812 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			812 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Builder implementation for CGRecordLayout objects.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CGRecordLayout.h"
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CodeGenTypes.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/Frontend/CodeGenOptions.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
namespace {
 | 
						|
/// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
 | 
						|
/// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
 | 
						|
/// detail some of the complexities and weirdnesses here.
 | 
						|
/// * LLVM does not have unions - Unions can, in theory be represented by any
 | 
						|
///   llvm::Type with correct size.  We choose a field via a specific heuristic
 | 
						|
///   and add padding if necessary.
 | 
						|
/// * LLVM does not have bitfields - Bitfields are collected into contiguous
 | 
						|
///   runs and allocated as a single storage type for the run.  ASTRecordLayout
 | 
						|
///   contains enough information to determine where the runs break.  Microsoft
 | 
						|
///   and Itanium follow different rules and use different codepaths.
 | 
						|
/// * It is desired that, when possible, bitfields use the appropriate iN type
 | 
						|
///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
 | 
						|
///   i24.  This isn't always possible because i24 has storage size of 32 bit
 | 
						|
///   and if it is possible to use that extra byte of padding we must use
 | 
						|
///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
 | 
						|
///   C++ examples that require clipping:
 | 
						|
///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
 | 
						|
///   struct A { int a : 24; }; // a must be clipped because a struct like B
 | 
						|
//    could exist: struct B : A { char b; }; // b goes at offset 3
 | 
						|
/// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
 | 
						|
///   fields.  The existing asserts suggest that LLVM assumes that *every* field
 | 
						|
///   has an underlying storage type.  Therefore empty structures containing
 | 
						|
///   zero sized subobjects such as empty records or zero sized arrays still get
 | 
						|
///   a zero sized (empty struct) storage type.
 | 
						|
/// * Clang reads the complete type rather than the base type when generating
 | 
						|
///   code to access fields.  Bitfields in tail position with tail padding may
 | 
						|
///   be clipped in the base class but not the complete class (we may discover
 | 
						|
///   that the tail padding is not used in the complete class.) However,
 | 
						|
///   because LLVM reads from the complete type it can generate incorrect code
 | 
						|
///   if we do not clip the tail padding off of the bitfield in the complete
 | 
						|
///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
 | 
						|
///   The location of the clip is stored internally as a sentinal of type
 | 
						|
///   SCISSOR.  If LLVM were updated to read base types (which it probably
 | 
						|
///   should because locations of things such as VBases are bogus in the llvm
 | 
						|
///   type anyway) then we could eliminate the SCISSOR.
 | 
						|
/// * Itanium allows nearly empty primary virtual bases.  These bases don't get
 | 
						|
///   get their own storage because they're laid out as part of another base
 | 
						|
///   or at the beginning of the structure.  Determining if a VBase actually
 | 
						|
///   gets storage awkwardly involves a walk of all bases.
 | 
						|
/// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
 | 
						|
struct CGRecordLowering {
 | 
						|
  // MemberInfo is a helper structure that contains information about a record
 | 
						|
  // member.  In additional to the standard member types, there exists a
 | 
						|
  // sentinal member type that ensures correct rounding.
 | 
						|
  struct MemberInfo {
 | 
						|
    CharUnits Offset;
 | 
						|
    enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
 | 
						|
    llvm::Type *Data;
 | 
						|
    union {
 | 
						|
      const FieldDecl *FD;
 | 
						|
      const CXXRecordDecl *RD;
 | 
						|
    };
 | 
						|
    MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
 | 
						|
               const FieldDecl *FD = 0)
 | 
						|
      : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
 | 
						|
    MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
 | 
						|
               const CXXRecordDecl *RD)
 | 
						|
      : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
 | 
						|
    // MemberInfos are sorted so we define a < operator.
 | 
						|
    bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
 | 
						|
  };
 | 
						|
  // The constructor.
 | 
						|
  CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D);
 | 
						|
  // Short helper routines.
 | 
						|
  /// \brief Constructs a MemberInfo instance from an offset and llvm::Type *.
 | 
						|
  MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
 | 
						|
    return MemberInfo(Offset, MemberInfo::Field, Data);
 | 
						|
  }
 | 
						|
  bool useMSABI() {
 | 
						|
    return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
 | 
						|
           D->isMsStruct(Context);
 | 
						|
  }
 | 
						|
  /// \brief Wraps llvm::Type::getIntNTy with some implicit arguments.
 | 
						|
  llvm::Type *getIntNType(uint64_t NumBits) {
 | 
						|
    return llvm::Type::getIntNTy(Types.getLLVMContext(),
 | 
						|
        (unsigned)llvm::RoundUpToAlignment(NumBits, 8));
 | 
						|
  }
 | 
						|
  /// \brief Gets an llvm type of size NumBytes and alignment 1.
