3278 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3278 lines
		
	
	
		
			129 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Rewrite call/invoke instructions so as to make potential relocations
 | 
						|
// performed by the garbage collector explicit in the IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
 | 
						|
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <set>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Print the liveset found at the insert location
 | 
						|
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
 | 
						|
                                  cl::init(false));
 | 
						|
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
 | 
						|
                                      cl::init(false));
 | 
						|
 | 
						|
// Print out the base pointers for debugging
 | 
						|
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
 | 
						|
                                       cl::init(false));
 | 
						|
 | 
						|
// Cost threshold measuring when it is profitable to rematerialize value instead
 | 
						|
// of relocating it
 | 
						|
static cl::opt<unsigned>
 | 
						|
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
 | 
						|
                           cl::init(6));
 | 
						|
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
static bool ClobberNonLive = true;
 | 
						|
#else
 | 
						|
static bool ClobberNonLive = false;
 | 
						|
#endif
 | 
						|
 | 
						|
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
 | 
						|
                                                  cl::location(ClobberNonLive),
 | 
						|
                                                  cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
 | 
						|
                                   cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
/// The IR fed into RewriteStatepointsForGC may have had attributes and
 | 
						|
/// metadata implying dereferenceability that are no longer valid/correct after
 | 
						|
/// RewriteStatepointsForGC has run. This is because semantically, after
 | 
						|
/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
 | 
						|
/// heap. stripNonValidData (conservatively) restores
 | 
						|
/// correctness by erasing all attributes in the module that externally imply
 | 
						|
/// dereferenceability. Similar reasoning also applies to the noalias
 | 
						|
/// attributes and metadata. gc.statepoint can touch the entire heap including
 | 
						|
/// noalias objects.
 | 
						|
/// Apart from attributes and metadata, we also remove instructions that imply
 | 
						|
/// constant physical memory: llvm.invariant.start.
 | 
						|
static void stripNonValidData(Module &M);
 | 
						|
 | 
						|
static bool shouldRewriteStatepointsIn(Function &F);
 | 
						|
 | 
						|
PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
 | 
						|
                                               ModuleAnalysisManager &AM) {
 | 
						|
  bool Changed = false;
 | 
						|
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | 
						|
  for (Function &F : M) {
 | 
						|
    // Nothing to do for declarations.
 | 
						|
    if (F.isDeclaration() || F.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Policy choice says not to rewrite - the most common reason is that we're
 | 
						|
    // compiling code without a GCStrategy.
 | 
						|
    if (!shouldRewriteStatepointsIn(F))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
    auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
 | 
						|
    auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
    Changed |= runOnFunction(F, DT, TTI, TLI);
 | 
						|
  }
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  // stripNonValidData asserts that shouldRewriteStatepointsIn
 | 
						|
  // returns true for at least one function in the module.  Since at least
 | 
						|
  // one function changed, we know that the precondition is satisfied.
 | 
						|
  stripNonValidData(M);
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<TargetIRAnalysis>();
 | 
						|
  PA.preserve<TargetLibraryAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class RewriteStatepointsForGCLegacyPass : public ModulePass {
 | 
						|
  RewriteStatepointsForGC Impl;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
 | 
						|
  RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
 | 
						|
    initializeRewriteStatepointsForGCLegacyPassPass(
 | 
						|
        *PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnModule(Module &M) override {
 | 
						|
    bool Changed = false;
 | 
						|
    for (Function &F : M) {
 | 
						|
      // Nothing to do for declarations.
 | 
						|
      if (F.isDeclaration() || F.empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Policy choice says not to rewrite - the most common reason is that
 | 
						|
      // we're compiling code without a GCStrategy.
 | 
						|
      if (!shouldRewriteStatepointsIn(F))
 | 
						|
        continue;
 | 
						|
 | 
						|
      TargetTransformInfo &TTI =
 | 
						|
          getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
      const TargetLibraryInfo &TLI =
 | 
						|
          getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
      auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
 | 
						|
 | 
						|
      Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Changed)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // stripNonValidData asserts that shouldRewriteStatepointsIn
 | 
						|
    // returns true for at least one function in the module.  Since at least
 | 
						|
    // one function changed, we know that the precondition is satisfied.
 | 
						|
    stripNonValidData(M);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    // We add and rewrite a bunch of instructions, but don't really do much
 | 
						|
    // else.  We could in theory preserve a lot more analyses here.
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char RewriteStatepointsForGCLegacyPass::ID = 0;
 | 
						|
 | 
						|
ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
 | 
						|
  return new RewriteStatepointsForGCLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
 | 
						|
                      "rewrite-statepoints-for-gc",
 | 
						|
                      "Make relocations explicit at statepoints", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
 | 
						|
                    "rewrite-statepoints-for-gc",
 | 
						|
                    "Make relocations explicit at statepoints", false, false)
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct GCPtrLivenessData {
 | 
						|
  /// Values defined in this block.
 | 
						|
  MapVector<BasicBlock *, SetVector<Value *>> KillSet;
 | 
						|
 | 
						|
  /// Values used in this block (and thus live); does not included values
 | 
						|
  /// killed within this block.
 | 
						|
  MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
 | 
						|
 | 
						|
  /// Values live into this basic block (i.e. used by any
 | 
						|
  /// instruction in this basic block or ones reachable from here)
 | 
						|
  MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
 | 
						|
 | 
						|
  /// Values live out of this basic block (i.e. live into
 | 
						|
  /// any successor block)
 | 
						|
  MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
 | 
						|
};
 | 
						|
 | 
						|
// The type of the internal cache used inside the findBasePointers family
 | 
						|
// of functions.  From the callers perspective, this is an opaque type and
 | 
						|
// should not be inspected.
 | 
						|
//
 | 
						|
// In the actual implementation this caches two relations:
 | 
						|
// - The base relation itself (i.e. this pointer is based on that one)
 | 
						|
// - The base defining value relation (i.e. before base_phi insertion)
 | 
						|
// Generally, after the execution of a full findBasePointer call, only the
 | 
						|
// base relation will remain.  Internally, we add a mixture of the two
 | 
						|
// types, then update all the second type to the first type
 | 
						|
using DefiningValueMapTy = MapVector<Value *, Value *>;
 | 
						|
using IsKnownBaseMapTy = MapVector<Value *, bool>;
 | 
						|
using PointerToBaseTy = MapVector<Value *, Value *>;
 | 
						|
using StatepointLiveSetTy = SetVector<Value *>;
 | 
						|
using RematerializedValueMapTy =
 | 
						|
    MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
 | 
						|
 | 
						|
struct PartiallyConstructedSafepointRecord {
 | 
						|
  /// The set of values known to be live across this safepoint
 | 
						|
  StatepointLiveSetTy LiveSet;
 | 
						|
 | 
						|
  /// The *new* gc.statepoint instruction itself.  This produces the token
 | 
						|
  /// that normal path gc.relocates and the gc.result are tied to.
 | 
						|
  GCStatepointInst *StatepointToken;
 | 
						|
 | 
						|
  /// Instruction to which exceptional gc relocates are attached
 | 
						|
  /// Makes it easier to iterate through them during relocationViaAlloca.
 | 
						|
  Instruction *UnwindToken;
 | 
						|
 | 
						|
  /// Record live values we are rematerialized instead of relocating.
 | 
						|
  /// They are not included into 'LiveSet' field.
 | 
						|
  /// Maps rematerialized copy to it's original value.
 | 
						|
  RematerializedValueMapTy RematerializedValues;
 | 
						|
};
 | 
						|
 | 
						|
struct RematerizlizationCandidateRecord {
 | 
						|
  // Chain from derived pointer to base.
 | 
						|
  SmallVector<Instruction *, 3> ChainToBase;
 | 
						|
  // Original base.
 | 
						|
  Value *RootOfChain;
 | 
						|
  // Cost of chain.
 | 
						|
  InstructionCost Cost;
 | 
						|
};
 | 
						|
using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>;
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
 | 
						|
  Optional<OperandBundleUse> DeoptBundle =
 | 
						|
      Call->getOperandBundle(LLVMContext::OB_deopt);
 | 
						|
 | 
						|
  if (!DeoptBundle) {
 | 
						|
    assert(AllowStatepointWithNoDeoptInfo &&
 | 
						|
           "Found non-leaf call without deopt info!");
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  return DeoptBundle->Inputs;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the live-in set for every basic block in the function
 | 
						|
static void computeLiveInValues(DominatorTree &DT, Function &F,
 | 
						|
                                GCPtrLivenessData &Data);
 | 
						|
 | 
						|
/// Given results from the dataflow liveness computation, find the set of live
 | 
						|
/// Values at a particular instruction.
 | 
						|
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
 | 
						|
                              StatepointLiveSetTy &out);
 | 
						|
 | 
						|
// TODO: Once we can get to the GCStrategy, this becomes
 | 
						|
// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
 | 
						|
 | 
						|
static bool isGCPointerType(Type *T) {
 | 
						|
  if (auto *PT = dyn_cast<PointerType>(T))
 | 
						|
    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
 | 
						|
    // GC managed heap.  We know that a pointer into this heap needs to be
 | 
						|
    // updated and that no other pointer does.
 | 
						|
    return PT->getAddressSpace() == 1;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if this type is one which a) is a gc pointer or contains a GC
 | 
						|
// pointer and b) is of a type this code expects to encounter as a live value.
 | 
						|
// (The insertion code will assert that a type which matches (a) and not (b)
 | 
						|
// is not encountered.)
 | 
						|
static bool isHandledGCPointerType(Type *T) {
 | 
						|
  // We fully support gc pointers
 | 
						|
  if (isGCPointerType(T))
 | 
						|
    return true;
 | 
						|
  // We partially support vectors of gc pointers. The code will assert if it
 | 
						|
  // can't handle something.
 | 
						|
  if (auto VT = dyn_cast<VectorType>(T))
 | 
						|
    if (isGCPointerType(VT->getElementType()))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Returns true if this type contains a gc pointer whether we know how to
 | 
						|
/// handle that type or not.
 | 
						|
static bool containsGCPtrType(Type *Ty) {
 | 
						|
  if (isGCPointerType(Ty))
 | 
						|
    return true;
 | 
						|
  if (VectorType *VT = dyn_cast<VectorType>(Ty))
 | 
						|
    return isGCPointerType(VT->getScalarType());
 | 
						|
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
 | 
						|
    return containsGCPtrType(AT->getElementType());
 | 
						|
  if (StructType *ST = dyn_cast<StructType>(Ty))
 | 
						|
    return llvm::any_of(ST->elements(), containsGCPtrType);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if this is a type which a) is a gc pointer or contains a GC
 | 
						|
// pointer and b) is of a type which the code doesn't expect (i.e. first class
 | 
						|
// aggregates).  Used to trip assertions.
 | 
						|
static bool isUnhandledGCPointerType(Type *Ty) {
 | 
						|
  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// Return the name of the value suffixed with the provided value, or if the
 | 
						|
// value didn't have a name, the default value specified.
 | 
						|
static std::string suffixed_name_or(Value *V, StringRef Suffix,
 | 
						|
                                    StringRef DefaultName) {
 | 
						|
  return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
 | 
						|
}
 | 
						|
 | 
						|
// Conservatively identifies any definitions which might be live at the
 | 
						|
// given instruction. The  analysis is performed immediately before the
 | 
						|
// given instruction. Values defined by that instruction are not considered
 | 
						|
// live.  Values used by that instruction are considered live.
 | 
						|
static void analyzeParsePointLiveness(
 | 
						|
    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
 | 
						|
    PartiallyConstructedSafepointRecord &Result) {
 | 
						|
  StatepointLiveSetTy LiveSet;
 | 
						|
  findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
 | 
						|
 | 
						|
  if (PrintLiveSet) {
 | 
						|
    dbgs() << "Live Variables:\n";
 | 
						|
    for (Value *V : LiveSet)
 | 
						|
      dbgs() << " " << V->getName() << " " << *V << "\n";
 | 
						|
  }
 | 
						|
  if (PrintLiveSetSize) {
 | 
						|
    dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
 | 
						|
    dbgs() << "Number live values: " << LiveSet.size() << "\n";
 | 
						|
  }
 | 
						|
  Result.LiveSet = LiveSet;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if V is a known base.
 | 
						|
static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases);
 | 
						|
 | 
						|
/// Caches the IsKnownBase flag for a value and asserts that it wasn't present
 | 
						|
/// in the cache before.
 | 
						|
static void setKnownBase(Value *V, bool IsKnownBase,
 | 
						|
                         IsKnownBaseMapTy &KnownBases);
 | 
						|
 | 
						|
static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
 | 
						|
                                    IsKnownBaseMapTy &KnownBases);
 | 
						|
 | 
						|
/// Return a base defining value for the 'Index' element of the given vector
 | 
						|
/// instruction 'I'.  If Index is null, returns a BDV for the entire vector
 | 
						|
/// 'I'.  As an optimization, this method will try to determine when the
 | 
						|
/// element is known to already be a base pointer.  If this can be established,
 | 
						|
/// the second value in the returned pair will be true.  Note that either a
 | 
						|
/// vector or a pointer typed value can be returned.  For the former, the
 | 
						|
/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
 | 
						|
/// If the later, the return pointer is a BDV (or possibly a base) for the
 | 
						|
/// particular element in 'I'.
 | 
						|
static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache,
 | 
						|
                                            IsKnownBaseMapTy &KnownBases) {
 | 
						|
  // Each case parallels findBaseDefiningValue below, see that code for
 | 
						|
  // detailed motivation.
 | 
						|
 | 
						|
  auto Cached = Cache.find(I);
 | 
						|
  if (Cached != Cache.end())
 | 
						|
    return Cached->second;
 | 
						|
 | 
						|
  if (isa<Argument>(I)) {
 | 
						|
    // An incoming argument to the function is a base pointer
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<Constant>(I)) {
 | 
						|
    // Base of constant vector consists only of constant null pointers.
 | 
						|
    // For reasoning see similar case inside 'findBaseDefiningValue' function.
 | 
						|
    auto *CAZ = ConstantAggregateZero::get(I->getType());
 | 
						|
    Cache[I] = CAZ;
 | 
						|
    setKnownBase(CAZ, /* IsKnownBase */true, KnownBases);
 | 
						|
    return CAZ;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<LoadInst>(I)) {
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<InsertElementInst>(I)) {
 | 
						|
    // We don't know whether this vector contains entirely base pointers or
 | 
						|
    // not.  To be conservatively correct, we treat it as a BDV and will
 | 
						|
    // duplicate code as needed to construct a parallel vector of bases.
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */false, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ShuffleVectorInst>(I)) {
 | 
						|
    // We don't know whether this vector contains entirely base pointers or
 | 
						|
    // not.  To be conservatively correct, we treat it as a BDV and will
 | 
						|
    // duplicate code as needed to construct a parallel vector of bases.
 | 
						|
    // TODO: There a number of local optimizations which could be applied here
 | 
						|
    // for particular sufflevector patterns.
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */false, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  // The behavior of getelementptr instructions is the same for vector and
 | 
						|
  // non-vector data types.
 | 
						|
  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
    auto *BDV =
 | 
						|
        findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
 | 
						|
    Cache[GEP] = BDV;
 | 
						|
    return BDV;
 | 
						|
  }
 | 
						|
 | 
						|
  // The behavior of freeze instructions is the same for vector and
 | 
						|
  // non-vector data types.
 | 
						|
  if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
 | 
						|
    auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
 | 
						|
    Cache[Freeze] = BDV;
 | 
						|
    return BDV;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the pointer comes through a bitcast of a vector of pointers to
 | 
						|
  // a vector of another type of pointer, then look through the bitcast
 | 
						|
  if (auto *BC = dyn_cast<BitCastInst>(I)) {
 | 
						|
    auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases);
 | 
						|
    Cache[BC] = BDV;
 | 
						|
    return BDV;
 | 
						|
  }
 | 
						|
 | 
						|
  // We assume that functions in the source language only return base
 | 
						|
  // pointers.  This should probably be generalized via attributes to support
 | 
						|
  // both source language and internal functions.
 | 
						|
  if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  // A PHI or Select is a base defining value.  The outer findBasePointer
 | 
						|
  // algorithm is responsible for constructing a base value for this BDV.
 | 
						|
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
 | 
						|
         "unknown vector instruction - no base found for vector element");
 | 
						|
  Cache[I] = I;
 | 
						|
  setKnownBase(I, /* IsKnownBase */false, KnownBases);
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function for findBasePointer - Will return a value which either a)
 | 
						|
/// defines the base pointer for the input, b) blocks the simple search
 | 
						|
/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
 | 
						|
/// from pointer to vector type or back.
 | 
						|
static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
 | 
						|
                                    IsKnownBaseMapTy &KnownBases) {
 | 
						|
  assert(I->getType()->isPtrOrPtrVectorTy() &&
 | 
						|
         "Illegal to ask for the base pointer of a non-pointer type");
 | 
						|
  auto Cached = Cache.find(I);
 | 
						|
  if (Cached != Cache.end())
 | 
						|
    return Cached->second;
 | 
						|
 | 
						|
  if (I->getType()->isVectorTy())
 | 
						|
    return findBaseDefiningValueOfVector(I, Cache, KnownBases);
 | 
						|
 | 
						|
  if (isa<Argument>(I)) {
 | 
						|
    // An incoming argument to the function is a base pointer
 | 
						|
    // We should have never reached here if this argument isn't an gc value
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<Constant>(I)) {
 | 
						|
    // We assume that objects with a constant base (e.g. a global) can't move
 | 
						|
    // and don't need to be reported to the collector because they are always
 | 
						|
    // live. Besides global references, all kinds of constants (e.g. undef,
 | 
						|
    // constant expressions, null pointers) can be introduced by the inliner or
 | 
						|
    // the optimizer, especially on dynamically dead paths.
