3888 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3888 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a pattern matching instruction selector for X86.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86RegisterInfo.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <set>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// FIXME: temporary.
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
 | 
						|
                                  cl::desc("Enable fastcc on X86"));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  X86TargetLowering - X86 Implementation of the TargetLowering interface
 | 
						|
namespace {
 | 
						|
  class X86TargetLowering : public TargetLowering {
 | 
						|
    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
 | 
						|
    int ReturnAddrIndex;              // FrameIndex for return slot.
 | 
						|
    int BytesToPopOnReturn;           // Number of bytes ret should pop.
 | 
						|
  public:
 | 
						|
    X86TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
 | 
						|
      // Set up the TargetLowering object.
 | 
						|
 | 
						|
      // X86 is wierd, it always uses i8 for shift amounts and setcc results.
 | 
						|
      setShiftAmountType(MVT::i8);
 | 
						|
      setSetCCResultType(MVT::i8);
 | 
						|
      setSetCCResultContents(ZeroOrOneSetCCResult);
 | 
						|
      setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
 | 
						|
 | 
						|
      // Set up the register classes.
 | 
						|
      addRegisterClass(MVT::i8, X86::R8RegisterClass);
 | 
						|
      addRegisterClass(MVT::i16, X86::R16RegisterClass);
 | 
						|
      addRegisterClass(MVT::i32, X86::R32RegisterClass);
 | 
						|
      addRegisterClass(MVT::f64, X86::RFPRegisterClass);
 | 
						|
 | 
						|
      // FIXME: Eliminate these two classes when legalize can handle promotions
 | 
						|
      // well.
 | 
						|
/**/  addRegisterClass(MVT::i1, X86::R8RegisterClass);
 | 
						|
 | 
						|
      setOperationAction(ISD::BRCONDTWOWAY     , MVT::Other, Expand);
 | 
						|
      setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
 | 
						|
      setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
 | 
						|
      setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand);
 | 
						|
      setOperationAction(ISD::SREM             , MVT::f64  , Expand);
 | 
						|
      setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
 | 
						|
      setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
 | 
						|
      setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
 | 
						|
      setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
 | 
						|
      setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
 | 
						|
      setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
 | 
						|
      setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
 | 
						|
      setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
 | 
						|
      setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::READIO           , MVT::i1   , Expand);
 | 
						|
      setOperationAction(ISD::READIO           , MVT::i8   , Expand);
 | 
						|
      setOperationAction(ISD::READIO           , MVT::i16  , Expand);
 | 
						|
      setOperationAction(ISD::READIO           , MVT::i32  , Expand);
 | 
						|
      setOperationAction(ISD::WRITEIO          , MVT::i1   , Expand);
 | 
						|
      setOperationAction(ISD::WRITEIO          , MVT::i8   , Expand);
 | 
						|
      setOperationAction(ISD::WRITEIO          , MVT::i16  , Expand);
 | 
						|
      setOperationAction(ISD::WRITEIO          , MVT::i32  , Expand);
 | 
						|
 | 
						|
      if (!UnsafeFPMath) {
 | 
						|
        setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
 | 
						|
        setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
 | 
						|
      }
 | 
						|
 | 
						|
      // These should be promoted to a larger select which is supported.
 | 
						|
/**/  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
 | 
						|
      setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
 | 
						|
 | 
						|
      computeRegisterProperties();
 | 
						|
 | 
						|
      addLegalFPImmediate(+0.0); // FLD0
 | 
						|
      addLegalFPImmediate(+1.0); // FLD1
 | 
						|
      addLegalFPImmediate(-0.0); // FLD0/FCHS
 | 
						|
      addLegalFPImmediate(-1.0); // FLD1/FCHS
 | 
						|
    }
 | 
						|
 | 
						|
    /// LowerArguments - This hook must be implemented to indicate how we should
 | 
						|
    /// lower the arguments for the specified function, into the specified DAG.
 | 
						|
    virtual std::vector<SDOperand>
 | 
						|
    LowerArguments(Function &F, SelectionDAG &DAG);
 | 
						|
 | 
						|
    /// LowerCallTo - This hook lowers an abstract call to a function into an
 | 
						|
    /// actual call.