 | 
						|
  llvm::Type *getByteArrayType(CharUnits NumBytes) {
 | 
						|
    assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
 | 
						|
    llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
 | 
						|
    return NumBytes == CharUnits::One() ? Type :
 | 
						|
        (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
 | 
						|
  }
 | 
						|
  /// \brief Gets the storage type for a field decl and handles storage
 | 
						|
  /// for itanium bitfields that are smaller than their declared type.
 | 
						|
  llvm::Type *getStorageType(const FieldDecl *FD) {
 | 
						|
    llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
 | 
						|
    return useMSABI() || !FD->isBitField() ? Type :
 | 
						|
        getIntNType(std::min(FD->getBitWidthValue(Context),
 | 
						|
                             (unsigned)Context.toBits(getSize(Type))));
 | 
						|
  }
 | 
						|
  /// \brief Gets the llvm Basesubobject type from a CXXRecordDecl.
 | 
						|
  llvm::Type *getStorageType(const CXXRecordDecl *RD) {
 | 
						|
    return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
 | 
						|
  }
 | 
						|
  CharUnits bitsToCharUnits(uint64_t BitOffset) {
 | 
						|
    return Context.toCharUnitsFromBits(BitOffset);
 | 
						|
  }
 | 
						|
  CharUnits getSize(llvm::Type *Type) {
 | 
						|
    return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
 | 
						|
  }
 | 
						|
  CharUnits getAlignment(llvm::Type *Type) {
 | 
						|
    return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
 | 
						|
  }
 | 
						|
  bool isZeroInitializable(const FieldDecl *FD) {
 | 
						|
    const Type *Type = FD->getType()->getBaseElementTypeUnsafe();
 | 
						|
    if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>())
 | 
						|
      return Types.getCXXABI().isZeroInitializable(MPT);
 | 
						|
    if (const RecordType *RT = Type->getAs<RecordType>())
 | 
						|
      return isZeroInitializable(RT->getDecl());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool isZeroInitializable(const RecordDecl *RD) {
 | 
						|
    return Types.getCGRecordLayout(RD).isZeroInitializable();
 | 
						|
  }
 | 
						|
  void appendPaddingBytes(CharUnits Size) {
 | 
						|
    if (!Size.isZero())
 | 
						|
      FieldTypes.push_back(getByteArrayType(Size));
 | 
						|
  }
 | 
						|
  uint64_t getFieldBitOffset(const FieldDecl *FD) {
 | 
						|
    return Layout.getFieldOffset(FD->getFieldIndex());
 | 
						|
  }
 | 
						|
  // Layout routines.
 | 
						|
  void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, 
 | 
						|
                       llvm::Type *StorageType);
 | 
						|
  /// \brief Lowers an ASTRecordLayout to a llvm type.
 | 
						|
  void lower(bool NonVirtualBaseType);
 | 
						|
  void lowerUnion();
 | 
						|
  void accumulateFields();
 | 
						|
  void accumulateBitFields(RecordDecl::field_iterator Field,
 | 
						|
                        RecordDecl::field_iterator FieldEnd);
 | 
						|
  void accumulateBases();
 | 
						|
  void accumulateVPtrs();
 | 
						|
  void accumulateVBases();
 | 
						|
  /// \brief Recursively searches all of the bases to find out if a vbase is
 | 
						|
  /// not the primary vbase of some base class.
 | 
						|
  bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
 | 
						|
  void calculateZeroInit();
 | 
						|
  /// \brief Lowers bitfield storage types to I8 arrays for bitfields with tail
 | 
						|
  /// padding that is or can potentially be used.
 | 
						|
  void clipTailPadding();
 | 
						|
  /// \brief Determines if we need a packed llvm struct.
 | 
						|
  void determinePacked();
 | 
						|
  /// \brief Inserts padding everwhere it's needed.
 | 
						|
  void insertPadding();
 | 
						|
  /// \brief Fills out the structures that are ultimately consumed.
 | 
						|
  void fillOutputFields();
 | 
						|
  // Input memoization fields.
 | 
						|
  CodeGenTypes &Types;
 | 
						|
  const ASTContext &Context;
 | 
						|
  const RecordDecl *D;
 | 
						|
  const CXXRecordDecl *RD;
 | 
						|
  const ASTRecordLayout &Layout;
 | 
						|
  const llvm::DataLayout &DataLayout;
 | 
						|
  // Helpful intermediate data-structures.