 | 
						|
    // Here we treat all of them as having single null base. By doing this we
 | 
						|
    // trying to avoid problems reporting various conflicts in a form of
 | 
						|
    // "phi (const1, const2)" or "phi (const, regular gc ptr)".
 | 
						|
    // See constant.ll file for relevant test cases.
 | 
						|
 | 
						|
    auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType()));
 | 
						|
    Cache[I] = CPN;
 | 
						|
    setKnownBase(CPN, /* IsKnownBase */true, KnownBases);
 | 
						|
    return CPN;
 | 
						|
  }
 | 
						|
 | 
						|
  // inttoptrs in an integral address space are currently ill-defined.  We
 | 
						|
  // treat them as defining base pointers here for consistency with the
 | 
						|
  // constant rule above and because we don't really have a better semantic
 | 
						|
  // to give them.  Note that the optimizer is always free to insert undefined
 | 
						|
  // behavior on dynamically dead paths as well.
 | 
						|
  if (isa<IntToPtrInst>(I)) {
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
    Value *Def = CI->stripPointerCasts();
 | 
						|
    // If stripping pointer casts changes the address space there is an
 | 
						|
    // addrspacecast in between.
 | 
						|
    assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
 | 
						|
               cast<PointerType>(CI->getType())->getAddressSpace() &&
 | 
						|
           "unsupported addrspacecast");
 | 
						|
    // If we find a cast instruction here, it means we've found a cast which is
 | 
						|
    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
 | 
						|
    // handle int->ptr conversion.
 | 
						|
    assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
 | 
						|
    auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases);
 | 
						|
    Cache[CI] = BDV;
 | 
						|
    return BDV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<LoadInst>(I)) {
 | 
						|
    // The value loaded is an gc base itself
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
    // The base of this GEP is the base
 | 
						|
    auto *BDV =
 | 
						|
        findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
 | 
						|
    Cache[GEP] = BDV;
 | 
						|
    return BDV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
 | 
						|
    auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
 | 
						|
    Cache[Freeze] = BDV;
 | 
						|
    return BDV;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default:
 | 
						|
      // fall through to general call handling
 | 
						|
      break;
 | 
						|
    case Intrinsic::experimental_gc_statepoint:
 | 
						|
      llvm_unreachable("statepoints don't produce pointers");
 | 
						|
    case Intrinsic::experimental_gc_relocate:
 | 
						|
      // Rerunning safepoint insertion after safepoints are already
 | 
						|
      // inserted is not supported.  It could probably be made to work,
 | 
						|
      // but why are you doing this?  There's no good reason.
 | 
						|
      llvm_unreachable("repeat safepoint insertion is not supported");
 | 
						|
    case Intrinsic::gcroot:
 | 
						|
      // Currently, this mechanism hasn't been extended to work with gcroot.
 | 
						|
      // There's no reason it couldn't be, but I haven't thought about the
 | 
						|
      // implications much.
 | 
						|
      llvm_unreachable(
 | 
						|
          "interaction with the gcroot mechanism is not supported");
 | 
						|
    case Intrinsic::experimental_gc_get_pointer_base:
 | 
						|
      auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases);
 | 
						|
      Cache[II] = BDV;
 | 
						|
      return BDV;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // We assume that functions in the source language only return base
 | 
						|
  // pointers.  This should probably be generalized via attributes to support
 | 
						|
  // both source language and internal functions.
 | 
						|
  if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: I have absolutely no idea how to implement this part yet.  It's not
 | 
						|
  // necessarily hard, I just haven't really looked at it yet.
 | 
						|
  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
 | 
						|
 | 
						|
  if (isa<AtomicCmpXchgInst>(I)) {
 | 
						|
    // A CAS is effectively a atomic store and load combined under a
 | 
						|
    // predicate.  From the perspective of base pointers, we just treat it
 | 
						|
    // like a load.
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
 | 
						|
                                   "binary ops which don't apply to pointers");
 | 
						|
 | 
						|
  // The aggregate ops.  Aggregates can either be in the heap or on the
 | 
						|
  // stack, but in either case, this is simply a field load.  As a result,
 | 
						|
  // this is a defining definition of the base just like a load is.
 | 
						|
  if (isa<ExtractValueInst>(I)) {
 | 
						|
    Cache[I] = I;
 | 
						|
    setKnownBase(I, /* IsKnownBase */true, KnownBases);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  // We should never see an insert vector since that would require we be
 | 
						|
  // tracing back a struct value not a pointer value.
 | 
						|
  assert(!isa<InsertValueInst>(I) &&
 | 
						|
         "Base pointer for a struct is meaningless");
 | 
						|
 | 
						|
  // This value might have been generated by findBasePointer() called when
 | 
						|
  // substituting gc.get.pointer.base() intrinsic.
 | 
						|
  bool IsKnownBase =
 | 
						|
      isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
 | 
						|
  setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases);
 | 
						|
  Cache[I] = I;
 | 
						|
 | 
						|
  // An extractelement produces a base result exactly when it's input does.
 | 
						|
  // We may need to insert a parallel instruction to extract the appropriate
 | 
						|
  // element out of the base vector corresponding to the input. Given this,
 | 
						|
  // it's analogous to the phi and select case even though it's not a merge.
 | 
						|
  if (isa<ExtractElementInst>(I))
 | 
						|
    // Note: There a lot of obvious peephole cases here.  This are deliberately
 | 
						|
    // handled after the main base pointer inference algorithm to make writing
 | 
						|
    // test cases to exercise that code easier.
 | 
						|
    return I;
 | 
						|
 | 
						|
  // The last two cases here don't return a base pointer.  Instead, they
 | 
						|
  // return a value which dynamically selects from among several base
 | 
						|
  // derived pointers (each with it's own base potentially).  It's the job of
 | 
						|
  // the caller to resolve these.
 | 
						|
  assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
 | 
						|
         "missing instruction case in findBaseDefiningValue");
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the base defining value for this value.
 | 
						|
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache,
 | 
						|
                                          IsKnownBaseMapTy &KnownBases) {
 | 
						|
  if (Cache.find(I) == Cache.end()) {
 | 
						|
    auto *BDV = findBaseDefiningValue(I, Cache, KnownBases);
 | 
						|
    Cache[I] = BDV;
 | 
						|
    LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
 | 
						|
                      << Cache[I]->getName() << ", is known base = "
 | 
						|
                      << KnownBases[I] << "\n");
 | 
						|
  }
 | 
						|
  assert(Cache[I] != nullptr);
 | 
						|
  assert(KnownBases.find(Cache[I]) != KnownBases.end() &&
 | 
						|
         "Cached value must be present in known bases map");
 | 
						|
  return Cache[I];
 | 
						|
}
 | 
						|
 | 
						|
/// Return a base pointer for this value if known.  Otherwise, return it's
 | 
						|
/// base defining value.
 | 
						|
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache,
 | 
						|
                            IsKnownBaseMapTy &KnownBases) {
 | 
						|
  Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases);
 | 
						|
  auto Found = Cache.find(Def);
 | 
						|
  if (Found != Cache.end()) {
 | 
						|
    // Either a base-of relation, or a self reference.  Caller must check.
 | 
						|
    return Found->second;
 | 
						|
  }
 | 
						|
  // Only a BDV available
 | 
						|
  return Def;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// This value is a base pointer that is not generated by RS4GC, i.e. it already
 | 
						|
/// exists in the code.
 | 
						|
static bool isOriginalBaseResult(Value *V) {
 | 
						|
  // no recursion possible
 | 
						|
  return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
 | 
						|
         !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
 | 
						|
         !isa<ShuffleVectorInst>(V);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) {
 | 
						|
  auto It = KnownBases.find(V);
 | 
						|
  assert(It != KnownBases.end() && "Value not present in the map");
 | 
						|
  return It->second;
 | 
						|
}
 | 
						|
 | 
						|
static void setKnownBase(Value *V, bool IsKnownBase,
 | 
						|
                         IsKnownBaseMapTy &KnownBases) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  auto It = KnownBases.find(V);
 | 
						|
  if (It != KnownBases.end())
 | 
						|
    assert(It->second == IsKnownBase && "Changing already present value");
 | 
						|
#endif
 | 
						|
  KnownBases[V] = IsKnownBase;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if First and Second values are both scalar or both vector.
 | 
						|
static bool areBothVectorOrScalar(Value *First, Value *Second) {
 | 
						|
  return isa<VectorType>(First->getType()) ==
 | 
						|
         isa<VectorType>(Second->getType());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Models the state of a single base defining value in the findBasePointer
 | 
						|
/// algorithm for determining where a new instruction is needed to propagate
 | 
						|
/// the base of this BDV.
 | 
						|
class BDVState {
 | 
						|
public:
 | 
						|
  enum StatusTy {
 | 
						|
     // Starting state of lattice
 | 
						|
     Unknown,
 | 
						|
     // Some specific base value -- does *not* mean that instruction
 | 
						|
     // propagates the base of the object
 | 
						|
     // ex: gep %arg, 16 -> %arg is the base value
 | 
						|
     Base,
 | 
						|
     // Need to insert a node to represent a merge.
 | 
						|
     Conflict
 | 
						|
  };
 | 
						|
 | 
						|
  BDVState() {
 | 
						|
    llvm_unreachable("missing state in map");
 | 
						|
  }
 | 
						|
 | 
						|
  explicit BDVState(Value *OriginalValue)
 | 
						|
    : OriginalValue(OriginalValue) {}
 | 
						|
  explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
 | 
						|
    : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
 | 
						|
    assert(Status != Base || BaseValue);
 | 
						|
  }
 | 
						|
 | 
						|
  StatusTy getStatus() const { return Status; }
 | 
						|
  Value *getOriginalValue() const { return OriginalValue; }
 | 
						|
  Value *getBaseValue() const { return BaseValue; }
 | 
						|
 | 
						|
  bool isBase() const { return getStatus() == Base; }
 | 
						|
  bool isUnknown() const { return getStatus() == Unknown; }
 | 
						|
  bool isConflict() const { return getStatus() == Conflict; }
 | 
						|
 | 
						|
  // Values of type BDVState form a lattice, and this function implements the
 | 
						|
  // meet
 | 
						|
  // operation.
 | 
						|
  void meet(const BDVState &Other) {
 | 
						|
    auto markConflict = [&]() {
 | 
						|
      Status = BDVState::Conflict;
 | 
						|
      BaseValue = nullptr;
 | 
						|
    };
 | 
						|
    // Conflict is a final state.
 | 
						|
    if (isConflict())
 | 
						|
      return;
 | 
						|
    // if we are not known - just take other state.
 | 
						|
    if (isUnknown()) {
 | 
						|
      Status = Other.getStatus();
 | 
						|
      BaseValue = Other.getBaseValue();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // We are base.
 | 
						|
    assert(isBase() && "Unknown state");
 | 
						|
    // If other is unknown - just keep our state.
 | 
						|
    if (Other.isUnknown())
 | 
						|
      return;
 | 
						|
    // If other is conflict - it is a final state.
 | 
						|
    if (Other.isConflict())
 | 
						|
      return markConflict();
 | 
						|
    // Other is base as well.
 | 
						|
    assert(Other.isBase() && "Unknown state");
 | 
						|
    // If bases are different - Conflict.
 | 
						|
    if (getBaseValue() != Other.getBaseValue())
 | 
						|
      return markConflict();
 | 
						|
    // We are identical, do nothing.
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const BDVState &Other) const {
 | 
						|
    return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
 | 
						|
      Status == Other.Status;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const BDVState &other) const { return !(*this == other); }
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD
 | 
						|
  void dump() const {
 | 
						|
    print(dbgs());
 | 
						|
    dbgs() << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const {
 | 
						|
    switch (getStatus()) {
 | 
						|
    case Unknown:
 | 
						|
      OS << "U";
 | 
						|
      break;
 | 
						|
    case Base:
 | 
						|
      OS << "B";
 | 
						|
      break;
 | 
						|
    case Conflict:
 | 
						|
      OS << "C";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    OS << " (base " << getBaseValue() << " - "
 | 
						|
       << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
 | 
						|
       << " for  "  << OriginalValue->getName() << ":";
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  AssertingVH<Value> OriginalValue; // instruction this state corresponds to
 | 
						|
  StatusTy Status = Unknown;
 | 
						|
  AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
 | 
						|
  State.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// For a given value or instruction, figure out what base ptr its derived from.
 | 
						|
/// For gc objects, this is simply itself.  On success, returns a value which is
 | 
						|
/// the base pointer.  (This is reliable and can be used for relocation.)  On
 | 
						|
/// failure, returns nullptr.
 | 
						|
static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache,
 | 
						|
                              IsKnownBaseMapTy &KnownBases) {
 | 
						|
  Value *Def = findBaseOrBDV(I, Cache, KnownBases);
 | 
						|
 | 
						|
  if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I))
 | 
						|
    return Def;
 | 
						|
 | 
						|
  // Here's the rough algorithm:
 | 
						|
  // - For every SSA value, construct a mapping to either an actual base
 | 
						|
  //   pointer or a PHI which obscures the base pointer.
 | 
						|
  // - Construct a mapping from PHI to unknown TOP state.  Use an
 | 
						|
  //   optimistic algorithm to propagate base pointer information.  Lattice
 | 
						|
  //   looks like:
 | 
						|
  //   UNKNOWN
 | 
						|
  //   b1 b2 b3 b4
 | 
						|
  //   CONFLICT
 | 
						|
  //   When algorithm terminates, all PHIs will either have a single concrete
 | 
						|
  //   base or be in a conflict state.
 | 
						|
  // - For every conflict, insert a dummy PHI node without arguments.  Add
 | 
						|
  //   these to the base[Instruction] = BasePtr mapping.  For every
 | 
						|
  //   non-conflict, add the actual base.
 | 
						|
  //  - For every conflict, add arguments for the base[a] of each input
 | 
						|
  //   arguments.
 | 
						|
  //
 | 
						|
  // Note: A simpler form of this would be to add the conflict form of all
 | 
						|
  // PHIs without running the optimistic algorithm.  This would be
 | 
						|
  // analogous to pessimistic data flow and would likely lead to an
 | 
						|
  // overall worse solution.
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  auto isExpectedBDVType = [](Value *BDV) {
 | 
						|
    return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
 | 
						|
           isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
 | 
						|
           isa<ShuffleVectorInst>(BDV);
 | 
						|
  };
 | 
						|
#endif
 | 
						|
 | 
						|
  // Once populated, will contain a mapping from each potentially non-base BDV
 | 
						|
  // to a lattice value (described above) which corresponds to that BDV.
 | 
						|
  // We use the order of insertion (DFS over the def/use graph) to provide a
 | 
						|
  // stable deterministic ordering for visiting DenseMaps (which are unordered)
 | 
						|
  // below.  This is important for deterministic compilation.
 | 
						|
  MapVector<Value *, BDVState> States;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  auto VerifyStates = [&]() {
 | 
						|
    for (auto &Entry : States) {
 | 
						|
      assert(Entry.first == Entry.second.getOriginalValue());
 | 
						|
    }
 | 
						|
  };
 | 
						|
#endif
 | 
						|
 | 
						|
  auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
 | 
						|
      for (Value *InVal : PN->incoming_values())
 | 
						|
        F(InVal);
 | 
						|
    } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
 | 
						|
      F(SI->getTrueValue());
 | 
						|
      F(SI->getFalseValue());
 | 
						|
    } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
 | 
						|
      F(EE->getVectorOperand());
 | 
						|
    } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
 | 
						|
      F(IE->getOperand(0));
 | 
						|
      F(IE->getOperand(1));
 | 
						|
    } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
 | 
						|
      // For a canonical broadcast, ignore the undef argument
 | 
						|
      // (without this, we insert a parallel base shuffle for every broadcast)
 | 
						|
      F(SV->getOperand(0));
 | 
						|
      if (!SV->isZeroEltSplat())
 | 
						|
        F(SV->getOperand(1));
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("unexpected BDV type");
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  // Recursively fill in all base defining values reachable from the initial
 | 
						|
  // one for which we don't already know a definite base value for
 | 
						|
  /* scope */ {
 | 
						|
    SmallVector<Value*, 16> Worklist;
 | 
						|
    Worklist.push_back(Def);
 | 
						|
    States.insert({Def, BDVState(Def)});
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      Value *Current = Worklist.pop_back_val();
 | 
						|
      assert(!isOriginalBaseResult(Current) && "why did it get added?");
 | 
						|
 | 
						|
      auto visitIncomingValue = [&](Value *InVal) {
 | 
						|
        Value *Base = findBaseOrBDV(InVal, Cache, KnownBases);
 | 
						|
        if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal))
 | 
						|
          // Known bases won't need new instructions introduced and can be
 | 
						|
          // ignored safely. However, this can only be done when InVal and Base
 | 
						|
          // are both scalar or both vector. Otherwise, we need to find a
 | 
						|
          // correct BDV for InVal, by creating an entry in the lattice
 | 
						|
          // (States).
 | 
						|
          return;
 | 
						|
        assert(isExpectedBDVType(Base) && "the only non-base values "
 | 
						|
               "we see should be base defining values");
 | 
						|
        if (States.insert(std::make_pair(Base, BDVState(Base))).second)
 | 
						|
          Worklist.push_back(Base);
 | 
						|
      };
 | 
						|
 | 
						|
      visitBDVOperands(Current, visitIncomingValue);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifyStates();
 | 
						|
  LLVM_DEBUG(dbgs() << "States after initialization:\n");
 | 
						|
  for (const auto &Pair : States) {
 | 
						|
    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Iterate forward through the value graph pruning any node from the state
 | 
						|
  // list where all of the inputs are base pointers.  The purpose of this is to
 | 
						|
  // reuse existing values when the derived pointer we were asked to materialize
 | 
						|
  // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
 | 
						|
  // feeding it does.)
