1024 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1024 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass converts vector operations into scalar operations, in order
 | 
						|
// to expose optimization opportunities on the individual scalar operations.
 | 
						|
// It is mainly intended for targets that do not have vector units, but it
 | 
						|
// may also be useful for revectorizing code to different vector widths.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/Scalarizer.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstVisitor.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <map>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "scalarizer"
 | 
						|
 | 
						|
static cl::opt<bool> ClScalarizeVariableInsertExtract(
 | 
						|
    "scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
 | 
						|
    cl::desc("Allow the scalarizer pass to scalarize "
 | 
						|
             "insertelement/extractelement with variable index"));
 | 
						|
 | 
						|
// This is disabled by default because having separate loads and stores
 | 
						|
// makes it more likely that the -combiner-alias-analysis limits will be
 | 
						|
// reached.
 | 
						|
static cl::opt<bool> ClScalarizeLoadStore(
 | 
						|
    "scalarize-load-store", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Allow the scalarizer pass to scalarize loads and store"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) {
 | 
						|
  BasicBlock *BB = Itr->getParent();
 | 
						|
  if (isa<PHINode>(Itr))
 | 
						|
    Itr = BB->getFirstInsertionPt();
 | 
						|
  if (Itr != BB->end())
 | 
						|
    Itr = skipDebugIntrinsics(Itr);
 | 
						|
  return Itr;
 | 
						|
}
 | 
						|
 | 
						|
// Used to store the scattered form of a vector.
 | 
						|
using ValueVector = SmallVector<Value *, 8>;
 | 
						|
 | 
						|
// Used to map a vector Value to its scattered form.  We use std::map
 | 
						|
// because we want iterators to persist across insertion and because the
 | 
						|
// values are relatively large.
 | 
						|
using ScatterMap = std::map<Value *, ValueVector>;
 | 
						|
 | 
						|
// Lists Instructions that have been replaced with scalar implementations,
 | 
						|
// along with a pointer to their scattered forms.
 | 
						|
using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
 | 
						|
 | 
						|
// Provides a very limited vector-like interface for lazily accessing one
 | 
						|
// component of a scattered vector or vector pointer.
 | 
						|
class Scatterer {
 | 
						|
public:
 | 
						|
  Scatterer() = default;
 | 
						|
 | 
						|
  // Scatter V into Size components.  If new instructions are needed,
 | 
						|
  // insert them before BBI in BB.  If Cache is nonnull, use it to cache
 | 
						|
  // the results.
 | 
						|
  Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, Type *PtrElemTy,
 | 
						|
            ValueVector *cachePtr = nullptr);
 | 
						|
 | 
						|
  // Return component I, creating a new Value for it if necessary.
 | 
						|
  Value *operator[](unsigned I);
 | 
						|
 | 
						|
  // Return the number of components.
 | 
						|
  unsigned size() const { return Size; }
 | 
						|
 | 
						|
private:
 | 
						|
  BasicBlock *BB;
 | 
						|
  BasicBlock::iterator BBI;
 | 
						|
  Value *V;
 | 
						|
  Type *PtrElemTy;
 | 
						|
  ValueVector *CachePtr;
 | 
						|
  ValueVector Tmp;
 | 
						|
  unsigned Size;
 | 
						|
};
 | 
						|
 | 
						|
// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
 | 
						|
// called Name that compares X and Y in the same way as FCI.
 | 
						|
struct FCmpSplitter {
 | 
						|
  FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
 | 
						|
 | 
						|
  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | 
						|
                    const Twine &Name) const {
 | 
						|
    return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
 | 
						|
  }
 | 
						|
 | 
						|
  FCmpInst &FCI;
 | 
						|
};
 | 
						|
 | 
						|
// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
 | 
						|
// called Name that compares X and Y in the same way as ICI.
 | 
						|
struct ICmpSplitter {
 | 
						|
  ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
 | 
						|
 | 
						|
  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | 
						|
                    const Twine &Name) const {
 | 
						|
    return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst &ICI;
 | 
						|
};
 | 
						|
 | 
						|
// UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
 | 
						|
// a unary operator like UO called Name with operand X.
 | 
						|
struct UnarySplitter {
 | 
						|
  UnarySplitter(UnaryOperator &uo) : UO(uo) {}
 | 
						|
 | 
						|
  Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
 | 
						|
    return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
 | 
						|
  }
 | 
						|
 | 
						|
  UnaryOperator &UO;
 | 
						|
};
 | 
						|
 | 
						|
// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
 | 
						|
// a binary operator like BO called Name with operands X and Y.
