3201 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3201 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines a meta-engine for path-sensitive dataflow analysis that
 | 
						|
//  is built on GREngine, but provides the boilerplate to execute transfer
 | 
						|
//  functions and build the ExplodedGraph at the expression level.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ParentMap.h"
 | 
						|
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
 | 
						|
#include "clang/Analysis/PathSensitive/GRExprEngineBuilders.h"
 | 
						|
#include "clang/Analysis/PathSensitive/BugReporter.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/PrettyStackTrace.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include "llvm/ADT/ImmutableList.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
#include "llvm/Support/GraphWriter.h"
 | 
						|
#include <sstream>
 | 
						|
#endif
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using llvm::dyn_cast;
 | 
						|
using llvm::cast;
 | 
						|
using llvm::APSInt;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Engine construction and deletion.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck {
 | 
						|
  typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks;
 | 
						|
  typedef llvm::DenseMap<void*,Checks> MapTy;
 | 
						|
  
 | 
						|
  MapTy M;
 | 
						|
  Checks::Factory F;
 | 
						|
  Checks AllStmts;
 | 
						|
 | 
						|
public:
 | 
						|
  MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) :
 | 
						|
    F(Alloc), AllStmts(F.GetEmptyList()) {}
 | 
						|
  
 | 
						|
  virtual ~MappedBatchAuditor() {
 | 
						|
    llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited;
 | 
						|
    
 | 
						|
    for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI)
 | 
						|
      for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){
 | 
						|
 | 
						|
        GRSimpleAPICheck* check = *I;
 | 
						|
        
 | 
						|
        if (AlreadyVisited.count(check))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        AlreadyVisited.insert(check);
 | 
						|
        delete check;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) {
 | 
						|
    assert (A && "Check cannot be null.");
 | 
						|
    void* key = reinterpret_cast<void*>((uintptr_t) C);
 | 
						|
    MapTy::iterator I = M.find(key);
 | 
						|
    M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second);
 | 
						|
  }
 | 
						|
  
 | 
						|
  void AddCheck(GRSimpleAPICheck *A) {
 | 
						|
    assert (A && "Check cannot be null.");
 | 
						|
    AllStmts = F.Concat(A, AllStmts);    
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool Audit(NodeTy* N, GRStateManager& VMgr) {
 | 
						|
    // First handle the auditors that accept all statements.
 | 
						|
    bool isSink = false;
 | 
						|
    for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I)
 | 
						|
      isSink |= (*I)->Audit(N, VMgr);
 | 
						|
    
 | 
						|
    // Next handle the auditors that accept only specific statements.
 | 
						|
    Stmt* S = cast<PostStmt>(N->getLocation()).getStmt();
 | 
						|
    void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass());
 | 
						|
    MapTy::iterator MI = M.find(key);
 | 
						|
    if (MI != M.end()) {    
 | 
						|
      for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I)
 | 
						|
        isSink |= (*I)->Audit(N, VMgr);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return isSink;    
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Engine construction and deletion.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
 | 
						|
  IdentifierInfo* II = &Ctx.Idents.get(name);
 | 
						|
  return Ctx.Selectors.getSelector(0, &II);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx,
 | 
						|
                           LiveVariables& L, BugReporterData& BRD,
 | 
						|
                           bool purgeDead, bool eagerlyAssume,
 | 
						|
                           StoreManagerCreator SMC,
 | 
						|
                           ConstraintManagerCreator CMC)
 | 
						|
  : CoreEngine(cfg, CD, Ctx, *this), 
 | 
						|
    G(CoreEngine.getGraph()),
 | 
						|
    Liveness(L),
 | 
						|
    Builder(NULL),
 | 
						|
    StateMgr(G.getContext(), SMC, CMC, G.getAllocator(), cfg, CD, L),
 | 
						|
    SymMgr(StateMgr.getSymbolManager()),
 | 
						|
    CurrentStmt(NULL),
 | 
						|
    NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),
 | 
						|
    RaiseSel(GetNullarySelector("raise", G.getContext())), 
 | 
						|
    PurgeDead(purgeDead),
 | 
						|
    BR(BRD, *this),
 | 
						|
    EagerlyAssume(eagerlyAssume) {}
 | 
						|
 | 
						|
GRExprEngine::~GRExprEngine() {    
 | 
						|
  BR.FlushReports();
 | 
						|
  delete [] NSExceptionInstanceRaiseSelectors;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Utility methods.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) {
 | 
						|
  StateMgr.TF = tf;
 | 
						|
  tf->RegisterChecks(getBugReporter());
 | 
						|
  tf->RegisterPrinters(getStateManager().Printers);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) {
 | 
						|
  if (!BatchAuditor)
 | 
						|
    BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator()));
 | 
						|
  
 | 
						|
  ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::AddCheck(GRSimpleAPICheck *A) {
 | 
						|
  if (!BatchAuditor)
 | 
						|
    BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator()));
 | 
						|
 | 
						|
  ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A);
 | 
						|
}
 | 
						|
 | 
						|
const GRState* GRExprEngine::getInitialState() {
 | 
						|
  return StateMgr.getInitialState();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Top-level transfer function logic (Dispatcher).
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
 | 
						|
  
 | 
						|
  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
 | 
						|
                                S->getLocStart(),
 | 
						|
                                "Error evaluating statement");
 | 
						|
  
 | 
						|
  Builder = &builder;
 | 
						|
  EntryNode = builder.getLastNode();
 | 
						|
  
 | 
						|
  // FIXME: Consolidate.
 | 
						|
  CurrentStmt = S;
 | 
						|
  StateMgr.CurrentStmt = S;
 | 
						|
  
 | 
						|
  // Set up our simple checks.
 | 
						|
  if (BatchAuditor)
 | 
						|
    Builder->setAuditor(BatchAuditor.get());
 | 
						|
    
 | 
						|
  // Create the cleaned state.  
 | 
						|
  SymbolReaper SymReaper(Liveness, SymMgr);  
 | 
						|
  CleanedState = PurgeDead ? StateMgr.RemoveDeadBindings(EntryNode->getState(), 
 | 
						|
                                                         CurrentStmt, SymReaper)
 | 
						|
                           : EntryNode->getState();
 | 
						|
 | 
						|
  // Process any special transfer function for dead symbols.
 | 
						|
  NodeSet Tmp;
 | 
						|
  
 | 
						|
  if (!SymReaper.hasDeadSymbols())
 | 
						|
    Tmp.Add(EntryNode);
 | 
						|
  else {
 | 
						|
    SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
    SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
 | 
						|
    SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols);
 | 
						|
    Builder->PurgingDeadSymbols = true;
 | 
						|
    
 | 
						|
    getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S, 
 | 
						|
                            CleanedState, SymReaper);
 | 
						|
 | 
						|
    if (!Builder->BuildSinks && !Builder->HasGeneratedNode)
 | 
						|
      Tmp.Add(EntryNode);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool HasAutoGenerated = false;
 | 
						|
 | 
						|
  for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
 | 
						|
    NodeSet Dst;
 | 
						|
    
 | 
						|
    // Set the cleaned state.  
 | 
						|
    Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I));
 | 
						|
    
 | 
						|
    // Visit the statement.  
 | 
						|
    Visit(S, *I, Dst);
 | 
						|
 | 
						|
    // Do we need to auto-generate a node?  We only need to do this to generate
 | 
						|
    // a node with a "cleaned" state; GRCoreEngine will actually handle
 | 
						|
    // auto-transitions for other cases.    
 | 
						|
    if (Dst.size() == 1 && *Dst.begin() == EntryNode
 | 
						|
        && !Builder->HasGeneratedNode && !HasAutoGenerated) {
 | 
						|
      HasAutoGenerated = true;
 | 
						|
      builder.generateNode(S, GetState(EntryNode), *I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // NULL out these variables to cleanup.
 | 
						|
  CleanedState = NULL;
 | 
						|
  EntryNode = NULL;
 | 
						|
 | 
						|
  // FIXME: Consolidate.
 | 
						|
  StateMgr.CurrentStmt = 0;
 | 
						|
  CurrentStmt = 0;
 | 
						|
  
 | 
						|
  Builder = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) {  
 | 
						|
  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
 | 
						|
                                S->getLocStart(),
 | 
						|
                                "Error evaluating statement");
 | 
						|
 | 
						|
  // FIXME: add metadata to the CFG so that we can disable
 | 
						|
  //  this check when we KNOW that there is no block-level subexpression.
 | 
						|
  //  The motivation is that this check requires a hashtable lookup.
 | 
						|
  
 | 
						|
  if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
 | 
						|
    Dst.Add(Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (S->getStmtClass()) {
 | 
						|
      
 | 
						|
    default:
 | 
						|
      // Cases we intentionally have "default" handle:
 | 
						|
      //   AddrLabelExpr, IntegerLiteral, CharacterLiteral
 | 
						|
      
 | 
						|
      Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
 | 
						|
      break;
 | 
						|
    
 | 
						|
    case Stmt::ArraySubscriptExprClass:
 | 
						|
      VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::AsmStmtClass:
 | 
						|
      VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::BinaryOperatorClass: {
 | 
						|
      BinaryOperator* B = cast<BinaryOperator>(S);
 | 
						|
      
 | 
						|
      if (B->isLogicalOp()) {
 | 
						|
        VisitLogicalExpr(B, Pred, Dst);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      else if (B->getOpcode() == BinaryOperator::Comma) {
 | 
						|
        const GRState* state = GetState(Pred);
 | 
						|
        MakeNode(Dst, B, Pred, BindExpr(state, B, GetSVal(state, B->getRHS())));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (EagerlyAssume && (B->isRelationalOp() || B->isEqualityOp())) {
 | 
						|
        NodeSet Tmp;
 | 
						|
        VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
 | 
						|
        EvalEagerlyAssume(Dst, Tmp, cast<Expr>(S));        
 | 
						|
      }
 | 
						|
      else
 | 
						|
        VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Stmt::CallExprClass:
 | 
						|
    case Stmt::CXXOperatorCallExprClass: {
 | 
						|
      CallExpr* C = cast<CallExpr>(S);
 | 
						|
      VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
      // FIXME: ChooseExpr is really a constant.  We need to fix
 | 
						|
      //        the CFG do not model them as explicit control-flow.
 | 
						|
      
 | 
						|
    case Stmt::ChooseExprClass: { // __builtin_choose_expr
 | 
						|
      ChooseExpr* C = cast<ChooseExpr>(S);
 | 
						|
      VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::CompoundAssignOperatorClass:
 | 
						|
      VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
 | 
						|
    case Stmt::CompoundLiteralExprClass:
 | 
						|
      VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ConditionalOperatorClass: { // '?' operator
 | 
						|
      ConditionalOperator* C = cast<ConditionalOperator>(S);
 | 
						|
      VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::DeclRefExprClass:
 | 
						|
    case Stmt::QualifiedDeclRefExprClass:
 | 
						|
      VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::DeclStmtClass:
 | 
						|
      VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ImplicitCastExprClass:
 | 
						|
    case Stmt::CStyleCastExprClass: {
 | 
						|
      CastExpr* C = cast<CastExpr>(S);
 | 
						|
      VisitCast(C, C->getSubExpr(), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Stmt::InitListExprClass:
 | 
						|
      VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::MemberExprClass:
 | 
						|
      VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ObjCIvarRefExprClass:
 | 
						|
      VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst, false);
 | 
						|
      break;
 | 
						|
 | 
						|
    case Stmt::ObjCForCollectionStmtClass:
 | 
						|
      VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ObjCMessageExprClass: {
 | 
						|
      VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ObjCAtThrowStmtClass: {
 | 
						|
      // FIXME: This is not complete.  We basically treat @throw as
 | 
						|
      // an abort.
 | 
						|
      SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
      Builder->BuildSinks = true;
 | 
						|
      MakeNode(Dst, S, Pred, GetState(Pred));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ParenExprClass:
 | 
						|
      Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::ReturnStmtClass:
 | 
						|
      VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::SizeOfAlignOfExprClass:
 | 
						|
      VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::StmtExprClass: {
 | 
						|
      StmtExpr* SE = cast<StmtExpr>(S);
 | 
						|
 | 
						|
      if (SE->getSubStmt()->body_empty()) {
 | 
						|
        // Empty statement expression.
 | 
						|
        assert(SE->getType() == getContext().VoidTy
 | 
						|
               && "Empty statement expression must have void type.");
 | 
						|
        Dst.Add(Pred);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
               
 | 
						|
      if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
 | 
						|
        const GRState* state = GetState(Pred);
 | 
						|
        MakeNode(Dst, SE, Pred, BindExpr(state, SE, GetSVal(state, LastExpr)));
 | 
						|
      }
 | 
						|
      else
 | 
						|
        Dst.Add(Pred);
 | 
						|
      
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Stmt::StringLiteralClass:
 | 
						|
      VisitLValue(cast<StringLiteral>(S), Pred, Dst);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case Stmt::UnaryOperatorClass: {
 | 
						|
      UnaryOperator *U = cast<UnaryOperator>(S);
 | 
						|
      if (EagerlyAssume && (U->getOpcode() == UnaryOperator::LNot)) {
 | 
						|
        NodeSet Tmp;
 | 
						|
        VisitUnaryOperator(U, Pred, Tmp, false);
 | 
						|
        EvalEagerlyAssume(Dst, Tmp, U);
 | 
						|
      }
 | 
						|
      else
 | 
						|
        VisitUnaryOperator(U, Pred, Dst, false);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitLValue(Expr* Ex, NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  
 | 
						|
  Ex = Ex->IgnoreParens();
 | 
						|
  
 | 
						|
  if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) {
 | 
						|
    Dst.Add(Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (Ex->getStmtClass()) {
 | 
						|
      
 | 
						|
    case Stmt::ArraySubscriptExprClass:
 | 
						|
      VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::DeclRefExprClass:
 | 
						|
    case Stmt::QualifiedDeclRefExprClass:
 | 
						|
      VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::ObjCIvarRefExprClass:
 | 
						|
      VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::UnaryOperatorClass:
 | 
						|
      VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::MemberExprClass:
 | 
						|
      VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::CompoundLiteralExprClass:
 | 
						|
      VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(Ex), Pred, Dst, true);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case Stmt::ObjCPropertyRefExprClass:
 | 
						|
      // FIXME: Property assignments are lvalues, but not really "locations".
 | 
						|
      //  e.g.:  self.x = something;
 | 
						|
      //  Here the "self.x" really can translate to a method call (setter) when
 | 
						|
      //  the assignment is made.  Moreover, the entire assignment expression
 | 
						|
      //  evaluate to whatever "something" is, not calling the "getter" for
 | 
						|
      //  the property (which would make sense since it can have side effects).
 | 
						|
      //  We'll probably treat this as a location, but not one that we can
 | 
						|
      //  take the address of.  Perhaps we need a new SVal class for cases
 | 
						|
      //  like thsis?
 | 
						|
      //  Note that we have a similar problem for bitfields, since they don't
 | 
						|
      //  have "locations" in the sense that we can take their address.
 | 
						|
      Dst.Add(Pred);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Stmt::StringLiteralClass: {
 | 
						|
      const GRState* state = GetState(Pred);
 | 
						|
      SVal V = StateMgr.GetLValue(state, cast<StringLiteral>(Ex));
 | 
						|
      MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    default:
 | 
						|
      // Arbitrary subexpressions can return aggregate temporaries that
 | 
						|
      // can be used in a lvalue context.  We need to enhance our support
 | 
						|
      // of such temporaries in both the environment and the store, so right
 | 
						|
      // now we just do a regular visit.
 | 
						|
      assert ((Ex->getType()->isAggregateType()) &&
 | 
						|
              "Other kinds of expressions with non-aggregate/union types do"
 | 
						|
              " not have lvalues.");
 | 
						|
      