 | 
						|
  SmallVector<Value *> ToRemove;
 | 
						|
  do {
 | 
						|
    ToRemove.clear();
 | 
						|
    for (auto Pair : States) {
 | 
						|
      Value *BDV = Pair.first;
 | 
						|
      auto canPruneInput = [&](Value *V) {
 | 
						|
        // If the input of the BDV is the BDV itself we can prune it. This is
 | 
						|
        // only possible if the BDV is a PHI node.
 | 
						|
        if (V->stripPointerCasts() == BDV)
 | 
						|
          return true;
 | 
						|
        Value *VBDV = findBaseOrBDV(V, Cache, KnownBases);
 | 
						|
        if (V->stripPointerCasts() != VBDV)
 | 
						|
          return false;
 | 
						|
        // The assumption is that anything not in the state list is
 | 
						|
        // propagates a base pointer.
 | 
						|
        return States.count(VBDV) == 0;
 | 
						|
      };
 | 
						|
 | 
						|
      bool CanPrune = true;
 | 
						|
      visitBDVOperands(BDV, [&](Value *Op) {
 | 
						|
        CanPrune = CanPrune && canPruneInput(Op);
 | 
						|
      });
 | 
						|
      if (CanPrune)
 | 
						|
        ToRemove.push_back(BDV);
 | 
						|
    }
 | 
						|
    for (Value *V : ToRemove) {
 | 
						|
      States.erase(V);
 | 
						|
      // Cache the fact V is it's own base for later usage.
 | 
						|
      Cache[V] = V;
 | 
						|
    }
 | 
						|
  } while (!ToRemove.empty());
 | 
						|
 | 
						|
  // Did we manage to prove that Def itself must be a base pointer?
 | 
						|
  if (!States.count(Def))
 | 
						|
    return Def;
 | 
						|
 | 
						|
  // Return a phi state for a base defining value.  We'll generate a new
 | 
						|
  // base state for known bases and expect to find a cached state otherwise.
 | 
						|
  auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
 | 
						|
    auto I = States.find(BaseValue);
 | 
						|
    if (I != States.end())
 | 
						|
      return I->second;
 | 
						|
    assert(areBothVectorOrScalar(BaseValue, Input));
 | 
						|
    return BDVState(BaseValue, BDVState::Base, BaseValue);
 | 
						|
  };
 | 
						|
 | 
						|
  bool Progress = true;
 | 
						|
  while (Progress) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    const size_t OldSize = States.size();
 | 
						|
#endif
 | 
						|
    Progress = false;
 | 
						|
    // We're only changing values in this loop, thus safe to keep iterators.
 | 
						|
    // Since this is computing a fixed point, the order of visit does not
 | 
						|
    // effect the result.  TODO: We could use a worklist here and make this run
 | 
						|
    // much faster.
 | 
						|
    for (auto Pair : States) {
 | 
						|
      Value *BDV = Pair.first;
 | 
						|
      // Only values that do not have known bases or those that have differing
 | 
						|
      // type (scalar versus vector) from a possible known base should be in the
 | 
						|
      // lattice.
 | 
						|
      assert((!isKnownBase(BDV, KnownBases) ||
 | 
						|
             !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
 | 
						|
                 "why did it get added?");
 | 
						|
 | 
						|
      BDVState NewState(BDV);
 | 
						|
      visitBDVOperands(BDV, [&](Value *Op) {
 | 
						|
        Value *BDV = findBaseOrBDV(Op, Cache, KnownBases);
 | 
						|
        auto OpState = GetStateForBDV(BDV, Op);
 | 
						|
        NewState.meet(OpState);
 | 
						|
      });
 | 
						|
 | 
						|
      BDVState OldState = States[BDV];
 | 
						|
      if (OldState != NewState) {
 | 
						|
        Progress = true;
 | 
						|
        States[BDV] = NewState;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(OldSize == States.size() &&
 | 
						|
           "fixed point shouldn't be adding any new nodes to state");
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifyStates();
 | 
						|
  LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
 | 
						|
  for (const auto &Pair : States) {
 | 
						|
    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Handle all instructions that have a vector BDV, but the instruction itself
 | 
						|
  // is of scalar type.
 | 
						|
  for (auto Pair : States) {
 | 
						|
    Instruction *I = cast<Instruction>(Pair.first);
 | 
						|
    BDVState State = Pair.second;
 | 
						|
    auto *BaseValue = State.getBaseValue();
 | 
						|
    // Only values that do not have known bases or those that have differing
 | 
						|
    // type (scalar versus vector) from a possible known base should be in the
 | 
						|
    // lattice.
 | 
						|
    assert(
 | 
						|
        (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) &&
 | 
						|
        "why did it get added?");
 | 
						|
    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
 | 
						|
 | 
						|
    if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
 | 
						|
      continue;
 | 
						|
    // extractelement instructions are a bit special in that we may need to
 | 
						|
    // insert an extract even when we know an exact base for the instruction.
 | 
						|
    // The problem is that we need to convert from a vector base to a scalar
 | 
						|
    // base for the particular indice we're interested in.
 | 
						|
    if (isa<ExtractElementInst>(I)) {
 | 
						|
      auto *EE = cast<ExtractElementInst>(I);
 | 
						|
      // TODO: In many cases, the new instruction is just EE itself.  We should
 | 
						|
      // exploit this, but can't do it here since it would break the invariant
 | 
						|
      // about the BDV not being known to be a base.
 | 
						|
      auto *BaseInst = ExtractElementInst::Create(
 | 
						|
          State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
 | 
						|
      BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
 | 
						|
      States[I] = BDVState(I, BDVState::Base, BaseInst);
 | 
						|
      setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
 | 
						|
    } else if (!isa<VectorType>(I->getType())) {
 | 
						|
      // We need to handle cases that have a vector base but the instruction is
 | 
						|
      // a scalar type (these could be phis or selects or any instruction that
 | 
						|
      // are of scalar type, but the base can be a vector type).  We
 | 
						|
      // conservatively set this as conflict.  Setting the base value for these
 | 
						|
      // conflicts is handled in the next loop which traverses States.
 | 
						|
      States[I] = BDVState(I, BDVState::Conflict);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifyStates();
 | 
						|
#endif
 | 
						|
 | 
						|
  // Insert Phis for all conflicts
 | 
						|
  // TODO: adjust naming patterns to avoid this order of iteration dependency
 | 
						|
  for (auto Pair : States) {
 | 
						|
    Instruction *I = cast<Instruction>(Pair.first);
 | 
						|
    BDVState State = Pair.second;
 | 
						|
    // Only values that do not have known bases or those that have differing
 | 
						|
    // type (scalar versus vector) from a possible known base should be in the
 | 
						|
    // lattice.
 | 
						|
    assert((!isKnownBase(I, KnownBases) ||
 | 
						|
            !areBothVectorOrScalar(I, State.getBaseValue())) &&
 | 
						|
           "why did it get added?");
 | 
						|
    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
 | 
						|
 | 
						|
    // Since we're joining a vector and scalar base, they can never be the
 | 
						|
    // same.  As a result, we should always see insert element having reached
 | 
						|
    // the conflict state.
 | 
						|
    assert(!isa<InsertElementInst>(I) || State.isConflict());
 | 
						|
 | 
						|
    if (!State.isConflict())
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto getMangledName = [](Instruction *I) -> std::string {
 | 
						|
      if (isa<PHINode>(I)) {
 | 
						|
        return suffixed_name_or(I, ".base", "base_phi");
 | 
						|
      } else if (isa<SelectInst>(I)) {
 | 
						|
        return suffixed_name_or(I, ".base", "base_select");
 | 
						|
      } else if (isa<ExtractElementInst>(I)) {
 | 
						|
        return suffixed_name_or(I, ".base", "base_ee");
 | 
						|
      } else if (isa<InsertElementInst>(I)) {
 | 
						|
        return suffixed_name_or(I, ".base", "base_ie");
 | 
						|
      } else {
 | 
						|
        return suffixed_name_or(I, ".base", "base_sv");
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    Instruction *BaseInst = I->clone();
 | 
						|
    BaseInst->insertBefore(I);
 | 
						|
    BaseInst->setName(getMangledName(I));
 | 
						|
    // Add metadata marking this as a base value
 | 
						|
    BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
 | 
						|
    States[I] = BDVState(I, BDVState::Conflict, BaseInst);
 | 
						|
    setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifyStates();
 | 
						|
#endif
 | 
						|
 | 
						|
  // Returns a instruction which produces the base pointer for a given
 | 
						|
  // instruction.  The instruction is assumed to be an input to one of the BDVs
 | 
						|
  // seen in the inference algorithm above.  As such, we must either already
 | 
						|
  // know it's base defining value is a base, or have inserted a new
 | 
						|
  // instruction to propagate the base of it's BDV and have entered that newly
 | 
						|
  // introduced instruction into the state table.  In either case, we are
 | 
						|
  // assured to be able to determine an instruction which produces it's base
 | 
						|
  // pointer.
 | 
						|
  auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
 | 
						|
    Value *BDV = findBaseOrBDV(Input, Cache, KnownBases);
 | 
						|
    Value *Base = nullptr;
 | 
						|
    if (!States.count(BDV)) {
 | 
						|
      assert(areBothVectorOrScalar(BDV, Input));
 | 
						|
      Base = BDV;
 | 
						|
    } else {
 | 
						|
      // Either conflict or base.
 | 
						|
      assert(States.count(BDV));
 | 
						|
      Base = States[BDV].getBaseValue();
 | 
						|
    }
 | 
						|
    assert(Base && "Can't be null");
 | 
						|
    // The cast is needed since base traversal may strip away bitcasts
 | 
						|
    if (Base->getType() != Input->getType() && InsertPt)
 | 
						|
      Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
 | 
						|
    return Base;
 | 
						|
  };
 | 
						|
 | 
						|
  // Fixup all the inputs of the new PHIs.  Visit order needs to be
 | 
						|
  // deterministic and predictable because we're naming newly created
 | 
						|
  // instructions.
 | 
						|
  for (auto Pair : States) {
 | 
						|
    Instruction *BDV = cast<Instruction>(Pair.first);
 | 
						|
    BDVState State = Pair.second;
 | 
						|
 | 
						|
    // Only values that do not have known bases or those that have differing
 | 
						|
    // type (scalar versus vector) from a possible known base should be in the
 | 
						|
    // lattice.
 | 
						|
    assert((!isKnownBase(BDV, KnownBases) ||
 | 
						|
            !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
 | 
						|
           "why did it get added?");
 | 
						|
    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
 | 
						|
    if (!State.isConflict())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
 | 
						|
      PHINode *PN = cast<PHINode>(BDV);
 | 
						|
      const unsigned NumPHIValues = PN->getNumIncomingValues();
 | 
						|
 | 
						|
      // The IR verifier requires phi nodes with multiple entries from the
 | 
						|
      // same basic block to have the same incoming value for each of those
 | 
						|
      // entries.  Since we're inserting bitcasts in the loop, make sure we
 | 
						|
      // do so at least once per incoming block.
 | 
						|
      DenseMap<BasicBlock *, Value*> BlockToValue;
 | 
						|
      for (unsigned i = 0; i < NumPHIValues; i++) {
 | 
						|
        Value *InVal = PN->getIncomingValue(i);
 | 
						|
        BasicBlock *InBB = PN->getIncomingBlock(i);
 | 
						|
        if (!BlockToValue.count(InBB))
 | 
						|
          BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
 | 
						|
        else {
 | 
						|
#ifndef NDEBUG
 | 
						|
          Value *OldBase = BlockToValue[InBB];
 | 
						|
          Value *Base = getBaseForInput(InVal, nullptr);
 | 
						|
 | 
						|
          // We can't use `stripPointerCasts` instead of this function because
 | 
						|
          // `stripPointerCasts` doesn't handle vectors of pointers.
 | 
						|
          auto StripBitCasts = [](Value *V) -> Value * {
 | 
						|
            while (auto *BC = dyn_cast<BitCastInst>(V))
 | 
						|
              V = BC->getOperand(0);
 | 
						|
            return V;
 | 
						|
          };
 | 
						|
          // In essence this assert states: the only way two values
 | 
						|
          // incoming from the same basic block may be different is by
 | 
						|
          // being different bitcasts of the same value.  A cleanup
 | 
						|
          // that remains TODO is changing findBaseOrBDV to return an
 | 
						|
          // llvm::Value of the correct type (and still remain pure).
 | 
						|
          // This will remove the need to add bitcasts.
 | 
						|
          assert(StripBitCasts(Base) == StripBitCasts(OldBase) &&
 | 
						|
                 "findBaseOrBDV should be pure!");
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        Value *Base = BlockToValue[InBB];
 | 
						|
        BasePHI->setIncomingValue(i, Base);
 | 
						|
      }
 | 
						|
    } else if (SelectInst *BaseSI =
 | 
						|
                   dyn_cast<SelectInst>(State.getBaseValue())) {
 | 
						|
      SelectInst *SI = cast<SelectInst>(BDV);
 | 
						|
 | 
						|
      // Find the instruction which produces the base for each input.
 | 
						|
      // We may need to insert a bitcast.
 | 
						|
      BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
 | 
						|
      BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
 | 
						|
    } else if (auto *BaseEE =
 | 
						|
                   dyn_cast<ExtractElementInst>(State.getBaseValue())) {
 | 
						|
      Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
 | 
						|
      // Find the instruction which produces the base for each input.  We may
 | 
						|
      // need to insert a bitcast.
 | 
						|
      BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
 | 
						|
    } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
 | 
						|
      auto *BdvIE = cast<InsertElementInst>(BDV);
 | 
						|
      auto UpdateOperand = [&](int OperandIdx) {
 | 
						|
        Value *InVal = BdvIE->getOperand(OperandIdx);
 | 
						|
        Value *Base = getBaseForInput(InVal, BaseIE);
 | 
						|
        BaseIE->setOperand(OperandIdx, Base);
 | 
						|
      };
 | 
						|
      UpdateOperand(0); // vector operand
 | 
						|
      UpdateOperand(1); // scalar operand
 | 
						|
    } else {
 | 
						|
      auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
 | 
						|
      auto *BdvSV = cast<ShuffleVectorInst>(BDV);
 | 
						|
      auto UpdateOperand = [&](int OperandIdx) {
 | 
						|
        Value *InVal = BdvSV->getOperand(OperandIdx);
 | 
						|
        Value *Base = getBaseForInput(InVal, BaseSV);
 | 
						|
        BaseSV->setOperand(OperandIdx, Base);
 | 
						|
      };
 | 
						|
      UpdateOperand(0); // vector operand
 | 
						|
      if (!BdvSV->isZeroEltSplat())
 | 
						|
        UpdateOperand(1); // vector operand
 | 
						|
      else {
 | 
						|
        // Never read, so just use undef
 | 
						|
        Value *InVal = BdvSV->getOperand(1);
 | 
						|
        BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifyStates();
 | 
						|
#endif
 | 
						|
 | 
						|
  // Cache all of our results so we can cheaply reuse them
 | 
						|
  // NOTE: This is actually two caches: one of the base defining value
 | 
						|
  // relation and one of the base pointer relation!  FIXME
 | 
						|
  for (auto Pair : States) {
 | 
						|
    auto *BDV = Pair.first;
 | 
						|
    Value *Base = Pair.second.getBaseValue();
 | 
						|
    assert(BDV && Base);
 | 
						|
    // Only values that do not have known bases or those that have differing
 | 
						|
    // type (scalar versus vector) from a possible known base should be in the
 | 
						|
    // lattice.
 | 
						|
    assert(
 | 
						|
        (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) &&
 | 
						|
        "why did it get added?");
 | 
						|
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Updating base value cache"
 | 
						|
               << " for: " << BDV->getName() << " from: "
 | 
						|
               << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
 | 
						|
               << " to: " << Base->getName() << "\n");
 | 
						|
 | 
						|
    Cache[BDV] = Base;
 | 
						|
  }
 | 
						|
  assert(Cache.count(Def));
 | 
						|
  return Cache[Def];
 | 
						|
}
 | 
						|
 | 
						|
// For a set of live pointers (base and/or derived), identify the base
 | 
						|
// pointer of the object which they are derived from.  This routine will
 | 
						|
// mutate the IR graph as needed to make the 'base' pointer live at the
 | 
						|
// definition site of 'derived'.  This ensures that any use of 'derived' can
 | 
						|
// also use 'base'.  This may involve the insertion of a number of
 | 
						|
// additional PHI nodes.
 | 
						|
//
 | 
						|
// preconditions: live is a set of pointer type Values
 | 
						|
//
 | 
						|
// side effects: may insert PHI nodes into the existing CFG, will preserve
 | 
						|
// CFG, will not remove or mutate any existing nodes
 | 
						|
//
 | 
						|
// post condition: PointerToBase contains one (derived, base) pair for every
 | 
						|
// pointer in live.  Note that derived can be equal to base if the original
 | 
						|
// pointer was a base pointer.
 | 
						|
static void findBasePointers(const StatepointLiveSetTy &live,
 | 
						|
                             PointerToBaseTy &PointerToBase, DominatorTree *DT,
 | 
						|
                             DefiningValueMapTy &DVCache,
 | 
						|
                             IsKnownBaseMapTy &KnownBases) {
 | 
						|
  for (Value *ptr : live) {
 | 
						|
    Value *base = findBasePointer(ptr, DVCache, KnownBases);
 | 
						|
    assert(base && "failed to find base pointer");
 | 
						|
    PointerToBase[ptr] = base;
 | 
						|
    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
 | 
						|
            DT->dominates(cast<Instruction>(base)->getParent(),
 | 
						|
                          cast<Instruction>(ptr)->getParent())) &&
 | 
						|
           "The base we found better dominate the derived pointer");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Find the required based pointers (and adjust the live set) for the given
 | 
						|
/// parse point.