 | 
						|
  std::vector<MemberInfo> Members;
 | 
						|
  // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
 | 
						|
  SmallVector<llvm::Type *, 16> FieldTypes;
 | 
						|
  llvm::DenseMap<const FieldDecl *, unsigned> Fields;
 | 
						|
  llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
 | 
						|
  llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
 | 
						|
  llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
 | 
						|
  bool IsZeroInitializable : 1;
 | 
						|
  bool IsZeroInitializableAsBase : 1;
 | 
						|
  bool Packed : 1;
 | 
						|
private:
 | 
						|
  CGRecordLowering(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
 | 
						|
  void operator =(const CGRecordLowering &) LLVM_DELETED_FUNCTION;
 | 
						|
};
 | 
						|
} // namespace {
 | 
						|
 | 
						|
CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D)
 | 
						|
  : Types(Types), Context(Types.getContext()), D(D),
 | 
						|
    RD(dyn_cast<CXXRecordDecl>(D)),
 | 
						|
    Layout(Types.getContext().getASTRecordLayout(D)),
 | 
						|
    DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
 | 
						|
    IsZeroInitializableAsBase(true), Packed(false) {}
 | 
						|
 | 
						|
void CGRecordLowering::setBitFieldInfo(
 | 
						|
    const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
 | 
						|
  CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
 | 
						|
  Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
 | 
						|
  Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
 | 
						|
  Info.Size = FD->getBitWidthValue(Context);
 | 
						|
  Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
 | 
						|
  // Here we calculate the actual storage alignment of the bits.  E.g if we've
 | 
						|
  // got an alignment >= 2 and the bitfield starts at offset 6 we've got an
 | 
						|
  // alignment of 2.
 | 
						|
  Info.StorageAlignment =
 | 
						|
      Layout.getAlignment().alignmentAtOffset(StartOffset).getQuantity();
 | 
						|
  if (Info.Size > Info.StorageSize)
 | 
						|
    Info.Size = Info.StorageSize;
 | 
						|
  // Reverse the bit offsets for big endian machines. Because we represent
 | 
						|
  // a bitfield as a single large integer load, we can imagine the bits
 | 
						|
  // counting from the most-significant-bit instead of the
 | 
						|
  // least-significant-bit.
 | 
						|
  if (DataLayout.isBigEndian())
 | 
						|
    Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::lower(bool NVBaseType) {
 | 
						|
  // The lowering process implemented in this function takes a variety of
 | 
						|
  // carefully ordered phases.
 | 
						|
  // 1) Store all members (fields and bases) in a list and sort them by offset.
 | 
						|
  // 2) Add a 1-byte capstone member at the Size of the structure.
 | 
						|
  // 3) Clip bitfield storages members if their tail padding is or might be
 | 
						|
  //    used by another field or base.  The clipping process uses the capstone 
 | 
						|
  //    by treating it as another object that occurs after the record.
 | 
						|
  // 4) Determine if the llvm-struct requires packing.  It's important that this
 | 
						|
  //    phase occur after clipping, because clipping changes the llvm type.
 | 
						|
  //    This phase reads the offset of the capstone when determining packedness
 | 
						|
  //    and updates the alignment of the capstone to be equal of the alignment
 | 
						|
  //    of the record after doing so.
 | 
						|
  // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
 | 
						|
  //    have been computed and needs to know the alignment of the record in
 | 
						|
  //    order to understand if explicit tail padding is needed.
 | 
						|
  // 6) Remove the capstone, we don't need it anymore.
 | 
						|
  // 7) Determine if this record can be zero-initialized.  This phase could have
 | 
						|
  //    been placed anywhere after phase 1.
 | 
						|
  // 8) Format the complete list of members in a way that can be consumed by
 | 
						|
  //    CodeGenTypes::ComputeRecordLayout.
 | 
						|
  CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
 | 
						|
  if (D->isUnion())
 | 
						|
    return lowerUnion();
 | 
						|
  accumulateFields();
 | 
						|
  // RD implies C++.
 | 
						|
  if (RD) {
 | 
						|
    accumulateVPtrs();
 | 
						|
    accumulateBases();
 | 
						|
    if (Members.empty())
 | 
						|
      return appendPaddingBytes(Size);
 | 
						|
    if (!NVBaseType)
 | 
						|
      accumulateVBases();
 | 
						|
  }
 | 
						|
  std::stable_sort(Members.begin(), Members.end());
 | 
						|
  Members.push_back(StorageInfo(Size, getIntNType(8)));
 | 
						|
  clipTailPadding();
 | 
						|
  determinePacked();
 | 
						|
  insertPadding();
 | 
						|
  Members.pop_back();
 | 
						|
  calculateZeroInit();
 | 
						|
  fillOutputFields();
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::lowerUnion() {
 | 
						|
  CharUnits LayoutSize = Layout.getSize();
 | 
						|
  llvm::Type *StorageType = 0;
 | 
						|
  // Compute zero-initializable status.