 | 
						|
struct BinarySplitter {
 | 
						|
  BinarySplitter(BinaryOperator &bo) : BO(bo) {}
 | 
						|
 | 
						|
  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | 
						|
                    const Twine &Name) const {
 | 
						|
    return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator &BO;
 | 
						|
};
 | 
						|
 | 
						|
// Information about a load or store that we're scalarizing.
 | 
						|
struct VectorLayout {
 | 
						|
  VectorLayout() = default;
 | 
						|
 | 
						|
  // Return the alignment of element I.
 | 
						|
  Align getElemAlign(unsigned I) {
 | 
						|
    return commonAlignment(VecAlign, I * ElemSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // The type of the vector.
 | 
						|
  VectorType *VecTy = nullptr;
 | 
						|
 | 
						|
  // The type of each element.
 | 
						|
  Type *ElemTy = nullptr;
 | 
						|
 | 
						|
  // The alignment of the vector.
 | 
						|
  Align VecAlign;
 | 
						|
 | 
						|
  // The size of each element.
 | 
						|
  uint64_t ElemSize = 0;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
T getWithDefaultOverride(const cl::opt<T> &ClOption,
 | 
						|
                         const llvm::Optional<T> &DefaultOverride) {
 | 
						|
  return ClOption.getNumOccurrences() ? ClOption
 | 
						|
                                      : DefaultOverride.value_or(ClOption);
 | 
						|
}
 | 
						|
 | 
						|
class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
 | 
						|
public:
 | 
						|
  ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT,
 | 
						|
                    ScalarizerPassOptions Options)
 | 
						|
      : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT),
 | 
						|
        ScalarizeVariableInsertExtract(
 | 
						|
            getWithDefaultOverride(ClScalarizeVariableInsertExtract,
 | 
						|
                                   Options.ScalarizeVariableInsertExtract)),
 | 
						|
        ScalarizeLoadStore(getWithDefaultOverride(ClScalarizeLoadStore,
 | 
						|
                                                  Options.ScalarizeLoadStore)) {
 | 
						|
  }
 | 
						|
 | 
						|
  bool visit(Function &F);
 | 
						|
 | 
						|
  // InstVisitor methods.  They return true if the instruction was scalarized,
 | 
						|
  // false if nothing changed.
 | 
						|
  bool visitInstruction(Instruction &I) { return false; }
 | 
						|
  bool visitSelectInst(SelectInst &SI);
 | 
						|
  bool visitICmpInst(ICmpInst &ICI);
 | 
						|
  bool visitFCmpInst(FCmpInst &FCI);
 | 
						|
  bool visitUnaryOperator(UnaryOperator &UO);
 | 
						|
  bool visitBinaryOperator(BinaryOperator &BO);
 | 
						|
  bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
 | 
						|
  bool visitCastInst(CastInst &CI);
 | 
						|
  bool visitBitCastInst(BitCastInst &BCI);
 | 
						|
  bool visitInsertElementInst(InsertElementInst &IEI);
 | 
						|
  bool visitExtractElementInst(ExtractElementInst &EEI);
 | 
						|
  bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
 | 
						|
  bool visitPHINode(PHINode &PHI);
 | 
						|
  bool visitLoadInst(LoadInst &LI);
 | 
						|
  bool visitStoreInst(StoreInst &SI);
 | 
						|
  bool visitCallInst(CallInst &ICI);
 | 
						|
 | 
						|
private:
 | 
						|
  Scatterer scatter(Instruction *Point, Value *V, Type *PtrElemTy = nullptr);
 | 
						|
  void gather(Instruction *Op, const ValueVector &CV);
 | 
						|
  void replaceUses(Instruction *Op, Value *CV);
 | 
						|
  bool canTransferMetadata(unsigned Kind);
 | 
						|
  void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
 | 
						|
  Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
 | 
						|
                                         const DataLayout &DL);
 | 
						|
  bool finish();
 | 
						|
 | 
						|
  template<typename T> bool splitUnary(Instruction &, const T &);
 | 
						|
  template<typename T> bool splitBinary(Instruction &, const T &);
 | 
						|
 | 
						|
  bool splitCall(CallInst &CI);
 | 
						|
 | 
						|
  ScatterMap Scattered;
 | 
						|
  GatherList Gathered;
 | 
						|
  bool Scalarized;
 | 
						|
 | 
						|
  SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
 | 
						|
 | 
						|
  unsigned ParallelLoopAccessMDKind;
 | 
						|
 | 
						|
  DominatorTree *DT;
 | 
						|
 | 
						|
  const bool ScalarizeVariableInsertExtract;
 | 
						|
  const bool ScalarizeLoadStore;
 | 
						|
};
 | 
						|
 | 
						|
class ScalarizerLegacyPass : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  ScalarizerLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage& AU) const override {
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char ScalarizerLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
 | 
						|
                      "Scalarize vector operations", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
 | 
						|
                    "Scalarize vector operations", false, false)
 | 
						|
 | 
						|
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
 | 
						|
                     Type *PtrElemTy, ValueVector *cachePtr)
 | 
						|
    : BB(bb), BBI(bbi), V(v), PtrElemTy(PtrElemTy), CachePtr(cachePtr) {
 | 
						|
  Type *Ty = V->getType();
 | 
						|
  if (Ty->isPointerTy()) {
 | 
						|
    assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(PtrElemTy) &&
 | 
						|
           "Pointer element type mismatch");
 | 
						|
    Ty = PtrElemTy;
 | 
						|
  }
 | 
						|
  Size = cast<FixedVectorType>(Ty)->getNumElements();
 | 
						|
  if (!CachePtr)
 | 
						|
    Tmp.resize(Size, nullptr);
 | 
						|
  else if (CachePtr->empty())
 | 
						|
    CachePtr->resize(Size, nullptr);
 | 
						|
  else
 | 
						|
    assert(Size == CachePtr->size() && "Inconsistent vector sizes");
 | 
						|
}
 | 
						|
 | 
						|
// Return component I, creating a new Value for it if necessary.
