = add i64 %index, 2
 | |
| ; IND:   %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2>
 | |
| ;
 | |
| ; UNROLL-LABEL: @iv_vector_and_scalar_users(
 | |
| ; UNROLL: vector.body:
 | |
| ; UNROLL:   %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; UNROLL:   %vec.ind2 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next5, %vector.body ]
 | |
| ; UNROLL:   %[[i1:.+]] = or i64 %index, 1
 | |
| ; UNROLL:   %[[i2:.+]] = or i64 %index, 2
 | |
| ; UNROLL:   %[[i3:.+]] = or i64 %index, 3
 | |
| ; UNROLL:   %step.add3 = add <2 x i32> %vec.ind2, <i32 2, i32 2>
 | |
| ; UNROLL:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1
 | |
| ; UNROLL:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
 | |
| ; UNROLL:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i2]], i32 1
 | |
| ; UNROLL:   getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i3]], i32 1
 | |
| ; UNROLL:   %index.next = add i64 %index, 4
 | |
| ; UNROLL:   %vec.ind.next5 = add <2 x i32> %vec.ind2, <i32 4, i32 4>
 | |
| 
 | |
| %pair.i16 = type { i16, i16 }
 | |
| define void @iv_vector_and_scalar_users(%pair.i16* %p, i32 %a, i32 %n) {
 | |
| entry:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
 | |
|   %0 = trunc i64 %i to i32
 | |
|   %1 = add i32 %a, %0
 | |
|   %2 = trunc i32 %1 to i16
 | |
|   %3 = getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %i, i32 1
 | |
|   store i16 %2, i16* %3, align 2
 | |
|   %i.next = add nuw nsw i64 %i, 1
 | |
|   %4 = trunc i64 %i.next to i32
 | |
|   %cond = icmp eq i32 %4, %n
 | |
|   br i1 %cond, label %for.end, label %for.body
 | |
| 
 | |
| for.end:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; Make sure that the loop exit count computation does not overflow for i8 and
 | |
| ; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
 | |
| ; induction variable to a bigger type the exit count computation will overflow
 | |
| ; to 0.
 | |
| ; PR17532
 | |
| 
 | |
| ; CHECK-LABEL: i8_loop
 | |
| ; CHECK: icmp eq i32 {{.*}}, 256
 | |
| define i32 @i8_loop() nounwind readnone ssp uwtable {
 | |
|   br label %1
 | |
| 
 | |
| ; <label>:1                                       ; preds = %1, %0
 | |
|   %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
 | |
|   %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ]
 | |
|   %2 = and i32 %a.0, 4
 | |
|   %3 = add i8 %b.0, -1
 | |
|   %4 = icmp eq i8 %3, 0
 | |
|   br i1 %4, label %5, label %1
 | |
| 
 | |
| ; <label>:5                                       ; preds = %1
 | |
|   ret i32 %2
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: i16_loop
 | |
| ; CHECK: icmp eq i32 {{.*}}, 65536
 | |
| 
 | |
| define i32 @i16_loop() nounwind readnone ssp uwtable {
 | |
|   br label %1
 | |
| 
 | |
| ; <label>:1                                       ; preds = %1, %0
 | |
|   %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
 | |
|   %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ]
 | |
|   %2 = and i32 %a.0, 4
 | |
|   %3 = add i16 %b.0, -1
 | |
|   %4 = icmp eq i16 %3, 0
 | |
|   br i1 %4, label %5, label %1
 | |
| 
 | |
| ; <label>:5                                       ; preds = %1
 | |
|   ret i32 %2
 | |
| }
 | |
| 
 | |
| ; This loop has a backedge taken count of i32_max. We need to check for this
 | |
| ; condition and branch directly to the scalar loop.
 | |
| 
 | |
| ; CHECK-LABEL: max_i32_backedgetaken
 | |
| ; CHECK:  br i1 true, label %scalar.ph, label %min.iters.checked
 | |
| 
 | |
| ; CHECK: middle.block:
 | |
| ; CHECK:  %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0
 | |
| ; CHECK: scalar.ph:
 | |
| ; CHECK:  %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ]
 | |
| ; CHECK:  %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ 1, %min.iters.checked ], [ %[[v9]], %middle.block ]
 | |
| 
 | |
| define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable {
 | |
| 
 | |
|   br label %1
 | |
| 
 | |
| ; <label>:1                                       ; preds = %1, %0
 | |
|   %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
 | |
|   %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ]
 | |
|   %2 = and i32 %a.0, 4
 | |
|   %3 = add i32 %b.0, -1
 | |
|   %4 = icmp eq i32 %3, 0
 | |
|   br i1 %4, label %5, label %1
 | |
| 
 | |
| ; <label>:5                                       ; preds = %1
 | |
|   ret i32 %2
 | |
| }
 | |
| 
 | |
| ; When generating the overflow check we must sure that the induction start value
 | |
| ; is defined before the branch to the scalar preheader.