 | 
						|
  if (!D->field_empty() && !isZeroInitializable(*D->field_begin()))
 | 
						|
    IsZeroInitializable = IsZeroInitializableAsBase = false;
 | 
						|
  // Iterate through the fields setting bitFieldInfo and the Fields array. Also
 | 
						|
  // locate the "most appropriate" storage type.  The heuristic for finding the
 | 
						|
  // storage type isn't necessary, the first (non-0-length-bitfield) field's
 | 
						|
  // type would work fine and be simpler but would be differen than what we've
 | 
						|
  // been doing and cause lit tests to change.
 | 
						|
  for (const auto *Field : D->fields()) {
 | 
						|
    if (Field->isBitField()) {
 | 
						|
      // Skip 0 sized bitfields.
 | 
						|
      if (Field->getBitWidthValue(Context) == 0)
 | 
						|
        continue;
 | 
						|
      llvm::Type *FieldType = getStorageType(Field);
 | 
						|
      if (LayoutSize < getSize(FieldType))
 | 
						|
        FieldType = getByteArrayType(LayoutSize);
 | 
						|
      setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
 | 
						|
    }
 | 
						|
    Fields[Field->getCanonicalDecl()] = 0;
 | 
						|
    llvm::Type *FieldType = getStorageType(Field);
 | 
						|
    // Conditionally update our storage type if we've got a new "better" one.
 | 
						|
    if (!StorageType ||
 | 
						|
        getAlignment(FieldType) >  getAlignment(StorageType) ||
 | 
						|
        (getAlignment(FieldType) == getAlignment(StorageType) &&
 | 
						|
        getSize(FieldType) > getSize(StorageType)))
 | 
						|
      StorageType = FieldType;
 | 
						|
  }
 | 
						|
  // If we have no storage type just pad to the appropriate size and return.
 | 
						|
  if (!StorageType)
 | 
						|
    return appendPaddingBytes(LayoutSize);
 | 
						|
  // If our storage size was bigger than our required size (can happen in the
 | 
						|
  // case of packed bitfields on Itanium) then just use an I8 array.
 | 
						|
  if (LayoutSize < getSize(StorageType))
 | 
						|
    StorageType = getByteArrayType(LayoutSize);
 | 
						|
  FieldTypes.push_back(StorageType);
 | 
						|
  appendPaddingBytes(LayoutSize - getSize(StorageType));
 | 
						|
  // Set packed if we need it.
 | 
						|
  if (LayoutSize % getAlignment(StorageType))
 | 
						|
    Packed = true;
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::accumulateFields() {
 | 
						|
  for (RecordDecl::field_iterator Field = D->field_begin(),
 | 
						|
                                  FieldEnd = D->field_end();
 | 
						|
    Field != FieldEnd;)
 | 
						|
    if (Field->isBitField()) {
 | 
						|
      RecordDecl::field_iterator Start = Field;
 | 
						|
      // Iterate to gather the list of bitfields.
 | 
						|
      for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
 | 
						|
      accumulateBitFields(Start, Field);
 | 
						|
    } else {
 | 
						|
      Members.push_back(MemberInfo(
 | 
						|
          bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
 | 
						|
          getStorageType(*Field), *Field));
 | 
						|
      ++Field;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
 | 
						|
                                      RecordDecl::field_iterator FieldEnd) {
 | 
						|
  // Run stores the first element of the current run of bitfields.  FieldEnd is
 | 
						|
  // used as a special value to note that we don't have a current run.  A
 | 
						|
  // bitfield run is a contiguous collection of bitfields that can be stored in
 | 
						|
  // the same storage block.  Zero-sized bitfields and bitfields that would
 | 
						|
  // cross an alignment boundary break a run and start a new one.
 | 
						|
  RecordDecl::field_iterator Run = FieldEnd;
 | 
						|
  // Tail is the offset of the first bit off the end of the current run.  It's
 | 
						|
  // used to determine if the ASTRecordLayout is treating these two bitfields as
 | 
						|
  // contiguous.  StartBitOffset is offset of the beginning of the Run.
 | 
						|
  uint64_t StartBitOffset, Tail = 0;
 | 
						|
  if (useMSABI()) {
 | 
						|
    for (; Field != FieldEnd; ++Field) {
 | 
						|
      uint64_t BitOffset = getFieldBitOffset(*Field);
 | 
						|
      // Zero-width bitfields end runs.
 | 
						|
      if (Field->getBitWidthValue(Context) == 0) {
 | 
						|
        Run = FieldEnd;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
 | 
						|
      // If we don't have a run yet, or don't live within the previous run's
 | 
						|
      // allocated storage then we allocate some storage and start a new run.
 | 
						|
      if (Run == FieldEnd || BitOffset >= Tail) {
 | 
						|
        Run = Field;
 | 
						|
        StartBitOffset = BitOffset;
 | 
						|
        Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
 | 
						|
        // Add the storage member to the record.  This must be added to the
 | 
						|
        // record before the bitfield members so that it gets laid out before
 | 
						|
        // the bitfields it contains get laid out.