 | 
						|
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
 | 
						|
                             CallBase *Call,
 | 
						|
                             PartiallyConstructedSafepointRecord &result,
 | 
						|
                             PointerToBaseTy &PointerToBase,
 | 
						|
                             IsKnownBaseMapTy &KnownBases) {
 | 
						|
  StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
 | 
						|
  // We assume that all pointers passed to deopt are base pointers; as an
 | 
						|
  // optimization, we can use this to avoid seperately materializing the base
 | 
						|
  // pointer graph.  This is only relevant since we're very conservative about
 | 
						|
  // generating new conflict nodes during base pointer insertion.  If we were
 | 
						|
  // smarter there, this would be irrelevant.
 | 
						|
  if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
 | 
						|
    for (Value *V : Opt->Inputs) {
 | 
						|
      if (!PotentiallyDerivedPointers.count(V))
 | 
						|
        continue;
 | 
						|
      PotentiallyDerivedPointers.remove(V);
 | 
						|
      PointerToBase[V] = V;
 | 
						|
    }
 | 
						|
  findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache,
 | 
						|
                   KnownBases);
 | 
						|
}
 | 
						|
 | 
						|
/// Given an updated version of the dataflow liveness results, update the
 | 
						|
/// liveset and base pointer maps for the call site CS.
 | 
						|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | 
						|
                                  CallBase *Call,
 | 
						|
                                  PartiallyConstructedSafepointRecord &result,
 | 
						|
                                  PointerToBaseTy &PointerToBase);
 | 
						|
 | 
						|
static void recomputeLiveInValues(
 | 
						|
    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
 | 
						|
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
 | 
						|
    PointerToBaseTy &PointerToBase) {
 | 
						|
  // TODO-PERF: reuse the original liveness, then simply run the dataflow
 | 
						|
  // again.  The old values are still live and will help it stabilize quickly.
 | 
						|
  GCPtrLivenessData RevisedLivenessData;
 | 
						|
  computeLiveInValues(DT, F, RevisedLivenessData);
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info,
 | 
						|
                          PointerToBase);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// When inserting gc.relocate and gc.result calls, we need to ensure there are
 | 
						|
// no uses of the original value / return value between the gc.statepoint and
 | 
						|
// the gc.relocate / gc.result call.  One case which can arise is a phi node
 | 
						|
// starting one of the successor blocks.  We also need to be able to insert the
 | 
						|
// gc.relocates only on the path which goes through the statepoint.  We might
 | 
						|
// need to split an edge to make this possible.
 | 
						|
static BasicBlock *
 | 
						|
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
 | 
						|
                            DominatorTree &DT) {
 | 
						|
  BasicBlock *Ret = BB;
 | 
						|
  if (!BB->getUniquePredecessor())
 | 
						|
    Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
 | 
						|
 | 
						|
  // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
 | 
						|
  // from it
 | 
						|
  FoldSingleEntryPHINodes(Ret);
 | 
						|
  assert(!isa<PHINode>(Ret->begin()) &&
 | 
						|
         "All PHI nodes should have been removed!");
 | 
						|
 | 
						|
  // At this point, we can safely insert a gc.relocate or gc.result as the first
 | 
						|
  // instruction in Ret if needed.
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
// List of all function attributes which must be stripped when lowering from
 | 
						|
// abstract machine model to physical machine model.  Essentially, these are
 | 
						|
// all the effects a safepoint might have which we ignored in the abstract
 | 
						|
// machine model for purposes of optimization.  We have to strip these on
 | 
						|
// both function declarations and call sites.
 | 
						|
static constexpr Attribute::AttrKind FnAttrsToStrip[] =
 | 
						|
  {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
 | 
						|
   Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly,
 | 
						|
   Attribute::InaccessibleMemOrArgMemOnly,
 | 
						|
   Attribute::NoSync, Attribute::NoFree};
 | 
						|
 | 
						|
// Create new attribute set containing only attributes which can be transferred
 | 
						|
// from original call to the safepoint.
 | 
						|
static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
 | 
						|
                                            AttributeList OrigAL,
 | 
						|
                                            AttributeList StatepointAL) {
 | 
						|
  if (OrigAL.isEmpty())
 | 
						|
    return StatepointAL;
 | 
						|
 | 
						|
  // Remove the readonly, readnone, and statepoint function attributes.
 | 
						|
  AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs());
 | 
						|
  for (auto Attr : FnAttrsToStrip)
 | 
						|
    FnAttrs.removeAttribute(Attr);
 | 
						|
 | 
						|
  for (Attribute A : OrigAL.getFnAttrs()) {
 | 
						|
    if (isStatepointDirectiveAttr(A))
 | 
						|
      FnAttrs.removeAttribute(A);
 | 
						|
  }
 | 
						|
 | 
						|
  // Just skip parameter and return attributes for now
 | 
						|
  return StatepointAL.addFnAttributes(Ctx, FnAttrs);
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to place all gc relocates necessary for the given
 | 
						|
/// statepoint.
 | 
						|
/// Inputs:
 | 
						|
///   liveVariables - list of variables to be relocated.
 | 
						|
///   basePtrs - base pointers.
 | 
						|
///   statepointToken - statepoint instruction to which relocates should be
 | 
						|
///   bound.
 | 
						|
///   Builder - Llvm IR builder to be used to construct new calls.
 | 
						|
static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
 | 
						|
                              ArrayRef<Value *> BasePtrs,
 | 
						|
                              Instruction *StatepointToken,
 | 
						|
                              IRBuilder<> &Builder) {
 | 
						|
  if (LiveVariables.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
 | 
						|
    auto ValIt = llvm::find(LiveVec, Val);
 | 
						|
    assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
 | 
						|
    size_t Index = std::distance(LiveVec.begin(), ValIt);
 | 
						|
    assert(Index < LiveVec.size() && "Bug in std::find?");
 | 
						|
    return Index;
 | 
						|
  };
 | 
						|
  Module *M = StatepointToken->getModule();
 | 
						|
 | 
						|
  // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
 | 
						|
  // element type is i8 addrspace(1)*). We originally generated unique
 | 
						|
  // declarations for each pointer type, but this proved problematic because
 | 
						|
  // the intrinsic mangling code is incomplete and fragile.  Since we're moving
 | 
						|
  // towards a single unified pointer type anyways, we can just cast everything
 | 
						|
  // to an i8* of the right address space.  A bitcast is added later to convert
 | 
						|
  // gc_relocate to the actual value's type.
 | 
						|
  auto getGCRelocateDecl = [&] (Type *Ty) {
 | 
						|
    assert(isHandledGCPointerType(Ty));
 | 
						|
    auto AS = Ty->getScalarType()->getPointerAddressSpace();
 | 
						|
    Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
 | 
						|
    if (auto *VT = dyn_cast<VectorType>(Ty))
 | 
						|
      NewTy = FixedVectorType::get(NewTy,
 | 
						|
                                   cast<FixedVectorType>(VT)->getNumElements());
 | 
						|
    return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
 | 
						|
                                     {NewTy});
 | 
						|
  };
 | 
						|
 | 
						|
  // Lazily populated map from input types to the canonicalized form mentioned
 | 
						|
  // in the comment above.  This should probably be cached somewhere more
 | 
						|
  // broadly.
 | 
						|
  DenseMap<Type *, Function *> TypeToDeclMap;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < LiveVariables.size(); i++) {
 | 
						|
    // Generate the gc.relocate call and save the result
 | 
						|
    Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
 | 
						|
    Value *LiveIdx = Builder.getInt32(i);
 | 
						|
 | 
						|
    Type *Ty = LiveVariables[i]->getType();
 | 
						|
    if (!TypeToDeclMap.count(Ty))
 | 
						|
      TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
 | 
						|
    Function *GCRelocateDecl = TypeToDeclMap[Ty];
 | 
						|
 | 
						|
    // only specify a debug name if we can give a useful one
 | 
						|
    CallInst *Reloc = Builder.CreateCall(
 | 
						|
        GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
 | 
						|
        suffixed_name_or(LiveVariables[i], ".relocated", ""));
 | 
						|
    // Trick CodeGen into thinking there are lots of free registers at this
 | 
						|
    // fake call.
 | 
						|
    Reloc->setCallingConv(CallingConv::Cold);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
 | 
						|
/// avoids having to worry about keeping around dangling pointers to Values.
 | 
						|
class DeferredReplacement {
 | 
						|
  AssertingVH<Instruction> Old;
 | 
						|
  AssertingVH<Instruction> New;
 | 
						|
  bool IsDeoptimize = false;
 | 
						|
 | 
						|
  DeferredReplacement() = default;
 | 
						|
 | 
						|
public:
 | 
						|
  static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
 | 
						|
    assert(Old != New && Old && New &&
 | 
						|
           "Cannot RAUW equal values or to / from null!");
 | 
						|
 | 
						|
    DeferredReplacement D;
 | 
						|
    D.Old = Old;
 | 
						|
    D.New = New;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  static DeferredReplacement createDelete(Instruction *ToErase) {
 | 
						|
    DeferredReplacement D;
 | 
						|
    D.Old = ToErase;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    auto *F = cast<CallInst>(Old)->getCalledFunction();
 | 
						|
    assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
 | 
						|
           "Only way to construct a deoptimize deferred replacement");
 | 
						|
#endif
 | 
						|
    DeferredReplacement D;
 | 
						|
    D.Old = Old;
 | 
						|
    D.IsDeoptimize = true;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Does the task represented by this instance.
 | 
						|
  void doReplacement() {
 | 
						|
    Instruction *OldI = Old;
 | 
						|
    Instruction *NewI = New;
 | 
						|
 | 
						|
    assert(OldI != NewI && "Disallowed at construction?!");
 | 
						|
    assert((!IsDeoptimize || !New) &&
 | 
						|
           "Deoptimize intrinsics are not replaced!");
 | 
						|
 | 
						|
    Old = nullptr;
 | 
						|
    New = nullptr;
 | 
						|
 | 
						|
    if (NewI)
 | 
						|
      OldI->replaceAllUsesWith(NewI);
 | 
						|
 | 
						|
    if (IsDeoptimize) {
 | 
						|
      // Note: we've inserted instructions, so the call to llvm.deoptimize may
 | 
						|
      // not necessarily be followed by the matching return.
 | 
						|
      auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
 | 
						|
      new UnreachableInst(RI->getContext(), RI);
 | 
						|
      RI->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    OldI->eraseFromParent();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static StringRef getDeoptLowering(CallBase *Call) {
 | 
						|
  const char *DeoptLowering = "deopt-lowering";
 | 
						|
  if (Call->hasFnAttr(DeoptLowering)) {
 | 
						|
    // FIXME: Calls have a *really* confusing interface around attributes
 | 
						|
    // with values.
 | 
						|
    const AttributeList &CSAS = Call->getAttributes();
 | 
						|
    if (CSAS.hasFnAttr(DeoptLowering))
 | 
						|
      return CSAS.getFnAttr(DeoptLowering).getValueAsString();
 | 
						|
    Function *F = Call->getCalledFunction();
 | 
						|
    assert(F && F->hasFnAttribute(DeoptLowering));
 | 
						|
    return F->getFnAttribute(DeoptLowering).getValueAsString();
 | 
						|
  }
 | 
						|
  return "live-through";
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
makeStatepointExplicitImpl(CallBase *Call, /* to replace */
 | 
						|
                           const SmallVectorImpl<Value *> &BasePtrs,
 | 
						|
                           const SmallVectorImpl<Value *> &LiveVariables,
 | 
						|
                           PartiallyConstructedSafepointRecord &Result,
 | 
						|
                           std::vector<DeferredReplacement> &Replacements,
 | 
						|
                           const PointerToBaseTy &PointerToBase) {
 | 
						|
  assert(BasePtrs.size() == LiveVariables.size());
 | 
						|
 | 
						|
  // Then go ahead and use the builder do actually do the inserts.  We insert
 | 
						|
  // immediately before the previous instruction under the assumption that all
 | 
						|
  // arguments will be available here.  We can't insert afterwards since we may
 | 
						|
  // be replacing a terminator.
 | 
						|
  IRBuilder<> Builder(Call);
 | 
						|
 | 
						|
  ArrayRef<Value *> GCArgs(LiveVariables);
 | 
						|
  uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
 | 
						|
  uint32_t NumPatchBytes = 0;
 | 
						|
  uint32_t Flags = uint32_t(StatepointFlags::None);
 | 
						|
 | 
						|
  SmallVector<Value *, 8> CallArgs(Call->args());
 | 
						|
  Optional<ArrayRef<Use>> DeoptArgs;
 | 
						|
  if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
 | 
						|
    DeoptArgs = Bundle->Inputs;
 | 
						|
  Optional<ArrayRef<Use>> TransitionArgs;
 | 
						|
  if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
 | 
						|
    TransitionArgs = Bundle->Inputs;
 | 
						|
    // TODO: This flag no longer serves a purpose and can be removed later
 | 
						|
    Flags |= uint32_t(StatepointFlags::GCTransition);
 | 
						|
  }
 | 
						|
 | 
						|
  // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
 | 
						|
  // with a return value, we lower then as never returning calls to
 | 
						|
  // __llvm_deoptimize that are followed by unreachable to get better codegen.
 | 
						|
  bool IsDeoptimize = false;
 | 
						|
 | 
						|
  StatepointDirectives SD =
 | 
						|
      parseStatepointDirectivesFromAttrs(Call->getAttributes());
 | 
						|
  if (SD.NumPatchBytes)
 | 
						|
    NumPatchBytes = *SD.NumPatchBytes;
 | 
						|
  if (SD.StatepointID)
 | 
						|
    StatepointID = *SD.StatepointID;
 | 
						|
 | 
						|
  // Pass through the requested lowering if any.  The default is live-through.
 | 
						|
  StringRef DeoptLowering = getDeoptLowering(Call);
 | 
						|
  if (DeoptLowering.equals("live-in"))
 | 
						|
    Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
 | 
						|
  else {
 | 
						|
    assert(DeoptLowering.equals("live-through") && "Unsupported value!");
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand());
 | 
						|
  if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) {
 | 
						|
    auto IID = F->getIntrinsicID();
 | 
						|
    if (IID == Intrinsic::experimental_deoptimize) {
 | 
						|
      // Calls to llvm.experimental.deoptimize are lowered to calls to the
 | 
						|
      // __llvm_deoptimize symbol.  We want to resolve this now, since the
 | 
						|
      // verifier does not allow taking the address of an intrinsic function.
 | 
						|
 | 
						|
      SmallVector<Type *, 8> DomainTy;
 | 
						|
      for (Value *Arg : CallArgs)
 | 
						|
        DomainTy.push_back(Arg->getType());
 | 
						|
      auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
 | 
						|
                                    /* isVarArg = */ false);
 | 
						|
 | 
						|
      // Note: CallTarget can be a bitcast instruction of a symbol if there are
 | 
						|
      // calls to @llvm.experimental.deoptimize with different argument types in
 | 
						|
      // the same module.  This is fine -- we assume the frontend knew what it
 | 
						|
      // was doing when generating this kind of IR.
 | 
						|
      CallTarget = F->getParent()
 | 
						|
                       ->getOrInsertFunction("__llvm_deoptimize", FTy);
 | 
						|
 | 
						|
      IsDeoptimize = true;
 | 
						|
    } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
 | 
						|
               IID == Intrinsic::memmove_element_unordered_atomic) {
 | 
						|
      // Unordered atomic memcpy and memmove intrinsics which are not explicitly
 | 
						|
      // marked as "gc-leaf-function" should be lowered in a GC parseable way.
 | 
						|
      // Specifically, these calls should be lowered to the
 | 
						|
      // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
 | 
						|
      // Similarly to __llvm_deoptimize we want to resolve this now, since the
 | 
						|
      // verifier does not allow taking the address of an intrinsic function.
 | 
						|
      //
 | 
						|
      // Moreover we need to shuffle the arguments for the call in order to
 | 
						|
      // accommodate GC. The underlying source and destination objects might be
 | 
						|
      // relocated during copy operation should the GC occur. To relocate the
 | 
						|
      // derived source and destination pointers the implementation of the
 | 
						|
      // intrinsic should know the corresponding base pointers.
 | 
						|
      //
 | 
						|
      // To make the base pointers available pass them explicitly as arguments:
 | 
						|
      //   memcpy(dest_derived, source_derived, ...) =>
 | 
						|
      //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
 | 
						|
      auto &Context = Call->getContext();
 | 
						|
      auto &DL = Call->getModule()->getDataLayout();
 | 
						|
      auto GetBaseAndOffset = [&](Value *Derived) {
 | 
						|
        Value *Base = nullptr;
 | 
						|
        // Optimizations in unreachable code might substitute the real pointer
 | 
						|
        // with undef, poison or null-derived constant. Return null base for
 | 
						|
        // them to be consistent with the handling in the main algorithm in
 | 
						|
        // findBaseDefiningValue.
