415 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			415 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file This file implements the utility functions used by the GlobalISel
 | 
						|
/// pipeline.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/GlobalISel/Utils.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/StackProtector.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "globalisel-utils"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI,
 | 
						|
                                   const TargetInstrInfo &TII,
 | 
						|
                                   const RegisterBankInfo &RBI, unsigned Reg,
 | 
						|
                                   const TargetRegisterClass &RegClass) {
 | 
						|
  if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
 | 
						|
    return MRI.createVirtualRegister(&RegClass);
 | 
						|
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::constrainOperandRegClass(
 | 
						|
    const MachineFunction &MF, const TargetRegisterInfo &TRI,
 | 
						|
    MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
 | 
						|
    const RegisterBankInfo &RBI, MachineInstr &InsertPt,
 | 
						|
    const TargetRegisterClass &RegClass, const MachineOperand &RegMO,
 | 
						|
    unsigned OpIdx) {
 | 
						|
  unsigned Reg = RegMO.getReg();
 | 
						|
  // Assume physical registers are properly constrained.
 | 
						|
  assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
 | 
						|
 | 
						|
  unsigned ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
 | 
						|
  // If we created a new virtual register because the class is not compatible
 | 
						|
  // then create a copy between the new and the old register.
 | 
						|
  if (ConstrainedReg != Reg) {
 | 
						|
    MachineBasicBlock::iterator InsertIt(&InsertPt);
 | 
						|
    MachineBasicBlock &MBB = *InsertPt.getParent();
 | 
						|
    if (RegMO.isUse()) {
 | 
						|
      BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
 | 
						|
              TII.get(TargetOpcode::COPY), ConstrainedReg)
 | 
						|
          .addReg(Reg);
 | 
						|
    } else {
 | 
						|
      assert(RegMO.isDef() && "Must be a definition");
 | 
						|
      BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
 | 
						|
              TII.get(TargetOpcode::COPY), Reg)
 | 
						|
          .addReg(ConstrainedReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ConstrainedReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned llvm::constrainOperandRegClass(
 | 
						|
    const MachineFunction &MF, const TargetRegisterInfo &TRI,
 | 
						|
    MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
 | 
						|
    const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
 | 
						|
    const MachineOperand &RegMO, unsigned OpIdx) {
 | 
						|
  unsigned Reg = RegMO.getReg();
 | 
						|
  // Assume physical registers are properly constrained.
 | 
						|
  assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
 | 
						|
 | 
						|
  const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
 | 
						|
  // Some of the target independent instructions, like COPY, may not impose any
 | 
						|
  // register class constraints on some of their operands: If it's a use, we can
 | 
						|
  // skip constraining as the instruction defining the register would constrain
 | 
						|
  // it.
 | 
						|
 | 
						|
  // We can't constrain unallocatable register classes, because we can't create
 | 
						|
  // virtual registers for these classes, so we need to let targets handled this
 | 
						|
  // case.
 | 
						|
  if (RegClass && !RegClass->isAllocatable())
 | 
						|
    RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
 | 
						|
 | 
						|
  if (!RegClass) {
 | 
						|
    assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
 | 
						|
           "Register class constraint is required unless either the "
 | 
						|
           "instruction is target independent or the operand is a use");
 | 
						|
    // FIXME: Just bailing out like this here could be not enough, unless we
 | 
						|
    // expect the users of this function to do the right thing for PHIs and
 | 
						|
    // COPY:
 | 
						|
    //   v1 = COPY v0
 | 
						|
    //   v2 = COPY v1
 | 
						|
    // v1 here may end up not being constrained at all. Please notice that to
 | 
						|
    // reproduce the issue we likely need a destination pattern of a selection
 | 
						|
    // rule producing such extra copies, not just an input GMIR with them as
 | 
						|
    // every existing target using selectImpl handles copies before calling it
 | 
						|
    // and they never reach this function.