 | 
						|
    virtual std::pair<SDOperand, SDOperand>
 | 
						|
    LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC, 
 | 
						|
                bool isTailCall, SDOperand Callee, ArgListTy &Args,
 | 
						|
                SelectionDAG &DAG);
 | 
						|
 | 
						|
    virtual std::pair<SDOperand, SDOperand>
 | 
						|
    LowerVAStart(SDOperand Chain, SelectionDAG &DAG);
 | 
						|
 | 
						|
    virtual std::pair<SDOperand,SDOperand>
 | 
						|
    LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
 | 
						|
                   const Type *ArgTy, SelectionDAG &DAG);
 | 
						|
 | 
						|
    virtual std::pair<SDOperand, SDOperand>
 | 
						|
    LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth,
 | 
						|
                            SelectionDAG &DAG);
 | 
						|
  private:
 | 
						|
    // C Calling Convention implementation.
 | 
						|
    std::vector<SDOperand> LowerCCCArguments(Function &F, SelectionDAG &DAG);
 | 
						|
    std::pair<SDOperand, SDOperand>
 | 
						|
    LowerCCCCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
 | 
						|
                   bool isTailCall,
 | 
						|
                   SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
 | 
						|
 
 | 
						|
    // Fast Calling Convention implementation.
 | 
						|
    std::vector<SDOperand> LowerFastCCArguments(Function &F, SelectionDAG &DAG);
 | 
						|
    std::pair<SDOperand, SDOperand>
 | 
						|
    LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, bool isTailCall,
 | 
						|
                      SDOperand Callee, ArgListTy &Args, SelectionDAG &DAG);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
std::vector<SDOperand>
 | 
						|
X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | 
						|
  if (F.getCallingConv() == CallingConv::Fast && EnableFastCC)
 | 
						|
    return LowerFastCCArguments(F, DAG);
 | 
						|
  return LowerCCCArguments(F, DAG);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
 | 
						|
                               bool isVarArg, unsigned CallingConv,
 | 
						|
                               bool isTailCall, 
 | 
						|
                               SDOperand Callee, ArgListTy &Args,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  assert((!isVarArg || CallingConv == CallingConv::C) &&
 | 
						|
         "Only C takes varargs!");
 | 
						|
  if (CallingConv == CallingConv::Fast && EnableFastCC)
 | 
						|
    return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG);
 | 
						|
  return  LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                  C Calling Convention implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
std::vector<SDOperand>
 | 
						|
X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) {
 | 
						|
  std::vector<SDOperand> ArgValues;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
 | 
						|
  // the stack frame looks like this:
 | 
						|
  //
 | 
						|
  // [ESP] -- return address
 | 
						|
  // [ESP + 4] -- first argument (leftmost lexically)
 | 
						|
  // [ESP + 8] -- second argument, if first argument is four bytes in size
 | 
						|
  //    ...
 | 
						|
  //
 | 
						|
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
 | 
						|
    MVT::ValueType ObjectVT = getValueType(I->getType());
 | 
						|
    unsigned ArgIncrement = 4;
 | 
						|
    unsigned ObjSize;
 | 
						|
    switch (ObjectVT) {
 | 
						|
    default: assert(0 && "Unhandled argument type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  ObjSize = 1;                break;
 | 
						|
    case MVT::i16: ObjSize = 2;                break;
 | 
						|
    case MVT::i32: ObjSize = 4;                break;
 | 
						|
    case MVT::i64: ObjSize = ArgIncrement = 8; break;
 | 
						|
    case MVT::f32: ObjSize = 4;                break;
 | 
						|
    case MVT::f64: ObjSize = ArgIncrement = 8; break;
 | 
						|
    }
 | 
						|
    // Create the frame index object for this incoming parameter...
 | 
						|
    int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
 | 
						|
 | 
						|
    // Create the SelectionDAG nodes corresponding to a load from this parameter
 | 
						|
    SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
 | 
						|
    // Don't codegen dead arguments.  FIXME: remove this check when we can nuke
 | 
						|
    // dead loads.
 | 
						|
    SDOperand ArgValue;
 | 
						|
    if (!I->use_empty())
 | 
						|
      ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
 | 
						|
                             DAG.getSrcValue(NULL));
 | 
						|
    else {
 | 
						|
      if (MVT::isInteger(ObjectVT))
 | 
						|
        ArgValue = DAG.getConstant(0, ObjectVT);
 | 
						|
      else
 | 
						|
        ArgValue = DAG.getConstantFP(0, ObjectVT);
 | 
						|
    }
 | 
						|
    ArgValues.push_back(ArgValue);
 | 
						|
 | 
						|
    ArgOffset += ArgIncrement;   // Move on to the next argument...