 | 
						|
      Visit(Ex, Pred, Dst);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Block entrance.  (Update counters).
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*,
 | 
						|
                                        GRBlockCounter BC) {
 | 
						|
  
 | 
						|
  return BC.getNumVisited(B->getBlockID()) < 3;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Branch processing.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
const GRState* GRExprEngine::MarkBranch(const GRState* state,
 | 
						|
                                           Stmt* Terminator,
 | 
						|
                                           bool branchTaken) {
 | 
						|
  
 | 
						|
  switch (Terminator->getStmtClass()) {
 | 
						|
    default:
 | 
						|
      return state;
 | 
						|
      
 | 
						|
    case Stmt::BinaryOperatorClass: { // '&&' and '||'
 | 
						|
      
 | 
						|
      BinaryOperator* B = cast<BinaryOperator>(Terminator);
 | 
						|
      BinaryOperator::Opcode Op = B->getOpcode();
 | 
						|
      
 | 
						|
      assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr);
 | 
						|
      
 | 
						|
      // For &&, if we take the true branch, then the value of the whole
 | 
						|
      // expression is that of the RHS expression.
 | 
						|
      //
 | 
						|
      // For ||, if we take the false branch, then the value of the whole
 | 
						|
      // expression is that of the RHS expression.
 | 
						|
      
 | 
						|
      Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) ||
 | 
						|
                 (Op == BinaryOperator::LOr && !branchTaken)  
 | 
						|
               ? B->getRHS() : B->getLHS();
 | 
						|
        
 | 
						|
      return BindBlkExpr(state, B, UndefinedVal(Ex));
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ConditionalOperatorClass: { // ?:
 | 
						|
      
 | 
						|
      ConditionalOperator* C = cast<ConditionalOperator>(Terminator);
 | 
						|
      
 | 
						|
      // For ?, if branchTaken == true then the value is either the LHS or
 | 
						|
      // the condition itself. (GNU extension).
 | 
						|
      
 | 
						|
      Expr* Ex;      
 | 
						|
      
 | 
						|
      if (branchTaken)
 | 
						|
        Ex = C->getLHS() ? C->getLHS() : C->getCond();        
 | 
						|
      else
 | 
						|
        Ex = C->getRHS();
 | 
						|
      
 | 
						|
      return BindBlkExpr(state, C, UndefinedVal(Ex));
 | 
						|
    }
 | 
						|
      
 | 
						|
    case Stmt::ChooseExprClass: { // ?:
 | 
						|
      
 | 
						|
      ChooseExpr* C = cast<ChooseExpr>(Terminator);
 | 
						|
      
 | 
						|
      Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();      
 | 
						|
      return BindBlkExpr(state, C, UndefinedVal(Ex));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
 | 
						|
/// to try to recover some path-sensitivity for casts of symbolic
 | 
						|
/// integers that promote their values (which are currently not tracked well).
 | 
						|
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
 | 
						|
//  cast(s) did was sign-extend the original value.
 | 
						|
static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state,
 | 
						|
                                Stmt* Condition, ASTContext& Ctx) {
 | 
						|
 | 
						|
  Expr *Ex = dyn_cast<Expr>(Condition);
 | 
						|
  if (!Ex)
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  uint64_t bits = 0;
 | 
						|
  bool bitsInit = false;
 | 
						|
    
 | 
						|
  while (CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
 | 
						|
    QualType T = CE->getType();
 | 
						|
 | 
						|
    if (!T->isIntegerType())
 | 
						|
      return UnknownVal();
 | 
						|
    
 | 
						|
    uint64_t newBits = Ctx.getTypeSize(T);
 | 
						|
    if (!bitsInit || newBits < bits) {
 | 
						|
      bitsInit = true;
 | 
						|
      bits = newBits;
 | 
						|
    }
 | 
						|
      
 | 
						|
    Ex = CE->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  // We reached a non-cast.  Is it a symbolic value?
 | 
						|
  QualType T = Ex->getType();
 | 
						|
 | 
						|
  if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits)
 | 
						|
    return UnknownVal();
 | 
						|
  
 | 
						|
  return StateMgr.GetSVal(state, Ex);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term,
 | 
						|
                                 BranchNodeBuilder& builder) {
 | 
						|
  
 | 
						|
  // Remove old bindings for subexpressions.
 | 
						|
  const GRState* PrevState =
 | 
						|
    StateMgr.RemoveSubExprBindings(builder.getState());
 | 
						|
  
 | 
						|
  // Check for NULL conditions; e.g. "for(;;)"
 | 
						|
  if (!Condition) { 
 | 
						|
    builder.markInfeasible(false);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
 | 
						|
                                Condition->getLocStart(),
 | 
						|
                                "Error evaluating branch");
 | 
						|
  
 | 
						|
  SVal V = GetSVal(PrevState, Condition);
 | 
						|
  
 | 
						|
  switch (V.getBaseKind()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case SVal::UnknownKind: {
 | 
						|
      if (Expr *Ex = dyn_cast<Expr>(Condition)) {
 | 
						|
          if (Ex->getType()->isIntegerType()) {
 | 
						|
          // Try to recover some path-sensitivity.  Right now casts of symbolic
 | 
						|
          // integers that promote their values are currently not tracked well.
 | 
						|
          // If 'Condition' is such an expression, try and recover the
 | 
						|
          // underlying value and use that instead.
 | 
						|
          SVal recovered = RecoverCastedSymbol(getStateManager(),
 | 
						|
                                               builder.getState(), Condition,
 | 
						|
                                               getContext());
 | 
						|
            
 | 
						|
          if (!recovered.isUnknown()) {
 | 
						|
            V = recovered;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    
 | 
						|
      builder.generateNode(MarkBranch(PrevState, Term, true), true);
 | 
						|
      builder.generateNode(MarkBranch(PrevState, Term, false), false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case SVal::UndefinedKind: {      
 | 
						|
      NodeTy* N = builder.generateNode(PrevState, true);
 | 
						|
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        UndefBranches.insert(N);
 | 
						|
      }
 | 
						|
      
 | 
						|
      builder.markInfeasible(false);
 | 
						|
      return;
 | 
						|
    }      
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Process the true branch.
 | 
						|
 | 
						|
  bool isFeasible = false;  
 | 
						|
  const GRState* state = Assume(PrevState, V, true, isFeasible);
 | 
						|
 | 
						|
  if (isFeasible)
 | 
						|
    builder.generateNode(MarkBranch(state, Term, true), true);
 | 
						|
  else
 | 
						|
    builder.markInfeasible(true);
 | 
						|
      
 | 
						|
  // Process the false branch.  
 | 
						|
  
 | 
						|
  isFeasible = false;
 | 
						|
  state = Assume(PrevState, V, false, isFeasible);
 | 
						|
  
 | 
						|
  if (isFeasible)
 | 
						|
    builder.generateNode(MarkBranch(state, Term, false), false);
 | 
						|
  else
 | 
						|
    builder.markInfeasible(false);
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessIndirectGoto - Called by GRCoreEngine.  Used to generate successor
 | 
						|
///  nodes by processing the 'effects' of a computed goto jump.
 | 
						|
void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) {
 | 
						|
 | 
						|
  const GRState* state = builder.getState();  
 | 
						|
  SVal V = GetSVal(state, builder.getTarget());
 | 
						|
  
 | 
						|
  // Three possibilities:
 | 
						|
  //
 | 
						|
  //   (1) We know the computed label.
 | 
						|
  //   (2) The label is NULL (or some other constant), or Undefined.
 | 
						|
  //   (3) We have no clue about the label.  Dispatch to all targets.
 | 
						|
  //
 | 
						|
  
 | 
						|
  typedef IndirectGotoNodeBuilder::iterator iterator;
 | 
						|
 | 
						|
  if (isa<loc::GotoLabel>(V)) {
 | 
						|
    LabelStmt* L = cast<loc::GotoLabel>(V).getLabel();
 | 
						|
    
 | 
						|
    for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) {
 | 
						|
      if (I.getLabel() == L) {
 | 
						|
        builder.generateNode(I, state);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert (false && "No block with label.");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
 | 
						|
    // Dispatch to the first target and mark it as a sink.
 | 
						|
    NodeTy* N = builder.generateNode(builder.begin(), state, true);
 | 
						|
    UndefBranches.insert(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // This is really a catch-all.  We don't support symbolics yet.
 | 
						|
  
 | 
						|
  assert (V.isUnknown());
 | 
						|
  
 | 
						|
  for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
 | 
						|
    builder.generateNode(I, state);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R,
 | 
						|
                                    NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  
 | 
						|
  assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex));
 | 
						|
  
 | 
						|
  const GRState* state = GetState(Pred);
 | 
						|
  SVal X = GetBlkExprSVal(state, Ex);
 | 
						|
  
 | 
						|
  assert (X.isUndef());
 | 
						|
  
 | 
						|
  Expr* SE = (Expr*) cast<UndefinedVal>(X).getData();
 | 
						|
  
 | 
						|
  assert (SE);
 | 
						|
  
 | 
						|
  X = GetBlkExprSVal(state, SE);
 | 
						|
  
 | 
						|
  // Make sure that we invalidate the previous binding.
 | 
						|
  MakeNode(Dst, Ex, Pred, StateMgr.BindExpr(state, Ex, X, true, true));
 | 
						|
}
 | 
						|
 | 
						|
/// ProcessSwitch - Called by GRCoreEngine.  Used to generate successor
 | 
						|
///  nodes by processing the 'effects' of a switch statement.
 | 
						|
void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {  
 | 
						|
  typedef SwitchNodeBuilder::iterator iterator;  
 | 
						|
  const GRState* state = builder.getState();  
 | 
						|
  Expr* CondE = builder.getCondition();
 | 
						|
  SVal  CondV = GetSVal(state, CondE);
 | 
						|
 | 
						|
  if (CondV.isUndef()) {
 | 
						|
    NodeTy* N = builder.generateDefaultCaseNode(state, true);
 | 
						|
    UndefBranches.insert(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const GRState*  DefaultSt = state;  
 | 
						|
  bool DefaultFeasible = false;
 | 
						|
  
 | 
						|
  for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) {
 | 
						|
    CaseStmt* Case = cast<CaseStmt>(I.getCase());
 | 
						|
 | 
						|
    // Evaluate the LHS of the case value.
 | 
						|
    Expr::EvalResult V1;
 | 
						|
    bool b = Case->getLHS()->Evaluate(V1, getContext());    
 | 
						|
    
 | 
						|
    // Sanity checks.  These go away in Release builds.
 | 
						|
    assert(b && V1.Val.isInt() && !V1.HasSideEffects 
 | 
						|
             && "Case condition must evaluate to an integer constant.");
 | 
						|
    b = b; // silence unused variable warning    
 | 
						|
    assert(V1.Val.getInt().getBitWidth() == 
 | 
						|
           getContext().getTypeSize(CondE->getType()));
 | 
						|
           
 | 
						|
    // Get the RHS of the case, if it exists.
 | 
						|
    Expr::EvalResult V2;
 | 
						|
    
 | 
						|
    if (Expr* E = Case->getRHS()) {
 | 
						|
      b = E->Evaluate(V2, getContext());
 | 
						|
      assert(b && V2.Val.isInt() && !V2.HasSideEffects 
 | 
						|
             && "Case condition must evaluate to an integer constant.");
 | 
						|
      b = b; // silence unused variable warning
 | 
						|
    }
 | 
						|
    else
 | 
						|
      V2 = V1;
 | 
						|
    
 | 
						|
    // FIXME: Eventually we should replace the logic below with a range
 | 
						|
    //  comparison, rather than concretize the values within the range.
 | 
						|
    //  This should be easy once we have "ranges" for NonLVals.
 | 
						|
        
 | 
						|
    do {
 | 
						|
      nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt()));      
 | 
						|
      SVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal,
 | 
						|
                           getContext().IntTy);
 | 
						|
      
 | 
						|
      // Now "assume" that the case matches.      
 | 
						|
      bool isFeasible = false;      
 | 
						|
      const GRState* StNew = Assume(state, Res, true, isFeasible);
 | 
						|
      
 | 
						|
      if (isFeasible) {
 | 
						|
        builder.generateCaseStmtNode(I, StNew);
 | 
						|
       
 | 
						|
        // If CondV evaluates to a constant, then we know that this
 | 
						|
        // is the *only* case that we can take, so stop evaluating the
 | 
						|
        // others.
 | 
						|
        if (isa<nonloc::ConcreteInt>(CondV))
 | 
						|
          return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Now "assume" that the case doesn't match.  Add this state
 | 
						|
      // to the default state (if it is feasible).
 | 
						|
      
 | 
						|
      isFeasible = false;
 | 
						|
      StNew = Assume(DefaultSt, Res, false, isFeasible);
 | 
						|
      
 | 
						|
      if (isFeasible) {
 | 
						|
        DefaultFeasible = true;
 | 
						|
        DefaultSt = StNew;
 | 
						|
      }
 | 
						|
 | 
						|
      // Concretize the next value in the range.
 | 
						|
      if (V1.Val.getInt() == V2.Val.getInt())
 | 
						|
        break;
 | 
						|
      
 | 
						|
      ++V1.Val.getInt();
 | 
						|
      assert (V1.Val.getInt() <= V2.Val.getInt());
 | 
						|
      
 | 
						|
    } while (true);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we reach here, than we know that the default branch is
 | 
						|
  // possible.  
 | 
						|
  if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: logical operations ('&&', '||').
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred,
 | 
						|
                                    NodeSet& Dst) {
 | 
						|
  
 | 
						|
  assert (B->getOpcode() == BinaryOperator::LAnd ||
 | 
						|
          B->getOpcode() == BinaryOperator::LOr);
 | 
						|
  
 | 
						|
  assert (B == CurrentStmt && getCFG().isBlkExpr(B));
 | 
						|
  
 | 
						|
  const GRState* state = GetState(Pred);
 | 
						|
  SVal X = GetBlkExprSVal(state, B);
 | 
						|
  
 | 
						|
  assert (X.isUndef());
 | 
						|
  
 | 
						|
  Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData();
 | 
						|
  
 | 
						|
  assert (Ex);
 | 
						|
  
 | 
						|
  if (Ex == B->getRHS()) {
 | 
						|
    
 | 
						|
    X = GetBlkExprSVal(state, Ex);
 | 
						|
    
 | 
						|
    // Handle undefined values.
 | 
						|
    
 | 
						|
    if (X.isUndef()) {
 | 
						|
      MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We took the RHS.  Because the value of the '&&' or '||' expression must
 | 
						|
    // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
 | 
						|
    // or 1.  Alternatively, we could take a lazy approach, and calculate this
 | 
						|
    // value later when necessary.  We don't have the machinery in place for
 | 
						|
    // this right now, and since most logical expressions are used for branches,
 | 
						|
    // the payoff is not likely to be large.  Instead, we do eager evaluation.
 | 
						|
        
 | 
						|
    bool isFeasible = false;
 | 
						|
    const GRState* NewState = Assume(state, X, true, isFeasible);
 | 
						|
    
 | 
						|
    if (isFeasible)
 | 
						|
      MakeNode(Dst, B, Pred,
 | 
						|
               BindBlkExpr(NewState, B, MakeConstantVal(1U, B)));
 | 
						|
      