 | 
						|
    return Reg;
 | 
						|
  }
 | 
						|
  return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
 | 
						|
                                  RegMO, OpIdx);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
 | 
						|
                                            const TargetInstrInfo &TII,
 | 
						|
                                            const TargetRegisterInfo &TRI,
 | 
						|
                                            const RegisterBankInfo &RBI) {
 | 
						|
  assert(!isPreISelGenericOpcode(I.getOpcode()) &&
 | 
						|
         "A selected instruction is expected");
 | 
						|
  MachineBasicBlock &MBB = *I.getParent();
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
 | 
						|
  for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
 | 
						|
    MachineOperand &MO = I.getOperand(OpI);
 | 
						|
 | 
						|
    // There's nothing to be done on non-register operands.
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
 | 
						|
    assert(MO.isReg() && "Unsupported non-reg operand");
 | 
						|
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    // Physical registers don't need to be constrained.
 | 
						|
    if (Register::isPhysicalRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Register operands with a value of 0 (e.g. predicate operands) don't need
 | 
						|
    // to be constrained.
 | 
						|
    if (Reg == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the operand is a vreg, we should constrain its regclass, and only
 | 
						|
    // insert COPYs if that's impossible.
 | 
						|
    // constrainOperandRegClass does that for us.
 | 
						|
    MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
 | 
						|
                                       MO, OpI));
 | 
						|
 | 
						|
    // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
 | 
						|
    // done.
 | 
						|
    if (MO.isUse()) {
 | 
						|
      int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
 | 
						|
      if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
 | 
						|
        I.tieOperands(DefIdx, OpI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isTriviallyDead(const MachineInstr &MI,
 | 
						|
                           const MachineRegisterInfo &MRI) {
 | 
						|
  // If we can move an instruction, we can remove it.  Otherwise, it has
 | 
						|
  // a side-effect of some sort.
 | 
						|
  bool SawStore = false;
 | 
						|
  if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Instructions without side-effects are dead iff they only define dead vregs.
 | 
						|
  for (auto &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
 | 
						|
                              MachineOptimizationRemarkEmitter &MORE,
 | 
						|
                              MachineOptimizationRemarkMissed &R) {
 | 
						|
  MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
 | 
						|
 | 
						|
  // Print the function name explicitly if we don't have a debug location (which
 | 
						|
  // makes the diagnostic less useful) or if we're going to emit a raw error.
 | 
						|
  if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
 | 
						|
    R << (" (in function: " + MF.getName() + ")").str();
 | 
						|
 | 
						|
  if (TPC.isGlobalISelAbortEnabled())
 | 
						|
    report_fatal_error(R.getMsg());
 | 
						|
  else
 | 
						|
    MORE.emit(R);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
 | 
						|
                              MachineOptimizationRemarkEmitter &MORE,
 | 
						|
                              const char *PassName, StringRef Msg,
 | 
						|
                              const MachineInstr &MI) {
 | 
						|
  MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
 | 
						|
                                    MI.getDebugLoc(), MI.getParent());
 | 
						|
  R << Msg;
 | 
						|
  // Printing MI is expensive;  only do it if expensive remarks are enabled.