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (F.isVarArg())
 | 
						|
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
 | 
						|
  ReturnAddrIndex = 0;  // No return address slot generated yet.
 | 
						|
 | 
						|
  // Finally, inform the code generator which regs we return values in.
 | 
						|
  switch (getValueType(F.getReturnType())) {
 | 
						|
  default: assert(0 && "Unknown type!");
 | 
						|
  case MVT::isVoid: break;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i16:
 | 
						|
  case MVT::i32:
 | 
						|
    MF.addLiveOut(X86::EAX);
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    MF.addLiveOut(X86::EAX);
 | 
						|
    MF.addLiveOut(X86::EDX);
 | 
						|
    break;
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    MF.addLiveOut(X86::ST0);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return ArgValues;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy,
 | 
						|
                                  bool isVarArg, bool isTailCall,
 | 
						|
                                  SDOperand Callee, ArgListTy &Args,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  // Count how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = 0;
 | 
						|
 | 
						|
  if (Args.empty()) {
 | 
						|
    // Save zero bytes.
 | 
						|
    Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
 | 
						|
                        DAG.getConstant(0, getPointerTy()));
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | 
						|
      switch (getValueType(Args[i].second)) {
 | 
						|
      default: assert(0 && "Unknown value type!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:
 | 
						|
      case MVT::i16:
 | 
						|
      case MVT::i32:
 | 
						|
      case MVT::f32:
 | 
						|
        NumBytes += 4;
 | 
						|
        break;
 | 
						|
      case MVT::i64:
 | 
						|
      case MVT::f64:
 | 
						|
        NumBytes += 8;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
 | 
						|
                        DAG.getConstant(NumBytes, getPointerTy()));
 | 
						|
 | 
						|
    // Arguments go on the stack in reverse order, as specified by the ABI.
 | 
						|
    unsigned ArgOffset = 0;
 | 
						|
    SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32,
 | 
						|
                                            DAG.getEntryNode());
 | 
						|
    std::vector<SDOperand> Stores;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
 | 
						|
 | 
						|
      switch (getValueType(Args[i].second)) {
 | 
						|
      default: assert(0 && "Unexpected ValueType for argument!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:
 | 
						|
      case MVT::i16:
 | 
						|
        // Promote the integer to 32 bits.  If the input type is signed use a
 | 
						|
        // sign extend, otherwise use a zero extend.
 | 
						|
        if (Args[i].second->isSigned())
 | 
						|
          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
 | 
						|
        else
 | 
						|
          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
 | 
						|
 | 
						|
        // FALL THROUGH
 | 
						|
      case MVT::i32:
 | 
						|
      case MVT::f32:
 | 
						|
        Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                     Args[i].first, PtrOff,
 | 
						|
                                     DAG.getSrcValue(NULL)));
 | 
						|
        ArgOffset += 4;
 | 
						|
        break;
 | 
						|
      case MVT::i64:
 | 
						|
      case MVT::f64:
 | 
						|
        Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                     Args[i].first, PtrOff,
 | 
						|
                                     DAG.getSrcValue(NULL)));
 | 
						|
        ArgOffset += 8;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<MVT::ValueType> RetVals;
 | 
						|
  MVT::ValueType RetTyVT = getValueType(RetTy);
 | 
						|
  if (RetTyVT != MVT::isVoid)
 | 
						|
    RetVals.push_back(RetTyVT);
 | 
						|
  RetVals.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee,
 | 
						|
                                            isTailCall), 0);
 | 
						|
  Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
 | 
						|
  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
 | 
						|
                      DAG.getConstant(NumBytes, getPointerTy()),
 | 
						|
                      DAG.getConstant(0, getPointerTy()));
 | 
						|
  return std::make_pair(TheCall, Chain);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
X86TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
 | 
						|
  // vastart just returns the address of the VarArgsFrameIndex slot.