 | 
						|
Value *Scatterer::operator[](unsigned I) {
 | 
						|
  ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
 | 
						|
  // Try to reuse a previous value.
 | 
						|
  if (CV[I])
 | 
						|
    return CV[I];
 | 
						|
  IRBuilder<> Builder(BB, BBI);
 | 
						|
  if (PtrElemTy) {
 | 
						|
    Type *VectorElemTy = cast<VectorType>(PtrElemTy)->getElementType();
 | 
						|
    if (!CV[0]) {
 | 
						|
      Type *NewPtrTy = PointerType::get(
 | 
						|
          VectorElemTy, V->getType()->getPointerAddressSpace());
 | 
						|
      CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
 | 
						|
    }
 | 
						|
    if (I != 0)
 | 
						|
      CV[I] = Builder.CreateConstGEP1_32(VectorElemTy, CV[0], I,
 | 
						|
                                         V->getName() + ".i" + Twine(I));
 | 
						|
  } else {
 | 
						|
    // Search through a chain of InsertElementInsts looking for element I.
 | 
						|
    // Record other elements in the cache.  The new V is still suitable
 | 
						|
    // for all uncached indices.
 | 
						|
    while (true) {
 | 
						|
      InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
 | 
						|
      if (!Insert)
 | 
						|
        break;
 | 
						|
      ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
 | 
						|
      if (!Idx)
 | 
						|
        break;
 | 
						|
      unsigned J = Idx->getZExtValue();
 | 
						|
      V = Insert->getOperand(0);
 | 
						|
      if (I == J) {
 | 
						|
        CV[J] = Insert->getOperand(1);
 | 
						|
        return CV[J];
 | 
						|
      } else if (!CV[J]) {
 | 
						|
        // Only cache the first entry we find for each index we're not actively
 | 
						|
        // searching for. This prevents us from going too far up the chain and
 | 
						|
        // caching incorrect entries.
 | 
						|
        CV[J] = Insert->getOperand(1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
 | 
						|
                                         V->getName() + ".i" + Twine(I));
 | 
						|
  }
 | 
						|
  return CV[I];
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerLegacyPass::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Module &M = *F.getParent();
 | 
						|
  unsigned ParallelLoopAccessMDKind =
 | 
						|
      M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
 | 
						|
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, ScalarizerPassOptions());
 | 
						|
  return Impl.visit(F);
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createScalarizerPass() {
 | 
						|
  return new ScalarizerLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visit(Function &F) {
 | 
						|
  assert(Gathered.empty() && Scattered.empty());
 | 
						|
 | 
						|
  Scalarized = false;
 | 
						|
 | 
						|
  // To ensure we replace gathered components correctly we need to do an ordered
 | 
						|
  // traversal of the basic blocks in the function.
 | 
						|
  ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
 | 
						|
  for (BasicBlock *BB : RPOT) {
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
 | 
						|
      Instruction *I = &*II;
 | 
						|
      bool Done = InstVisitor::visit(I);
 | 
						|
      ++II;
 | 
						|
      if (Done && I->getType()->isVoidTy())
 | 
						|
        I->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return finish();
 | 
						|
}
 | 
						|
 | 
						|
// Return a scattered form of V that can be accessed by Point.  V must be a
 | 
						|
// vector or a pointer to a vector.