 | 
						|
        Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
 | 
						|
      }
 | 
						|
      // Bitfields get the offset of their storage but come afterward and remain
 | 
						|
      // there after a stable sort.
 | 
						|
      Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
 | 
						|
                                   MemberInfo::Field, 0, *Field));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  for (;;) {
 | 
						|
    // Check to see if we need to start a new run.
 | 
						|
    if (Run == FieldEnd) {
 | 
						|
      // If we're out of fields, return.
 | 
						|
      if (Field == FieldEnd)
 | 
						|
        break;
 | 
						|
      // Any non-zero-length bitfield can start a new run.
 | 
						|
      if (Field->getBitWidthValue(Context) != 0) {
 | 
						|
        Run = Field;
 | 
						|
        StartBitOffset = getFieldBitOffset(*Field);
 | 
						|
        Tail = StartBitOffset + Field->getBitWidthValue(Context);
 | 
						|
      }
 | 
						|
      ++Field;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Add bitfields to the run as long as they qualify.
 | 
						|
    if (Field != FieldEnd && Field->getBitWidthValue(Context) != 0 &&
 | 
						|
        Tail == getFieldBitOffset(*Field)) {
 | 
						|
      Tail += Field->getBitWidthValue(Context);
 | 
						|
      ++Field;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // We've hit a break-point in the run and need to emit a storage field.
 | 
						|
    llvm::Type *Type = getIntNType(Tail - StartBitOffset);
 | 
						|
    // Add the storage member to the record and set the bitfield info for all of
 | 
						|
    // the bitfields in the run.  Bitfields get the offset of their storage but
 | 
						|
    // come afterward and remain there after a stable sort.
 | 
						|
    Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
 | 
						|
    for (; Run != Field; ++Run)
 | 
						|
      Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
 | 
						|
                                   MemberInfo::Field, 0, *Run));
 | 
						|
    Run = FieldEnd;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::accumulateBases() {
 | 
						|
  // If we've got a primary virtual base, we need to add it with the bases.
 | 
						|
  if (Layout.isPrimaryBaseVirtual()) {
 | 
						|
    const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
 | 
						|
    Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
 | 
						|
                                 getStorageType(BaseDecl), BaseDecl));
 | 
						|
  }
 | 
						|
  // Accumulate the non-virtual bases.
 | 
						|
  for (const auto &Base : RD->bases()) {
 | 
						|
    if (Base.isVirtual())
 | 
						|
      continue;
 | 
						|
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | 
						|
    if (!BaseDecl->isEmpty())
 | 
						|
      Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
 | 
						|
          MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::accumulateVPtrs() {
 | 
						|
  if (Layout.hasOwnVFPtr())
 | 
						|
    Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
 | 
						|
        llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
 | 
						|
            getPointerTo()->getPointerTo()));
 | 
						|
  if (Layout.hasOwnVBPtr())
 | 
						|
    Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
 | 
						|
        llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::accumulateVBases() {
 | 
						|
  CharUnits ScissorOffset = Layout.getNonVirtualSize();
 | 
						|
  // In the itanium ABI, it's possible to place a vbase at a dsize that is
 | 
						|
  // smaller than the nvsize.  Here we check to see if such a base is placed
 | 
						|
  // before the nvsize and set the scissor offset to that, instead of the
 | 
						|
  // nvsize.
 | 
						|
  if (!useMSABI())
 | 
						|
    for (const auto &Base : RD->vbases()) {
 | 
						|
      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | 
						|
      if (BaseDecl->isEmpty())
 | 
						|
        continue;
 | 
						|
      // If the vbase is a primary virtual base of some base, then it doesn't
 | 
						|
      // get its own storage location but instead lives inside of that base.
 | 
						|
      if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
 | 
						|
        continue;
 | 
						|
      ScissorOffset = std::min(ScissorOffset,
 | 
						|
                               Layout.getVBaseClassOffset(BaseDecl));
 | 
						|
    }
 | 
						|
  Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, 0, RD));
 | 
						|
  for (const auto &Base : RD->vbases()) {
 | 
						|
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | 
						|
    if (BaseDecl->isEmpty())
 | 
						|
      continue;
 | 
						|
    CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
 | 
						|
    // If the vbase is a primary virtual base of some base, then it doesn't
 | 
						|
    // get its own storage location but instead lives inside of that base.
 | 
						|
    if (!useMSABI() && Context.isNearlyEmpty(BaseDecl) &&
 | 
						|
        !hasOwnStorage(RD, BaseDecl)) {
 | 
						|
      Members.push_back(MemberInfo(Offset, MemberInfo::VBase, 0, BaseDecl));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // If we've got a vtordisp, add it as a storage type.