 | 
						|
        if (isa<Constant>(Derived))
 | 
						|
          Base =
 | 
						|
              ConstantPointerNull::get(cast<PointerType>(Derived->getType()));
 | 
						|
        else {
 | 
						|
          assert(PointerToBase.count(Derived));
 | 
						|
          Base = PointerToBase.find(Derived)->second;
 | 
						|
        }
 | 
						|
        unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
 | 
						|
        unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
 | 
						|
        Value *Base_int = Builder.CreatePtrToInt(
 | 
						|
            Base, Type::getIntNTy(Context, IntPtrSize));
 | 
						|
        Value *Derived_int = Builder.CreatePtrToInt(
 | 
						|
            Derived, Type::getIntNTy(Context, IntPtrSize));
 | 
						|
        return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
 | 
						|
      };
 | 
						|
 | 
						|
      auto *Dest = CallArgs[0];
 | 
						|
      Value *DestBase, *DestOffset;
 | 
						|
      std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
 | 
						|
 | 
						|
      auto *Source = CallArgs[1];
 | 
						|
      Value *SourceBase, *SourceOffset;
 | 
						|
      std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
 | 
						|
 | 
						|
      auto *LengthInBytes = CallArgs[2];
 | 
						|
      auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
 | 
						|
 | 
						|
      CallArgs.clear();
 | 
						|
      CallArgs.push_back(DestBase);
 | 
						|
      CallArgs.push_back(DestOffset);
 | 
						|
      CallArgs.push_back(SourceBase);
 | 
						|
      CallArgs.push_back(SourceOffset);
 | 
						|
      CallArgs.push_back(LengthInBytes);
 | 
						|
 | 
						|
      SmallVector<Type *, 8> DomainTy;
 | 
						|
      for (Value *Arg : CallArgs)
 | 
						|
        DomainTy.push_back(Arg->getType());
 | 
						|
      auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
 | 
						|
                                    /* isVarArg = */ false);
 | 
						|
 | 
						|
      auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
 | 
						|
        uint64_t ElementSize = ElementSizeCI->getZExtValue();
 | 
						|
        if (IID == Intrinsic::memcpy_element_unordered_atomic) {
 | 
						|
          switch (ElementSize) {
 | 
						|
          case 1:
 | 
						|
            return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
 | 
						|
          case 2:
 | 
						|
            return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
 | 
						|
          case 4:
 | 
						|
            return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
 | 
						|
          case 8:
 | 
						|
            return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
 | 
						|
          case 16:
 | 
						|
            return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
 | 
						|
          default:
 | 
						|
            llvm_unreachable("unexpected element size!");
 | 
						|
          }
 | 
						|
        }
 | 
						|
        assert(IID == Intrinsic::memmove_element_unordered_atomic);
 | 
						|
        switch (ElementSize) {
 | 
						|
        case 1:
 | 
						|
          return "__llvm_memmove_element_unordered_atomic_safepoint_1";
 | 
						|
        case 2:
 | 
						|
          return "__llvm_memmove_element_unordered_atomic_safepoint_2";
 | 
						|
        case 4:
 | 
						|
          return "__llvm_memmove_element_unordered_atomic_safepoint_4";
 | 
						|
        case 8:
 | 
						|
          return "__llvm_memmove_element_unordered_atomic_safepoint_8";
 | 
						|
        case 16:
 | 
						|
          return "__llvm_memmove_element_unordered_atomic_safepoint_16";
 | 
						|
        default:
 | 
						|
          llvm_unreachable("unexpected element size!");
 | 
						|
        }
 | 
						|
      };
 | 
						|
 | 
						|
      CallTarget =
 | 
						|
          F->getParent()
 | 
						|
              ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the statepoint given all the arguments
 | 
						|
  GCStatepointInst *Token = nullptr;
 | 
						|
  if (auto *CI = dyn_cast<CallInst>(Call)) {
 | 
						|
    CallInst *SPCall = Builder.CreateGCStatepointCall(
 | 
						|
        StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
 | 
						|
        TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
 | 
						|
 | 
						|
    SPCall->setTailCallKind(CI->getTailCallKind());
 | 
						|
    SPCall->setCallingConv(CI->getCallingConv());
 | 
						|
 | 
						|
    // Currently we will fail on parameter attributes and on certain
 | 
						|
    // function attributes.  In case if we can handle this set of attributes -
 | 
						|
    // set up function attrs directly on statepoint and return attrs later for
 | 
						|
    // gc_result intrinsic.
 | 
						|
    SPCall->setAttributes(legalizeCallAttributes(
 | 
						|
        CI->getContext(), CI->getAttributes(), SPCall->getAttributes()));
 | 
						|
 | 
						|
    Token = cast<GCStatepointInst>(SPCall);
 | 
						|
 | 
						|
    // Put the following gc_result and gc_relocate calls immediately after the
 | 
						|
    // the old call (which we're about to delete)
 | 
						|
    assert(CI->getNextNode() && "Not a terminator, must have next!");
 | 
						|
    Builder.SetInsertPoint(CI->getNextNode());
 | 
						|
    Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
 | 
						|
  } else {
 | 
						|
    auto *II = cast<InvokeInst>(Call);
 | 
						|
 | 
						|
    // Insert the new invoke into the old block.  We'll remove the old one in a
 | 
						|
    // moment at which point this will become the new terminator for the
 | 
						|
    // original block.
 | 
						|
    InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
 | 
						|
        StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
 | 
						|
        II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
 | 
						|
        "statepoint_token");
 | 
						|
 | 
						|
    SPInvoke->setCallingConv(II->getCallingConv());
 | 
						|
 | 
						|
    // Currently we will fail on parameter attributes and on certain
 | 
						|
    // function attributes.  In case if we can handle this set of attributes -
 | 
						|
    // set up function attrs directly on statepoint and return attrs later for
 | 
						|
    // gc_result intrinsic.
 | 
						|
    SPInvoke->setAttributes(legalizeCallAttributes(
 | 
						|
        II->getContext(), II->getAttributes(), SPInvoke->getAttributes()));
 | 
						|
 | 
						|
    Token = cast<GCStatepointInst>(SPInvoke);
 | 
						|
 | 
						|
    // Generate gc relocates in exceptional path
 | 
						|
    BasicBlock *UnwindBlock = II->getUnwindDest();
 | 
						|
    assert(!isa<PHINode>(UnwindBlock->begin()) &&
 | 
						|
           UnwindBlock->getUniquePredecessor() &&
 | 
						|
           "can't safely insert in this block!");
 | 
						|
 | 
						|
    Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
 | 
						|
    Builder.SetCurrentDebugLocation(II->getDebugLoc());
 | 
						|
 | 
						|
    // Attach exceptional gc relocates to the landingpad.
 | 
						|
    Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
 | 
						|
    Result.UnwindToken = ExceptionalToken;
 | 
						|
 | 
						|
    CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
 | 
						|
 | 
						|
    // Generate gc relocates and returns for normal block
 | 
						|
    BasicBlock *NormalDest = II->getNormalDest();
 | 
						|
    assert(!isa<PHINode>(NormalDest->begin()) &&
 | 
						|
           NormalDest->getUniquePredecessor() &&
 | 
						|
           "can't safely insert in this block!");
 | 
						|
 | 
						|
    Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
 | 
						|
 | 
						|
    // gc relocates will be generated later as if it were regular call
 | 
						|
    // statepoint
 | 
						|
  }
 | 
						|
  assert(Token && "Should be set in one of the above branches!");
 | 
						|
 | 
						|
  if (IsDeoptimize) {
 | 
						|
    // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
 | 
						|
    // transform the tail-call like structure to a call to a void function
 | 
						|
    // followed by unreachable to get better codegen.
 | 
						|
    Replacements.push_back(
 | 
						|
        DeferredReplacement::createDeoptimizeReplacement(Call));
 | 
						|
  } else {
 | 
						|
    Token->setName("statepoint_token");
 | 
						|
    if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
 | 
						|
      StringRef Name = Call->hasName() ? Call->getName() : "";
 | 
						|
      CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
 | 
						|
      GCResult->setAttributes(
 | 
						|
          AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
 | 
						|
                             Call->getAttributes().getRetAttrs()));
 | 
						|
 | 
						|
      // We cannot RAUW or delete CS.getInstruction() because it could be in the
 | 
						|
      // live set of some other safepoint, in which case that safepoint's
 | 
						|
      // PartiallyConstructedSafepointRecord will hold a raw pointer to this
 | 
						|
      // llvm::Instruction.  Instead, we defer the replacement and deletion to
 | 
						|
      // after the live sets have been made explicit in the IR, and we no longer
 | 
						|
      // have raw pointers to worry about.
 | 
						|
      Replacements.emplace_back(
 | 
						|
          DeferredReplacement::createRAUW(Call, GCResult));
 | 
						|
    } else {
 | 
						|
      Replacements.emplace_back(DeferredReplacement::createDelete(Call));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Result.StatepointToken = Token;
 | 
						|
 | 
						|
  // Second, create a gc.relocate for every live variable
 | 
						|
  CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
 | 
						|
}
 | 
						|
 | 
						|
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
 | 
						|
// which make the relocations happening at this safepoint explicit.
 | 
						|
//
 | 
						|
// WARNING: Does not do any fixup to adjust users of the original live
 | 
						|
// values.  That's the callers responsibility.
 | 
						|
static void
 | 
						|
makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
 | 
						|
                       PartiallyConstructedSafepointRecord &Result,
 | 
						|
                       std::vector<DeferredReplacement> &Replacements,
 | 
						|
                       const PointerToBaseTy &PointerToBase) {
 | 
						|
  const auto &LiveSet = Result.LiveSet;
 | 
						|
 | 
						|
  // Convert to vector for efficient cross referencing.
 | 
						|
  SmallVector<Value *, 64> BaseVec, LiveVec;
 | 
						|
  LiveVec.reserve(LiveSet.size());
 | 
						|
  BaseVec.reserve(LiveSet.size());
 | 
						|
  for (Value *L : LiveSet) {
 | 
						|
    LiveVec.push_back(L);
 | 
						|
    assert(PointerToBase.count(L));
 | 
						|
    Value *Base = PointerToBase.find(L)->second;
 | 
						|
    BaseVec.push_back(Base);
 | 
						|
  }
 | 
						|
  assert(LiveVec.size() == BaseVec.size());
 | 
						|
 | 
						|
  // Do the actual rewriting and delete the old statepoint
 | 
						|
  makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements,
 | 
						|
                             PointerToBase);
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for the relocationViaAlloca.
 | 
						|
//
 | 
						|
// It receives iterator to the statepoint gc relocates and emits a store to the
 | 
						|
// assigned location (via allocaMap) for the each one of them.  It adds the
 | 
						|
// visited values into the visitedLiveValues set, which we will later use them
 | 
						|
// for validation checking.
 | 
						|
static void
 | 
						|
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
 | 
						|
                       DenseMap<Value *, AllocaInst *> &AllocaMap,
 | 
						|
                       DenseSet<Value *> &VisitedLiveValues) {
 | 
						|
  for (User *U : GCRelocs) {
 | 
						|
    GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
 | 
						|
    if (!Relocate)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *OriginalValue = Relocate->getDerivedPtr();
 | 
						|
    assert(AllocaMap.count(OriginalValue));
 | 
						|
    Value *Alloca = AllocaMap[OriginalValue];
 | 
						|
 | 
						|
    // Emit store into the related alloca
 | 
						|
    // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
 | 
						|
    // the correct type according to alloca.
 | 
						|
    assert(Relocate->getNextNode() &&
 | 
						|
           "Should always have one since it's not a terminator");
 | 
						|
    IRBuilder<> Builder(Relocate->getNextNode());
 | 
						|
    Value *CastedRelocatedValue =
 | 
						|
      Builder.CreateBitCast(Relocate,
 | 
						|
                            cast<AllocaInst>(Alloca)->getAllocatedType(),
 | 
						|
                            suffixed_name_or(Relocate, ".casted", ""));
 | 
						|
 | 
						|
    new StoreInst(CastedRelocatedValue, Alloca,
 | 
						|
                  cast<Instruction>(CastedRelocatedValue)->getNextNode());
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    VisitedLiveValues.insert(OriginalValue);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for the "relocationViaAlloca". Similar to the
 | 
						|
// "insertRelocationStores" but works for rematerialized values.
 | 
						|
static void insertRematerializationStores(
 | 
						|
    const RematerializedValueMapTy &RematerializedValues,
 | 
						|
    DenseMap<Value *, AllocaInst *> &AllocaMap,
 | 
						|
    DenseSet<Value *> &VisitedLiveValues) {
 | 
						|
  for (auto RematerializedValuePair: RematerializedValues) {
 | 
						|
    Instruction *RematerializedValue = RematerializedValuePair.first;
 | 
						|
    Value *OriginalValue = RematerializedValuePair.second;
 | 
						|
 | 
						|
    assert(AllocaMap.count(OriginalValue) &&
 | 
						|
           "Can not find alloca for rematerialized value");
 | 
						|
    Value *Alloca = AllocaMap[OriginalValue];
 | 
						|
 | 
						|
    new StoreInst(RematerializedValue, Alloca,
 | 
						|
                  RematerializedValue->getNextNode());
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    VisitedLiveValues.insert(OriginalValue);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Do all the relocation update via allocas and mem2reg
 | 
						|
static void relocationViaAlloca(
 | 
						|
    Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
 | 
						|
    ArrayRef<PartiallyConstructedSafepointRecord> Records) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  // record initial number of (static) allocas; we'll check we have the same
 | 
						|
  // number when we get done.
 | 
						|
  int InitialAllocaNum = 0;
 | 
						|
  for (Instruction &I : F.getEntryBlock())
 | 
						|
    if (isa<AllocaInst>(I))
 | 
						|
      InitialAllocaNum++;
 | 
						|
#endif
 | 
						|
 | 
						|
  // TODO-PERF: change data structures, reserve
 | 
						|
  DenseMap<Value *, AllocaInst *> AllocaMap;
 | 
						|
  SmallVector<AllocaInst *, 200> PromotableAllocas;
 | 
						|
  // Used later to chack that we have enough allocas to store all values
 | 
						|
  std::size_t NumRematerializedValues = 0;
 | 
						|
  PromotableAllocas.reserve(Live.size());
 | 
						|
 | 
						|
  // Emit alloca for "LiveValue" and record it in "allocaMap" and
 | 
						|
  // "PromotableAllocas"
 | 
						|
  const DataLayout &DL = F.getParent()->getDataLayout();
 | 
						|
  auto emitAllocaFor = [&](Value *LiveValue) {
 | 
						|
    AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
 | 
						|
                                        DL.getAllocaAddrSpace(), "",
 | 
						|
                                        F.getEntryBlock().getFirstNonPHI());
 | 
						|
    AllocaMap[LiveValue] = Alloca;
 | 
						|
    PromotableAllocas.push_back(Alloca);
 | 
						|
  };
 | 
						|
 | 
						|
  // Emit alloca for each live gc pointer
 | 
						|
  for (Value *V : Live)
 | 
						|
    emitAllocaFor(V);
 | 
						|
 | 
						|
  // Emit allocas for rematerialized values
 | 
						|
  for (const auto &Info : Records)
 | 
						|
    for (auto RematerializedValuePair : Info.RematerializedValues) {
 | 
						|
      Value *OriginalValue = RematerializedValuePair.second;
 | 
						|
      if (AllocaMap.count(OriginalValue) != 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      emitAllocaFor(OriginalValue);
 | 
						|
      ++NumRematerializedValues;
 | 
						|
    }
 | 
						|
 | 
						|
  // The next two loops are part of the same conceptual operation.  We need to
 | 
						|
  // insert a store to the alloca after the original def and at each
 | 
						|
  // redefinition.  We need to insert a load before each use.  These are split
 | 
						|
  // into distinct loops for performance reasons.
 | 
						|
 | 
						|
  // Update gc pointer after each statepoint: either store a relocated value or
 | 
						|
  // null (if no relocated value was found for this gc pointer and it is not a
 | 
						|
  // gc_result).  This must happen before we update the statepoint with load of
 | 
						|
  // alloca otherwise we lose the link between statepoint and old def.
 | 
						|
  for (const auto &Info : Records) {
 | 
						|
    Value *Statepoint = Info.StatepointToken;
 | 
						|
 | 
						|
    // This will be used for consistency check
 | 
						|
    DenseSet<Value *> VisitedLiveValues;
 | 
						|
 | 
						|
    // Insert stores for normal statepoint gc relocates
 | 
						|
    insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
 | 
						|
 | 
						|
    // In case if it was invoke statepoint
 | 
						|
    // we will insert stores for exceptional path gc relocates.
 | 
						|
    if (isa<InvokeInst>(Statepoint)) {
 | 
						|
      insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
 | 
						|
                             VisitedLiveValues);
 | 
						|
    }
 | 
						|
 | 
						|
    // Do similar thing with rematerialized values
 | 
						|
    insertRematerializationStores(Info.RematerializedValues, AllocaMap,
 | 
						|
                                  VisitedLiveValues);
 | 
						|
 | 
						|
    if (ClobberNonLive) {
 | 
						|
      // As a debugging aid, pretend that an unrelocated pointer becomes null at
 | 
						|
      // the gc.statepoint.  This will turn some subtle GC problems into
 | 
						|
      // slightly easier to debug SEGVs.  Note that on large IR files with
 | 
						|
      // lots of gc.statepoints this is extremely costly both memory and time
 | 
						|
      // wise.
 | 
						|
      SmallVector<AllocaInst *, 64> ToClobber;
 | 
						|
      for (auto Pair : AllocaMap) {
 | 
						|
        Value *Def = Pair.first;
 | 
						|
        AllocaInst *Alloca = Pair.second;
 | 
						|
 | 
						|
        // This value was relocated
 | 
						|
        if (VisitedLiveValues.count(Def)) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ToClobber.push_back(Alloca);
 | 
						|
      }
 | 
						|
 | 
						|
      auto InsertClobbersAt = [&](Instruction *IP) {
 | 
						|
        for (auto *AI : ToClobber) {
 | 
						|
          auto AT = AI->getAllocatedType();
 | 
						|
          Constant *CPN;
 | 
						|
          if (AT->isVectorTy())
 | 
						|
            CPN = ConstantAggregateZero::get(AT);
 | 
						|
          else
 | 
						|
            CPN = ConstantPointerNull::get(cast<PointerType>(AT));
 | 
						|
          new StoreInst(CPN, AI, IP);
 | 
						|
        }
 | 
						|
      };
 | 
						|
 | 
						|
      // Insert the clobbering stores.  These may get intermixed with the
 | 
						|
      // gc.results and gc.relocates, but that's fine.
 | 
						|
      if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
 | 
						|
        InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
 | 
						|
        InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
 | 
						|
      } else {
 | 
						|
        InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update use with load allocas and add store for gc_relocated.
 | 
						|
  for (auto Pair : AllocaMap) {
 | 
						|
    Value *Def = Pair.first;
 | 
						|
    AllocaInst *Alloca = Pair.second;
 | 
						|
 | 
						|
    // We pre-record the uses of allocas so that we dont have to worry about
 | 
						|
    // later update that changes the user information..