 | 
						|
    isFeasible = false;
 | 
						|
    NewState = Assume(state, X, false, isFeasible);
 | 
						|
    
 | 
						|
    if (isFeasible)
 | 
						|
      MakeNode(Dst, B, Pred,
 | 
						|
               BindBlkExpr(NewState, B, MakeConstantVal(0U, B)));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // We took the LHS expression.  Depending on whether we are '&&' or
 | 
						|
    // '||' we know what the value of the expression is via properties of
 | 
						|
    // the short-circuiting.
 | 
						|
    
 | 
						|
    X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B);
 | 
						|
    MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X));
 | 
						|
  }
 | 
						|
}
 | 
						|
 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: Loads and stores.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* Ex, NodeTy* Pred, NodeSet& Dst,
 | 
						|
                                    bool asLValue) {
 | 
						|
  
 | 
						|
  const GRState* state = GetState(Pred);
 | 
						|
 | 
						|
  const NamedDecl* D = Ex->getDecl();
 | 
						|
 | 
						|
  if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
 | 
						|
 | 
						|
    SVal V = StateMgr.GetLValue(state, VD);
 | 
						|
 | 
						|
    if (asLValue)
 | 
						|
      MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V));
 | 
						|
    else
 | 
						|
      EvalLoad(Dst, Ex, Pred, state, V);
 | 
						|
    return;
 | 
						|
 | 
						|
  } else if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) {
 | 
						|
    assert(!asLValue && "EnumConstantDecl does not have lvalue.");
 | 
						|
 | 
						|
    BasicValueFactory& BasicVals = StateMgr.getBasicVals();
 | 
						|
    SVal V = nonloc::ConcreteInt(BasicVals.getValue(ED->getInitVal()));
 | 
						|
    MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V));
 | 
						|
    return;
 | 
						|
 | 
						|
  } else if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    assert(asLValue);
 | 
						|
    SVal V = loc::FuncVal(FD);
 | 
						|
    MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert (false &&
 | 
						|
          "ValueDecl support for this ValueDecl not implemented.");
 | 
						|
}
 | 
						|
 | 
						|
/// VisitArraySubscriptExpr - Transfer function for array accesses
 | 
						|
void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred,
 | 
						|
                                           NodeSet& Dst, bool asLValue) {
 | 
						|
  
 | 
						|
  Expr* Base = A->getBase()->IgnoreParens();
 | 
						|
  Expr* Idx  = A->getIdx()->IgnoreParens();
 | 
						|
  NodeSet Tmp;
 | 
						|
  
 | 
						|
  if (Base->getType()->isVectorType()) {
 | 
						|
    // For vector types get its lvalue.
 | 
						|
    // FIXME: This may not be correct.  Is the rvalue of a vector its location?
 | 
						|
    //  In fact, I think this is just a hack.  We need to get the right
 | 
						|
    // semantics.
 | 
						|
    VisitLValue(Base, Pred, Tmp);
 | 
						|
  }
 | 
						|
  else  
 | 
						|
    Visit(Base, Pred, Tmp);   // Get Base's rvalue, which should be an LocVal.
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {    
 | 
						|
    NodeSet Tmp2;
 | 
						|
    Visit(Idx, *I1, Tmp2);     // Evaluate the index.
 | 
						|
      
 | 
						|
    for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) {
 | 
						|
      const GRState* state = GetState(*I2);
 | 
						|
      SVal V = StateMgr.GetLValue(state, GetSVal(state, Base),
 | 
						|
                                  GetSVal(state, Idx));
 | 
						|
 | 
						|
      if (asLValue)
 | 
						|
        MakeNode(Dst, A, *I2, BindExpr(state, A, V));
 | 
						|
      else
 | 
						|
        EvalLoad(Dst, A, *I2, state, V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// VisitMemberExpr - Transfer function for member expressions.
 | 
						|
void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred,
 | 
						|
                                   NodeSet& Dst, bool asLValue) {
 | 
						|
  
 | 
						|
  Expr* Base = M->getBase()->IgnoreParens();
 | 
						|
  NodeSet Tmp;
 | 
						|
  
 | 
						|
  if (M->isArrow()) 
 | 
						|
    Visit(Base, Pred, Tmp);        // p->f = ...  or   ... = p->f
 | 
						|
  else
 | 
						|
    VisitLValue(Base, Pred, Tmp);  // x.f = ...   or   ... = x.f
 | 
						|
    
 | 
						|
  FieldDecl *Field = dyn_cast<FieldDecl>(M->getMemberDecl());
 | 
						|
  if (!Field) // FIXME: skipping member expressions for non-fields
 | 
						|
    return;
 | 
						|
 | 
						|
  for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
 | 
						|
    const GRState* state = GetState(*I);
 | 
						|
    // FIXME: Should we insert some assumption logic in here to determine
 | 
						|
    // if "Base" is a valid piece of memory?  Before we put this assumption
 | 
						|
    // later when using FieldOffset lvals (which we no longer have).
 | 
						|
    SVal L = StateMgr.GetLValue(state, GetSVal(state, Base), Field);
 | 
						|
 | 
						|
    if (asLValue)
 | 
						|
      MakeNode(Dst, M, *I, BindExpr(state, M, L));
 | 
						|
    else
 | 
						|
      EvalLoad(Dst, M, *I, state, L);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EvalBind - Handle the semantics of binding a value to a specific location.
 | 
						|
///  This method is used by EvalStore and (soon) VisitDeclStmt, and others.
 | 
						|
void GRExprEngine::EvalBind(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
 | 
						|
                             const GRState* state, SVal location, SVal Val) {
 | 
						|
 | 
						|
  const GRState* newState = 0;
 | 
						|
  
 | 
						|
  if (location.isUnknown()) {
 | 
						|
    // We know that the new state will be the same as the old state since
 | 
						|
    // the location of the binding is "unknown".  Consequently, there
 | 
						|
    // is no reason to just create a new node.
 | 
						|
    newState = state;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // We are binding to a value other than 'unknown'.  Perform the binding
 | 
						|
    // using the StoreManager.
 | 
						|
    newState = StateMgr.BindLoc(state, cast<Loc>(location), Val);
 | 
						|
  }
 | 
						|
 | 
						|
  // The next thing to do is check if the GRTransferFuncs object wants to
 | 
						|
  // update the state based on the new binding.  If the GRTransferFunc object
 | 
						|
  // doesn't do anything, just auto-propagate the current state.
 | 
						|
  GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, Pred, newState, Ex,
 | 
						|
                                  newState != state);
 | 
						|
    
 | 
						|
  getTF().EvalBind(BuilderRef, location, Val);
 | 
						|
}
 | 
						|
 | 
						|
/// EvalStore - Handle the semantics of a store via an assignment.
 | 
						|
///  @param Dst The node set to store generated state nodes
 | 
						|
///  @param Ex The expression representing the location of the store
 | 
						|
///  @param state The current simulation state
 | 
						|
///  @param location The location to store the value
 | 
						|
///  @param Val The value to be stored
 | 
						|
void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
 | 
						|
                             const GRState* state, SVal location, SVal Val) {
 | 
						|
  
 | 
						|
  assert (Builder && "GRStmtNodeBuilder must be defined.");
 | 
						|
  
 | 
						|
  // Evaluate the location (checks for bad dereferences).
 | 
						|
  Pred = EvalLocation(Ex, Pred, state, location);
 | 
						|
  
 | 
						|
  if (!Pred)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert (!location.isUndef());
 | 
						|
  state = GetState(Pred);
 | 
						|
 | 
						|
  // Proceed with the store.  
 | 
						|
  SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind);
 | 
						|
  Builder->PointKind = ProgramPoint::PostStoreKind;  
 | 
						|
  EvalBind(Dst, Ex, Pred, state, location, Val);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
 | 
						|
                            const GRState* state, SVal location) {
 | 
						|
 | 
						|
  // Evaluate the location (checks for bad dereferences).  
 | 
						|
  Pred = EvalLocation(Ex, Pred, state, location);
 | 
						|
  
 | 
						|
  if (!Pred)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  state = GetState(Pred);
 | 
						|
  
 | 
						|
  // Proceed with the load.
 | 
						|
  ProgramPoint::Kind K = ProgramPoint::PostLoadKind;
 | 
						|
 | 
						|
  // FIXME: Currently symbolic analysis "generates" new symbols
 | 
						|
  //  for the contents of values.  We need a better approach.
 | 
						|
 | 
						|
  if (location.isUnknown()) {
 | 
						|
    // This is important.  We must nuke the old binding.
 | 
						|
    MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, UnknownVal()), K);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    SVal V = GetSVal(state, cast<Loc>(location), Ex->getType());
 | 
						|
    MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), K);  
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred,
 | 
						|
                             const GRState* state, SVal location, SVal Val) {
 | 
						|
 
 | 
						|
  NodeSet TmpDst;
 | 
						|
  EvalStore(TmpDst, StoreE, Pred, state, location, Val);
 | 
						|
 | 
						|
  for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I)
 | 
						|
    MakeNode(Dst, Ex, *I, (*I)->getState());
 | 
						|
}
 | 
						|
 | 
						|
GRExprEngine::NodeTy* GRExprEngine::EvalLocation(Stmt* Ex, NodeTy* Pred,
 | 
						|
                                                 const GRState* state,
 | 
						|
                                                 SVal location) {
 | 
						|
  
 | 
						|
  // Check for loads/stores from/to undefined values.  
 | 
						|
  if (location.isUndef()) {
 | 
						|
    NodeTy* N =
 | 
						|
      Builder->generateNode(Ex, state, Pred,
 | 
						|
                            ProgramPoint::PostUndefLocationCheckFailedKind);
 | 
						|
    
 | 
						|
    if (N) {
 | 
						|
      N->markAsSink();
 | 
						|
      UndefDeref.insert(N);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for loads/stores from/to unknown locations.  Treat as No-Ops.
 | 
						|
  if (location.isUnknown())
 | 
						|
    return Pred;
 | 
						|
  
 | 
						|
  // During a load, one of two possible situations arise:
 | 
						|
  //  (1) A crash, because the location (pointer) was NULL.
 | 
						|
  //  (2) The location (pointer) is not NULL, and the dereference works.
 | 
						|
  // 
 | 
						|
  // We add these assumptions.
 | 
						|
  
 | 
						|
  Loc LV = cast<Loc>(location);    
 | 
						|
  
 | 
						|
  // "Assume" that the pointer is not NULL.
 | 
						|
  bool isFeasibleNotNull = false;
 | 
						|
  const GRState* StNotNull = Assume(state, LV, true, isFeasibleNotNull);
 | 
						|
  
 | 
						|
  // "Assume" that the pointer is NULL.
 | 
						|
  bool isFeasibleNull = false;
 | 
						|
  GRStateRef StNull = GRStateRef(Assume(state, LV, false, isFeasibleNull),
 | 
						|
                                 getStateManager());
 | 
						|
 | 
						|
  if (isFeasibleNull) {
 | 
						|
    
 | 
						|
    // Use the Generic Data Map to mark in the state what lval was null.
 | 
						|
    const SVal* PersistentLV = getBasicVals().getPersistentSVal(LV);
 | 
						|
    StNull = StNull.set<GRState::NullDerefTag>(PersistentLV);
 | 
						|
    
 | 
						|
    // We don't use "MakeNode" here because the node will be a sink
 | 
						|
    // and we have no intention of processing it later.
 | 
						|
    NodeTy* NullNode =
 | 
						|
      Builder->generateNode(Ex, StNull, Pred, 
 | 
						|
                            ProgramPoint::PostNullCheckFailedKind);
 | 
						|
 | 
						|
    if (NullNode) {
 | 
						|
      
 | 
						|
      NullNode->markAsSink();
 | 
						|
      
 | 
						|
      if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode);
 | 
						|
      else ExplicitNullDeref.insert(NullNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!isFeasibleNotNull)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Check for out-of-bound array access.
 | 
						|
  if (isa<loc::MemRegionVal>(LV)) {
 | 
						|
    const MemRegion* R = cast<loc::MemRegionVal>(LV).getRegion();
 | 
						|
    if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
 | 
						|
      // Get the index of the accessed element.
 | 
						|
      SVal Idx = ER->getIndex();
 | 
						|
      // Get the extent of the array.
 | 
						|
      SVal NumElements = getStoreManager().getSizeInElements(StNotNull,
 | 
						|
                                                          ER->getSuperRegion());
 | 
						|
 | 
						|
      bool isFeasibleInBound = false;
 | 
						|
      const GRState* StInBound = AssumeInBound(StNotNull, Idx, NumElements, 
 | 
						|
                                               true, isFeasibleInBound);
 | 
						|
 | 
						|
      bool isFeasibleOutBound = false;
 | 
						|
      const GRState* StOutBound = AssumeInBound(StNotNull, Idx, NumElements, 
 | 
						|
                                                false, isFeasibleOutBound);
 | 
						|
 | 
						|
      if (isFeasibleOutBound) {
 | 
						|
        // Report warning.  Make sink node manually.
 | 
						|
        NodeTy* OOBNode =
 | 
						|
          Builder->generateNode(Ex, StOutBound, Pred,
 | 
						|
                                ProgramPoint::PostOutOfBoundsCheckFailedKind);
 | 
						|
 | 
						|
        if (OOBNode) {
 | 
						|
          OOBNode->markAsSink();
 | 
						|
 | 
						|
          if (isFeasibleInBound)
 | 
						|
            ImplicitOOBMemAccesses.insert(OOBNode);
 | 
						|
          else
 | 
						|
            ExplicitOOBMemAccesses.insert(OOBNode);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!isFeasibleInBound)
 | 
						|
        return 0;
 | 
						|
      
 | 
						|
      StNotNull = StInBound;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Generate a new node indicating the checks succeed.
 | 
						|
  return Builder->generateNode(Ex, StNotNull, Pred,
 | 
						|
                               ProgramPoint::PostLocationChecksSucceedKind);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function: Function calls.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred,
 | 
						|
                             CallExpr::arg_iterator AI,
 | 
						|
                             CallExpr::arg_iterator AE,
 | 
						|
                             NodeSet& Dst)
 | 
						|
{
 | 
						|
  // Determine the type of function we're calling (if available).
 | 
						|
  const FunctionProtoType *Proto = NULL;
 | 
						|
  QualType FnType = CE->getCallee()->IgnoreParens()->getType();
 | 
						|
  if (const PointerType *FnTypePtr = FnType->getAsPointerType())
 | 
						|
    Proto = FnTypePtr->getPointeeType()->getAsFunctionProtoType();
 | 
						|
 | 
						|
  VisitCallRec(CE, Pred, AI, AE, Dst, Proto, /*ParamIdx=*/0);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitCallRec(CallExpr* CE, NodeTy* Pred,
 | 
						|
                                CallExpr::arg_iterator AI,
 | 
						|
                                CallExpr::arg_iterator AE,
 | 
						|
                                NodeSet& Dst, const FunctionProtoType *Proto,
 | 
						|
                                unsigned ParamIdx) {
 | 
						|
  
 | 
						|
  // Process the arguments.
 | 
						|
  if (AI != AE) {
 | 
						|
    // If the call argument is being bound to a reference parameter,
 | 
						|
    // visit it as an lvalue, not an rvalue.
 | 
						|
    bool VisitAsLvalue = false;
 | 
						|
    if (Proto && ParamIdx < Proto->getNumArgs())
 | 
						|
      VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType();
 | 
						|
 | 
						|
    NodeSet DstTmp;  
 | 
						|
    if (VisitAsLvalue)
 | 
						|
      VisitLValue(*AI, Pred, DstTmp);    
 | 
						|
    else
 | 
						|
      Visit(*AI, Pred, DstTmp);    
 | 
						|
    ++AI;
 | 
						|
    
 | 
						|
    for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI)
 | 
						|
      VisitCallRec(CE, *DI, AI, AE, Dst, Proto, ParamIdx + 1);
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reach here we have processed all of the arguments.  Evaluate
 | 
						|
  // the callee expression.
 | 
						|
  
 | 
						|
  NodeSet DstTmp;    
 | 
						|
  Expr* Callee = CE->getCallee()->IgnoreParens();
 | 
						|
 | 
						|
  Visit(Callee, Pred, DstTmp);
 | 
						|
  
 | 
						|
  // Finally, evaluate the function call.
 | 
						|
  for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) {
 | 
						|
 | 
						|
    const GRState* state = GetState(*DI);
 | 
						|
    SVal L = GetSVal(state, Callee);
 | 
						|
 | 
						|
    // FIXME: Add support for symbolic function calls (calls involving
 | 
						|
    //  function pointer values that are symbolic).
 | 
						|
    
 | 
						|
    // Check for undefined control-flow or calls to NULL.
 | 
						|
    
 | 
						|
    if (L.isUndef() || isa<loc::ConcreteInt>(L)) {      
 | 
						|
      NodeTy* N = Builder->generateNode(CE, state, *DI);
 | 
						|
      