 | 
						|
  if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
 | 
						|
    R << ": " << ore::MNV("Inst", MI);
 | 
						|
  reportGISelFailure(MF, TPC, MORE, R);
 | 
						|
}
 | 
						|
 | 
						|
Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg,
 | 
						|
                                           const MachineRegisterInfo &MRI) {
 | 
						|
  Optional<ValueAndVReg> ValAndVReg =
 | 
						|
      getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
 | 
						|
  assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
 | 
						|
         "Value found while looking through instrs");
 | 
						|
  if (!ValAndVReg)
 | 
						|
    return None;
 | 
						|
  return ValAndVReg->Value;
 | 
						|
}
 | 
						|
 | 
						|
Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
 | 
						|
    unsigned VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
 | 
						|
  SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
 | 
						|
  MachineInstr *MI;
 | 
						|
  while ((MI = MRI.getVRegDef(VReg)) &&
 | 
						|
         MI->getOpcode() != TargetOpcode::G_CONSTANT && LookThroughInstrs) {
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    case TargetOpcode::G_TRUNC:
 | 
						|
    case TargetOpcode::G_SEXT:
 | 
						|
    case TargetOpcode::G_ZEXT:
 | 
						|
      SeenOpcodes.push_back(std::make_pair(
 | 
						|
          MI->getOpcode(),
 | 
						|
          MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
 | 
						|
      VReg = MI->getOperand(1).getReg();
 | 
						|
      break;
 | 
						|
    case TargetOpcode::COPY:
 | 
						|
      VReg = MI->getOperand(1).getReg();
 | 
						|
      if (Register::isPhysicalRegister(VReg))
 | 
						|
        return None;
 | 
						|
      break;
 | 
						|
    case TargetOpcode::G_INTTOPTR:
 | 
						|
      VReg = MI->getOperand(1).getReg();
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!MI || MI->getOpcode() != TargetOpcode::G_CONSTANT ||
 | 
						|
      (!MI->getOperand(1).isImm() && !MI->getOperand(1).isCImm()))
 | 
						|
    return None;
 | 
						|
 | 
						|
  const MachineOperand &CstVal = MI->getOperand(1);
 | 
						|
  unsigned BitWidth = MRI.getType(MI->getOperand(0).getReg()).getSizeInBits();
 | 
						|
  APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
 | 
						|
                             : CstVal.getCImm()->getValue();
 | 
						|
  assert(Val.getBitWidth() == BitWidth &&
 | 
						|
         "Value bitwidth doesn't match definition type");
 | 
						|
  while (!SeenOpcodes.empty()) {
 | 
						|
    std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
 | 
						|
    switch (OpcodeAndSize.first) {
 | 
						|
    case TargetOpcode::G_TRUNC:
 | 
						|
      Val = Val.trunc(OpcodeAndSize.second);
 | 
						|
      break;
 | 
						|
    case TargetOpcode::G_SEXT:
 | 
						|
      Val = Val.sext(OpcodeAndSize.second);
 | 
						|
      break;
 | 
						|
    case TargetOpcode::G_ZEXT:
 | 
						|
      Val = Val.zext(OpcodeAndSize.second);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Val.getBitWidth() > 64)
 | 
						|
    return None;
 | 
						|
 | 
						|
  return ValueAndVReg{Val.getSExtValue(), VReg};
 | 
						|
}
 | 
						|
 | 
						|
const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg,
 | 
						|
                                       const MachineRegisterInfo &MRI) {
 | 
						|
  MachineInstr *MI = MRI.getVRegDef(VReg);
 | 
						|
  if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
 | 
						|
    return nullptr;
 | 
						|
  return MI->getOperand(1).getFPImm();
 | 
						|
}
 | 
						|
 | 
						|
llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
 | 
						|
                                               const MachineRegisterInfo &MRI) {
 | 
						|
  auto *DefMI = MRI.getVRegDef(Reg);
 | 
						|
  auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
 | 
						|
  if (!DstTy.isValid())
 | 
						|
    return nullptr;
 | 
						|
  while (DefMI->getOpcode() == TargetOpcode::COPY) {
 | 
						|
    unsigned SrcReg = DefMI->getOperand(1).getReg();
 | 
						|
    auto SrcTy = MRI.getType(SrcReg);
 | 
						|
    if (!SrcTy.isValid() || SrcTy != DstTy)
 | 