 | |
| 
 | |
| ; CHECK-LABEL: testoverflowcheck
 | |
| ; CHECK: entry
 | |
| ; CHECK: %[[LOAD:.*]] = load i8
 | |
| ; CHECK: br
 | |
| 
 | |
| ; CHECK: scalar.ph
 | |
| ; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ]
 | |
| 
 | |
| @e = global i8 1, align 1
 | |
| @d = common global i32 0, align 4
 | |
| @c = common global i32 0, align 4
 | |
| define i32 @testoverflowcheck() {
 | |
| entry:
 | |
|   %.pr.i = load i8, i8* @e, align 1
 | |
|   %0 = load i32, i32* @d, align 4
 | |
|   %c.promoted.i = load i32, i32* @c, align 4
 | |
|   br label %cond.end.i
 | |
| 
 | |
| cond.end.i:
 | |
|   %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ]
 | |
|   %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ]
 | |
|   %and.i = and i32 %0, %and3.i
 | |
|   %inc.i = add i8 %inc4.i, 1
 | |
|   %tobool.i = icmp eq i8 %inc.i, 0
 | |
|   br i1 %tobool.i, label %loopexit, label %cond.end.i
 | |
| 
 | |
| loopexit:
 | |
|   ret i32 %and.i
 | |
| }
 | |
| 
 | |
| ; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32)
 | |
| ; In order to recognize %sphi as an induction PHI and vectorize this loop,
 | |
| ; we need to convert the SCEV expression into an AddRecExpr.
 | |
| ; The expression gets converted to {zext i8 %t to i32,+,1}.
 | |
| 
 | |
| ; CHECK-LABEL: wrappingindvars1
 | |
| ; CHECK-LABEL: vector.scevcheck
 | |
| ; CHECK-LABEL: vector.ph
 | |
| ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1>
 | |
| ; CHECK-LABEL: vector.body
 | |
| ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
 | |
| ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2>
 | |
| define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) {
 | |
|  entry:
 | |
|   %st = zext i8 %t to i16
 | |
|   %ext = zext i8 %t to i32
 | |
|   %ecmp = icmp ult i16 %st, 42
 | |
|   br i1 %ecmp, label %loop, label %exit
 | |
| 
 | |
|  loop:
 | |
| 
 | |
|   %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
 | |
|   %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
 | |
|   %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop]
 | |
| 
 | |
|   %ptr = getelementptr inbounds i32, i32* %A, i8 %idx
 | |
|   store i32 %sphi, i32* %ptr
 | |
| 
 | |
|   %idx.inc = add i8 %idx, 1
 | |
|   %idx.inc.ext = zext i8 %idx.inc to i32
 | |
|   %idx.b.inc = add nuw nsw i32 %idx.b, 1
 | |
| 
 | |
|   %c = icmp ult i32 %idx.b, %len
 | |
|   br i1 %c, label %loop, label %exit
 | |
| 
 | |
|  exit:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32))
 | |
| ; In order to recognize %sphi as an induction PHI and vectorize this loop,
 | |
| ; we need to convert the SCEV expression into an AddRecExpr.
 | |
| ; The expression gets converted to ({4 * (zext %t to i32),+,4}).
 | |
| ; CHECK-LABEL: wrappingindvars2
 | |
| ; CHECK-LABEL: vector.scevcheck
 | |
| ; CHECK-LABEL: vector.ph
 | |
| ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4>
 | |
| ; CHECK-LABEL: vector.body
 | |
| ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
 | |
| ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8>
 | |
| define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) {
 | |
| 
 | |
| entry:
 | |
|   %st = zext i8 %t to i16
 | |
|   %ext = zext i8 %t to i32
 | |
|   %ext.mul = mul i32 %ext, 4
 | |
| 
 | |
|   %ecmp = icmp ult i16 %st, 42
 | |
|   br i1 %ecmp, label %loop, label %exit
 | |
| 
 | |
|  loop:
 | |
| 
 | |
|   %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
 | |
|   %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop]
 | |
|   %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
 | |
| 
 | |
|   %ptr = getelementptr inbounds i32, i32* %A, i8 %idx
 | |
|   store i32 %sphi, i32* %ptr
 | |
| 
 | |
|   %idx.inc = add i8 %idx, 1
 | |
|   %idx.inc.ext = zext i8 %idx.inc to i32
 | |
|   %mul = mul i32 %idx.inc.ext, 4
 | |
|   %idx.b.inc = add nuw nsw i32 %idx.b, 1
 | |
| 
 | |
|   %c = icmp ult i32 %idx.b, %len
 | |
|   br i1 %c, label %loop, label %exit
 | |
| 
 | |
|  exit:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; Check that we generate vectorized IVs in the pre-header
 | |
| ; instead of widening the scalar IV inside the loop, when
 | |
| ; we know how to do that.