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        BadCalls.insert(N);
 | 
						|
      }
 | 
						|
      
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check for the "noreturn" attribute.
 | 
						|
    
 | 
						|
    SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
    
 | 
						|
    if (isa<loc::FuncVal>(L)) {      
 | 
						|
      
 | 
						|
      FunctionDecl* FD = cast<loc::FuncVal>(L).getDecl();
 | 
						|
      
 | 
						|
      if (FD->getAttr<NoReturnAttr>())
 | 
						|
        Builder->BuildSinks = true;
 | 
						|
      else {
 | 
						|
        // HACK: Some functions are not marked noreturn, and don't return.
 | 
						|
        //  Here are a few hardwired ones.  If this takes too long, we can
 | 
						|
        //  potentially cache these results.
 | 
						|
        const char* s = FD->getIdentifier()->getName();
 | 
						|
        unsigned n = strlen(s);
 | 
						|
        
 | 
						|
        switch (n) {
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 4:
 | 
						|
            if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
 | 
						|
          case 5:
 | 
						|
            if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true;
 | 
						|
            else if (!memcmp(s, "error", 5)) {
 | 
						|
              if (CE->getNumArgs() > 0) {
 | 
						|
                SVal X = GetSVal(state, *CE->arg_begin());
 | 
						|
                // FIXME: use Assume to inspect the possible symbolic value of
 | 
						|
                // X. Also check the specific signature of error().
 | 
						|
                nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&X);
 | 
						|
                if (CI && CI->getValue() != 0)
 | 
						|
                  Builder->BuildSinks = true;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
          case 6:
 | 
						|
            if (!memcmp(s, "Assert", 6)) {
 | 
						|
              Builder->BuildSinks = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            
 | 
						|
            // FIXME: This is just a wrapper around throwing an exception.
 | 
						|
            //  Eventually inter-procedural analysis should handle this easily.
 | 
						|
            if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true;
 | 
						|
 | 
						|
            break;
 | 
						|
          
 | 
						|
          case 7:
 | 
						|
            if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 8:
 | 
						|
            if (!memcmp(s ,"db_error", 8) || 
 | 
						|
                !memcmp(s, "__assert", 8))
 | 
						|
              Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
          
 | 
						|
          case 12:
 | 
						|
            if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 13:
 | 
						|
            if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 14:
 | 
						|
            if (!memcmp(s, "dtrace_assfail", 14) ||
 | 
						|
                !memcmp(s, "yy_fatal_error", 14))
 | 
						|
              Builder->BuildSinks = true;
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case 26:
 | 
						|
            if (!memcmp(s, "_XCAssertionFailureHandler", 26) ||
 | 
						|
                !memcmp(s, "_DTAssertionFailureHandler", 26) ||
 | 
						|
                !memcmp(s, "_TSAssertionFailureHandler", 26))
 | 
						|
              Builder->BuildSinks = true;
 | 
						|
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Evaluate the call.
 | 
						|
 | 
						|
    if (isa<loc::FuncVal>(L)) {
 | 
						|
      
 | 
						|
      if (unsigned id 
 | 
						|
            = cast<loc::FuncVal>(L).getDecl()->getBuiltinID(getContext()))
 | 
						|
        switch (id) {
 | 
						|
          case Builtin::BI__builtin_expect: {
 | 
						|
            // For __builtin_expect, just return the value of the subexpression.
 | 
						|
            assert (CE->arg_begin() != CE->arg_end());            
 | 
						|
            SVal X = GetSVal(state, *(CE->arg_begin()));
 | 
						|
            MakeNode(Dst, CE, *DI, BindExpr(state, CE, X));
 | 
						|
            continue;            
 | 
						|
          }
 | 
						|
            
 | 
						|
          case Builtin::BI__builtin_alloca: {
 | 
						|
            // FIXME: Refactor into StoreManager itself?
 | 
						|
            MemRegionManager& RM = getStateManager().getRegionManager();
 | 
						|
            const MemRegion* R =
 | 
						|
              RM.getAllocaRegion(CE, Builder->getCurrentBlockCount());
 | 
						|
 | 
						|
            // Set the extent of the region in bytes. This enables us to use the
 | 
						|
            // SVal of the argument directly. If we save the extent in bits, we
 | 
						|
            // cannot represent values like symbol*8.
 | 
						|
            SVal Extent = GetSVal(state, *(CE->arg_begin()));
 | 
						|
            state = getStoreManager().setExtent(state, R, Extent);
 | 
						|
 | 
						|
            MakeNode(Dst, CE, *DI, BindExpr(state, CE, loc::MemRegionVal(R)));
 | 
						|
            continue;            
 | 
						|
          }
 | 
						|
            
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check any arguments passed-by-value against being undefined.
 | 
						|
 | 
						|
    bool badArg = false;
 | 
						|
    
 | 
						|
    for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
 | 
						|
         I != E; ++I) {
 | 
						|
 | 
						|
      if (GetSVal(GetState(*DI), *I).isUndef()) {        
 | 
						|
        NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI);
 | 
						|
      
 | 
						|
        if (N) {
 | 
						|
          N->markAsSink();
 | 
						|
          UndefArgs[N] = *I;
 | 
						|
        }
 | 
						|
        
 | 
						|
        badArg = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (badArg)
 | 
						|
      continue;        
 | 
						|
 | 
						|
    // Dispatch to the plug-in transfer function.      
 | 
						|
    
 | 
						|
    unsigned size = Dst.size();
 | 
						|
    SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
    EvalCall(Dst, CE, L, *DI);
 | 
						|
    
 | 
						|
    // Handle the case where no nodes where generated.  Auto-generate that
 | 
						|
    // contains the updated state if we aren't generating sinks.
 | 
						|
    
 | 
						|
    if (!Builder->BuildSinks && Dst.size() == size &&
 | 
						|
        !Builder->HasGeneratedNode)
 | 
						|
      MakeNode(Dst, CE, *DI, state);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function: Objective-C ivar references.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static std::pair<const void*,const void*> EagerlyAssumeTag
 | 
						|
  = std::pair<const void*,const void*>(&EagerlyAssumeTag,0);
 | 
						|
 | 
						|
void GRExprEngine::EvalEagerlyAssume(NodeSet &Dst, NodeSet &Src, Expr *Ex) {
 | 
						|
  for (NodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
 | 
						|
    NodeTy *Pred = *I;
 | 
						|
    
 | 
						|
    // Test if the previous node was as the same expression.  This can happen
 | 
						|
    // when the expression fails to evaluate to anything meaningful and
 | 
						|
    // (as an optimization) we don't generate a node.
 | 
						|
    ProgramPoint P = Pred->getLocation();    
 | 
						|
    if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) {
 | 
						|
      Dst.Add(Pred);      
 | 
						|
      continue;
 | 
						|
    }    
 | 
						|
 | 
						|
    const GRState* state = Pred->getState();    
 | 
						|
    SVal V = GetSVal(state, Ex);    
 | 
						|
    if (isa<nonloc::SymExprVal>(V)) {
 | 
						|
      // First assume that the condition is true.
 | 
						|
      bool isFeasible = false;
 | 
						|
      const GRState *stateTrue = Assume(state, V, true, isFeasible);
 | 
						|
      if (isFeasible) {
 | 
						|
        stateTrue = BindExpr(stateTrue, Ex, MakeConstantVal(1U, Ex));        
 | 
						|
        Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag),
 | 
						|
                                      stateTrue, Pred));
 | 
						|
      }
 | 
						|
        
 | 
						|
      // Next, assume that the condition is false.
 | 
						|
      isFeasible = false;
 | 
						|
      const GRState *stateFalse = Assume(state, V, false, isFeasible);
 | 
						|
      if (isFeasible) {
 | 
						|
        stateFalse = BindExpr(stateFalse, Ex, MakeConstantVal(0U, Ex));
 | 
						|
        Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag),
 | 
						|
                                      stateFalse, Pred));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
      Dst.Add(Pred);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function: Objective-C ivar references.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex,
 | 
						|
                                            NodeTy* Pred, NodeSet& Dst,
 | 
						|
                                            bool asLValue) {
 | 
						|
  
 | 
						|
  Expr* Base = cast<Expr>(Ex->getBase());
 | 
						|
  NodeSet Tmp;
 | 
						|
  Visit(Base, Pred, Tmp);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
    const GRState* state = GetState(*I);
 | 
						|
    SVal BaseVal = GetSVal(state, Base);
 | 
						|
    SVal location = StateMgr.GetLValue(state, Ex->getDecl(), BaseVal);
 | 
						|
    
 | 
						|
    if (asLValue)
 | 
						|
      MakeNode(Dst, Ex, *I, BindExpr(state, Ex, location));
 | 
						|
    else
 | 
						|
      EvalLoad(Dst, Ex, *I, state, location);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function: Objective-C fast enumeration 'for' statements.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S,
 | 
						|
                                              NodeTy* Pred, NodeSet& Dst) {
 | 
						|
    
 | 
						|
  // ObjCForCollectionStmts are processed in two places.  This method
 | 
						|
  // handles the case where an ObjCForCollectionStmt* occurs as one of the
 | 
						|
  // statements within a basic block.  This transfer function does two things:
 | 
						|
  //
 | 
						|
  //  (1) binds the next container value to 'element'.  This creates a new
 | 
						|
  //      node in the ExplodedGraph.
 | 
						|
  //
 | 
						|
  //  (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
 | 
						|
  //      whether or not the container has any more elements.  This value
 | 
						|
  //      will be tested in ProcessBranch.  We need to explicitly bind
 | 
						|
  //      this value because a container can contain nil elements.
 | 
						|
  //  
 | 
						|
  // FIXME: Eventually this logic should actually do dispatches to
 | 
						|
  //   'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
 | 
						|
  //   This will require simulating a temporary NSFastEnumerationState, either
 | 
						|
  //   through an SVal or through the use of MemRegions.  This value can
 | 
						|
  //   be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
 | 
						|
  //   terminates we reclaim the temporary (it goes out of scope) and we
 | 
						|
  //   we can test if the SVal is 0 or if the MemRegion is null (depending
 | 
						|
  //   on what approach we take).
 | 
						|
  //
 | 
						|
  //  For now: simulate (1) by assigning either a symbol or nil if the
 | 
						|
  //    container is empty.  Thus this transfer function will by default
 | 
						|
  //    result in state splitting.
 | 
						|
  
 | 
						|
  Stmt* elem = S->getElement();
 | 
						|
  SVal ElementV;
 | 
						|
    
 | 
						|
  if (DeclStmt* DS = dyn_cast<DeclStmt>(elem)) {
 | 
						|
    VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl());
 | 
						|
    assert (ElemD->getInit() == 0);
 | 
						|
    ElementV = getStateManager().GetLValue(GetState(Pred), ElemD);
 | 
						|
    VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  NodeSet Tmp;
 | 
						|
  VisitLValue(cast<Expr>(elem), Pred, Tmp);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
 | 
						|
    const GRState* state = GetState(*I);
 | 
						|
    VisitObjCForCollectionStmtAux(S, *I, Dst, GetSVal(state, elem));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S,
 | 
						|
                                                 NodeTy* Pred, NodeSet& Dst,
 | 
						|
                                                 SVal ElementV) {
 | 
						|
    
 | 
						|
 | 
						|
  
 | 
						|
  // Get the current state.  Use 'EvalLocation' to determine if it is a null
 | 
						|
  // pointer, etc.
 | 
						|
  Stmt* elem = S->getElement();
 | 
						|
  
 | 
						|
  Pred = EvalLocation(elem, Pred, GetState(Pred), ElementV);
 | 
						|
  if (!Pred)
 | 
						|
    return;
 | 
						|
    
 | 
						|
  GRStateRef state = GRStateRef(GetState(Pred), getStateManager());
 | 
						|
 | 
						|
  // Handle the case where the container still has elements.
 | 
						|
  QualType IntTy = getContext().IntTy;
 | 
						|
  SVal TrueV = NonLoc::MakeVal(getBasicVals(), 1, IntTy);
 | 
						|
  GRStateRef hasElems = state.BindExpr(S, TrueV);
 | 
						|
  
 | 
						|
  // Handle the case where the container has no elements.
 | 
						|
  SVal FalseV = NonLoc::MakeVal(getBasicVals(), 0, IntTy);
 | 
						|
  GRStateRef noElems = state.BindExpr(S, FalseV);
 | 
						|
  
 | 
						|
  if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV))
 | 
						|
    if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) {
 | 
						|
      // FIXME: The proper thing to do is to really iterate over the
 | 
						|
      //  container.  We will do this with dispatch logic to the store.
 | 
						|
      //  For now, just 'conjure' up a symbolic value.
 | 
						|
      QualType T = R->getRValueType(getContext());
 | 
						|
      assert (Loc::IsLocType(T));
 | 
						|
      unsigned Count = Builder->getCurrentBlockCount();
 | 
						|
      loc::SymbolVal SymV(SymMgr.getConjuredSymbol(elem, T, Count));
 | 
						|
      hasElems = hasElems.BindLoc(ElementV, SymV);
 | 
						|
 | 
						|
      // Bind the location to 'nil' on the false branch.
 | 
						|
      SVal nilV = loc::ConcreteInt(getBasicVals().getValue(0, T));      
 | 
						|
      noElems = noElems.BindLoc(ElementV, nilV);      
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Create the new nodes.
 | 
						|
  MakeNode(Dst, S, Pred, hasElems);
 | 
						|
  MakeNode(Dst, S, Pred, noElems);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer function: Objective-C message expressions.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred,
 | 
						|
                                        NodeSet& Dst){
 | 
						|
  
 | 
						|
  VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(),
 | 
						|
                                Pred, Dst);
 | 
						|
}  
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME,
 | 
						|
                                              ObjCMessageExpr::arg_iterator AI,
 | 
						|
                                              ObjCMessageExpr::arg_iterator AE,
 | 
						|
                                              NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  if (AI == AE) {
 | 
						|
    
 | 
						|
    // Process the receiver.
 | 
						|
    
 | 
						|
    if (Expr* Receiver = ME->getReceiver()) {
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Receiver, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
        VisitObjCMessageExprDispatchHelper(ME, *NI, Dst);
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    VisitObjCMessageExprDispatchHelper(ME, Pred, Dst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  NodeSet Tmp;
 | 
						|
  Visit(*AI, Pred, Tmp);
 | 
						|
  
 | 
						|
  ++AI;
 | 
						|
  
 | 
						|
  for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
    VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME,
 | 
						|
                                                      NodeTy* Pred,
 | 
						|
                                                      NodeSet& Dst) {
 | 
						|
  
 | 
						|
  // FIXME: More logic for the processing the method call. 
 | 
						|
  
 | 
						|
  const GRState* state = GetState(Pred);
 | 
						|
  bool RaisesException = false;
 | 
						|
  
 | 
						|
  
 | 
						|
  if (Expr* Receiver = ME->getReceiver()) {
 | 
						|
    
 | 
						|
    SVal L = GetSVal(state, Receiver);
 | 
						|
    
 | 
						|
    // Check for undefined control-flow.    
 | 
						|
    if (L.isUndef()) {
 | 
						|
      NodeTy* N = Builder->generateNode(ME, state, Pred);
 | 
						|
      