 | 
						|
    if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
 | 
						|
      Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
 | 
						|
                                    getIntNType(32)));
 | 
						|
    Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
 | 
						|
                                 getStorageType(BaseDecl), BaseDecl));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
 | 
						|
                                     const CXXRecordDecl *Query) {
 | 
						|
  const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
 | 
						|
  if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
 | 
						|
    return false;
 | 
						|
  for (const auto &Base : Decl->bases())
 | 
						|
    if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::calculateZeroInit() {
 | 
						|
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | 
						|
                                               MemberEnd = Members.end();
 | 
						|
       IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
 | 
						|
    if (Member->Kind == MemberInfo::Field) {
 | 
						|
      if (!Member->FD || isZeroInitializable(Member->FD))
 | 
						|
        continue;
 | 
						|
      IsZeroInitializable = IsZeroInitializableAsBase = false;
 | 
						|
    } else if (Member->Kind == MemberInfo::Base ||
 | 
						|
               Member->Kind == MemberInfo::VBase) {
 | 
						|
      if (isZeroInitializable(Member->RD))
 | 
						|
        continue;
 | 
						|
      IsZeroInitializable = false;
 | 
						|
      if (Member->Kind == MemberInfo::Base)
 | 
						|
        IsZeroInitializableAsBase = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::clipTailPadding() {
 | 
						|
  std::vector<MemberInfo>::iterator Prior = Members.begin();
 | 
						|
  CharUnits Tail = getSize(Prior->Data);
 | 
						|
  for (std::vector<MemberInfo>::iterator Member = Prior + 1,
 | 
						|
                                         MemberEnd = Members.end();
 | 
						|
       Member != MemberEnd; ++Member) {
 | 
						|
    // Only members with data and the scissor can cut into tail padding.
 | 
						|
    if (!Member->Data && Member->Kind != MemberInfo::Scissor)
 | 
						|
      continue;
 | 
						|
    if (Member->Offset < Tail) {
 | 
						|
      assert(Prior->Kind == MemberInfo::Field && !Prior->FD &&
 | 
						|
             "Only storage fields have tail padding!");
 | 
						|
      Prior->Data = getByteArrayType(bitsToCharUnits(llvm::RoundUpToAlignment(
 | 
						|
          cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
 | 
						|
    }
 | 
						|
    if (Member->Data)
 | 
						|
      Prior = Member;
 | 
						|
    Tail = Prior->Offset + getSize(Prior->Data);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::determinePacked() {
 | 
						|
  CharUnits Alignment = CharUnits::One();
 | 
						|
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | 
						|
                                               MemberEnd = Members.end();
 | 
						|
       Member != MemberEnd; ++Member) {
 | 
						|
    if (!Member->Data)
 | 
						|
      continue;
 | 
						|
    // If any member falls at an offset that it not a multiple of its alignment,
 | 
						|
    // then the entire record must be packed.
 | 
						|
    if (Member->Offset % getAlignment(Member->Data))
 | 
						|
      Packed = true;
 | 
						|
    Alignment = std::max(Alignment, getAlignment(Member->Data));
 | 
						|
  }
 | 
						|
  // If the size of the record (the capstone's offset) is not a multiple of the
 | 
						|
  // record's alignment, it must be packed.
 | 
						|
  if (Members.back().Offset % Alignment)
 | 
						|
    Packed = true;
 | 
						|
  // Update the alignment of the sentinal.
 | 
						|
  if (!Packed)
 | 
						|
    Members.back().Data = getIntNType(Context.toBits(Alignment));
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::insertPadding() {
 | 
						|
  std::vector<std::pair<CharUnits, CharUnits> > Padding;
 | 
						|
  CharUnits Size = CharUnits::Zero();
 | 
						|
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | 
						|
                                               MemberEnd = Members.end();
 | 
						|
       Member != MemberEnd; ++Member) {
 | 
						|
    if (!Member->Data)
 | 
						|
      continue;
 | 
						|
    CharUnits Offset = Member->Offset;
 | 
						|
    assert(Offset >= Size);
 | 
						|
    // Insert padding if we need to.
 | 
						|
    if (Offset != Size.RoundUpToAlignment(Packed ? CharUnits::One() :
 | 
						|
                                          getAlignment(Member->Data)))
 | 
						|
      Padding.push_back(std::make_pair(Size, Offset - Size));
 | 
						|
    Size = Offset + getSize(Member->Data);
 | 
						|
  }
 | 
						|
  if (Padding.empty())
 | 
						|
    return;
 | 
						|
  // Add the padding to the Members list and sort it.