 | 
						|
Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V,
 | 
						|
                                     Type *PtrElemTy) {
 | 
						|
  if (Argument *VArg = dyn_cast<Argument>(V)) {
 | 
						|
    // Put the scattered form of arguments in the entry block,
 | 
						|
    // so that it can be used everywhere.
 | 
						|
    Function *F = VArg->getParent();
 | 
						|
    BasicBlock *BB = &F->getEntryBlock();
 | 
						|
    return Scatterer(BB, BB->begin(), V, PtrElemTy, &Scattered[V]);
 | 
						|
  }
 | 
						|
  if (Instruction *VOp = dyn_cast<Instruction>(V)) {
 | 
						|
    // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
 | 
						|
    // nodes in predecessors. If those predecessors are unreachable from entry,
 | 
						|
    // then the IR in those blocks could have unexpected properties resulting in
 | 
						|
    // infinite loops in Scatterer::operator[]. By simply treating values
 | 
						|
    // originating from instructions in unreachable blocks as undef we do not
 | 
						|
    // need to analyse them further.
 | 
						|
    if (!DT->isReachableFromEntry(VOp->getParent()))
 | 
						|
      return Scatterer(Point->getParent(), Point->getIterator(),
 | 
						|
                       PoisonValue::get(V->getType()), PtrElemTy);
 | 
						|
    // Put the scattered form of an instruction directly after the
 | 
						|
    // instruction, skipping over PHI nodes and debug intrinsics.
 | 
						|
    BasicBlock *BB = VOp->getParent();
 | 
						|
    return Scatterer(
 | 
						|
        BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V,
 | 
						|
        PtrElemTy, &Scattered[V]);
 | 
						|
  }
 | 
						|
  // In the fallback case, just put the scattered before Point and
 | 
						|
  // keep the result local to Point.
 | 
						|
  return Scatterer(Point->getParent(), Point->getIterator(), V, PtrElemTy);
 | 
						|
}
 | 
						|
 | 
						|
// Replace Op with the gathered form of the components in CV.  Defer the
 | 
						|
// deletion of Op and creation of the gathered form to the end of the pass,
 | 
						|
// so that we can avoid creating the gathered form if all uses of Op are
 | 
						|
// replaced with uses of CV.
 | 
						|
void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
 | 
						|
  transferMetadataAndIRFlags(Op, CV);
 | 
						|
 | 
						|
  // If we already have a scattered form of Op (created from ExtractElements
 | 
						|
  // of Op itself), replace them with the new form.
 | 
						|
  ValueVector &SV = Scattered[Op];
 | 
						|
  if (!SV.empty()) {
 | 
						|
    for (unsigned I = 0, E = SV.size(); I != E; ++I) {
 | 
						|
      Value *V = SV[I];
 | 
						|
      if (V == nullptr || SV[I] == CV[I])
 | 
						|
        continue;
 | 
						|
 | 
						|
      Instruction *Old = cast<Instruction>(V);
 | 
						|
      if (isa<Instruction>(CV[I]))
 | 
						|
        CV[I]->takeName(Old);
 | 
						|
      Old->replaceAllUsesWith(CV[I]);
 | 
						|
      PotentiallyDeadInstrs.emplace_back(Old);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SV = CV;
 | 
						|
  Gathered.push_back(GatherList::value_type(Op, &SV));
 | 
						|
}
 | 
						|
 | 
						|
// Replace Op with CV and collect Op has a potentially dead instruction.
 | 
						|
void ScalarizerVisitor::replaceUses(Instruction *Op, Value *CV) {
 | 
						|
  if (CV != Op) {
 | 
						|
    Op->replaceAllUsesWith(CV);
 | 
						|
    PotentiallyDeadInstrs.emplace_back(Op);
 | 
						|
    Scalarized = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Return true if it is safe to transfer the given metadata tag from
 | 
						|
// vector to scalar instructions.
 | 
						|
bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
 | 
						|
  return (Tag == LLVMContext::MD_tbaa
 | 
						|
          || Tag == LLVMContext::MD_fpmath
 | 
						|
          || Tag == LLVMContext::MD_tbaa_struct
 | 
						|
          || Tag == LLVMContext::MD_invariant_load
 | 
						|
          || Tag == LLVMContext::MD_alias_scope
 | 
						|
          || Tag == LLVMContext::MD_noalias
 | 
						|
          || Tag == ParallelLoopAccessMDKind
 | 
						|
          || Tag == LLVMContext::MD_access_group);
 | 
						|
}
 | 
						|
 | 
						|
// Transfer metadata from Op to the instructions in CV if it is known
 | 
						|
// to be safe to do so.