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        UndefReceivers.insert(N);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // "Assume" that the receiver is not NULL.    
 | 
						|
    bool isFeasibleNotNull = false;
 | 
						|
    Assume(state, L, true, isFeasibleNotNull);
 | 
						|
    
 | 
						|
    // "Assume" that the receiver is NULL.    
 | 
						|
    bool isFeasibleNull = false;
 | 
						|
    const GRState *StNull = Assume(state, L, false, isFeasibleNull);
 | 
						|
    
 | 
						|
    if (isFeasibleNull) {
 | 
						|
      // Check if the receiver was nil and the return value a struct.
 | 
						|
      if (ME->getType()->isRecordType() &&
 | 
						|
          BR.getParentMap().isConsumedExpr(ME)) {
 | 
						|
        // The [0 ...] expressions will return garbage.  Flag either an
 | 
						|
        // explicit or implicit error.  Because of the structure of this
 | 
						|
        // function we currently do not bifurfacte the state graph at
 | 
						|
        // this point.
 | 
						|
        // FIXME: We should bifurcate and fill the returned struct with
 | 
						|
        //  garbage.                
 | 
						|
        if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) {
 | 
						|
          N->markAsSink();
 | 
						|
          if (isFeasibleNotNull)
 | 
						|
            NilReceiverStructRetImplicit.insert(N);
 | 
						|
          else
 | 
						|
            NilReceiverStructRetExplicit.insert(N);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check if the "raise" message was sent.
 | 
						|
    if (ME->getSelector() == RaiseSel)
 | 
						|
      RaisesException = true;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    
 | 
						|
    IdentifierInfo* ClsName = ME->getClassName();
 | 
						|
    Selector S = ME->getSelector();
 | 
						|
    
 | 
						|
    // Check for special instance methods.
 | 
						|
        
 | 
						|
    if (!NSExceptionII) {      
 | 
						|
      ASTContext& Ctx = getContext();
 | 
						|
      
 | 
						|
      NSExceptionII = &Ctx.Idents.get("NSException");
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ClsName == NSExceptionII) {
 | 
						|
        
 | 
						|
      enum { NUM_RAISE_SELECTORS = 2 };
 | 
						|
      
 | 
						|
      // Lazily create a cache of the selectors.
 | 
						|
 | 
						|
      if (!NSExceptionInstanceRaiseSelectors) {
 | 
						|
        
 | 
						|
        ASTContext& Ctx = getContext();
 | 
						|
        
 | 
						|
        NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS];
 | 
						|
      
 | 
						|
        llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
 | 
						|
        unsigned idx = 0;
 | 
						|
        
 | 
						|
        // raise:format:      
 | 
						|
        II.push_back(&Ctx.Idents.get("raise"));
 | 
						|
        II.push_back(&Ctx.Idents.get("format"));      
 | 
						|
        NSExceptionInstanceRaiseSelectors[idx++] =
 | 
						|
          Ctx.Selectors.getSelector(II.size(), &II[0]);      
 | 
						|
        
 | 
						|
        // raise:format::arguments:      
 | 
						|
        II.push_back(&Ctx.Idents.get("arguments"));
 | 
						|
        NSExceptionInstanceRaiseSelectors[idx++] =
 | 
						|
          Ctx.Selectors.getSelector(II.size(), &II[0]);
 | 
						|
      }
 | 
						|
      
 | 
						|
      for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
 | 
						|
        if (S == NSExceptionInstanceRaiseSelectors[i]) {
 | 
						|
          RaisesException = true; break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for any arguments that are uninitialized/undefined.
 | 
						|
  
 | 
						|
  for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    
 | 
						|
    if (GetSVal(state, *I).isUndef()) {
 | 
						|
      
 | 
						|
      // Generate an error node for passing an uninitialized/undefined value
 | 
						|
      // as an argument to a message expression.  This node is a sink.
 | 
						|
      NodeTy* N = Builder->generateNode(ME, state, Pred);
 | 
						|
      
 | 
						|
      if (N) {
 | 
						|
        N->markAsSink();
 | 
						|
        MsgExprUndefArgs[N] = *I;
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }    
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check if we raise an exception.  For now treat these as sinks.  Eventually
 | 
						|
  // we will want to handle exceptions properly.
 | 
						|
  
 | 
						|
  SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
 | 
						|
  if (RaisesException)
 | 
						|
    Builder->BuildSinks = true;
 | 
						|
  
 | 
						|
  // Dispatch to plug-in transfer function.
 | 
						|
  
 | 
						|
  unsigned size = Dst.size();
 | 
						|
  SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
 
 | 
						|
  EvalObjCMessageExpr(Dst, ME, Pred);
 | 
						|
  
 | 
						|
  // Handle the case where no nodes where generated.  Auto-generate that
 | 
						|
  // contains the updated state if we aren't generating sinks.
 | 
						|
  
 | 
						|
  if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
 | 
						|
    MakeNode(Dst, ME, Pred, state);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: Miscellaneous statements.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::VisitCastPointerToInteger(SVal V, const GRState* state,
 | 
						|
                                             QualType PtrTy,
 | 
						|
                                             Expr* CastE, NodeTy* Pred,
 | 
						|
                                             NodeSet& Dst) {
 | 
						|
  if (!V.isUnknownOrUndef()) {
 | 
						|
    // FIXME: Determine if the number of bits of the target type is 
 | 
						|
    // equal or exceeds the number of bits to store the pointer value.
 | 
						|
    // If not, flag an error.    
 | 
						|
    MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, EvalCast(cast<Loc>(V),
 | 
						|
                                                               CastE->getType())));
 | 
						|
  }
 | 
						|
  else  
 | 
						|
    MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, V));
 | 
						|
}
 | 
						|
 | 
						|
  
 | 
						|
void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){
 | 
						|
  NodeSet S1;
 | 
						|
  QualType T = CastE->getType();
 | 
						|
  QualType ExTy = Ex->getType();
 | 
						|
 | 
						|
  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
 | 
						|
    T = ExCast->getTypeAsWritten();
 | 
						|
 | 
						|
  if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType())
 | 
						|
    VisitLValue(Ex, Pred, S1);
 | 
						|
  else
 | 
						|
    Visit(Ex, Pred, S1);
 | 
						|
  
 | 
						|
  // Check for casting to "void".
 | 
						|
  if (T->isVoidType()) {    
 | 
						|
    for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1)
 | 
						|
      Dst.Add(*I1);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: The rest of this should probably just go into EvalCall, and
 | 
						|
  //   let the transfer function object be responsible for constructing
 | 
						|
  //   nodes.
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) {
 | 
						|
    NodeTy* N = *I1;
 | 
						|
    const GRState* state = GetState(N);
 | 
						|
    SVal V = GetSVal(state, Ex);
 | 
						|
    ASTContext& C = getContext();
 | 
						|
 | 
						|
    // Unknown?
 | 
						|
    if (V.isUnknown()) {
 | 
						|
      Dst.Add(N);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Undefined?
 | 
						|
    if (V.isUndef())
 | 
						|
      goto PassThrough;
 | 
						|
    
 | 
						|
    // For const casts, just propagate the value.
 | 
						|
    if (C.getCanonicalType(T).getUnqualifiedType() == 
 | 
						|
        C.getCanonicalType(ExTy).getUnqualifiedType())
 | 
						|
      goto PassThrough;
 | 
						|
      
 | 
						|
    // Check for casts from pointers to integers.
 | 
						|
    if (T->isIntegerType() && Loc::IsLocType(ExTy)) {
 | 
						|
      VisitCastPointerToInteger(V, state, ExTy, CastE, N, Dst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check for casts from integers to pointers.
 | 
						|
    if (Loc::IsLocType(T) && ExTy->isIntegerType()) {
 | 
						|
      if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&V)) {
 | 
						|
        // Just unpackage the lval and return it.
 | 
						|
        V = LV->getLoc();
 | 
						|
        MakeNode(Dst, CastE, N, BindExpr(state, CastE, V));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      goto DispatchCast;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Just pass through function and block pointers.
 | 
						|
    if (ExTy->isBlockPointerType() || ExTy->isFunctionPointerType()) {
 | 
						|
      assert(Loc::IsLocType(T));
 | 
						|
      goto PassThrough;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check for casts from array type to another type.
 | 
						|
    if (ExTy->isArrayType()) {
 | 
						|
      // We will always decay to a pointer.
 | 
						|
      V = StateMgr.ArrayToPointer(cast<Loc>(V));
 | 
						|
      
 | 
						|
      // Are we casting from an array to a pointer?  If so just pass on
 | 
						|
      // the decayed value.
 | 
						|
      if (T->isPointerType())
 | 
						|
        goto PassThrough;
 | 
						|
      
 | 
						|
      // Are we casting from an array to an integer?  If so, cast the decayed
 | 
						|
      // pointer value to an integer.
 | 
						|
      assert(T->isIntegerType());
 | 
						|
      QualType ElemTy = cast<ArrayType>(ExTy)->getElementType();
 | 
						|
      QualType PointerTy = getContext().getPointerType(ElemTy);
 | 
						|
      VisitCastPointerToInteger(V, state, PointerTy, CastE, N, Dst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for casts from a region to a specific type.
 | 
						|
    if (loc::MemRegionVal *RV = dyn_cast<loc::MemRegionVal>(&V)) {      
 | 
						|
      // FIXME: For TypedViewRegions, we should handle the case where the
 | 
						|
      //  underlying symbolic pointer is a function pointer or
 | 
						|
      //  block pointer.
 | 
						|
      
 | 
						|
      // FIXME: We should handle the case where we strip off view layers to get
 | 
						|
      //  to a desugared type.
 | 
						|
      
 | 
						|
      assert(Loc::IsLocType(T));
 | 
						|
      // We get a symbolic function pointer for a dereference of a function
 | 
						|
      // pointer, but it is of function type. Example:
 | 
						|
 | 
						|
      //  struct FPRec {
 | 
						|
      //    void (*my_func)(int * x);  
 | 
						|
      //  };
 | 
						|
      //
 | 
						|
      //  int bar(int x);
 | 
						|
      //
 | 
						|
      //  int f1_a(struct FPRec* foo) {
 | 
						|
      //    int x;
 | 
						|
      //    (*foo->my_func)(&x);
 | 
						|
      //    return bar(x)+1; // no-warning
 | 
						|
      //  }
 | 
						|
 | 
						|
      assert(Loc::IsLocType(ExTy) || ExTy->isFunctionType());
 | 
						|
 | 
						|
      const MemRegion* R = RV->getRegion();
 | 
						|
      StoreManager& StoreMgr = getStoreManager();
 | 
						|
      
 | 
						|
      // Delegate to store manager to get the result of casting a region
 | 
						|
      // to a different type.
 | 
						|
      const StoreManager::CastResult& Res = StoreMgr.CastRegion(state, R, T);
 | 
						|
      
 | 
						|
      // Inspect the result.  If the MemRegion* returned is NULL, this
 | 
						|
      // expression evaluates to UnknownVal.
 | 
						|
      R = Res.getRegion();
 | 
						|
      if (R) { V = loc::MemRegionVal(R); } else { V = UnknownVal(); }
 | 
						|
      
 | 
						|
      // Generate the new node in the ExplodedGraph.
 | 
						|
      MakeNode(Dst, CastE, N, BindExpr(Res.getState(), CastE, V));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are casting a symbolic value, make a symbolic region and a
 | 
						|
    // TypedViewRegion subregion.
 | 
						|
    if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V)) {
 | 
						|
      SymbolRef Sym = SV->getSymbol();
 | 
						|
      QualType SymTy = getSymbolManager().getType(Sym);
 | 
						|
 | 
						|
      // Just pass through symbols that are function or block pointers.
 | 
						|
      if (SymTy->isFunctionPointerType() || SymTy->isBlockPointerType())
 | 
						|
        goto PassThrough;
 | 
						|
      
 | 
						|
      // Are we casting to a function or block pointer?
 | 
						|
      if (T->isFunctionPointerType() || T->isBlockPointerType()) {
 | 
						|
        // FIXME: We should verify that the underlying type of the symbolic 
 | 
						|
        // pointer is a void* (or maybe char*).  Other things are an abuse
 | 
						|
        // of the type system.
 | 
						|
        goto PassThrough;        
 | 
						|
      }
 | 
						|
 | 
						|
      StoreManager& StoreMgr = getStoreManager();
 | 
						|
      const MemRegion* R = StoreMgr.getRegionManager().getSymbolicRegion(Sym);
 | 
						|
      
 | 
						|
      // Delegate to store manager to get the result of casting a region
 | 
						|
      // to a different type.
 | 
						|
      const StoreManager::CastResult& Res = StoreMgr.CastRegion(state, R, T);
 | 
						|
      
 | 
						|
      // Inspect the result.  If the MemRegion* returned is NULL, this
 | 
						|
      // expression evaluates to UnknownVal.
 | 
						|
      R = Res.getRegion();
 | 
						|
      if (R) { V = loc::MemRegionVal(R); } else { V = UnknownVal(); }
 | 
						|
      
 | 
						|
      // Generate the new node in the ExplodedGraph.
 | 
						|
      MakeNode(Dst, CastE, N, BindExpr(Res.getState(), CastE, V));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
        // All other cases.
 | 
						|
    DispatchCast: {
 | 
						|
      MakeNode(Dst, CastE, N, BindExpr(state, CastE,
 | 
						|
                                       EvalCast(V, CastE->getType())));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    PassThrough: {
 | 
						|
      MakeNode(Dst, CastE, N, BindExpr(state, CastE, V));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL,
 | 
						|
                                            NodeTy* Pred, NodeSet& Dst, 
 | 
						|
                                            bool asLValue) {
 | 
						|
  InitListExpr* ILE = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
 | 
						|
  NodeSet Tmp;
 | 
						|
  Visit(ILE, Pred, Tmp);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) {
 | 
						|
    const GRState* state = GetState(*I);
 | 
						|
    SVal ILV = GetSVal(state, ILE);
 | 
						|
    state = StateMgr.BindCompoundLiteral(state, CL, ILV);
 | 
						|
 | 
						|
    if (asLValue)
 | 
						|
      MakeNode(Dst, CL, *I, BindExpr(state, CL, StateMgr.GetLValue(state, CL)));
 | 
						|
    else
 | 
						|
      MakeNode(Dst, CL, *I, BindExpr(state, CL, ILV));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) {  
 | 
						|
 | 
						|
  // The CFG has one DeclStmt per Decl.  
 | 
						|
  Decl* D = *DS->decl_begin();
 | 
						|
  