 | 
						|
  return std::make_pair(DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32), Chain);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand,SDOperand> X86TargetLowering::
 | 
						|
LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
 | 
						|
               const Type *ArgTy, SelectionDAG &DAG) {
 | 
						|
  MVT::ValueType ArgVT = getValueType(ArgTy);
 | 
						|
  SDOperand Result;
 | 
						|
  if (!isVANext) {
 | 
						|
    Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), VAList,
 | 
						|
                         DAG.getSrcValue(NULL));
 | 
						|
  } else {
 | 
						|
    unsigned Amt;
 | 
						|
    if (ArgVT == MVT::i32)
 | 
						|
      Amt = 4;
 | 
						|
    else {
 | 
						|
      assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
 | 
						|
             "Other types should have been promoted for varargs!");
 | 
						|
      Amt = 8;
 | 
						|
    }
 | 
						|
    Result = DAG.getNode(ISD::ADD, VAList.getValueType(), VAList,
 | 
						|
                         DAG.getConstant(Amt, VAList.getValueType()));
 | 
						|
  }
 | 
						|
  return std::make_pair(Result, Chain);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                   Fast Calling Convention implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The X86 'fast' calling convention passes up to two integer arguments in
 | 
						|
// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
 | 
						|
// and requires that the callee pop its arguments off the stack (allowing proper
 | 
						|
// tail calls), and has the same return value conventions as C calling convs.
 | 
						|
//
 | 
						|
// Note that this can be enhanced in the future to pass fp vals in registers
 | 
						|
// (when we have a global fp allocator) and do other tricks.
 | 
						|
//
 | 
						|
 | 
						|
/// AddLiveIn - This helper function adds the specified physical register to the
 | 
						|
/// MachineFunction as a live in value.  It also creates a corresponding virtual
 | 
						|
/// register for it.
 | 
						|
static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
 | 
						|
                          TargetRegisterClass *RC) {
 | 
						|
  assert(RC->contains(PReg) && "Not the correct regclass!");
 | 
						|
  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
 | 
						|
  MF.addLiveIn(PReg, VReg);
 | 
						|
  return VReg;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
std::vector<SDOperand>
 | 
						|
X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) {
 | 
						|
  std::vector<SDOperand> ArgValues;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  // Add DAG nodes to load the arguments...  On entry to a function the stack
 | 
						|
  // frame looks like this:
 | 
						|
  //
 | 
						|
  // [ESP] -- return address
 | 
						|
  // [ESP + 4] -- first nonreg argument (leftmost lexically)
 | 
						|
  // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size
 | 
						|
  //    ...
 | 
						|
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
 | 
						|
 | 
						|
  // Keep track of the number of integer regs passed so far.  This can be either
 | 
						|
  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
 | 
						|
  // used).