 | 
						|
void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
 | 
						|
                                                   const ValueVector &CV) {
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | 
						|
  Op->getAllMetadataOtherThanDebugLoc(MDs);
 | 
						|
  for (unsigned I = 0, E = CV.size(); I != E; ++I) {
 | 
						|
    if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
 | 
						|
      for (const auto &MD : MDs)
 | 
						|
        if (canTransferMetadata(MD.first))
 | 
						|
          New->setMetadata(MD.first, MD.second);
 | 
						|
      New->copyIRFlags(Op);
 | 
						|
      if (Op->getDebugLoc() && !New->getDebugLoc())
 | 
						|
        New->setDebugLoc(Op->getDebugLoc());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Try to fill in Layout from Ty, returning true on success.  Alignment is
 | 
						|
// the alignment of the vector, or None if the ABI default should be used.
 | 
						|
Optional<VectorLayout>
 | 
						|
ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
 | 
						|
                                   const DataLayout &DL) {
 | 
						|
  VectorLayout Layout;
 | 
						|
  // Make sure we're dealing with a vector.
 | 
						|
  Layout.VecTy = dyn_cast<VectorType>(Ty);
 | 
						|
  if (!Layout.VecTy)
 | 
						|
    return None;
 | 
						|
  // Check that we're dealing with full-byte elements.
 | 
						|
  Layout.ElemTy = Layout.VecTy->getElementType();
 | 
						|
  if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
 | 
						|
    return None;
 | 
						|
  Layout.VecAlign = Alignment;
 | 
						|
  Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
 | 
						|
  return Layout;
 | 
						|
}
 | 
						|
 | 
						|
// Scalarize one-operand instruction I, using Split(Builder, X, Name)
 | 
						|
// to create an instruction like I with operand X and name Name.
 | 
						|
template<typename Splitter>
 | 
						|
bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(I.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&I);
 | 
						|
  Scatterer Op = scatter(&I, I.getOperand(0));
 | 
						|
  assert(Op.size() == NumElems && "Mismatched unary operation");
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
  for (unsigned Elem = 0; Elem < NumElems; ++Elem)
 | 
						|
    Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
 | 
						|
  gather(&I, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
 | 
						|
// to create an instruction like I with operands X and Y and name Name.
 | 
						|
template<typename Splitter>
 | 
						|
bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(I.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&I);
 | 
						|
  Scatterer VOp0 = scatter(&I, I.getOperand(0));
 | 
						|
  Scatterer VOp1 = scatter(&I, I.getOperand(1));
 | 
						|
  assert(VOp0.size() == NumElems && "Mismatched binary operation");
 | 
						|
  assert(VOp1.size() == NumElems && "Mismatched binary operation");
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
  for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
 | 
						|
    Value *Op0 = VOp0[Elem];
 | 
						|
    Value *Op1 = VOp1[Elem];
 | 
						|
    Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
 | 
						|
  }
 | 
						|
  gather(&I, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTriviallyScalariable(Intrinsic::ID ID) {
 | 
						|
  return isTriviallyVectorizable(ID);
 | 
						|
}
 | 
						|
 | 
						|
// All of the current scalarizable intrinsics only have one mangled type.
 | 
						|
static Function *getScalarIntrinsicDeclaration(Module *M,
 | 
						|
                                               Intrinsic::ID ID,
 | 
						|
                                               ArrayRef<Type*> Tys) {
 | 
						|
  return Intrinsic::getDeclaration(M, ID, Tys);
 | 
						|
}
 | 
						|
 | 
						|
/// If a call to a vector typed intrinsic function, split into a scalar call per
 | 
						|
/// element if possible for the intrinsic.
 | 
						|
bool ScalarizerVisitor::splitCall(CallInst &CI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(CI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Function *F = CI.getCalledFunction();
 | 
						|
  if (!F)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Intrinsic::ID ID = F->getIntrinsicID();
 | 
						|
  if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  unsigned NumArgs = CI.arg_size();
 | 
						|
 | 
						|
  ValueVector ScalarOperands(NumArgs);
 | 
						|
  SmallVector<Scatterer, 8> Scattered(NumArgs);
 | 
						|
 | 
						|
  Scattered.resize(NumArgs);
 | 
						|
 | 
						|
  SmallVector<llvm::Type *, 3> Tys;
 | 
						|
  Tys.push_back(VT->getScalarType());
 | 
						|
 | 
						|
  // Assumes that any vector type has the same number of elements as the return
 | 
						|
  // vector type, which is true for all current intrinsics.