 | 
						|
  if (!D || !isa<VarDecl>(D))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  const VarDecl* VD = dyn_cast<VarDecl>(D);    
 | 
						|
  Expr* InitEx = const_cast<Expr*>(VD->getInit());
 | 
						|
 | 
						|
  // FIXME: static variables may have an initializer, but the second
 | 
						|
  //  time a function is called those values may not be current.
 | 
						|
  NodeSet Tmp;
 | 
						|
 | 
						|
  if (InitEx)
 | 
						|
    Visit(InitEx, Pred, Tmp);
 | 
						|
 | 
						|
  if (Tmp.empty())
 | 
						|
    Tmp.Add(Pred);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
    const GRState* state = GetState(*I);
 | 
						|
    unsigned Count = Builder->getCurrentBlockCount();
 | 
						|
 | 
						|
    // Check if 'VD' is a VLA and if so check if has a non-zero size.
 | 
						|
    QualType T = getContext().getCanonicalType(VD->getType());
 | 
						|
    if (VariableArrayType* VLA = dyn_cast<VariableArrayType>(T)) {
 | 
						|
      // FIXME: Handle multi-dimensional VLAs.
 | 
						|
      
 | 
						|
      Expr* SE = VLA->getSizeExpr();
 | 
						|
      SVal Size = GetSVal(state, SE);
 | 
						|
      
 | 
						|
      if (Size.isUndef()) {
 | 
						|
        if (NodeTy* N = Builder->generateNode(DS, state, Pred)) {
 | 
						|
          N->markAsSink();          
 | 
						|
          ExplicitBadSizedVLA.insert(N);
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      bool isFeasibleZero = false;
 | 
						|
      const GRState* ZeroSt =  Assume(state, Size, false, isFeasibleZero);
 | 
						|
      
 | 
						|
      bool isFeasibleNotZero = false;
 | 
						|
      state = Assume(state, Size, true, isFeasibleNotZero);
 | 
						|
      
 | 
						|
      if (isFeasibleZero) {
 | 
						|
        if (NodeTy* N = Builder->generateNode(DS, ZeroSt, Pred)) {
 | 
						|
          N->markAsSink();          
 | 
						|
          if (isFeasibleNotZero) ImplicitBadSizedVLA.insert(N);
 | 
						|
          else ExplicitBadSizedVLA.insert(N);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (!isFeasibleNotZero)
 | 
						|
        continue;      
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Decls without InitExpr are not initialized explicitly.
 | 
						|
    if (InitEx) {
 | 
						|
      SVal InitVal = GetSVal(state, InitEx);
 | 
						|
      QualType T = VD->getType();
 | 
						|
      
 | 
						|
      // Recover some path-sensitivity if a scalar value evaluated to
 | 
						|
      // UnknownVal.
 | 
						|
      if (InitVal.isUnknown() || 
 | 
						|
          !getConstraintManager().canReasonAbout(InitVal)) {
 | 
						|
        if (Loc::IsLocType(T)) {
 | 
						|
          SymbolRef Sym = SymMgr.getConjuredSymbol(InitEx, Count);        
 | 
						|
          InitVal = loc::SymbolVal(Sym);
 | 
						|
        }
 | 
						|
        else if (T->isIntegerType() && T->isScalarType()) {
 | 
						|
          SymbolRef Sym = SymMgr.getConjuredSymbol(InitEx, Count);        
 | 
						|
          InitVal = nonloc::SymbolVal(Sym);                    
 | 
						|
        }
 | 
						|
      }        
 | 
						|
      
 | 
						|
      state = StateMgr.BindDecl(state, VD, InitVal);
 | 
						|
      
 | 
						|
      // The next thing to do is check if the GRTransferFuncs object wants to
 | 
						|
      // update the state based on the new binding.  If the GRTransferFunc
 | 
						|
      // object doesn't do anything, just auto-propagate the current state.
 | 
						|
      GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, state, DS,true);
 | 
						|
      getTF().EvalBind(BuilderRef, loc::MemRegionVal(StateMgr.getRegion(VD)),
 | 
						|
                       InitVal);      
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      state = StateMgr.BindDeclWithNoInit(state, VD);
 | 
						|
      MakeNode(Dst, DS, *I, state);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // This class is used by VisitInitListExpr as an item in a worklist
 | 
						|
  // for processing the values contained in an InitListExpr.
 | 
						|
class VISIBILITY_HIDDEN InitListWLItem {
 | 
						|
public:
 | 
						|
  llvm::ImmutableList<SVal> Vals;
 | 
						|
  GRExprEngine::NodeTy* N;
 | 
						|
  InitListExpr::reverse_iterator Itr;
 | 
						|
  
 | 
						|
  InitListWLItem(GRExprEngine::NodeTy* n, llvm::ImmutableList<SVal> vals,
 | 
						|
         InitListExpr::reverse_iterator itr)
 | 
						|
  : Vals(vals), N(n), Itr(itr) {}
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void GRExprEngine::VisitInitListExpr(InitListExpr* E, NodeTy* Pred, 
 | 
						|
                                     NodeSet& Dst) {
 | 
						|
 | 
						|
  const GRState* state = GetState(Pred);
 | 
						|
  QualType T = getContext().getCanonicalType(E->getType());
 | 
						|
  unsigned NumInitElements = E->getNumInits();  
 | 
						|
 | 
						|
  if (T->isArrayType() || T->isStructureType()) {
 | 
						|
 | 
						|
    llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList();
 | 
						|
    
 | 
						|
    // Handle base case where the initializer has no elements.
 | 
						|
    // e.g: static int* myArray[] = {};
 | 
						|
    if (NumInitElements == 0) {
 | 
						|
      SVal V = NonLoc::MakeCompoundVal(T, StartVals, getBasicVals());
 | 
						|
      MakeNode(Dst, E, Pred, BindExpr(state, E, V));
 | 
						|
      return;
 | 
						|
    }      
 | 
						|
    
 | 
						|
    // Create a worklist to process the initializers.
 | 
						|
    llvm::SmallVector<InitListWLItem, 10> WorkList;
 | 
						|
    WorkList.reserve(NumInitElements);  
 | 
						|
    WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin()));    
 | 
						|
    InitListExpr::reverse_iterator ItrEnd = E->rend();
 | 
						|
    
 | 
						|
    // Process the worklist until it is empty.
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      InitListWLItem X = WorkList.back();
 | 
						|
      WorkList.pop_back();
 | 
						|
      
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(*X.Itr, X.N, Tmp);
 | 
						|
      
 | 
						|
      InitListExpr::reverse_iterator NewItr = X.Itr + 1;
 | 
						|
 | 
						|
      for (NodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
 | 
						|
        // Get the last initializer value.
 | 
						|
        state = GetState(*NI);
 | 
						|
        SVal InitV = GetSVal(state, cast<Expr>(*X.Itr));
 | 
						|
        
 | 
						|
        // Construct the new list of values by prepending the new value to
 | 
						|
        // the already constructed list.
 | 
						|
        llvm::ImmutableList<SVal> NewVals =
 | 
						|
          getBasicVals().consVals(InitV, X.Vals);
 | 
						|
        
 | 
						|
        if (NewItr == ItrEnd) {
 | 
						|
          // Now we have a list holding all init values. Make CompoundValData.
 | 
						|
          SVal V = NonLoc::MakeCompoundVal(T, NewVals, getBasicVals());
 | 
						|
 | 
						|
          // Make final state and node.
 | 
						|
          MakeNode(Dst, E, *NI, BindExpr(state, E, V));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // Still some initializer values to go.  Push them onto the worklist.
 | 
						|
          WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (T->isUnionType() || T->isVectorType()) {
 | 
						|
    // FIXME: to be implemented.
 | 
						|
    // Note: That vectors can return true for T->isIntegerType()
 | 
						|
    MakeNode(Dst, E, Pred, state);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Loc::IsLocType(T) || T->isIntegerType()) {
 | 
						|
    assert (E->getNumInits() == 1);
 | 
						|
    NodeSet Tmp;
 | 
						|
    Expr* Init = E->getInit(0);
 | 
						|
    Visit(Init, Pred, Tmp);
 | 
						|
    for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I != EI; ++I) {
 | 
						|
      state = GetState(*I);
 | 
						|
      MakeNode(Dst, E, *I, BindExpr(state, E, GetSVal(state, Init)));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  printf("InitListExpr type = %s\n", T.getAsString().c_str());
 | 
						|
  assert(0 && "unprocessed InitListExpr type");
 | 
						|
}
 | 
						|
 | 
						|
/// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type).
 | 
						|
void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex,
 | 
						|
                                          NodeTy* Pred,
 | 
						|
                                          NodeSet& Dst) {
 | 
						|
  QualType T = Ex->getTypeOfArgument();
 | 
						|
  uint64_t amt;  
 | 
						|
  
 | 
						|
  if (Ex->isSizeOf()) {
 | 
						|
    if (T == getContext().VoidTy) {          
 | 
						|
      // sizeof(void) == 1 byte.
 | 
						|
      amt = 1;
 | 
						|
    }
 | 
						|
    else if (!T.getTypePtr()->isConstantSizeType()) {
 | 
						|
      // FIXME: Add support for VLAs.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    else if (T->isObjCInterfaceType()) {
 | 
						|
      // Some code tries to take the sizeof an ObjCInterfaceType, relying that
 | 
						|
      // the compiler has laid out its representation.  Just report Unknown
 | 
						|
      // for these.      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // All other cases.
 | 
						|
      amt = getContext().getTypeSize(T) / 8;
 | 
						|
    }    
 | 
						|
  }
 | 
						|
  else  // Get alignment of the type.
 | 
						|
    amt = getContext().getTypeAlign(T) / 8;
 | 
						|
  
 | 
						|
  MakeNode(Dst, Ex, Pred,
 | 
						|
           BindExpr(GetState(Pred), Ex,
 | 
						|
                    NonLoc::MakeVal(getBasicVals(), amt, Ex->getType())));  
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred,
 | 
						|
                                      NodeSet& Dst, bool asLValue) {
 | 
						|
 | 
						|
  switch (U->getOpcode()) {
 | 
						|
      
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
          
 | 
						|
    case UnaryOperator::Deref: {
 | 
						|
      
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
        
 | 
						|
        const GRState* state = GetState(*I);
 | 
						|
        SVal location = GetSVal(state, Ex);
 | 
						|
        
 | 
						|
        if (asLValue)
 | 
						|
          MakeNode(Dst, U, *I, BindExpr(state, U, location));
 | 
						|
        else
 | 
						|
          EvalLoad(Dst, U, *I, state, location);
 | 
						|
      } 
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UnaryOperator::Real: {
 | 
						|
      
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
        
 | 
						|
        // FIXME: We don't have complex SValues yet.
 | 
						|
        if (Ex->getType()->isAnyComplexType()) {
 | 
						|
          // Just report "Unknown."
 | 
						|
          Dst.Add(*I);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // For all other types, UnaryOperator::Real is an identity operation.
 | 
						|
        assert (U->getType() == Ex->getType());
 | 
						|
        const GRState* state = GetState(*I);
 | 
						|
        MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex)));
 | 
						|
      } 
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UnaryOperator::Imag: {
 | 
						|
      
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
 | 
						|
        // FIXME: We don't have complex SValues yet.
 | 
						|
        if (Ex->getType()->isAnyComplexType()) {
 | 
						|
          // Just report "Unknown."
 | 
						|
          Dst.Add(*I);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // For all other types, UnaryOperator::Float returns 0.
 | 
						|
        assert (Ex->getType()->isIntegerType());
 | 
						|
        const GRState* state = GetState(*I);
 | 
						|
        SVal X = NonLoc::MakeVal(getBasicVals(), 0, Ex->getType());
 | 
						|
        MakeNode(Dst, U, *I, BindExpr(state, U, X));
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
      // FIXME: Just report "Unknown" for OffsetOf.      
 | 
						|
    case UnaryOperator::OffsetOf:
 | 
						|
      Dst.Add(Pred);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case UnaryOperator::Plus: assert (!asLValue);  // FALL-THROUGH.
 | 
						|
    case UnaryOperator::Extension: {
 | 
						|
      
 | 
						|
      // Unary "+" is a no-op, similar to a parentheses.  We still have places
 | 
						|
      // where it may be a block-level expression, so we need to
 | 
						|
      // generate an extra node that just propagates the value of the
 | 
						|
      // subexpression.
 | 
						|
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {        
 | 
						|
        const GRState* state = GetState(*I);
 | 
						|
        MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex)));
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    case UnaryOperator::AddrOf: {
 | 
						|
      
 | 
						|
      assert(!asLValue);
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      VisitLValue(Ex, Pred, Tmp);
 | 
						|
     
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {        
 | 
						|
        const GRState* state = GetState(*I);
 | 
						|
        SVal V = GetSVal(state, Ex);
 | 
						|
        state = BindExpr(state, U, V);
 | 
						|
        MakeNode(Dst, U, *I, state);
 | 
						|
      }
 | 
						|
 | 
						|
      return; 
 | 
						|
    }
 | 
						|
      
 | 
						|
    case UnaryOperator::LNot:
 | 
						|
    case UnaryOperator::Minus:
 | 
						|
    case UnaryOperator::Not: {
 | 
						|
      
 | 
						|
      assert (!asLValue);
 | 
						|
      Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
      NodeSet Tmp;
 | 
						|
      Visit(Ex, Pred, Tmp);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {        
 | 
						|
        const GRState* state = GetState(*I);
 | 
						|
        
 | 
						|
        // Get the value of the subexpression.
 | 
						|
        SVal V = GetSVal(state, Ex);
 | 
						|
 | 
						|
        if (V.isUnknownOrUndef()) {
 | 
						|
          MakeNode(Dst, U, *I, BindExpr(state, U, V));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
//        QualType DstT = getContext().getCanonicalType(U->getType());
 | 
						|
//        QualType SrcT = getContext().getCanonicalType(Ex->getType());
 | 
						|
//        
 | 
						|
//        if (DstT != SrcT) // Perform promotions.
 | 
						|
//          V = EvalCast(V, DstT); 
 | 
						|
//        
 | 
						|
//        if (V.isUnknownOrUndef()) {
 | 
						|
//          MakeNode(Dst, U, *I, BindExpr(St, U, V));
 | 
						|
//          continue;
 | 
						|
//        }
 | 
						|
        
 | 
						|
        switch (U->getOpcode()) {
 | 
						|
          default:
 | 
						|
            assert(false && "Invalid Opcode.");
 | 
						|
            break;
 | 
						|
            
 | 
						|
          case UnaryOperator::Not:
 | 
						|
            // FIXME: Do we need to handle promotions?
 | 
						|
            state = BindExpr(state, U, EvalComplement(cast<NonLoc>(V)));
 | 
						|
            break;            
 | 
						|
            
 | 
						|
          case UnaryOperator::Minus:
 | 
						|
            // FIXME: Do we need to handle promotions?
 | 
						|
            state = BindExpr(state, U, EvalMinus(U, cast<NonLoc>(V)));
 | 
						|
            break;   
 | 
						|
            
 | 
						|
          case UnaryOperator::LNot:   
 | 
						|
            
 | 
						|
            // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
 | 
						|
            //
 | 
						|
            //  Note: technically we do "E == 0", but this is the same in the
 | 
						|
            //    transfer functions as "0 == E".
 | 
						|
            
 | 
						|
            if (isa<Loc>(V)) {
 | 
						|
              loc::ConcreteInt X(getBasicVals().getZeroWithPtrWidth());
 | 
						|
              SVal Result = EvalBinOp(BinaryOperator::EQ, cast<Loc>(V), X,
 | 
						|
                                      U->getType());
 | 
						|
              state = BindExpr(state, U, Result);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
              nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
 | 
						|
#if 0            
 | 
						|
              SVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLoc>(V), X);
 | 
						|
              state = SetSVal(state, U, Result);
 | 
						|
#else
 | 
						|
              EvalBinOp(Dst, U, BinaryOperator::EQ, cast<NonLoc>(V), X, *I,
 | 
						|
                        U->getType());
 | 
						|
              continue;
 | 
						|
#endif
 | 
						|
            }
 | 
						|
            