 | 
						|
  unsigned NumIntRegs = 0;
 | 
						|
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
 | 
						|
    MVT::ValueType ObjectVT = getValueType(I->getType());
 | 
						|
    unsigned ArgIncrement = 4;
 | 
						|
    unsigned ObjSize = 0;
 | 
						|
    SDOperand ArgValue;
 | 
						|
    
 | 
						|
    switch (ObjectVT) {
 | 
						|
    default: assert(0 && "Unhandled argument type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
      if (NumIntRegs < 2) {
 | 
						|
        if (!I->use_empty()) {
 | 
						|
          unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
 | 
						|
                                    X86::R8RegisterClass);
 | 
						|
          ArgValue = DAG.getCopyFromReg(VReg, MVT::i8, DAG.getRoot());
 | 
						|
          DAG.setRoot(ArgValue.getValue(1));
 | 
						|
        }
 | 
						|
        ++NumIntRegs;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      ObjSize = 1;
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      if (NumIntRegs < 2) {
 | 
						|
        if (!I->use_empty()) {
 | 
						|
          unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
 | 
						|
                                    X86::R16RegisterClass);
 | 
						|
          ArgValue = DAG.getCopyFromReg(VReg, MVT::i16, DAG.getRoot());
 | 
						|
          DAG.setRoot(ArgValue.getValue(1));
 | 
						|
        }
 | 
						|
        ++NumIntRegs;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ObjSize = 2;
 | 
						|
      break;
 | 
						|
    case MVT::i32:
 | 
						|
      if (NumIntRegs < 2) {
 | 
						|
        if (!I->use_empty()) {
 | 
						|
          unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX,
 | 
						|
                                    X86::R32RegisterClass);
 | 
						|
          ArgValue = DAG.getCopyFromReg(VReg, MVT::i32, DAG.getRoot());
 | 
						|
          DAG.setRoot(ArgValue.getValue(1));
 | 
						|
        }
 | 
						|
        ++NumIntRegs;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ObjSize = 4;
 | 
						|
      break;
 | 
						|
    case MVT::i64:
 | 
						|
      if (NumIntRegs == 0) {
 | 
						|
        if (!I->use_empty()) {
 | 
						|
          unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass);
 | 
						|
          unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);
 | 
						|
 | 
						|
          SDOperand Low=DAG.getCopyFromReg(BotReg, MVT::i32, DAG.getRoot());
 | 
						|
          SDOperand Hi =DAG.getCopyFromReg(TopReg, MVT::i32, Low.getValue(1));
 | 
						|
          DAG.setRoot(Hi.getValue(1));
 | 
						|
 | 
						|
          ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
 | 
						|
        }
 | 
						|
        NumIntRegs = 2;
 | 
						|
        break;
 | 
						|
      } else if (NumIntRegs == 1) {
 | 
						|
        if (!I->use_empty()) {
 | 
						|
          unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);
 | 
						|
          SDOperand Low = DAG.getCopyFromReg(BotReg, MVT::i32, DAG.getRoot());
 | 
						|
          DAG.setRoot(Low.getValue(1));
 | 
						|
 | 
						|
          // Load the high part from memory.
 | 
						|
          // Create the frame index object for this incoming parameter...
 | 
						|
          int FI = MFI->CreateFixedObject(4, ArgOffset);
 | 
						|
          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
          SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
 | 
						|
                                     DAG.getSrcValue(NULL));
 | 
						|
          ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
 | 
						|
        }
 | 
						|
        ArgOffset += 4;
 | 
						|
        NumIntRegs = 2;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      ObjSize = ArgIncrement = 8;
 | 
						|
      break;
 | 
						|
    case MVT::f32: ObjSize = 4;                break;
 | 
						|
    case MVT::f64: ObjSize = ArgIncrement = 8; break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't codegen dead arguments.  FIXME: remove this check when we can nuke
 | 
						|
    // dead loads.
 | 
						|
    if (ObjSize && !I->use_empty()) {
 | 
						|
      // Create the frame index object for this incoming parameter...
 | 
						|
      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
 | 
						|
 | 
						|
      // Create the SelectionDAG nodes corresponding to a load from this
 | 
						|
      // parameter.
 | 
						|
      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
 | 
						|
      ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
 | 
						|
                             DAG.getSrcValue(NULL));
 | 
						|
    } else if (ArgValue.Val == 0) {
 | 
						|
      if (MVT::isInteger(ObjectVT))
 | 
						|
        ArgValue = DAG.getConstant(0, ObjectVT);
 | 
						|
      else
 | 
						|
        ArgValue = DAG.getConstantFP(0, ObjectVT);
 | 
						|
    }
 | 
						|
    ArgValues.push_back(ArgValue);
 | 
						|
 | 
						|
    if (ObjSize)
 | 
						|
      ArgOffset += ArgIncrement;   // Move on to the next argument.