 | 
						|
  for (unsigned I = 0; I != NumArgs; ++I) {
 | 
						|
    Value *OpI = CI.getOperand(I);
 | 
						|
    if (OpI->getType()->isVectorTy()) {
 | 
						|
      Scattered[I] = scatter(&CI, OpI);
 | 
						|
      assert(Scattered[I].size() == NumElems && "mismatched call operands");
 | 
						|
      if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
 | 
						|
        Tys.push_back(OpI->getType()->getScalarType());
 | 
						|
    } else {
 | 
						|
      ScalarOperands[I] = OpI;
 | 
						|
      if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
 | 
						|
        Tys.push_back(OpI->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ValueVector Res(NumElems);
 | 
						|
  ValueVector ScalarCallOps(NumArgs);
 | 
						|
 | 
						|
  Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys);
 | 
						|
  IRBuilder<> Builder(&CI);
 | 
						|
 | 
						|
  // Perform actual scalarization, taking care to preserve any scalar operands.
 | 
						|
  for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
 | 
						|
    ScalarCallOps.clear();
 | 
						|
 | 
						|
    for (unsigned J = 0; J != NumArgs; ++J) {
 | 
						|
      if (isVectorIntrinsicWithScalarOpAtArg(ID, J))
 | 
						|
        ScalarCallOps.push_back(ScalarOperands[J]);
 | 
						|
      else
 | 
						|
        ScalarCallOps.push_back(Scattered[J][Elem]);
 | 
						|
    }
 | 
						|
 | 
						|
    Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
 | 
						|
                                   CI.getName() + ".i" + Twine(Elem));
 | 
						|
  }
 | 
						|
 | 
						|
  gather(&CI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(SI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&SI);
 | 
						|
  Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
 | 
						|
  Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
 | 
						|
  assert(VOp1.size() == NumElems && "Mismatched select");
 | 
						|
  assert(VOp2.size() == NumElems && "Mismatched select");
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  if (SI.getOperand(0)->getType()->isVectorTy()) {
 | 
						|
    Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
 | 
						|
    assert(VOp0.size() == NumElems && "Mismatched select");
 | 
						|
    for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
      Value *Op0 = VOp0[I];
 | 
						|
      Value *Op1 = VOp1[I];
 | 
						|
      Value *Op2 = VOp2[I];
 | 
						|
      Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
 | 
						|
                                    SI.getName() + ".i" + Twine(I));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Value *Op0 = SI.getOperand(0);
 | 
						|
    for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
      Value *Op1 = VOp1[I];
 | 
						|
      Value *Op2 = VOp2[I];
 | 
						|
      Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
 | 
						|
                                    SI.getName() + ".i" + Twine(I));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  gather(&SI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
 | 
						|
  return splitBinary(ICI, ICmpSplitter(ICI));
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
 | 
						|
  return splitBinary(FCI, FCmpSplitter(FCI));
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
 | 
						|
  return splitUnary(UO, UnarySplitter(UO));
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
 | 
						|
  return splitBinary(BO, BinarySplitter(BO));
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  IRBuilder<> Builder(&GEPI);
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  unsigned NumIndices = GEPI.getNumIndices();
 | 
						|
 | 
						|
  // The base pointer might be scalar even if it's a vector GEP. In those cases,
 | 
						|
  // splat the pointer into a vector value, and scatter that vector.
 | 
						|
  Value *Op0 = GEPI.getOperand(0);
 | 
						|
  if (!Op0->getType()->isVectorTy())
 | 
						|
    Op0 = Builder.CreateVectorSplat(NumElems, Op0);
 | 
						|
  Scatterer Base = scatter(&GEPI, Op0);
 | 
						|
 | 
						|
  SmallVector<Scatterer, 8> Ops;
 | 
						|
  Ops.resize(NumIndices);
 | 
						|
  for (unsigned I = 0; I < NumIndices; ++I) {
 | 
						|
    Value *Op = GEPI.getOperand(I + 1);
 | 
						|
 | 
						|
    // The indices might be scalars even if it's a vector GEP. In those cases,
 | 
						|
    // splat the scalar into a vector value, and scatter that vector.