 | 
						|
 | 
						|
    SmallVector<Instruction *, 20> Uses;
 | 
						|
    // PERF: trade a linear scan for repeated reallocation
 | 
						|
    Uses.reserve(Def->getNumUses());
 | 
						|
    for (User *U : Def->users()) {
 | 
						|
      if (!isa<ConstantExpr>(U)) {
 | 
						|
        // If the def has a ConstantExpr use, then the def is either a
 | 
						|
        // ConstantExpr use itself or null.  In either case
 | 
						|
        // (recursively in the first, directly in the second), the oop
 | 
						|
        // it is ultimately dependent on is null and this particular
 | 
						|
        // use does not need to be fixed up.
 | 
						|
        Uses.push_back(cast<Instruction>(U));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::sort(Uses);
 | 
						|
    auto Last = std::unique(Uses.begin(), Uses.end());
 | 
						|
    Uses.erase(Last, Uses.end());
 | 
						|
 | 
						|
    for (Instruction *Use : Uses) {
 | 
						|
      if (isa<PHINode>(Use)) {
 | 
						|
        PHINode *Phi = cast<PHINode>(Use);
 | 
						|
        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
 | 
						|
          if (Def == Phi->getIncomingValue(i)) {
 | 
						|
            LoadInst *Load =
 | 
						|
                new LoadInst(Alloca->getAllocatedType(), Alloca, "",
 | 
						|
                             Phi->getIncomingBlock(i)->getTerminator());
 | 
						|
            Phi->setIncomingValue(i, Load);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        LoadInst *Load =
 | 
						|
            new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
 | 
						|
        Use->replaceUsesOfWith(Def, Load);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit store for the initial gc value.  Store must be inserted after load,
 | 
						|
    // otherwise store will be in alloca's use list and an extra load will be
 | 
						|
    // inserted before it.
 | 
						|
    StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
 | 
						|
                                     DL.getABITypeAlign(Def->getType()));
 | 
						|
    if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
 | 
						|
      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
 | 
						|
        // InvokeInst is a terminator so the store need to be inserted into its
 | 
						|
        // normal destination block.
 | 
						|
        BasicBlock *NormalDest = Invoke->getNormalDest();
 | 
						|
        Store->insertBefore(NormalDest->getFirstNonPHI());
 | 
						|
      } else {
 | 
						|
        assert(!Inst->isTerminator() &&
 | 
						|
               "The only terminator that can produce a value is "
 | 
						|
               "InvokeInst which is handled above.");
 | 
						|
        Store->insertAfter(Inst);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert(isa<Argument>(Def));
 | 
						|
      Store->insertAfter(cast<Instruction>(Alloca));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
 | 
						|
         "we must have the same allocas with lives");
 | 
						|
  (void) NumRematerializedValues;
 | 
						|
  if (!PromotableAllocas.empty()) {
 | 
						|
    // Apply mem2reg to promote alloca to SSA
 | 
						|
    PromoteMemToReg(PromotableAllocas, DT);
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (auto &I : F.getEntryBlock())
 | 
						|
    if (isa<AllocaInst>(I))
 | 
						|
      InitialAllocaNum--;
 | 
						|
  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// Implement a unique function which doesn't require we sort the input
 | 
						|
/// vector.  Doing so has the effect of changing the output of a couple of
 | 
						|
/// tests in ways which make them less useful in testing fused safepoints.
 | 
						|
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
 | 
						|
  SmallSet<T, 8> Seen;
 | 
						|
  erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
 | 
						|
}
 | 
						|
 | 
						|
/// Insert holders so that each Value is obviously live through the entire
 | 
						|
/// lifetime of the call.
 | 
						|
static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
 | 
						|
                                 SmallVectorImpl<CallInst *> &Holders) {
 | 
						|
  if (Values.empty())
 | 
						|
    // No values to hold live, might as well not insert the empty holder
 | 
						|
    return;
 | 
						|
 | 
						|
  Module *M = Call->getModule();
 | 
						|
  // Use a dummy vararg function to actually hold the values live
 | 
						|
  FunctionCallee Func = M->getOrInsertFunction(
 | 
						|
      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
 | 
						|
  if (isa<CallInst>(Call)) {
 | 
						|
    // For call safepoints insert dummy calls right after safepoint
 | 
						|
    Holders.push_back(
 | 
						|
        CallInst::Create(Func, Values, "", &*++Call->getIterator()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // For invoke safepooints insert dummy calls both in normal and
 | 
						|
  // exceptional destination blocks
 | 
						|
  auto *II = cast<InvokeInst>(Call);
 | 
						|
  Holders.push_back(CallInst::Create(
 | 
						|
      Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
 | 
						|
  Holders.push_back(CallInst::Create(
 | 
						|
      Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
 | 
						|
}
 | 
						|
 | 
						|
static void findLiveReferences(
 | 
						|
    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
 | 
						|
    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | 
						|
  GCPtrLivenessData OriginalLivenessData;
 | 
						|
  computeLiveInValues(DT, F, OriginalLivenessData);
 | 
						|
  for (size_t i = 0; i < records.size(); i++) {
 | 
						|
    struct PartiallyConstructedSafepointRecord &info = records[i];
 | 
						|
    analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for the "rematerializeLiveValues". It walks use chain
 | 
						|
// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
 | 
						|
// the base or a value it cannot process. Only "simple" values are processed
 | 
						|
// (currently it is GEP's and casts). The returned root is  examined by the
 | 
						|
// callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
 | 
						|
// with all visited values.
 | 
						|
static Value* findRematerializableChainToBasePointer(
 | 
						|
  SmallVectorImpl<Instruction*> &ChainToBase,
 | 
						|
  Value *CurrentValue) {
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
 | 
						|
    ChainToBase.push_back(GEP);
 | 
						|
    return findRematerializableChainToBasePointer(ChainToBase,
 | 
						|
                                                  GEP->getPointerOperand());
 | 
						|
  }
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
 | 
						|
    if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
 | 
						|
      return CI;
 | 
						|
 | 
						|
    ChainToBase.push_back(CI);
 | 
						|
    return findRematerializableChainToBasePointer(ChainToBase,
 | 
						|
                                                  CI->getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  // We have reached the root of the chain, which is either equal to the base or
 | 
						|
  // is the first unsupported value along the use chain.
 | 
						|
  return CurrentValue;
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for the "rematerializeLiveValues". Compute cost of the use
 | 
						|
// chain we are going to rematerialize.
 | 
						|
static InstructionCost
 | 
						|
chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
 | 
						|
                       TargetTransformInfo &TTI) {
 | 
						|
  InstructionCost Cost = 0;
 | 
						|
 | 
						|
  for (Instruction *Instr : Chain) {
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
 | 
						|
      assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
 | 
						|
             "non noop cast is found during rematerialization");
 | 
						|
 | 
						|
      Type *SrcTy = CI->getOperand(0)->getType();
 | 
						|
      Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
 | 
						|
                                   TTI::getCastContextHint(CI),
 | 
						|
                                   TargetTransformInfo::TCK_SizeAndLatency, CI);
 | 
						|
 | 
						|
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
 | 
						|
      // Cost of the address calculation
 | 
						|
      Type *ValTy = GEP->getSourceElementType();
 | 
						|
      Cost += TTI.getAddressComputationCost(ValTy);
 | 
						|
 | 
						|
      // And cost of the GEP itself
 | 
						|
      // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
 | 
						|
      //       allowed for the external usage)
 | 
						|
      if (!GEP->hasAllConstantIndices())
 | 
						|
        Cost += 2;
 | 
						|
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("unsupported instruction type during rematerialization");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
 | 
						|
  unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
 | 
						|
  if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
 | 
						|
      OrigRootPhi.getParent() != AlternateRootPhi.getParent())
 | 
						|
    return false;
 | 
						|
  // Map of incoming values and their corresponding basic blocks of
 | 
						|
  // OrigRootPhi.
 | 
						|
  SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
 | 
						|
  for (unsigned i = 0; i < PhiNum; i++)
 | 
						|
    CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
 | 
						|
        OrigRootPhi.getIncomingBlock(i);
 | 
						|
 | 
						|
  // Both current and base PHIs should have same incoming values and
 | 
						|
  // the same basic blocks corresponding to the incoming values.
 | 
						|
  for (unsigned i = 0; i < PhiNum; i++) {
 | 
						|
    auto CIVI =
 | 
						|
        CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
 | 
						|
    if (CIVI == CurrentIncomingValues.end())
 | 
						|
      return false;
 | 
						|
    BasicBlock *CurrentIncomingBB = CIVI->second;
 | 
						|
    if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Find derived pointers that can be recomputed cheap enough and fill
 | 
						|
// RematerizationCandidates with such candidates.
 | 
						|
static void
 | 
						|
findRematerializationCandidates(PointerToBaseTy PointerToBase,
 | 
						|
                                RematCandTy &RematerizationCandidates,
 | 
						|
                                TargetTransformInfo &TTI) {
 | 
						|
  const unsigned int ChainLengthThreshold = 10;
 | 
						|
 | 
						|
  for (auto P2B : PointerToBase) {
 | 
						|
    auto *Derived = P2B.first;
 | 
						|
    auto *Base = P2B.second;
 | 
						|
    // Consider only derived pointers.
 | 
						|
    if (Derived == Base)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // For each live pointer find its defining chain.
 | 
						|
    SmallVector<Instruction *, 3> ChainToBase;
 | 
						|
    Value *RootOfChain =
 | 
						|
        findRematerializableChainToBasePointer(ChainToBase, Derived);
 | 
						|
 | 
						|
    // Nothing to do, or chain is too long
 | 
						|
    if ( ChainToBase.size() == 0 ||
 | 
						|
        ChainToBase.size() > ChainLengthThreshold)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Handle the scenario where the RootOfChain is not equal to the
 | 
						|
    // Base Value, but they are essentially the same phi values.
 | 
						|
    if (RootOfChain != PointerToBase[Derived]) {
 | 
						|
      PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
 | 
						|
      PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]);
 | 
						|
      if (!OrigRootPhi || !AlternateRootPhi)
 | 
						|
        continue;
 | 
						|
      // PHI nodes that have the same incoming values, and belonging to the same
 | 
						|
      // basic blocks are essentially the same SSA value.  When the original phi
 | 
						|
      // has incoming values with different base pointers, the original phi is
 | 
						|
      // marked as conflict, and an additional `AlternateRootPhi` with the same
 | 
						|
      // incoming values get generated by the findBasePointer function. We need
 | 
						|
      // to identify the newly generated AlternateRootPhi (.base version of phi)
 | 
						|
      // and RootOfChain (the original phi node itself) are the same, so that we
 | 
						|
      // can rematerialize the gep and casts. This is a workaround for the
 | 
						|
      // deficiency in the findBasePointer algorithm.
 | 
						|
      if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    // Compute cost of this chain.
 | 
						|
    InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
 | 
						|
    // TODO: We can also account for cases when we will be able to remove some
 | 
						|
    //       of the rematerialized values by later optimization passes. I.e if
 | 
						|
    //       we rematerialized several intersecting chains. Or if original values
 | 
						|
    //       don't have any uses besides this statepoint.
 | 
						|
 | 
						|
    // Ok, there is a candidate.
 | 
						|
    RematerizlizationCandidateRecord Record;
 | 
						|
    Record.ChainToBase = ChainToBase;
 | 
						|
    Record.RootOfChain = RootOfChain;
 | 
						|
    Record.Cost = Cost;
 | 
						|
    RematerizationCandidates.insert({ Derived, Record });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// From the statepoint live set pick values that are cheaper to recompute then
 | 
						|
// to relocate. Remove this values from the live set, rematerialize them after
 | 
						|
// statepoint and record them in "Info" structure. Note that similar to
 | 
						|
// relocated values we don't do any user adjustments here.
 | 
						|
static void rematerializeLiveValues(CallBase *Call,
 | 
						|
                                    PartiallyConstructedSafepointRecord &Info,
 | 
						|
                                    PointerToBaseTy &PointerToBase,
 | 
						|
                                    RematCandTy &RematerizationCandidates,
 | 
						|
                                    TargetTransformInfo &TTI) {
 | 
						|
  // Record values we are going to delete from this statepoint live set.
 | 
						|
  // We can not di this in following loop due to iterator invalidation.
 | 
						|
  SmallVector<Value *, 32> LiveValuesToBeDeleted;
 | 
						|
 | 
						|
  for (Value *LiveValue : Info.LiveSet) {
 | 
						|
    auto It = RematerizationCandidates.find(LiveValue);
 | 
						|
    if (It == RematerizationCandidates.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    RematerizlizationCandidateRecord &Record = It->second;
 | 
						|
 | 
						|
    InstructionCost Cost = Record.Cost;
 | 
						|
    // For invokes we need to rematerialize each chain twice - for normal and
 | 
						|
    // for unwind basic blocks. Model this by multiplying cost by two.
 | 
						|
    if (isa<InvokeInst>(Call))
 | 
						|
      Cost *= 2;
 | 
						|
 | 
						|
    // If it's too expensive - skip it.
 | 
						|
    if (Cost >= RematerializationThreshold)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Remove value from the live set
 | 
						|
    LiveValuesToBeDeleted.push_back(LiveValue);
 | 
						|
 | 
						|
    // Clone instructions and record them inside "Info" structure.
 | 
						|
 | 
						|
    // For each live pointer find get its defining chain.
 | 
						|
    SmallVector<Instruction *, 3> ChainToBase = Record.ChainToBase;
 | 
						|
    // Walk backwards to visit top-most instructions first.
 | 
						|
    std::reverse(ChainToBase.begin(), ChainToBase.end());
 | 
						|
 | 
						|
    // Utility function which clones all instructions from "ChainToBase"
 | 
						|
    // and inserts them before "InsertBefore". Returns rematerialized value
 | 
						|
    // which should be used after statepoint.
 | 
						|
    auto rematerializeChain = [&ChainToBase](
 | 
						|
        Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
 | 
						|
      Instruction *LastClonedValue = nullptr;
 | 
						|
      Instruction *LastValue = nullptr;
 | 
						|
      for (Instruction *Instr: ChainToBase) {
 | 
						|
        // Only GEP's and casts are supported as we need to be careful to not
 | 
						|
        // introduce any new uses of pointers not in the liveset.
 | 
						|
        // Note that it's fine to introduce new uses of pointers which were
 | 
						|
        // otherwise not used after this statepoint.
 | 
						|
        assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
 | 
						|
 | 
						|
        Instruction *ClonedValue = Instr->clone();
 | 
						|
        ClonedValue->insertBefore(InsertBefore);
 | 
						|
        ClonedValue->setName(Instr->getName() + ".remat");
 | 
						|
 | 
						|
        // If it is not first instruction in the chain then it uses previously
 | 
						|
        // cloned value. We should update it to use cloned value.
 | 
						|
        if (LastClonedValue) {
 | 
						|
          assert(LastValue);
 | 
						|
          ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
 | 
						|
#ifndef NDEBUG
 | 
						|
          for (auto *OpValue : ClonedValue->operand_values()) {
 | 
						|
            // Assert that cloned instruction does not use any instructions from
 | 
						|
            // this chain other than LastClonedValue
 | 
						|
            assert(!is_contained(ChainToBase, OpValue) &&
 | 
						|
                   "incorrect use in rematerialization chain");
 | 
						|
            // Assert that the cloned instruction does not use the RootOfChain
 | 
						|
            // or the AlternateLiveBase.
 | 
						|
            assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
 | 
						|
          }
 | 
						|
#endif
 | 
						|
        } else {
 | 
						|
          // For the first instruction, replace the use of unrelocated base i.e.
 | 
						|
          // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
 | 
						|
          // live set. They have been proved to be the same PHI nodes.  Note
 | 
						|
          // that the *only* use of the RootOfChain in the ChainToBase list is
 | 
						|
          // the first Value in the list.
 | 
						|
          if (RootOfChain != AlternateLiveBase)
 | 
						|
            ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
 | 
						|
        }
 | 
						|
 | 
						|
        LastClonedValue = ClonedValue;
 | 
						|
        LastValue = Instr;
 | 
						|
      }
 | 
						|
      assert(LastClonedValue);
 | 
						|
      return LastClonedValue;
 | 
						|
    };
 | 
						|
 | 
						|
    // Different cases for calls and invokes. For invokes we need to clone
 | 
						|
    // instructions both on normal and unwind path.