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (F.isVarArg())
 | 
						|
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
 | 
						|
  ReturnAddrIndex = 0;  // No return address slot generated yet.
 | 
						|
 | 
						|
  // Finally, inform the code generator which regs we return values in.
 | 
						|
  switch (getValueType(F.getReturnType())) {
 | 
						|
  default: assert(0 && "Unknown type!");
 | 
						|
  case MVT::isVoid: break;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i16:
 | 
						|
  case MVT::i32:
 | 
						|
    MF.addLiveOut(X86::EAX);
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    MF.addLiveOut(X86::EAX);
 | 
						|
    MF.addLiveOut(X86::EDX);
 | 
						|
    break;
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    MF.addLiveOut(X86::ST0);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return ArgValues;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy,
 | 
						|
                                     bool isTailCall, SDOperand Callee,
 | 
						|
                                     ArgListTy &Args, SelectionDAG &DAG) {
 | 
						|
  // Count how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = 0;
 | 
						|
 | 
						|
  // Keep track of the number of integer regs passed so far.  This can be either
 | 
						|
  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
 | 
						|
  // used).
 | 
						|
  unsigned NumIntRegs = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | 
						|
    switch (getValueType(Args[i].second)) {
 | 
						|
    default: assert(0 && "Unknown value type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
    case MVT::i16:
 | 
						|
    case MVT::i32:
 | 
						|
      if (NumIntRegs < 2) {
 | 
						|
        ++NumIntRegs;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // fall through
 | 
						|
    case MVT::f32:
 | 
						|
      NumBytes += 4;
 | 
						|
      break;
 | 
						|
    case MVT::i64:
 | 
						|
      if (NumIntRegs == 0) {
 | 
						|
        NumIntRegs = 2;
 | 
						|
        break;
 | 
						|
      } else if (NumIntRegs == 1) {
 | 
						|
        NumIntRegs = 2;
 | 
						|
        NumBytes += 4;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // fall through
 | 
						|
    case MVT::f64:
 | 
						|
      NumBytes += 8;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
 | 
						|
                      DAG.getConstant(NumBytes, getPointerTy()));
 | 
						|
 | 
						|
  // Arguments go on the stack in reverse order, as specified by the ABI.
 | 
						|
  unsigned ArgOffset = 0;
 | 
						|
  SDOperand StackPtr = DAG.getCopyFromReg(X86::ESP, MVT::i32,
 | 
						|
                                          DAG.getEntryNode());
 | 
						|
  NumIntRegs = 0;
 | 
						|
  std::vector<SDOperand> Stores;
 | 
						|
  std::vector<SDOperand> RegValuesToPass;
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
    switch (getValueType(Args[i].second)) {
 | 
						|
    default: assert(0 && "Unexpected ValueType for argument!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
    case MVT::i16:
 | 
						|
    case MVT::i32:
 | 
						|
      if (NumIntRegs < 2) {
 | 
						|
        RegValuesToPass.push_back(Args[i].first);
 | 
						|
        ++NumIntRegs;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Fall through
 | 
						|
    case MVT::f32: {
 | 
						|
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
 | 
						|
      Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                   Args[i].first, PtrOff,
 | 
						|
                                   DAG.getSrcValue(NULL)));
 | 
						|
      ArgOffset += 4;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MVT::i64:
 | 
						|
      if (NumIntRegs < 2) {    // Can pass part of it in regs?
 | 
						|
        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | 
						|
                                   Args[i].first, DAG.getConstant(1, MVT::i32));
 | 
						|
        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | 
						|
                                   Args[i].first, DAG.getConstant(0, MVT::i32));
 | 
						|
        RegValuesToPass.push_back(Lo);
 | 
						|
        ++NumIntRegs;
 | 
						|
        if (NumIntRegs < 2) {   // Pass both parts in regs?
 | 
						|
          RegValuesToPass.push_back(Hi);
 | 
						|
          ++NumIntRegs;
 | 
						|
        } else {
 | 
						|
          // Pass the high part in memory.
 | 
						|
          SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
 | 
						|
          PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
 | 
						|
          Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                       Args[i].first, PtrOff,
 | 
						|
                                       DAG.getSrcValue(NULL)));
 | 
						|
          ArgOffset += 4;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Fall through
 | 
						|
    case MVT::f64:
 | 
						|
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
 | 
						|
      Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | 
						|
                                   Args[i].first, PtrOff,
 | 
						|
                                   DAG.getSrcValue(NULL)));
 | 
						|
      ArgOffset += 8;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Stores.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
 | 
						|
 | 
						|
  std::vector<MVT::ValueType> RetVals;
 | 
						|
  MVT::ValueType RetTyVT = getValueType(RetTy);
 | 
						|
  if (RetTyVT != MVT::isVoid)
 | 
						|
    RetVals.push_back(RetTyVT);
 | 
						|
  RetVals.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain, Callee,
 | 
						|
                                            RegValuesToPass, isTailCall), 0);
 | 
						|
  Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
 | 
						|
  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
 | 
						|
                      DAG.getConstant(NumBytes, getPointerTy()),
 | 
						|
                      // The callee pops the arguments off the stack.