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        
 | 
						|
        MakeNode(Dst, U, *I, state);
 | 
						|
      }
 | 
						|
      
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle ++ and -- (both pre- and post-increment).
 | 
						|
 | 
						|
  assert (U->isIncrementDecrementOp());
 | 
						|
  NodeSet Tmp;
 | 
						|
  Expr* Ex = U->getSubExpr()->IgnoreParens();
 | 
						|
  VisitLValue(Ex, Pred, Tmp);
 | 
						|
  
 | 
						|
  for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
 | 
						|
    
 | 
						|
    const GRState* state = GetState(*I);
 | 
						|
    SVal V1 = GetSVal(state, Ex);
 | 
						|
    
 | 
						|
    // Perform a load.      
 | 
						|
    NodeSet Tmp2;
 | 
						|
    EvalLoad(Tmp2, Ex, *I, state, V1);
 | 
						|
 | 
						|
    for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) {
 | 
						|
        
 | 
						|
      state = GetState(*I2);
 | 
						|
      SVal V2 = GetSVal(state, Ex);
 | 
						|
        
 | 
						|
      // Propagate unknown and undefined values.      
 | 
						|
      if (V2.isUnknownOrUndef()) {
 | 
						|
        MakeNode(Dst, U, *I2, BindExpr(state, U, V2));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Handle all other values.      
 | 
						|
      BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
 | 
						|
                                                     : BinaryOperator::Sub;
 | 
						|
 | 
						|
      SVal Result = EvalBinOp(Op, V2, MakeConstantVal(1U, U), U->getType());    
 | 
						|
      
 | 
						|
      // Conjure a new symbol if necessary to recover precision.
 | 
						|
      if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result))
 | 
						|
        Result = SVal::GetConjuredSymbolVal(SymMgr, Ex,
 | 
						|
                                            Builder->getCurrentBlockCount());
 | 
						|
      
 | 
						|
      state = BindExpr(state, U, U->isPostfix() ? V2 : Result);
 | 
						|
 | 
						|
      // Perform the store.      
 | 
						|
      EvalStore(Dst, U, *I2, state, V1, Result);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
 | 
						|
}  
 | 
						|
 | 
						|
void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A,
 | 
						|
                                             AsmStmt::outputs_iterator I,
 | 
						|
                                             AsmStmt::outputs_iterator E,
 | 
						|
                                             NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  if (I == E) {
 | 
						|
    VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  NodeSet Tmp;
 | 
						|
  VisitLValue(*I, Pred, Tmp);
 | 
						|
  
 | 
						|
  ++I;
 | 
						|
  
 | 
						|
  for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
    VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A,
 | 
						|
                                            AsmStmt::inputs_iterator I,
 | 
						|
                                            AsmStmt::inputs_iterator E,
 | 
						|
                                            NodeTy* Pred, NodeSet& Dst) {
 | 
						|
  if (I == E) {
 | 
						|
    
 | 
						|
    // We have processed both the inputs and the outputs.  All of the outputs
 | 
						|
    // should evaluate to Locs.  Nuke all of their values.
 | 
						|
    
 | 
						|
    // FIXME: Some day in the future it would be nice to allow a "plug-in"
 | 
						|
    // which interprets the inline asm and stores proper results in the
 | 
						|
    // outputs.
 | 
						|
    
 | 
						|
    const GRState* state = GetState(Pred);
 | 
						|
    
 | 
						|
    for (AsmStmt::outputs_iterator OI = A->begin_outputs(),
 | 
						|
                                   OE = A->end_outputs(); OI != OE; ++OI) {
 | 
						|
      
 | 
						|
      SVal X = GetSVal(state, *OI);      
 | 
						|
      assert (!isa<NonLoc>(X));  // Should be an Lval, or unknown, undef.
 | 
						|
      
 | 
						|
      if (isa<Loc>(X))
 | 
						|
        state = BindLoc(state, cast<Loc>(X), UnknownVal());
 | 
						|
    }
 | 
						|
    
 | 
						|
    MakeNode(Dst, A, Pred, state);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  NodeSet Tmp;
 | 
						|
  Visit(*I, Pred, Tmp);
 | 
						|
  
 | 
						|
  ++I;
 | 
						|
  
 | 
						|
  for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
 | 
						|
    VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) {
 | 
						|
  assert (Builder && "GRStmtNodeBuilder must be defined.");
 | 
						|
  
 | 
						|
  unsigned size = Dst.size();  
 | 
						|
 | 
						|
  SaveAndRestore<bool> OldSink(Builder->BuildSinks);
 | 
						|
  SaveOr OldHasGen(Builder->HasGeneratedNode);
 | 
						|
 | 
						|
  getTF().EvalReturn(Dst, *this, *Builder, S, Pred);
 | 
						|
  
 | 
						|
  // Handle the case where no nodes where generated.
 | 
						|
  
 | 
						|
  if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
 | 
						|
    MakeNode(Dst, S, Pred, GetState(Pred));
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) {
 | 
						|
 | 
						|
  Expr* R = S->getRetValue();
 | 
						|
  
 | 
						|
  if (!R) {
 | 
						|
    EvalReturn(Dst, S, Pred);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  NodeSet Tmp;
 | 
						|
  Visit(R, Pred, Tmp);
 | 
						|
 | 
						|
  for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
 | 
						|
    SVal X = GetSVal((*I)->getState(), R);
 | 
						|
    
 | 
						|
    // Check if we return the address of a stack variable.
 | 
						|
    if (isa<loc::MemRegionVal>(X)) {
 | 
						|
      // Determine if the value is on the stack.
 | 
						|
      const MemRegion* R = cast<loc::MemRegionVal>(&X)->getRegion();
 | 
						|
      
 | 
						|
      if (R && getStateManager().hasStackStorage(R)) {
 | 
						|
        // Create a special node representing the error.
 | 
						|
        if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) {
 | 
						|
          N->markAsSink();
 | 
						|
          RetsStackAddr.insert(N);
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check if we return an undefined value.
 | 
						|
    else if (X.isUndef()) {
 | 
						|
      if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) {
 | 
						|
        N->markAsSink();
 | 
						|
        RetsUndef.insert(N);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    EvalReturn(Dst, S, *I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer functions: Binary operators.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
const GRState* GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* state,
 | 
						|
                                             NodeTy* Pred, SVal Denom) {
 | 
						|
  
 | 
						|
  // Divide by undefined? (potentially zero)
 | 
						|
  
 | 
						|
  if (Denom.isUndef()) {
 | 
						|
    NodeTy* DivUndef = Builder->generateNode(Ex, state, Pred);
 | 
						|
    
 | 
						|
    if (DivUndef) {
 | 
						|
      DivUndef->markAsSink();
 | 
						|
      ExplicitBadDivides.insert(DivUndef);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for divide/remainder-by-zero.
 | 
						|
  // First, "assume" that the denominator is 0 or undefined.            
 | 
						|
  
 | 
						|
  bool isFeasibleZero = false;
 | 
						|
  const GRState* ZeroSt =  Assume(state, Denom, false, isFeasibleZero);
 | 
						|
  
 | 
						|
  // Second, "assume" that the denominator cannot be 0.            
 | 
						|
  
 | 
						|
  bool isFeasibleNotZero = false;
 | 
						|
  state = Assume(state, Denom, true, isFeasibleNotZero);
 | 
						|
  
 | 
						|
  // Create the node for the divide-by-zero (if it occurred).
 | 
						|
  
 | 
						|
  if (isFeasibleZero)
 | 
						|
    if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) {
 | 
						|
      DivZeroNode->markAsSink();
 | 
						|
      
 | 
						|
      if (isFeasibleNotZero)
 | 
						|
        ImplicitBadDivides.insert(DivZeroNode);
 | 
						|
      else
 | 
						|
        ExplicitBadDivides.insert(DivZeroNode);
 | 
						|
      
 | 
						|
    }
 | 
						|
  
 | 
						|
  return isFeasibleNotZero ? state : 0;
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::VisitBinaryOperator(BinaryOperator* B,
 | 
						|
                                       GRExprEngine::NodeTy* Pred,
 | 
						|
                                       GRExprEngine::NodeSet& Dst) {
 | 
						|
 | 
						|
  NodeSet Tmp1;
 | 
						|
  Expr* LHS = B->getLHS()->IgnoreParens();
 | 
						|
  Expr* RHS = B->getRHS()->IgnoreParens();
 | 
						|
  
 | 
						|
  // FIXME: Add proper support for ObjCKVCRefExpr.
 | 
						|
  if (isa<ObjCKVCRefExpr>(LHS)) {
 | 
						|
    Visit(RHS, Pred, Dst);   
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (B->isAssignmentOp())
 | 
						|
    VisitLValue(LHS, Pred, Tmp1);
 | 
						|
  else
 | 
						|
    Visit(LHS, Pred, Tmp1);
 | 
						|
 | 
						|
  for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) {
 | 
						|
 | 
						|
    SVal LeftV = GetSVal((*I1)->getState(), LHS);
 | 
						|
    
 | 
						|
    // Process the RHS.
 | 
						|
    
 | 
						|
    NodeSet Tmp2;
 | 
						|
    Visit(RHS, *I1, Tmp2);
 | 
						|
    
 | 
						|
    // With both the LHS and RHS evaluated, process the operation itself.
 | 
						|
    
 | 
						|
    for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) {
 | 
						|
 | 
						|
      const GRState* state = GetState(*I2);
 | 
						|
      const GRState* OldSt = state;
 | 
						|
 | 
						|
      SVal RightV = GetSVal(state, RHS);
 | 
						|
      BinaryOperator::Opcode Op = B->getOpcode();
 | 
						|
      
 | 
						|
      switch (Op) {
 | 
						|
          
 | 
						|
        case BinaryOperator::Assign: {
 | 
						|
          
 | 
						|
          // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
          // FIXME: Handle structs.
 | 
						|
          QualType T = RHS->getType();
 | 
						|
          
 | 
						|
          if ((RightV.isUnknown() || 
 | 
						|
               !getConstraintManager().canReasonAbout(RightV))              
 | 
						|
              && (Loc::IsLocType(T) || 
 | 
						|
                  (T->isScalarType() && T->isIntegerType()))) {
 | 
						|
            unsigned Count = Builder->getCurrentBlockCount();
 | 
						|
            SymbolRef Sym = SymMgr.getConjuredSymbol(B->getRHS(), Count);
 | 
						|
            
 | 
						|
            RightV = Loc::IsLocType(T) 
 | 
						|
                   ? cast<SVal>(loc::SymbolVal(Sym)) 
 | 
						|
                   : cast<SVal>(nonloc::SymbolVal(Sym));            
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Simulate the effects of a "store":  bind the value of the RHS
 | 
						|
          // to the L-Value represented by the LHS.          
 | 
						|
          EvalStore(Dst, B, LHS, *I2, BindExpr(state, B, RightV), LeftV,
 | 
						|
                    RightV);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
          
 | 
						|
        case BinaryOperator::Div:
 | 
						|
        case BinaryOperator::Rem:
 | 
						|
          
 | 
						|
          // Special checking for integer denominators.          
 | 
						|
          if (RHS->getType()->isIntegerType() && 
 | 
						|
              RHS->getType()->isScalarType()) {
 | 
						|
            
 | 
						|
            state = CheckDivideZero(B, state, *I2, RightV);
 | 
						|
            if (!state) continue;
 | 
						|
          }
 | 
						|
          
 | 
						|
          // FALL-THROUGH.
 | 
						|
 | 
						|
        default: {
 | 
						|
      
 | 
						|
          if (B->isAssignmentOp())
 | 
						|
            break;
 | 
						|
          
 | 
						|
          // Process non-assignements except commas or short-circuited
 | 
						|
          // logical expressions (LAnd and LOr).
 | 
						|
          
 | 
						|
          SVal Result = EvalBinOp(Op, LeftV, RightV, B->getType());
 | 
						|
          
 | 
						|
          if (Result.isUnknown()) {
 | 
						|
            if (OldSt != state) {
 | 
						|
              // Generate a new node if we have already created a new state.
 | 
						|
              MakeNode(Dst, B, *I2, state);
 | 
						|
            }
 | 
						|
            else
 | 
						|
              Dst.Add(*I2);
 | 
						|
            
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          
 | 
						|
          if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) {
 | 
						|
            
 | 
						|
            // The operands were *not* undefined, but the result is undefined.
 | 
						|
            // This is a special node that should be flagged as an error.
 | 
						|
            
 | 
						|
            if (NodeTy* UndefNode = Builder->generateNode(B, state, *I2)) {
 | 
						|
              UndefNode->markAsSink();            
 | 
						|
              UndefResults.insert(UndefNode);
 | 
						|
            }
 | 
						|
            