 | 
						|
    if (isa<CallInst>(Call)) {
 | 
						|
      Instruction *InsertBefore = Call->getNextNode();
 | 
						|
      assert(InsertBefore);
 | 
						|
      Instruction *RematerializedValue = rematerializeChain(
 | 
						|
          InsertBefore, Record.RootOfChain, PointerToBase[LiveValue]);
 | 
						|
      Info.RematerializedValues[RematerializedValue] = LiveValue;
 | 
						|
    } else {
 | 
						|
      auto *Invoke = cast<InvokeInst>(Call);
 | 
						|
 | 
						|
      Instruction *NormalInsertBefore =
 | 
						|
          &*Invoke->getNormalDest()->getFirstInsertionPt();
 | 
						|
      Instruction *UnwindInsertBefore =
 | 
						|
          &*Invoke->getUnwindDest()->getFirstInsertionPt();
 | 
						|
 | 
						|
      Instruction *NormalRematerializedValue = rematerializeChain(
 | 
						|
          NormalInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]);
 | 
						|
      Instruction *UnwindRematerializedValue = rematerializeChain(
 | 
						|
          UnwindInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]);
 | 
						|
 | 
						|
      Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
 | 
						|
      Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove rematerializaed values from the live set
 | 
						|
  for (auto *LiveValue: LiveValuesToBeDeleted) {
 | 
						|
    Info.LiveSet.remove(LiveValue);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool inlineGetBaseAndOffset(Function &F,
 | 
						|
                                   SmallVectorImpl<CallInst *> &Intrinsics,
 | 
						|
                                   DefiningValueMapTy &DVCache,
 | 
						|
                                   IsKnownBaseMapTy &KnownBases) {
 | 
						|
  auto &Context = F.getContext();
 | 
						|
  auto &DL = F.getParent()->getDataLayout();
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (auto *Callsite : Intrinsics)
 | 
						|
    switch (Callsite->getIntrinsicID()) {
 | 
						|
    case Intrinsic::experimental_gc_get_pointer_base: {
 | 
						|
      Changed = true;
 | 
						|
      Value *Base =
 | 
						|
          findBasePointer(Callsite->getOperand(0), DVCache, KnownBases);
 | 
						|
      assert(!DVCache.count(Callsite));
 | 
						|
      auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast(
 | 
						|
          Base, Callsite->getType(), suffixed_name_or(Base, ".cast", ""));
 | 
						|
      if (BaseBC != Base)
 | 
						|
        DVCache[BaseBC] = Base;
 | 
						|
      Callsite->replaceAllUsesWith(BaseBC);
 | 
						|
      if (!BaseBC->hasName())
 | 
						|
        BaseBC->takeName(Callsite);
 | 
						|
      Callsite->eraseFromParent();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::experimental_gc_get_pointer_offset: {
 | 
						|
      Changed = true;
 | 
						|
      Value *Derived = Callsite->getOperand(0);
 | 
						|
      Value *Base = findBasePointer(Derived, DVCache, KnownBases);
 | 
						|
      assert(!DVCache.count(Callsite));
 | 
						|
      unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
 | 
						|
      unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
 | 
						|
      IRBuilder<> Builder(Callsite);
 | 
						|
      Value *BaseInt =
 | 
						|
          Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
 | 
						|
                                 suffixed_name_or(Base, ".int", ""));
 | 
						|
      Value *DerivedInt =
 | 
						|
          Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
 | 
						|
                                 suffixed_name_or(Derived, ".int", ""));
 | 
						|
      Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
 | 
						|
      Callsite->replaceAllUsesWith(Offset);
 | 
						|
      Offset->takeName(Callsite);
 | 
						|
      Callsite->eraseFromParent();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown intrinsic");
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static bool insertParsePoints(Function &F, DominatorTree &DT,
 | 
						|
                              TargetTransformInfo &TTI,
 | 
						|
                              SmallVectorImpl<CallBase *> &ToUpdate,
 | 
						|
                              DefiningValueMapTy &DVCache,
 | 
						|
                              IsKnownBaseMapTy &KnownBases) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Validate the input
 | 
						|
  std::set<CallBase *> Uniqued;
 | 
						|
  Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
 | 
						|
  assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
 | 
						|
 | 
						|
  for (CallBase *Call : ToUpdate)
 | 
						|
    assert(Call->getFunction() == &F);
 | 
						|
#endif
 | 
						|
 | 
						|
  // When inserting gc.relocates for invokes, we need to be able to insert at
 | 
						|
  // the top of the successor blocks.  See the comment on
 | 
						|
  // normalForInvokeSafepoint on exactly what is needed.  Note that this step
 | 
						|
  // may restructure the CFG.
 | 
						|
  for (CallBase *Call : ToUpdate) {
 | 
						|
    auto *II = dyn_cast<InvokeInst>(Call);
 | 
						|
    if (!II)
 | 
						|
      continue;
 | 
						|
    normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
 | 
						|
    normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
 | 
						|
  }
 | 
						|
 | 
						|
  // A list of dummy calls added to the IR to keep various values obviously
 | 
						|
  // live in the IR.  We'll remove all of these when done.
 | 
						|
  SmallVector<CallInst *, 64> Holders;
 | 
						|
 | 
						|
  // Insert a dummy call with all of the deopt operands we'll need for the
 | 
						|
  // actual safepoint insertion as arguments.  This ensures reference operands
 | 
						|
  // in the deopt argument list are considered live through the safepoint (and
 | 
						|
  // thus makes sure they get relocated.)
 | 
						|
  for (CallBase *Call : ToUpdate) {
 | 
						|
    SmallVector<Value *, 64> DeoptValues;
 | 
						|
 | 
						|
    for (Value *Arg : GetDeoptBundleOperands(Call)) {
 | 
						|
      assert(!isUnhandledGCPointerType(Arg->getType()) &&
 | 
						|
             "support for FCA unimplemented");
 | 
						|
      if (isHandledGCPointerType(Arg->getType()))
 | 
						|
        DeoptValues.push_back(Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    insertUseHolderAfter(Call, DeoptValues, Holders);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
 | 
						|
 | 
						|
  // A) Identify all gc pointers which are statically live at the given call
 | 
						|
  // site.
 | 
						|
  findLiveReferences(F, DT, ToUpdate, Records);
 | 
						|
 | 
						|
  /// Global mapping from live pointers to a base-defining-value.
 | 
						|
  PointerToBaseTy PointerToBase;
 | 
						|
 | 
						|
  // B) Find the base pointers for each live pointer
 | 
						|
  for (size_t i = 0; i < Records.size(); i++) {
 | 
						|
    PartiallyConstructedSafepointRecord &info = Records[i];
 | 
						|
    findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases);
 | 
						|
  }
 | 
						|
  if (PrintBasePointers) {
 | 
						|
    errs() << "Base Pairs (w/o Relocation):\n";
 | 
						|
    for (auto &Pair : PointerToBase) {
 | 
						|
      errs() << " derived ";
 | 
						|
      Pair.first->printAsOperand(errs(), false);
 | 
						|
      errs() << " base ";
 | 
						|
      Pair.second->printAsOperand(errs(), false);
 | 
						|
      errs() << "\n";
 | 
						|
      ;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The base phi insertion logic (for any safepoint) may have inserted new
 | 
						|
  // instructions which are now live at some safepoint.  The simplest such
 | 
						|
  // example is:
 | 
						|
  // loop:
 | 
						|
  //   phi a  <-- will be a new base_phi here
 | 
						|
  //   safepoint 1 <-- that needs to be live here
 | 
						|
  //   gep a + 1
 | 
						|
  //   safepoint 2
 | 
						|
  //   br loop
 | 
						|
  // We insert some dummy calls after each safepoint to definitely hold live
 | 
						|
  // the base pointers which were identified for that safepoint.  We'll then
 | 
						|
  // ask liveness for _every_ base inserted to see what is now live.  Then we
 | 
						|
  // remove the dummy calls.
 | 
						|
  Holders.reserve(Holders.size() + Records.size());
 | 
						|
  for (size_t i = 0; i < Records.size(); i++) {
 | 
						|
    PartiallyConstructedSafepointRecord &Info = Records[i];
 | 
						|
 | 
						|
    SmallVector<Value *, 128> Bases;
 | 
						|
    for (auto *Derived : Info.LiveSet) {
 | 
						|
      assert(PointerToBase.count(Derived) && "Missed base for derived pointer");
 | 
						|
      Bases.push_back(PointerToBase[Derived]);
 | 
						|
    }
 | 
						|
 | 
						|
    insertUseHolderAfter(ToUpdate[i], Bases, Holders);
 | 
						|
  }
 | 
						|
 | 
						|
  // By selecting base pointers, we've effectively inserted new uses. Thus, we
 | 
						|
  // need to rerun liveness.  We may *also* have inserted new defs, but that's
 | 
						|
  // not the key issue.
 | 
						|
  recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase);
 | 
						|
 | 
						|
  if (PrintBasePointers) {
 | 
						|
    errs() << "Base Pairs: (w/Relocation)\n";
 | 
						|
    for (auto Pair : PointerToBase) {
 | 
						|
      errs() << " derived ";
 | 
						|
      Pair.first->printAsOperand(errs(), false);
 | 
						|
      errs() << " base ";
 | 
						|
      Pair.second->printAsOperand(errs(), false);
 | 
						|
      errs() << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // It is possible that non-constant live variables have a constant base.  For
 | 
						|
  // example, a GEP with a variable offset from a global.  In this case we can
 | 
						|
  // remove it from the liveset.  We already don't add constants to the liveset
 | 
						|
  // because we assume they won't move at runtime and the GC doesn't need to be
 | 
						|
  // informed about them.  The same reasoning applies if the base is constant.
 | 
						|
  // Note that the relocation placement code relies on this filtering for
 | 
						|
  // correctness as it expects the base to be in the liveset, which isn't true
 | 
						|
  // if the base is constant.
 | 
						|
  for (auto &Info : Records) {
 | 
						|
    Info.LiveSet.remove_if([&](Value *LiveV) {
 | 
						|
      assert(PointerToBase.count(LiveV) && "Missed base for derived pointer");
 | 
						|
      return isa<Constant>(PointerToBase[LiveV]);
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  for (CallInst *CI : Holders)
 | 
						|
    CI->eraseFromParent();
 | 
						|
 | 
						|
  Holders.clear();
 | 
						|
 | 
						|
  // Compute the cost of possible re-materialization of derived pointers.
 | 
						|
  RematCandTy RematerizationCandidates;
 | 
						|
  findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI);
 | 
						|
 | 
						|
  // In order to reduce live set of statepoint we might choose to rematerialize
 | 
						|
  // some values instead of relocating them. This is purely an optimization and
 | 
						|
  // does not influence correctness.
 | 
						|
  for (size_t i = 0; i < Records.size(); i++)
 | 
						|
    rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase,
 | 
						|
                            RematerizationCandidates, TTI);
 | 
						|
 | 
						|
  // We need this to safely RAUW and delete call or invoke return values that
 | 
						|
  // may themselves be live over a statepoint.  For details, please see usage in
 | 
						|
  // makeStatepointExplicitImpl.
 | 
						|
  std::vector<DeferredReplacement> Replacements;
 | 
						|
 | 
						|
  // Now run through and replace the existing statepoints with new ones with
 | 
						|
  // the live variables listed.  We do not yet update uses of the values being
 | 
						|
  // relocated. We have references to live variables that need to
 | 
						|
  // survive to the last iteration of this loop.  (By construction, the
 | 
						|
  // previous statepoint can not be a live variable, thus we can and remove
 | 
						|
  // the old statepoint calls as we go.)
 | 
						|
  for (size_t i = 0; i < Records.size(); i++)
 | 
						|
    makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements,
 | 
						|
                           PointerToBase);
 | 
						|
 | 
						|
  ToUpdate.clear(); // prevent accident use of invalid calls.
 | 
						|
 | 
						|
  for (auto &PR : Replacements)
 | 
						|
    PR.doReplacement();
 | 
						|
 | 
						|
  Replacements.clear();
 | 
						|
 | 
						|
  for (auto &Info : Records) {
 | 
						|
    // These live sets may contain state Value pointers, since we replaced calls
 | 
						|
    // with operand bundles with calls wrapped in gc.statepoint, and some of
 | 
						|
    // those calls may have been def'ing live gc pointers.  Clear these out to
 | 
						|
    // avoid accidentally using them.
 | 
						|
    //
 | 
						|
    // TODO: We should create a separate data structure that does not contain
 | 
						|
    // these live sets, and migrate to using that data structure from this point
 | 
						|
    // onward.
 | 
						|
    Info.LiveSet.clear();
 | 
						|
  }
 | 
						|
  PointerToBase.clear();
 | 
						|
 | 
						|
  // Do all the fixups of the original live variables to their relocated selves
 | 
						|
  SmallVector<Value *, 128> Live;
 | 
						|
  for (size_t i = 0; i < Records.size(); i++) {
 | 
						|
    PartiallyConstructedSafepointRecord &Info = Records[i];
 | 
						|
 | 
						|
    // We can't simply save the live set from the original insertion.  One of
 | 
						|
    // the live values might be the result of a call which needs a safepoint.
 | 
						|
    // That Value* no longer exists and we need to use the new gc_result.
 | 
						|
    // Thankfully, the live set is embedded in the statepoint (and updated), so
 | 
						|
    // we just grab that.
 | 
						|
    llvm::append_range(Live, Info.StatepointToken->gc_args());
 | 
						|
#ifndef NDEBUG
 | 
						|
    // Do some basic validation checking on our liveness results before
 | 
						|
    // performing relocation.  Relocation can and will turn mistakes in liveness
 | 
						|
    // results into non-sensical code which is must harder to debug.
 | 
						|
    // TODO: It would be nice to test consistency as well
 | 
						|
    assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
 | 
						|
           "statepoint must be reachable or liveness is meaningless");
 | 
						|
    for (Value *V : Info.StatepointToken->gc_args()) {
 | 
						|
      if (!isa<Instruction>(V))
 | 
						|
        // Non-instruction values trivial dominate all possible uses
 | 
						|
        continue;
 | 
						|
      auto *LiveInst = cast<Instruction>(V);
 | 
						|
      assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
 | 
						|
             "unreachable values should never be live");
 | 
						|
      assert(DT.dominates(LiveInst, Info.StatepointToken) &&
 | 
						|
             "basic SSA liveness expectation violated by liveness analysis");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  unique_unsorted(Live);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Validation check
 | 
						|
  for (auto *Ptr : Live)
 | 
						|
    assert(isHandledGCPointerType(Ptr->getType()) &&
 | 
						|
           "must be a gc pointer type");
 | 
						|
#endif
 | 
						|
 | 
						|
  relocationViaAlloca(F, DT, Live, Records);
 | 
						|
  return !Records.empty();
 | 
						|
}
 | 
						|
 | 
						|
// List of all parameter and return attributes which must be stripped when
 | 
						|
// lowering from the abstract machine model.  Note that we list attributes
 | 
						|
// here which aren't valid as return attributes, that is okay.
 | 
						|
static AttributeMask getParamAndReturnAttributesToRemove() {
 | 
						|
  AttributeMask R;
 | 
						|
  R.addAttribute(Attribute::Dereferenceable);
 | 
						|
  R.addAttribute(Attribute::DereferenceableOrNull);
 | 
						|
  R.addAttribute(Attribute::ReadNone);
 | 
						|
  R.addAttribute(Attribute::ReadOnly);
 | 
						|
  R.addAttribute(Attribute::WriteOnly);
 | 
						|
  R.addAttribute(Attribute::NoAlias);
 | 
						|
  R.addAttribute(Attribute::NoFree);
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
static void stripNonValidAttributesFromPrototype(Function &F) {
 | 
						|
  LLVMContext &Ctx = F.getContext();
 | 
						|
 | 
						|
  // Intrinsics are very delicate.  Lowering sometimes depends the presence
 | 
						|
  // of certain attributes for correctness, but we may have also inferred
 | 
						|
  // additional ones in the abstract machine model which need stripped.  This
 | 
						|
  // assumes that the attributes defined in Intrinsic.td are conservatively
 | 
						|
  // correct for both physical and abstract model.
 | 
						|
  if (Intrinsic::ID id = F.getIntrinsicID()) {
 | 
						|
    F.setAttributes(Intrinsic::getAttributes(Ctx, id));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  AttributeMask R = getParamAndReturnAttributesToRemove();
 | 
						|
  for (Argument &A : F.args())
 | 
						|
    if (isa<PointerType>(A.getType()))
 | 
						|
      F.removeParamAttrs(A.getArgNo(), R);
 | 
						|
 | 
						|
  if (isa<PointerType>(F.getReturnType()))
 | 
						|
    F.removeRetAttrs(R);
 | 
						|
 | 
						|
  for (auto Attr : FnAttrsToStrip)
 | 
						|
    F.removeFnAttr(Attr);
 | 
						|
}
 | 
						|
 | 
						|
/// Certain metadata on instructions are invalid after running RS4GC.
 | 
						|
/// Optimizations that run after RS4GC can incorrectly use this metadata to
 | 
						|
/// optimize functions. We drop such metadata on the instruction.
 | 
						|
static void stripInvalidMetadataFromInstruction(Instruction &I) {
 | 
						|
  if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
 | 
						|
    return;
 | 
						|
  // These are the attributes that are still valid on loads and stores after
 | 
						|
  // RS4GC.
 | 
						|
  // The metadata implying dereferenceability and noalias are (conservatively)
 | 
						|
  // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
 | 
						|
  // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
 | 
						|
  // touch the entire heap including noalias objects. Note: The reasoning is
 | 
						|
  // same as stripping the dereferenceability and noalias attributes that are
 | 
						|
  // analogous to the metadata counterparts.
 | 
						|
  // We also drop the invariant.load metadata on the load because that metadata
 | 
						|
  // implies the address operand to the load points to memory that is never
 | 
						|
  // changed once it became dereferenceable. This is no longer true after RS4GC.
 | 
						|
  // Similar reasoning applies to invariant.group metadata, which applies to
 | 
						|
  // loads within a group.
 | 
						|
  unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
 | 
						|
                         LLVMContext::MD_range,
 | 
						|
                         LLVMContext::MD_alias_scope,
 | 
						|
                         LLVMContext::MD_nontemporal,
 | 
						|
                         LLVMContext::MD_nonnull,
 | 
						|
                         LLVMContext::MD_align,
 | 
						|
                         LLVMContext::MD_type};
 | 
						|
 | 
						|
  // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
 | 
						|
  I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
 | 
						|
}
 | 
						|
 | 
						|
static void stripNonValidDataFromBody(Function &F) {
 | 
						|
  if (F.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  LLVMContext &Ctx = F.getContext();
 | 
						|
  MDBuilder Builder(Ctx);
 | 
						|
 | 
						|
  // Set of invariantstart instructions that we need to remove.
 | 
						|
  // Use this to avoid invalidating the instruction iterator.
 | 
						|
  SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
 | 
						|
 | 
						|
  for (Instruction &I : instructions(F)) {
 | 
						|
    // invariant.start on memory location implies that the referenced memory
 | 
						|
    // location is constant and unchanging. This is no longer true after
 | 
						|
    // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
 | 
						|
    // which frees the entire heap and the presence of invariant.start allows
 | 
						|
    // the optimizer to sink the load of a memory location past a statepoint,
 | 
						|
    // which is incorrect.