 | |
| ; IND-LABEL: veciv
 | |
| ; IND: vector.body:
 | |
| ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
 | |
| ; IND: %index.next = add i32 %index, 2
 | |
| ; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
 | |
| ; IND: %[[CMP:.*]] = icmp eq i32 %index.next
 | |
| ; IND: br i1 %[[CMP]]
 | |
| ; UNROLL-LABEL: veciv
 | |
| ; UNROLL: vector.body:
 | |
| ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
 | |
| ; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
 | |
| ; UNROLL: %index.next = add i32 %index, 4
 | |
| ; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4>
 | |
| ; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next
 | |
| ; UNROLL: br i1 %[[CMP]]
 | |
| define void @veciv(i32* nocapture %a, i32 %start, i32 %k) {
 | |
| for.body.preheader:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
 | |
|   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
 | |
|   store i32 %indvars.iv, i32* %arrayidx, align 4
 | |
|   %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
 | |
|   %exitcond = icmp eq i32 %indvars.iv.next, %k
 | |
|   br i1 %exitcond, label %exit, label %for.body
 | |
| 
 | |
| exit:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; IND-LABEL: trunciv
 | |
| ; IND: vector.body:
 | |
| ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ]
 | |
| ; IND: %index.next = add i64 %index, 2
 | |
| ; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2>
 | |
| ; IND: %[[CMP:.*]] = icmp eq i64 %index.next
 | |
| ; IND: br i1 %[[CMP]]
 | |
| define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) {
 | |
| for.body.preheader:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
 | |
|   %trunc.iv = trunc i64 %indvars.iv to i32
 | |
|   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv
 | |
|   store i32 %trunc.iv, i32* %arrayidx, align 4
 | |
|   %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
 | |
|   %exitcond = icmp eq i64 %indvars.iv.next, %k
 | |
|   br i1 %exitcond, label %exit, label %for.body
 | |
| 
 | |
| exit:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| ; CHECK-LABEL: @nonprimary(
 | |
| ; CHECK: vector.ph:
 | |
| ; CHECK:   %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
 | |
| ; CHECK:   %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
 | |
| ; CHECK:   %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
 | |
| ; CHECK: vector.body:
 | |
| ; CHECK:   %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; CHECK:   %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
 | |
| ; CHECK:   %offset.idx = add i32 %i, %index
 | |
| ; CHECK:   %[[A1:.*]] = add i32 %offset.idx, 0
 | |
| ; CHECK:   %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i32 %[[A1]]
 | |
| ; CHECK:   %[[G3:.*]] = getelementptr i32, i32* %[[G1]], i32 0
 | |
| ; CHECK:   %[[B1:.*]] = bitcast i32* %[[G3]] to <2 x i32>*
 | |
| ; CHECK:   store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
 | |
| ; CHECK:   %index.next = add i32 %index, 2
 | |
| ; CHECK:   %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
 | |
| ; CHECK:   %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
 | |
| ; CHECK:   br i1 %[[CMP]]
 | |
| ;
 | |
| ; IND-LABEL: @nonprimary(
 | |
| ; IND: vector.ph:
 | |
| ; IND:   %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
 | |
| ; IND:   %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
 | |
| ; IND:   %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
 | |
| ; IND: vector.body:
 | |
| ; IND:   %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; IND:   %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
 | |
| ; IND:   %[[A1:.*]] = add i32 %index, %i
 | |
| ; IND:   %[[S1:.*]] = sext i32 %[[A1]] to i64
 | |
| ; IND:   %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]]
 | |
| ; IND:   %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>*
 | |
| ; IND:   store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
 | |
| ; IND:   %index.next = add i32 %index, 2
 | |
| ; IND:   %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
 | |
| ; IND:   %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
 | |
| ; IND:   br i1 %[[CMP]]
 | |
| ;
 | |
| ; UNROLL-LABEL: @nonprimary(
 | |
| ; UNROLL: vector.ph:
 | |
| ; UNROLL:   %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
 | |
| ; UNROLL:   %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
 | |
| ; UNROLL:   %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
 | |
| ; UNROLL: vector.body:
 | |
| ; UNROLL:   %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | |
| ; UNROLL:   %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
 | |
| ; UNROLL:   %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
 | |
| ; UNROLL:   %[[A1:.*]] = add i32 %index, %i
 | |
| ; UNROLL:   %[[S1:.*]] = sext i32 %[[A1]] to i64
 | |
| ; UNROLL:   %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]]
 | |
| ; UNROLL:   %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>*
 | |
| ; UNROLL:   store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
 | |
| ; UNROLL:   %[[G2:.*]] = getelementptr i32, i32* %[[G1]], i64 2
 | |
| ; UNROLL:   %[[B2:.*]] = bitcast i32* %[[G2]] to <2 x i32>*
 | |
| ; UNROLL:   store <2 x i32> %step.add, <2 x i32>* %[[B2]]
 | |
| ; UNROLL:   %index.next = add i32 %index, 4
 | |
| ; UNROLL:   %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4>
 | |
| ; UNROLL:   %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
 | |
| ; UNROLL:   br i1 %[[CMP]]
 | |
| define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) {
 | |
| for.body.preheader:
 | |
|   br label %for.body
 | |
| 
 | |
| for.body:
 | |
|   %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ]
 | |
|   %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
 | |
|   store i32 %indvars.iv, i32* %arrayidx, align 4
 | |
|   %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
 | |
|   %exitcond = icmp eq i32 %indvars.iv.next, %k
 | |
|   br i1 %exitcond, label %exit, label %for.body
 | |
| 
 | |
| exit:
 | |
|   ret void
 | |
| }
 |