 | 
						|
    if (!Op->getType()->isVectorTy())
 | 
						|
      Op = Builder.CreateVectorSplat(NumElems, Op);
 | 
						|
 | 
						|
    Ops[I] = scatter(&GEPI, Op);
 | 
						|
  }
 | 
						|
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
    SmallVector<Value *, 8> Indices;
 | 
						|
    Indices.resize(NumIndices);
 | 
						|
    for (unsigned J = 0; J < NumIndices; ++J)
 | 
						|
      Indices[J] = Ops[J][I];
 | 
						|
    Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
 | 
						|
                               GEPI.getName() + ".i" + Twine(I));
 | 
						|
    if (GEPI.isInBounds())
 | 
						|
      if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
 | 
						|
        NewGEPI->setIsInBounds();
 | 
						|
  }
 | 
						|
  gather(&GEPI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&CI);
 | 
						|
  Scatterer Op0 = scatter(&CI, CI.getOperand(0));
 | 
						|
  assert(Op0.size() == NumElems && "Mismatched cast");
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
    Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
 | 
						|
                                CI.getName() + ".i" + Twine(I));
 | 
						|
  gather(&CI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
 | 
						|
  VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
 | 
						|
  VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
 | 
						|
  if (!DstVT || !SrcVT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements();
 | 
						|
  unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&BCI);
 | 
						|
  Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(DstNumElems);
 | 
						|
 | 
						|
  if (DstNumElems == SrcNumElems) {
 | 
						|
    for (unsigned I = 0; I < DstNumElems; ++I)
 | 
						|
      Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
 | 
						|
                                     BCI.getName() + ".i" + Twine(I));
 | 
						|
  } else if (DstNumElems > SrcNumElems) {
 | 
						|
    // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
 | 
						|
    // individual elements to the destination.
 | 
						|
    unsigned FanOut = DstNumElems / SrcNumElems;
 | 
						|
    auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
 | 
						|
    unsigned ResI = 0;
 | 
						|
    for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
 | 
						|
      Value *V = Op0[Op0I];
 | 
						|
      Instruction *VI;
 | 
						|
      // Look through any existing bitcasts before converting to <N x t2>.
 | 
						|
      // In the best case, the resulting conversion might be a no-op.
 | 
						|
      while ((VI = dyn_cast<Instruction>(V)) &&
 | 
						|
             VI->getOpcode() == Instruction::BitCast)
 | 
						|
        V = VI->getOperand(0);
 | 
						|
      V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
 | 
						|
      Scatterer Mid = scatter(&BCI, V);
 | 
						|
      for (unsigned MidI = 0; MidI < FanOut; ++MidI)
 | 
						|
        Res[ResI++] = Mid[MidI];
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
 | 
						|
    unsigned FanIn = SrcNumElems / DstNumElems;
 | 
						|
    auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
 | 
						|
    unsigned Op0I = 0;
 | 
						|
    for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
 | 
						|
      Value *V = PoisonValue::get(MidTy);
 | 
						|
      for (unsigned MidI = 0; MidI < FanIn; ++MidI)
 | 
						|
        V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
 | 
						|
                                        BCI.getName() + ".i" + Twine(ResI)
 | 
						|
                                        + ".upto" + Twine(MidI));
 | 
						|
      Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
 | 
						|
                                        BCI.getName() + ".i" + Twine(ResI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  gather(&BCI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(IEI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&IEI);
 | 
						|
  Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
 | 
						|
  Value *NewElt = IEI.getOperand(1);
 | 
						|
  Value *InsIdx = IEI.getOperand(2);
 | 
						|
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
 | 
						|
    for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
      Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
 | 
						|
  } else {
 | 
						|
    if (!ScalarizeVariableInsertExtract)
 | 
						|
      return false;
 | 
						|
 | 
						|
    for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
      Value *ShouldReplace =
 | 
						|
          Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
 | 
						|
                               InsIdx->getName() + ".is." + Twine(I));
 | 
						|
      Value *OldElt = Op0[I];
 | 
						|
      Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
 | 
						|
                                    IEI.getName() + ".i" + Twine(I));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  gather(&IEI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&EEI);
 | 
						|
  Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
 | 
						|
  Value *ExtIdx = EEI.getOperand(1);
 | 
						|
 | 
						|
  if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
 | 
						|
    Value *Res = Op0[CI->getValue().getZExtValue()];
 | 
						|
    replaceUses(&EEI, Res);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ScalarizeVariableInsertExtract)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Res = UndefValue::get(VT->getElementType());
 | 
						|
  for (unsigned I = 0; I < NumSrcElems; ++I) {
 | 
						|
    Value *ShouldExtract =
 | 
						|
        Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
 | 
						|
                             ExtIdx->getName() + ".is." + Twine(I));
 | 
						|
    Value *Elt = Op0[I];
 | 
						|
    Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