 | 
						|
    if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::invariant_start) {
 | 
						|
        InvariantStartInstructions.push_back(II);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
 | 
						|
      MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
 | 
						|
      I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
 | 
						|
    }
 | 
						|
 | 
						|
    stripInvalidMetadataFromInstruction(I);
 | 
						|
 | 
						|
    AttributeMask R = getParamAndReturnAttributesToRemove();
 | 
						|
    if (auto *Call = dyn_cast<CallBase>(&I)) {
 | 
						|
      for (int i = 0, e = Call->arg_size(); i != e; i++)
 | 
						|
        if (isa<PointerType>(Call->getArgOperand(i)->getType()))
 | 
						|
          Call->removeParamAttrs(i, R);
 | 
						|
      if (isa<PointerType>(Call->getType()))
 | 
						|
        Call->removeRetAttrs(R);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the invariant.start instructions and RAUW undef.
 | 
						|
  for (auto *II : InvariantStartInstructions) {
 | 
						|
    II->replaceAllUsesWith(UndefValue::get(II->getType()));
 | 
						|
    II->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if this function should be rewritten by this pass.  The main
 | 
						|
/// point of this function is as an extension point for custom logic.
 | 
						|
static bool shouldRewriteStatepointsIn(Function &F) {
 | 
						|
  // TODO: This should check the GCStrategy
 | 
						|
  if (F.hasGC()) {
 | 
						|
    const auto &FunctionGCName = F.getGC();
 | 
						|
    const StringRef StatepointExampleName("statepoint-example");
 | 
						|
    const StringRef CoreCLRName("coreclr");
 | 
						|
    return (StatepointExampleName == FunctionGCName) ||
 | 
						|
           (CoreCLRName == FunctionGCName);
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static void stripNonValidData(Module &M) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
 | 
						|
#endif
 | 
						|
 | 
						|
  for (Function &F : M)
 | 
						|
    stripNonValidAttributesFromPrototype(F);
 | 
						|
 | 
						|
  for (Function &F : M)
 | 
						|
    stripNonValidDataFromBody(F);
 | 
						|
}
 | 
						|
 | 
						|
bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
 | 
						|
                                            TargetTransformInfo &TTI,
 | 
						|
                                            const TargetLibraryInfo &TLI) {
 | 
						|
  assert(!F.isDeclaration() && !F.empty() &&
 | 
						|
         "need function body to rewrite statepoints in");
 | 
						|
  assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
 | 
						|
 | 
						|
  auto NeedsRewrite = [&TLI](Instruction &I) {
 | 
						|
    if (const auto *Call = dyn_cast<CallBase>(&I)) {
 | 
						|
      if (isa<GCStatepointInst>(Call))
 | 
						|
        return false;
 | 
						|
      if (callsGCLeafFunction(Call, TLI))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Normally it's up to the frontend to make sure that non-leaf calls also
 | 
						|
      // have proper deopt state if it is required. We make an exception for
 | 
						|
      // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
 | 
						|
      // these are non-leaf by default. They might be generated by the optimizer
 | 
						|
      // which doesn't know how to produce a proper deopt state. So if we see a
 | 
						|
      // non-leaf memcpy/memmove without deopt state just treat it as a leaf
 | 
						|
      // copy and don't produce a statepoint.
 | 
						|
      if (!AllowStatepointWithNoDeoptInfo &&
 | 
						|
          !Call->getOperandBundle(LLVMContext::OB_deopt)) {
 | 
						|
        assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
 | 
						|
               "Don't expect any other calls here!");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Delete any unreachable statepoints so that we don't have unrewritten
 | 
						|
  // statepoints surviving this pass.  This makes testing easier and the
 | 
						|
  // resulting IR less confusing to human readers.
 | 
						|
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | 
						|
  bool MadeChange = removeUnreachableBlocks(F, &DTU);
 | 
						|
  // Flush the Dominator Tree.
 | 
						|
  DTU.getDomTree();
 | 
						|
 | 
						|
  // Gather all the statepoints which need rewritten.  Be careful to only
 | 
						|
  // consider those in reachable code since we need to ask dominance queries
 | 
						|
  // when rewriting.  We'll delete the unreachable ones in a moment.
 | 
						|
  SmallVector<CallBase *, 64> ParsePointNeeded;
 | 
						|
  SmallVector<CallInst *, 64> Intrinsics;
 | 
						|
  for (Instruction &I : instructions(F)) {
 | 
						|
    // TODO: only the ones with the flag set!
 | 
						|
    if (NeedsRewrite(I)) {
 | 
						|
      // NOTE removeUnreachableBlocks() is stronger than
 | 
						|
      // DominatorTree::isReachableFromEntry(). In other words
 | 
						|
      // removeUnreachableBlocks can remove some blocks for which
 | 
						|
      // isReachableFromEntry() returns true.
 | 
						|
      assert(DT.isReachableFromEntry(I.getParent()) &&
 | 
						|
            "no unreachable blocks expected");
 | 
						|
      ParsePointNeeded.push_back(cast<CallBase>(&I));
 | 
						|
    }
 | 
						|
    if (auto *CI = dyn_cast<CallInst>(&I))
 | 
						|
      if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
 | 
						|
          CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
 | 
						|
        Intrinsics.emplace_back(CI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return early if no work to do.
 | 
						|
  if (ParsePointNeeded.empty() && Intrinsics.empty())
 | 
						|
    return MadeChange;
 | 
						|
 | 
						|
  // As a prepass, go ahead and aggressively destroy single entry phi nodes.
 | 
						|
  // These are created by LCSSA.  They have the effect of increasing the size
 | 
						|
  // of liveness sets for no good reason.  It may be harder to do this post
 | 
						|
  // insertion since relocations and base phis can confuse things.
 | 
						|
  for (BasicBlock &BB : F)
 | 
						|
    if (BB.getUniquePredecessor())
 | 
						|
      MadeChange |= FoldSingleEntryPHINodes(&BB);
 | 
						|
 | 
						|
  // Before we start introducing relocations, we want to tweak the IR a bit to
 | 
						|
  // avoid unfortunate code generation effects.  The main example is that we
 | 
						|
  // want to try to make sure the comparison feeding a branch is after any
 | 
						|
  // safepoints.  Otherwise, we end up with a comparison of pre-relocation
 | 
						|
  // values feeding a branch after relocation.  This is semantically correct,
 | 
						|
  // but results in extra register pressure since both the pre-relocation and
 | 
						|
  // post-relocation copies must be available in registers.  For code without
 | 
						|
  // relocations this is handled elsewhere, but teaching the scheduler to
 | 
						|
  // reverse the transform we're about to do would be slightly complex.
 | 
						|
  // Note: This may extend the live range of the inputs to the icmp and thus
 | 
						|
  // increase the liveset of any statepoint we move over.  This is profitable
 | 
						|
  // as long as all statepoints are in rare blocks.  If we had in-register
 | 
						|
  // lowering for live values this would be a much safer transform.
 | 
						|
  auto getConditionInst = [](Instruction *TI) -> Instruction * {
 | 
						|
    if (auto *BI = dyn_cast<BranchInst>(TI))
 | 
						|
      if (BI->isConditional())
 | 
						|
        return dyn_cast<Instruction>(BI->getCondition());
 | 
						|
    // TODO: Extend this to handle switches
 | 
						|
    return nullptr;
 | 
						|
  };
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    Instruction *TI = BB.getTerminator();
 | 
						|
    if (auto *Cond = getConditionInst(TI))
 | 
						|
      // TODO: Handle more than just ICmps here.  We should be able to move
 | 
						|
      // most instructions without side effects or memory access.
 | 
						|
      if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
 | 
						|
        MadeChange = true;
 | 
						|
        Cond->moveBefore(TI);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Nasty workaround - The base computation code in the main algorithm doesn't
 | 
						|
  // consider the fact that a GEP can be used to convert a scalar to a vector.
 | 
						|
  // The right fix for this is to integrate GEPs into the base rewriting
 | 
						|
  // algorithm properly, this is just a short term workaround to prevent
 | 
						|
  // crashes by canonicalizing such GEPs into fully vector GEPs.
 | 
						|
  for (Instruction &I : instructions(F)) {
 | 
						|
    if (!isa<GetElementPtrInst>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned VF = 0;
 | 
						|
    for (unsigned i = 0; i < I.getNumOperands(); i++)
 | 
						|
      if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
 | 
						|
        assert(VF == 0 ||
 | 
						|
               VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
 | 
						|
        VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
 | 
						|
      }
 | 
						|
 | 
						|
    // It's the vector to scalar traversal through the pointer operand which
 | 
						|
    // confuses base pointer rewriting, so limit ourselves to that case.
 | 
						|
    if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
 | 
						|
      IRBuilder<> B(&I);
 | 
						|
      auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
 | 
						|
      I.setOperand(0, Splat);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Cache the 'defining value' relation used in the computation and
 | 
						|
  // insertion of base phis and selects.  This ensures that we don't insert
 | 
						|
  // large numbers of duplicate base_phis. Use one cache for both
 | 
						|
  // inlineGetBaseAndOffset() and insertParsePoints().
 | 
						|
  DefiningValueMapTy DVCache;
 | 
						|
 | 
						|
  // Mapping between a base values and a flag indicating whether it's a known
 | 
						|
  // base or not.
 | 
						|
  IsKnownBaseMapTy KnownBases;
 | 
						|
 | 
						|
  if (!Intrinsics.empty())
 | 
						|
    // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
 | 
						|
    // live references.
 | 
						|
    MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases);
 | 
						|
 | 
						|
  if (!ParsePointNeeded.empty())
 | 
						|
    MadeChange |=
 | 
						|
        insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases);
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// liveness computation via standard dataflow
 | 
						|
// -------------------------------------------------------------------
 | 
						|
 | 
						|
// TODO: Consider using bitvectors for liveness, the set of potentially
 | 
						|
// interesting values should be small and easy to pre-compute.
 | 
						|
 | 
						|
/// Compute the live-in set for the location rbegin starting from
 | 
						|
/// the live-out set of the basic block
 | 
						|
static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
 | 
						|
                                BasicBlock::reverse_iterator End,
 | 
						|
                                SetVector<Value *> &LiveTmp) {
 | 
						|
  for (auto &I : make_range(Begin, End)) {
 | 
						|
    // KILL/Def - Remove this definition from LiveIn
 | 
						|
    LiveTmp.remove(&I);
 | 
						|
 | 
						|
    // Don't consider *uses* in PHI nodes, we handle their contribution to
 | 
						|
    // predecessor blocks when we seed the LiveOut sets
 | 
						|
    if (isa<PHINode>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // USE - Add to the LiveIn set for this instruction
 | 
						|
    for (Value *V : I.operands()) {
 | 
						|
      assert(!isUnhandledGCPointerType(V->getType()) &&
 | 
						|
             "support for FCA unimplemented");
 | 
						|
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
 | 
						|
        // The choice to exclude all things constant here is slightly subtle.
 | 
						|
        // There are two independent reasons:
 | 
						|
        // - We assume that things which are constant (from LLVM's definition)
 | 
						|
        // do not move at runtime.  For example, the address of a global
 | 
						|
        // variable is fixed, even though it's contents may not be.
 | 
						|
        // - Second, we can't disallow arbitrary inttoptr constants even
 | 
						|
        // if the language frontend does.  Optimization passes are free to
 | 
						|
        // locally exploit facts without respect to global reachability.  This
 | 
						|
        // can create sections of code which are dynamically unreachable and
 | 
						|
        // contain just about anything.  (see constants.ll in tests)
 | 
						|
        LiveTmp.insert(V);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
 | 
						|
  for (BasicBlock *Succ : successors(BB)) {
 | 
						|
    for (auto &I : *Succ) {
 | 
						|
      PHINode *PN = dyn_cast<PHINode>(&I);
 | 
						|
      if (!PN)
 | 
						|
        break;
 | 
						|
 | 
						|
      Value *V = PN->getIncomingValueForBlock(BB);
 | 
						|
      assert(!isUnhandledGCPointerType(V->getType()) &&
 | 
						|
             "support for FCA unimplemented");
 | 
						|
      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
 | 
						|
        LiveTmp.insert(V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SetVector<Value *> computeKillSet(BasicBlock *BB) {
 | 
						|
  SetVector<Value *> KillSet;
 | 
						|
  for (Instruction &I : *BB)
 | 
						|
    if (isHandledGCPointerType(I.getType()))
 | 
						|
      KillSet.insert(&I);
 | 
						|
  return KillSet;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
 | 
						|
/// validation check for the liveness computation.
 | 
						|
static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
 | 
						|
                          Instruction *TI, bool TermOkay = false) {
 | 
						|
  for (Value *V : Live) {
 | 
						|
    if (auto *I = dyn_cast<Instruction>(V)) {
 | 
						|
      // The terminator can be a member of the LiveOut set.  LLVM's definition
 | 
						|
      // of instruction dominance states that V does not dominate itself.  As
 | 
						|
      // such, we need to special case this to allow it.
 | 
						|
      if (TermOkay && TI == I)
 | 
						|
        continue;
 | 
						|
      assert(DT.dominates(I, TI) &&
 | 
						|
             "basic SSA liveness expectation violated by liveness analysis");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check that all the liveness sets used during the computation of liveness
 | 
						|
/// obey basic SSA properties.  This is useful for finding cases where we miss
 | 
						|
/// a def.
 | 
						|
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
 | 
						|
                          BasicBlock &BB) {
 | 
						|
  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
 | 
						|
  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
 | 
						|
  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void computeLiveInValues(DominatorTree &DT, Function &F,
 | 
						|
                                GCPtrLivenessData &Data) {
 | 
						|
  SmallSetVector<BasicBlock *, 32> Worklist;
 | 
						|
 | 
						|
  // Seed the liveness for each individual block
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    Data.KillSet[&BB] = computeKillSet(&BB);
 | 
						|
    Data.LiveSet[&BB].clear();
 | 
						|
    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    for (Value *Kill : Data.KillSet[&BB])
 | 
						|
      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
 | 
						|
#endif
 | 
						|
 | 
						|
    Data.LiveOut[&BB] = SetVector<Value *>();
 | 
						|
    computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
 | 
						|
    Data.LiveIn[&BB] = Data.LiveSet[&BB];
 | 
						|
    Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
 | 
						|
    Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
 | 
						|
    if (!Data.LiveIn[&BB].empty())
 | 
						|
      Worklist.insert(pred_begin(&BB), pred_end(&BB));
 | 
						|
  }
 | 
						|
 | 
						|
  // Propagate that liveness until stable
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    BasicBlock *BB = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // Compute our new liveout set, then exit early if it hasn't changed despite
 | 
						|
    // the contribution of our successor.
 | 
						|
    SetVector<Value *> LiveOut = Data.LiveOut[BB];
 | 
						|
    const auto OldLiveOutSize = LiveOut.size();
 | 
						|
    for (BasicBlock *Succ : successors(BB)) {
 | 
						|
      assert(Data.LiveIn.count(Succ));
 | 
						|
      LiveOut.set_union(Data.LiveIn[Succ]);
 | 
						|
    }
 | 
						|
    // assert OutLiveOut is a subset of LiveOut
 | 
						|
    if (OldLiveOutSize == LiveOut.size()) {
 | 
						|
      // If the sets are the same size, then we didn't actually add anything
 | 
						|
      // when unioning our successors LiveIn.  Thus, the LiveIn of this block
 | 
						|
      // hasn't changed.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    Data.LiveOut[BB] = LiveOut;
 | 
						|
 | 
						|
    // Apply the effects of this basic block
 | 
						|
    SetVector<Value *> LiveTmp = LiveOut;
 | 
						|
    LiveTmp.set_union(Data.LiveSet[BB]);
 | 
						|
    LiveTmp.set_subtract(Data.KillSet[BB]);
 | 
						|
 | 
						|
    assert(Data.LiveIn.count(BB));
 | 
						|
    const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
 | 
						|
    // assert: OldLiveIn is a subset of LiveTmp
 | 
						|
    if (OldLiveIn.size() != LiveTmp.size()) {
 | 
						|
      Data.LiveIn[BB] = LiveTmp;
 | 
						|
      Worklist.insert(pred_begin(BB), pred_end(BB));
 | 
						|
    }
 | 
						|
  } // while (!Worklist.empty())
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify our output against SSA properties.  This helps catch any
 | 
						|
  // missing kills during the above iteration.
 | 
						|
  for (BasicBlock &BB : F)
 | 
						|
    checkBasicSSA(DT, Data, BB);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
 | 
						|
                              StatepointLiveSetTy &Out) {
 | 
						|
  BasicBlock *BB = Inst->getParent();
 | 
						|
 | 
						|
  // Note: The copy is intentional and required
 | 
						|
  assert(Data.LiveOut.count(BB));
 | 
						|
  SetVector<Value *> LiveOut = Data.LiveOut[BB];
 | 
						|
 | 
						|
  // We want to handle the statepoint itself oddly.  It's
 | 
						|
  // call result is not live (normal), nor are it's arguments
 | 
						|
  // (unless they're used again later).  This adjustment is
 | 
						|
  // specifically what we need to relocate
 | 
						|
  computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
 | 
						|
                      LiveOut);
 | 
						|
  LiveOut.remove(Inst);
 | 
						|
  Out.insert(LiveOut.begin(), LiveOut.end());
 | 
						|
}
 | 
						|
 | 
						|
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | 
						|
                                  CallBase *Call,
 | 
						|
                                  PartiallyConstructedSafepointRecord &Info,
 | 
						|
                                  PointerToBaseTy &PointerToBase) {
 | 
						|
  StatepointLiveSetTy Updated;
 | 
						|
  findLiveSetAtInst(Call, RevisedLivenessData, Updated);
 | 
						|
 | 
						|
  // We may have base pointers which are now live that weren't before.  We need
 | 
						|
  // to update the PointerToBase structure to reflect this.
 | 
						|
  for (auto *V : Updated)
 | 
						|
    PointerToBase.insert({ V, V });
 | 
						|
 | 
						|
  Info.LiveSet = Updated;
 | 
						|
}
 |