						|
      break;
 | 
						|
    DefMI = MRI.getVRegDef(SrcReg);
 | 
						|
  }
 | 
						|
  return DefMI;
 | 
						|
}
 | 
						|
 | 
						|
llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
 | 
						|
                                       const MachineRegisterInfo &MRI) {
 | 
						|
  MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
 | 
						|
  return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
 | 
						|
  if (Size == 32)
 | 
						|
    return APFloat(float(Val));
 | 
						|
  if (Size == 64)
 | 
						|
    return APFloat(Val);
 | 
						|
  if (Size != 16)
 | 
						|
    llvm_unreachable("Unsupported FPConstant size");
 | 
						|
  bool Ignored;
 | 
						|
  APFloat APF(Val);
 | 
						|
  APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
 | 
						|
  return APF;
 | 
						|
}
 | 
						|
 | 
						|
Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1,
 | 
						|
                                        const unsigned Op2,
 | 
						|
                                        const MachineRegisterInfo &MRI) {
 | 
						|
  auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
 | 
						|
  auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
 | 
						|
  if (MaybeOp1Cst && MaybeOp2Cst) {
 | 
						|
    LLT Ty = MRI.getType(Op1);
 | 
						|
    APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
 | 
						|
    APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
 | 
						|
    switch (Opcode) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case TargetOpcode::G_ADD:
 | 
						|
      return C1 + C2;
 | 
						|
    case TargetOpcode::G_AND:
 | 
						|
      return C1 & C2;
 | 
						|
    case TargetOpcode::G_ASHR:
 | 
						|
      return C1.ashr(C2);
 | 
						|
    case TargetOpcode::G_LSHR:
 | 
						|
      return C1.lshr(C2);
 | 
						|
    case TargetOpcode::G_MUL:
 | 
						|
      return C1 * C2;
 | 
						|
    case TargetOpcode::G_OR:
 | 
						|
      return C1 | C2;
 | 
						|
    case TargetOpcode::G_SHL:
 | 
						|
      return C1 << C2;
 | 
						|
    case TargetOpcode::G_SUB:
 | 
						|
      return C1 - C2;
 | 
						|
    case TargetOpcode::G_XOR:
 | 
						|
      return C1 ^ C2;
 | 
						|
    case TargetOpcode::G_UDIV:
 | 
						|
      if (!C2.getBoolValue())
 | 
						|
        break;
 | 
						|
      return C1.udiv(C2);
 | 
						|
    case TargetOpcode::G_SDIV:
 | 
						|
      if (!C2.getBoolValue())
 | 
						|
        break;
 | 
						|
      return C1.sdiv(C2);
 | 
						|
    case TargetOpcode::G_UREM:
 | 
						|
      if (!C2.getBoolValue())
 | 
						|
        break;
 | 
						|
      return C1.urem(C2);
 | 
						|
    case TargetOpcode::G_SREM:
 | 
						|
      if (!C2.getBoolValue())
 | 
						|
        break;
 | 
						|
      return C1.srem(C2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
 | 
						|
                           bool SNaN) {
 | 
						|
  const MachineInstr *DefMI = MRI.getVRegDef(Val);
 | 
						|
  if (!DefMI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (DefMI->getFlag(MachineInstr::FmNoNans))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (SNaN) {
 | 
						|
    // FP operations quiet. For now, just handle the ones inserted during
 | 
						|
    // legalization.
 | 
						|
    switch (DefMI->getOpcode()) {
 | 
						|
    case TargetOpcode::G_FPEXT:
 | 
						|
    case TargetOpcode::G_FPTRUNC:
 | 
						|
    case TargetOpcode::G_FCANONICALIZE:
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const unsigned Op1,
 | 
						|
                                        uint64_t Imm,
 | 
						|
                                        const MachineRegisterInfo &MRI) {
 | 
						|
  auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
 | 
						|
  if (MaybeOp1Cst) {
 | 
						|
    LLT Ty = MRI.getType(Op1);
 | 
						|
    APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
 | 
						|
    switch (Opcode) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case TargetOpcode::G_SEXT_INREG:
 | 
						|
      return C1.trunc(Imm).sext(C1.getBitWidth());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
 | 
						|
  AU.addPreserved<StackProtector>();
 | 
						|
}
 |