 | 
						|
                               EEI.getName() + ".upto" + Twine(I));
 | 
						|
  }
 | 
						|
  replaceUses(&EEI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(SVI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
 | 
						|
  Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
    int Selector = SVI.getMaskValue(I);
 | 
						|
    if (Selector < 0)
 | 
						|
      Res[I] = UndefValue::get(VT->getElementType());
 | 
						|
    else if (unsigned(Selector) < Op0.size())
 | 
						|
      Res[I] = Op0[Selector];
 | 
						|
    else
 | 
						|
      Res[I] = Op1[Selector - Op0.size()];
 | 
						|
  }
 | 
						|
  gather(&SVI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
 | 
						|
  VectorType *VT = dyn_cast<VectorType>(PHI.getType());
 | 
						|
  if (!VT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&PHI);
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  unsigned NumOps = PHI.getNumOperands();
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
    Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
 | 
						|
                               PHI.getName() + ".i" + Twine(I));
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumOps; ++I) {
 | 
						|
    Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
 | 
						|
    BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
 | 
						|
    for (unsigned J = 0; J < NumElems; ++J)
 | 
						|
      cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
 | 
						|
  }
 | 
						|
  gather(&PHI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
 | 
						|
  if (!ScalarizeLoadStore)
 | 
						|
    return false;
 | 
						|
  if (!LI.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Optional<VectorLayout> Layout = getVectorLayout(
 | 
						|
      LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
 | 
						|
  if (!Layout)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&LI);
 | 
						|
  Scatterer Ptr = scatter(&LI, LI.getPointerOperand(), LI.getType());
 | 
						|
  ValueVector Res;
 | 
						|
  Res.resize(NumElems);
 | 
						|
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I)
 | 
						|
    Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
 | 
						|
                                       Align(Layout->getElemAlign(I)),
 | 
						|
                                       LI.getName() + ".i" + Twine(I));
 | 
						|
  gather(&LI, Res);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
 | 
						|
  if (!ScalarizeLoadStore)
 | 
						|
    return false;
 | 
						|
  if (!SI.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *FullValue = SI.getValueOperand();
 | 
						|
  Optional<VectorLayout> Layout = getVectorLayout(
 | 
						|
      FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
 | 
						|
  if (!Layout)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
 | 
						|
  IRBuilder<> Builder(&SI);
 | 
						|
  Scatterer VPtr = scatter(&SI, SI.getPointerOperand(), FullValue->getType());
 | 
						|
  Scatterer VVal = scatter(&SI, FullValue);
 | 
						|
 | 
						|
  ValueVector Stores;
 | 
						|
  Stores.resize(NumElems);
 | 
						|
  for (unsigned I = 0; I < NumElems; ++I) {
 | 
						|
    Value *Val = VVal[I];
 | 
						|
    Value *Ptr = VPtr[I];
 | 
						|
    Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
 | 
						|
  }
 | 
						|
  transferMetadataAndIRFlags(&SI, Stores);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
 | 
						|
  return splitCall(CI);
 | 
						|
}
 | 
						|
 | 
						|
// Delete the instructions that we scalarized.  If a full vector result
 | 
						|
// is still needed, recreate it using InsertElements.
 | 
						|
bool ScalarizerVisitor::finish() {
 | 
						|
  // The presence of data in Gathered or Scattered indicates changes
 | 
						|
  // made to the Function.
 | 
						|
  if (Gathered.empty() && Scattered.empty() && !Scalarized)
 | 
						|
    return false;
 | 
						|
  for (const auto &GMI : Gathered) {
 | 
						|
    Instruction *Op = GMI.first;
 | 
						|
    ValueVector &CV = *GMI.second;
 | 
						|
    if (!Op->use_empty()) {
 | 
						|
      // The value is still needed, so recreate it using a series of
 | 
						|
      // InsertElements.
 | 
						|
      Value *Res = PoisonValue::get(Op->getType());
 | 
						|
      if (auto *Ty = dyn_cast<VectorType>(Op->getType())) {
 | 
						|
        BasicBlock *BB = Op->getParent();
 | 
						|
        unsigned Count = cast<FixedVectorType>(Ty)->getNumElements();
 | 
						|
        IRBuilder<> Builder(Op);
 | 
						|
        if (isa<PHINode>(Op))
 | 
						|
          Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
 | 
						|
        for (unsigned I = 0; I < Count; ++I)
 | 
						|
          Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
 | 
						|
                                            Op->getName() + ".upto" + Twine(I));
 | 
						|
        Res->takeName(Op);
 | 
						|
      } else {
 | 
						|
        assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
 | 
						|
        Res = CV[0];
 | 
						|
        if (Op == Res)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      Op->replaceAllUsesWith(Res);
 | 
						|
    }
 | 
						|
    PotentiallyDeadInstrs.emplace_back(Op);
 | 
						|
  }
 | 
						|
  Gathered.clear();
 | 
						|
  Scattered.clear();
 | 
						|
  Scalarized = false;
 | 
						|
 | 
						|
  RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  Module &M = *F.getParent();
 | 
						|
  unsigned ParallelLoopAccessMDKind =
 | 
						|
      M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
 | 
						|
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, Options);
 | 
						|
  bool Changed = Impl.visit(F);
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  return Changed ? PA : PreservedAnalyses::all();
 | 
						|
}
 |