 | 
						|
  for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
 | 
						|
        Pad = Padding.begin(), PadEnd = Padding.end();
 | 
						|
        Pad != PadEnd; ++Pad)
 | 
						|
    Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
 | 
						|
  std::stable_sort(Members.begin(), Members.end());
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLowering::fillOutputFields() {
 | 
						|
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
 | 
						|
                                               MemberEnd = Members.end();
 | 
						|
       Member != MemberEnd; ++Member) {
 | 
						|
    if (Member->Data)
 | 
						|
      FieldTypes.push_back(Member->Data);
 | 
						|
    if (Member->Kind == MemberInfo::Field) {
 | 
						|
      if (Member->FD)
 | 
						|
        Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
 | 
						|
      // A field without storage must be a bitfield.
 | 
						|
      if (!Member->Data)
 | 
						|
        setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
 | 
						|
    } else if (Member->Kind == MemberInfo::Base)
 | 
						|
      NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
 | 
						|
    else if (Member->Kind == MemberInfo::VBase)
 | 
						|
      VirtualBases[Member->RD] = FieldTypes.size() - 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
 | 
						|
                                        const FieldDecl *FD,
 | 
						|
                                        uint64_t Offset, uint64_t Size,
 | 
						|
                                        uint64_t StorageSize,
 | 
						|
                                        uint64_t StorageAlignment) {
 | 
						|
  // This function is vestigial from CGRecordLayoutBuilder days but is still 
 | 
						|
  // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
 | 
						|
  // when addressed will allow for the removal of this function.
 | 
						|
  llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
 | 
						|
  CharUnits TypeSizeInBytes =
 | 
						|
    CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
 | 
						|
  uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
 | 
						|
 | 
						|
  bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
 | 
						|
 | 
						|
  if (Size > TypeSizeInBits) {
 | 
						|
    // We have a wide bit-field. The extra bits are only used for padding, so
 | 
						|
    // if we have a bitfield of type T, with size N:
 | 
						|
    //
 | 
						|
    // T t : N;
 | 
						|
    //
 | 
						|
    // We can just assume that it's:
 | 
						|
    //
 | 
						|
    // T t : sizeof(T);
 | 
						|
    //
 | 
						|
    Size = TypeSizeInBits;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the bit offsets for big endian machines. Because we represent
 | 
						|
  // a bitfield as a single large integer load, we can imagine the bits
 | 
						|
  // counting from the most-significant-bit instead of the
 | 
						|
  // least-significant-bit.
 | 
						|
  if (Types.getDataLayout().isBigEndian()) {
 | 
						|
    Offset = StorageSize - (Offset + Size);
 | 
						|
  }
 | 
						|
 | 
						|
  return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
 | 
						|
}
 | 
						|
 | 
						|
CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
 | 
						|
                                                  llvm::StructType *Ty) {
 | 
						|
  CGRecordLowering Builder(*this, D);
 | 
						|
 | 
						|
  Builder.lower(false);
 | 
						|
 | 
						|
  // If we're in C++, compute the base subobject type.
 | 
						|
  llvm::StructType *BaseTy = 0;
 | 
						|
  if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
 | 
						|
    BaseTy = Ty;
 | 
						|
    if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
 | 
						|
      CGRecordLowering BaseBuilder(*this, D);
 | 
						|
      BaseBuilder.lower(true);
 | 
						|
      BaseTy = llvm::StructType::create(
 | 
						|
          getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
 | 
						|
      addRecordTypeName(D, BaseTy, ".base");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill in the struct *after* computing the base type.  Filling in the body
 | 
						|
  // signifies that the type is no longer opaque and record layout is complete,
 | 
						|
  // but we may need to recursively layout D while laying D out as a base type.
 | 
						|
  Ty->setBody(Builder.FieldTypes, Builder.Packed);
 | 
						|
 | 
						|
  CGRecordLayout *RL =
 | 
						|
    new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
 | 
						|
                        Builder.IsZeroInitializableAsBase);
 | 
						|
 | 
						|
  RL->NonVirtualBases.swap(Builder.NonVirtualBases);
 | 
						|
  RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
 | 
						|
 | 
						|
  // Add all the field numbers.
 | 
						|
  RL->FieldInfo.swap(Builder.Fields);
 | 
						|
 | 
						|
  // Add bitfield info.
 | 
						|
  RL->BitFields.swap(Builder.BitFields);
 | 
						|
 | 
						|
  // Dump the layout, if requested.
 | 
						|
  if (getContext().getLangOpts().DumpRecordLayouts) {
 | 
						|
    llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
 | 
						|
    llvm::outs() << "Record: ";
 | 
						|
    D->dump(llvm::outs());
 | 
						|
    llvm::outs() << "\nLayout: ";
 | 
						|
    RL->print(llvm::outs());
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that the computed LLVM struct size matches the AST layout size.