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Otherwise, create a new node.
 | 
						|
          
 | 
						|
          MakeNode(Dst, B, *I2, BindExpr(state, B, Result));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    
 | 
						|
      assert (B->isCompoundAssignmentOp());
 | 
						|
 | 
						|
      switch (Op) {
 | 
						|
        default:
 | 
						|
          assert(0 && "Invalid opcode for compound assignment.");
 | 
						|
        case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break;
 | 
						|
        case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break;
 | 
						|
        case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break;
 | 
						|
        case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break;
 | 
						|
        case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break;
 | 
						|
        case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break;
 | 
						|
        case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break;
 | 
						|
        case BinaryOperator::AndAssign: Op = BinaryOperator::And; break;
 | 
						|
        case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break;
 | 
						|
        case BinaryOperator::OrAssign:  Op = BinaryOperator::Or;  break;
 | 
						|
      }
 | 
						|
          
 | 
						|
      // Perform a load (the LHS).  This performs the checks for
 | 
						|
      // null dereferences, and so on.
 | 
						|
      NodeSet Tmp3;
 | 
						|
      SVal location = GetSVal(state, LHS);
 | 
						|
      EvalLoad(Tmp3, LHS, *I2, state, location);
 | 
						|
      
 | 
						|
      for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) {
 | 
						|
        
 | 
						|
        state = GetState(*I3);
 | 
						|
        SVal V = GetSVal(state, LHS);
 | 
						|
 | 
						|
        // Check for divide-by-zero.
 | 
						|
        if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem)
 | 
						|
            && RHS->getType()->isIntegerType()
 | 
						|
            && RHS->getType()->isScalarType()) {
 | 
						|
          
 | 
						|
          // CheckDivideZero returns a new state where the denominator
 | 
						|
          // is assumed to be non-zero.
 | 
						|
          state = CheckDivideZero(B, state, *I3, RightV);
 | 
						|
          
 | 
						|
          if (!state)
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Propagate undefined values (left-side).          
 | 
						|
        if (V.isUndef()) {
 | 
						|
          EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, V), location, V);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Propagate unknown values (left and right-side).
 | 
						|
        if (RightV.isUnknown() || V.isUnknown()) {
 | 
						|
          EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, UnknownVal()),
 | 
						|
                    location, UnknownVal());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // At this point:
 | 
						|
        //
 | 
						|
        //  The LHS is not Undef/Unknown.
 | 
						|
        //  The RHS is not Unknown.
 | 
						|
        
 | 
						|
        // Get the computation type.
 | 
						|
        QualType CTy = cast<CompoundAssignOperator>(B)->getComputationResultType();
 | 
						|
        CTy = getContext().getCanonicalType(CTy);
 | 
						|
 | 
						|
        QualType CLHSTy = cast<CompoundAssignOperator>(B)->getComputationLHSType();
 | 
						|
        CLHSTy = getContext().getCanonicalType(CTy);
 | 
						|
 | 
						|
        QualType LTy = getContext().getCanonicalType(LHS->getType());
 | 
						|
        QualType RTy = getContext().getCanonicalType(RHS->getType());
 | 
						|
 | 
						|
        // Promote LHS.
 | 
						|
        V = EvalCast(V, CLHSTy);
 | 
						|
 | 
						|
        // Evaluate operands and promote to result type.                    
 | 
						|
        if (RightV.isUndef()) {            
 | 
						|
          // Propagate undefined values (right-side).          
 | 
						|
          EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, RightV), location,
 | 
						|
                    RightV);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      
 | 
						|
        // Compute the result of the operation.      
 | 
						|
        SVal Result = EvalCast(EvalBinOp(Op, V, RightV, CTy), B->getType());
 | 
						|
          
 | 
						|
        if (Result.isUndef()) {
 | 
						|
          // The operands were not undefined, but the result is undefined.
 | 
						|
          if (NodeTy* UndefNode = Builder->generateNode(B, state, *I3)) {
 | 
						|
            UndefNode->markAsSink();            
 | 
						|
            UndefResults.insert(UndefNode);
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // EXPERIMENTAL: "Conjured" symbols.
 | 
						|
        // FIXME: Handle structs.
 | 
						|
        
 | 
						|
        SVal LHSVal;
 | 
						|
        
 | 
						|
        if ((Result.isUnknown() || 
 | 
						|
             !getConstraintManager().canReasonAbout(Result))
 | 
						|
            && (Loc::IsLocType(CTy) 
 | 
						|
                || (CTy->isScalarType() && CTy->isIntegerType()))) {
 | 
						|
          
 | 
						|
          unsigned Count = Builder->getCurrentBlockCount();
 | 
						|
          
 | 
						|
          // The symbolic value is actually for the type of the left-hand side
 | 
						|
          // expression, not the computation type, as this is the value the
 | 
						|
          // LValue on the LHS will bind to.
 | 
						|
          SymbolRef Sym = SymMgr.getConjuredSymbol(B->getRHS(), LTy, Count);
 | 
						|
          LHSVal = Loc::IsLocType(LTy) 
 | 
						|
                 ? cast<SVal>(loc::SymbolVal(Sym)) 
 | 
						|
                 : cast<SVal>(nonloc::SymbolVal(Sym));
 | 
						|
          
 | 
						|
          // However, we need to convert the symbol to the computation type.
 | 
						|
          Result = (LTy == CTy) ? LHSVal : EvalCast(LHSVal,CTy);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // The left-hand side may bind to a different value then the
 | 
						|
          // computation type.
 | 
						|
          LHSVal = (LTy == CTy) ? Result : EvalCast(Result,LTy);
 | 
						|
        }
 | 
						|
          
 | 
						|
        EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, Result), location,
 | 
						|
                  LHSVal);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Transfer-function Helpers.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GRExprEngine::EvalBinOp(ExplodedNodeSet<GRState>& Dst, Expr* Ex,
 | 
						|
                             BinaryOperator::Opcode Op,
 | 
						|
                             NonLoc L, NonLoc R,
 | 
						|
                             ExplodedNode<GRState>* Pred, QualType T) {
 | 
						|
 | 
						|
  GRStateSet OStates;
 | 
						|
  EvalBinOp(OStates, GetState(Pred), Ex, Op, L, R, T);
 | 
						|
 | 
						|
  for (GRStateSet::iterator I=OStates.begin(), E=OStates.end(); I!=E; ++I)
 | 
						|
    MakeNode(Dst, Ex, Pred, *I);
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::EvalBinOp(GRStateSet& OStates, const GRState* state,
 | 
						|
                             Expr* Ex, BinaryOperator::Opcode Op,
 | 
						|
                             NonLoc L, NonLoc R, QualType T) {
 | 
						|
  
 | 
						|
  GRStateSet::AutoPopulate AP(OStates, state);
 | 
						|
  if (R.isValid()) getTF().EvalBinOpNN(OStates, *this, state, Ex, Op, L, R, T);
 | 
						|
}
 | 
						|
 | 
						|
SVal GRExprEngine::EvalBinOp(BinaryOperator::Opcode Op, SVal L, SVal R,
 | 
						|
                             QualType T) {
 | 
						|
  
 | 
						|
  if (L.isUndef() || R.isUndef())
 | 
						|
    return UndefinedVal();
 | 
						|
  
 | 
						|
  if (L.isUnknown() || R.isUnknown())
 | 
						|
    return UnknownVal();
 | 
						|
  
 | 
						|
  if (isa<Loc>(L)) {
 | 
						|
    if (isa<Loc>(R))
 | 
						|
      return getTF().EvalBinOp(*this, Op, cast<Loc>(L), cast<Loc>(R));
 | 
						|
    else
 | 
						|
      return getTF().EvalBinOp(*this, Op, cast<Loc>(L), cast<NonLoc>(R));
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (isa<Loc>(R)) {
 | 
						|
    // Support pointer arithmetic where the increment/decrement operand
 | 
						|
    // is on the left and the pointer on the right.
 | 
						|
    
 | 
						|
    assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub);
 | 
						|
    
 | 
						|
    // Commute the operands.
 | 
						|
    return getTF().EvalBinOp(*this, Op, cast<Loc>(R),
 | 
						|
                             cast<NonLoc>(L));
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return getTF().DetermEvalBinOpNN(*this, Op, cast<NonLoc>(L),
 | 
						|
                                     cast<NonLoc>(R), T);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Visualization.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static GRExprEngine* GraphPrintCheckerState;
 | 
						|
static SourceManager* GraphPrintSourceManager;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template<>
 | 
						|
struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> :
 | 
						|
  public DefaultDOTGraphTraits {
 | 
						|
    
 | 
						|
  static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) {
 | 
						|
    
 | 
						|
    if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
 | 
						|
        GraphPrintCheckerState->isExplicitNullDeref(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefDeref(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefStore(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefControlFlow(N) ||
 | 
						|
        GraphPrintCheckerState->isExplicitBadDivide(N) ||
 | 
						|
        GraphPrintCheckerState->isImplicitBadDivide(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefResult(N) ||
 | 
						|
        GraphPrintCheckerState->isBadCall(N) ||
 | 
						|
        GraphPrintCheckerState->isUndefArg(N))
 | 
						|
      return "color=\"red\",style=\"filled\"";
 | 
						|
    
 | 
						|
    if (GraphPrintCheckerState->isNoReturnCall(N))
 | 
						|
      return "color=\"blue\",style=\"filled\"";
 | 
						|
    
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
    
 | 
						|
  static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) {
 | 
						|
    std::ostringstream Out;
 | 
						|
 | 
						|
    // Program Location.
 | 
						|
    ProgramPoint Loc = N->getLocation();
 | 
						|
    
 | 
						|
    switch (Loc.getKind()) {
 | 
						|
      case ProgramPoint::BlockEntranceKind:
 | 
						|
        Out << "Block Entrance: B" 
 | 
						|
            << cast<BlockEntrance>(Loc).getBlock()->getBlockID();
 | 
						|
        break;
 | 
						|
      
 | 
						|
      case ProgramPoint::BlockExitKind:
 | 
						|
        assert (false);
 | 
						|
        break;
 | 
						|
        
 | 
						|
      default: {
 | 
						|
        if (isa<PostStmt>(Loc)) {
 | 
						|
          const PostStmt& L = cast<PostStmt>(Loc);        
 | 
						|
          Stmt* S = L.getStmt();
 | 
						|
          SourceLocation SLoc = S->getLocStart();
 | 
						|
 | 
						|
          Out << S->getStmtClassName() << ' ' << (void*) S << ' ';        
 | 
						|
          llvm::raw_os_ostream OutS(Out);
 | 
						|
          S->printPretty(OutS);
 | 
						|
          OutS.flush();
 | 
						|
          
 | 
						|
          if (SLoc.isFileID()) {        
 | 
						|
            Out << "\\lline="
 | 
						|
              << GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
 | 
						|
              << " col="
 | 
						|
              << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc)
 | 
						|
              << "\\l";
 | 
						|
          }
 | 
						|
          
 | 
						|
          if (GraphPrintCheckerState->isImplicitNullDeref(N))
 | 
						|
            Out << "\\|Implicit-Null Dereference.\\l";
 | 
						|
          else if (GraphPrintCheckerState->isExplicitNullDeref(N))
 | 
						|
            Out << "\\|Explicit-Null Dereference.\\l";
 | 
						|
          else if (GraphPrintCheckerState->isUndefDeref(N))
 | 
						|
            Out << "\\|Dereference of undefialied value.\\l";
 | 
						|
          else if (GraphPrintCheckerState->isUndefStore(N))
 | 
						|
            Out << "\\|Store to Undefined Loc.";
 | 
						|
          else if (GraphPrintCheckerState->isExplicitBadDivide(N))
 | 
						|
            Out << "\\|Explicit divide-by zero or undefined value.";
 | 
						|
          else if (GraphPrintCheckerState->isImplicitBadDivide(N))
 | 
						|
            Out << "\\|Implicit divide-by zero or undefined value.";
 | 
						|
          else if (GraphPrintCheckerState->isUndefResult(N))
 | 
						|
            Out << "\\|Result of operation is undefined.";
 | 
						|
          else if (GraphPrintCheckerState->isNoReturnCall(N))
 | 
						|
            Out << "\\|Call to function marked \"noreturn\".";
 | 
						|
          else if (GraphPrintCheckerState->isBadCall(N))
 | 
						|
            Out << "\\|Call to NULL/Undefined.";
 | 
						|
          else if (GraphPrintCheckerState->isUndefArg(N))
 | 
						|
            Out << "\\|Argument in call is undefined";
 | 
						|
          
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        const BlockEdge& E = cast<BlockEdge>(Loc);
 | 
						|
        Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
 | 
						|
            << E.getDst()->getBlockID()  << ')';
 | 
						|
        
 | 
						|
        if (Stmt* T = E.getSrc()->getTerminator()) {
 | 
						|
          
 | 
						|
          SourceLocation SLoc = T->getLocStart();
 | 
						|
         
 | 
						|
          Out << "\\|Terminator: ";
 | 
						|
          
 | 
						|
          llvm::raw_os_ostream OutS(Out);
 | 
						|
          E.getSrc()->printTerminator(OutS);
 | 
						|
          OutS.flush();
 | 
						|
          
 | 
						|
          if (SLoc.isFileID()) {
 | 
						|
            Out << "\\lline="
 | 
						|
              << GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
 | 
						|
              << " col="
 | 
						|
              << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc);
 | 
						|
          }
 | 
						|
            
 | 
						|
          if (isa<SwitchStmt>(T)) {
 | 
						|
            Stmt* Label = E.getDst()->getLabel();
 | 
						|
            
 | 
						|
            if (Label) {                        
 | 
						|
              if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
 | 
						|
                Out << "\\lcase ";
 | 
						|
                llvm::raw_os_ostream OutS(Out);
 | 
						|
                C->getLHS()->printPretty(OutS);
 | 
						|
                OutS.flush();
 | 
						|
              
 | 
						|
                if (Stmt* RHS = C->getRHS()) {
 | 
						|
                  Out << " .. ";
 | 
						|
                  RHS->printPretty(OutS);
 | 
						|
                  OutS.flush();
 | 
						|
                }
 | 
						|
                
 | 
						|
                Out << ":";
 | 
						|
              }
 | 
						|
              else {
 | 
						|
                assert (isa<DefaultStmt>(Label));
 | 
						|
                Out << "\\ldefault:";
 | 
						|
              }
 | 
						|
            }
 | 
						|
            else 
 | 
						|
              Out << "\\l(implicit) default:";
 | 
						|
          }
 | 
						|
          else if (isa<IndirectGotoStmt>(T)) {
 | 
						|
            // FIXME
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            Out << "\\lCondition: ";
 | 
						|
            if (*E.getSrc()->succ_begin() == E.getDst())
 | 
						|
              Out << "true";
 | 
						|
            else
 | 
						|
              Out << "false";                        
 | 
						|
          }
 | 
						|
          
 | 
						|
          Out << "\\l";
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (GraphPrintCheckerState->isUndefControlFlow(N)) {
 | 
						|
          Out << "\\|Control-flow based on\\lUndefined value.\\l";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    Out << "\\|StateID: " << (void*) N->getState() << "\\|";
 | 
						|
 | 
						|
    GRStateRef state(N->getState(), GraphPrintCheckerState->getStateManager());
 | 
						|
    state.printDOT(Out);
 | 
						|
      
 | 
						|
    Out << "\\l";
 | 
						|
    return Out.str();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end llvm namespace    
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
template <typename ITERATOR>
 | 
						|
GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; }
 | 
						|
 | 
						|
template <>
 | 
						|
GRExprEngine::NodeTy*
 | 
						|
GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator>
 | 
						|
  (llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) {
 | 
						|
  return I->first;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void GRExprEngine::ViewGraph(bool trim) {
 | 
						|
#ifndef NDEBUG  
 | 
						|
  if (trim) {
 | 
						|
    std::vector<NodeTy*> Src;
 | 
						|
 | 
						|
    // Flush any outstanding reports to make sure we cover all the nodes.
 | 
						|
    // This does not cause them to get displayed.
 | 
						|
    for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
 | 
						|
      const_cast<BugType*>(*I)->FlushReports(BR);
 | 
						|
 | 
						|
    // Iterate through the reports and get their nodes.
 | 
						|
    for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) {
 | 
						|
      for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); I2!=E2; ++I2) {        
 | 
						|
        const BugReportEquivClass& EQ = *I2;
 | 
						|
        const BugReport &R = **EQ.begin();
 | 
						|
        NodeTy *N = const_cast<NodeTy*>(R.getEndNode());
 | 
						|
        if (N) Src.push_back(N);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    ViewGraph(&Src[0], &Src[0]+Src.size());
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    GraphPrintCheckerState = this;
 | 
						|
    GraphPrintSourceManager = &getContext().getSourceManager();
 | 
						|
 | 
						|
    llvm::ViewGraph(*G.roots_begin(), "GRExprEngine");
 | 
						|
    
 | 
						|
    GraphPrintCheckerState = NULL;
 | 
						|
    GraphPrintSourceManager = NULL;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  GraphPrintCheckerState = this;
 | 
						|
  GraphPrintSourceManager = &getContext().getSourceManager();
 | 
						|
    
 | 
						|
  std::auto_ptr<GRExprEngine::GraphTy> TrimmedG(G.Trim(Beg, End).first);
 | 
						|
 | 
						|
  if (!TrimmedG.get())
 | 
						|
    llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n";
 | 
						|
  else
 | 
						|
    llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");    
 | 
						|
  
 | 
						|
  GraphPrintCheckerState = NULL;
 | 
						|
  GraphPrintSourceManager = NULL;
 | 
						|
#endif
 | 
						|
}
 |