 | 
						|
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
 | 
						|
 | 
						|
  uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
 | 
						|
  assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
 | 
						|
         "Type size mismatch!");
 | 
						|
 | 
						|
  if (BaseTy) {
 | 
						|
    CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
 | 
						|
 | 
						|
    uint64_t AlignedNonVirtualTypeSizeInBits = 
 | 
						|
      getContext().toBits(NonVirtualSize);
 | 
						|
 | 
						|
    assert(AlignedNonVirtualTypeSizeInBits == 
 | 
						|
           getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
 | 
						|
           "Type size mismatch!");
 | 
						|
  }
 | 
						|
                                     
 | 
						|
  // Verify that the LLVM and AST field offsets agree.
 | 
						|
  llvm::StructType *ST =
 | 
						|
    dyn_cast<llvm::StructType>(RL->getLLVMType());
 | 
						|
  const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
 | 
						|
 | 
						|
  const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
 | 
						|
  RecordDecl::field_iterator it = D->field_begin();
 | 
						|
  for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
 | 
						|
    const FieldDecl *FD = *it;
 | 
						|
 | 
						|
    // For non-bit-fields, just check that the LLVM struct offset matches the
 | 
						|
    // AST offset.
 | 
						|
    if (!FD->isBitField()) {
 | 
						|
      unsigned FieldNo = RL->getLLVMFieldNo(FD);
 | 
						|
      assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
 | 
						|
             "Invalid field offset!");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Ignore unnamed bit-fields.
 | 
						|
    if (!FD->getDeclName())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't inspect zero-length bitfields.
 | 
						|
    if (FD->getBitWidthValue(getContext()) == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
 | 
						|
    llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
 | 
						|
 | 
						|
    // Unions have overlapping elements dictating their layout, but for
 | 
						|
    // non-unions we can verify that this section of the layout is the exact
 | 
						|
    // expected size.
 | 
						|
    if (D->isUnion()) {
 | 
						|
      // For unions we verify that the start is zero and the size
 | 
						|
      // is in-bounds. However, on BE systems, the offset may be non-zero, but
 | 
						|
      // the size + offset should match the storage size in that case as it
 | 
						|
      // "starts" at the back.
 | 
						|
      if (getDataLayout().isBigEndian())
 | 
						|
        assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
 | 
						|
               Info.StorageSize &&
 | 
						|
               "Big endian union bitfield does not end at the back");
 | 
						|
      else
 | 
						|
        assert(Info.Offset == 0 &&
 | 
						|
               "Little endian union bitfield with a non-zero offset");
 | 
						|
      assert(Info.StorageSize <= SL->getSizeInBits() &&
 | 
						|
             "Union not large enough for bitfield storage");
 | 
						|
    } else {
 | 
						|
      assert(Info.StorageSize ==
 | 
						|
             getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
 | 
						|
             "Storage size does not match the element type size");
 | 
						|
    }
 | 
						|
    assert(Info.Size > 0 && "Empty bitfield!");
 | 
						|
    assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
 | 
						|
           "Bitfield outside of its allocated storage");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  return RL;
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLayout::print(raw_ostream &OS) const {
 | 
						|
  OS << "<CGRecordLayout\n";
 | 
						|
  OS << "  LLVMType:" << *CompleteObjectType << "\n";
 | 
						|
  if (BaseSubobjectType)
 | 
						|
    OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; 
 | 
						|
  OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
 | 
						|
  OS << "  BitFields:[\n";
 | 
						|
 | 
						|
  // Print bit-field infos in declaration order.
 | 
						|
  std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
 | 
						|
  for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
 | 
						|
         it = BitFields.begin(), ie = BitFields.end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    const RecordDecl *RD = it->first->getParent();
 | 
						|
    unsigned Index = 0;
 | 
						|
    for (RecordDecl::field_iterator
 | 
						|
           it2 = RD->field_begin(); *it2 != it->first; ++it2)
 | 
						|
      ++Index;
 | 
						|
    BFIs.push_back(std::make_pair(Index, &it->second));
 | 
						|
  }
 | 
						|
  llvm::array_pod_sort(BFIs.begin(), BFIs.end());
 | 
						|
  for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
 | 
						|
    OS.indent(4);
 | 
						|
    BFIs[i].second->print(OS);
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "]>\n";
 | 
						|
}
 | 
						|
 | 
						|
void CGRecordLayout::dump() const {
 | 
						|
  print(llvm::errs());
 | 
						|
}
 | 
						|
 | 
						|
void CGBitFieldInfo::print(raw_ostream &OS) const {
 | 
						|
  OS << "<CGBitFieldInfo"
 | 
						|
     << " Offset:" << Offset
 | 
						|
     << " Size:" << Size
 | 
						|
     << " IsSigned:" << IsSigned
 | 
						|
     << " StorageSize:" << StorageSize
 | 
						|
     << " StorageAlignment:" << StorageAlignment << ">";
 | 
						|
}
 | 
						|
 | 
						|
void CGBitFieldInfo::dump() const {
 | 
						|
  print(llvm::errs());
 | 
						|
}
 |