 | 
						|
                      DAG.getConstant(ArgOffset, getPointerTy()));
 | 
						|
  return std::make_pair(TheCall, Chain);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
std::pair<SDOperand, SDOperand> X86TargetLowering::
 | 
						|
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
 | 
						|
                        SelectionDAG &DAG) {
 | 
						|
  SDOperand Result;
 | 
						|
  if (Depth)        // Depths > 0 not supported yet!
 | 
						|
    Result = DAG.getConstant(0, getPointerTy());
 | 
						|
  else {
 | 
						|
    if (ReturnAddrIndex == 0) {
 | 
						|
      // Set up a frame object for the return address.
 | 
						|
      MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
 | 
						|
    }
 | 
						|
 | 
						|
    SDOperand RetAddrFI = DAG.getFrameIndex(ReturnAddrIndex, MVT::i32);
 | 
						|
 | 
						|
    if (!isFrameAddress)
 | 
						|
      // Just load the return address
 | 
						|
      Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI,
 | 
						|
                           DAG.getSrcValue(NULL));
 | 
						|
    else
 | 
						|
      Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI,
 | 
						|
                           DAG.getConstant(4, MVT::i32));
 | 
						|
  }
 | 
						|
  return std::make_pair(Result, Chain);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
 | 
						|
  /// SDOperand's instead of register numbers for the leaves of the matched
 | 
						|
  /// tree.
 | 
						|
  struct X86ISelAddressMode {
 | 
						|
    enum {
 | 
						|
      RegBase,
 | 
						|
      FrameIndexBase,
 | 
						|
    } BaseType;
 | 
						|
 | 
						|
    struct {            // This is really a union, discriminated by BaseType!
 | 
						|
      SDOperand Reg;
 | 
						|
      int FrameIndex;
 | 
						|
    } Base;
 | 
						|
 | 
						|
    unsigned Scale;
 | 
						|
    SDOperand IndexReg;
 | 
						|
    unsigned Disp;
 | 
						|
    GlobalValue *GV;
 | 
						|
 | 
						|
    X86ISelAddressMode()
 | 
						|
      : BaseType(RegBase), Scale(1), IndexReg(), Disp(), GV(0) {
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<>
 | 
						|
  NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// ISel - X86 specific code to select X86 machine instructions for
 | 
						|
  /// SelectionDAG operations.
 | 
						|
  ///
 | 
						|
  class ISel : public SelectionDAGISel {
 | 
						|
    /// ContainsFPCode - Every instruction we select that uses or defines a FP
 | 
						|
    /// register should set this to true.
 | 
						|
    bool ContainsFPCode;
 | 
						|
 | 
						|
    /// X86Lowering - This object fully describes how to lower LLVM code to an
 | 
						|
    /// X86-specific SelectionDAG.
 | 
						|
    X86TargetLowering X86Lowering;
 | 
						|
 | 
						|
    /// RegPressureMap - This keeps an approximate count of the number of
 | 
						|
    /// registers required to evaluate each node in the graph.
 | 
						|
    std::map<SDNode*, unsigned> RegPressureMap;
 | 
						|
 | 
						|
    /// ExprMap - As shared expressions are codegen'd, we keep track of which
 | 
						|
    /// vreg the value is produced in, so we only emit one copy of each compiled
 | 
						|
    /// tree.
 | 
						|
    std::map<SDOperand, unsigned> ExprMap;
 | 
						|
 | 
						|
  public:
 | 
						|
    ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), X86Lowering(TM) {
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Pattern Instruction Selection";
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getRegPressure(SDOperand O) {
 | 
						|
      return RegPressureMap[O.Val];
 | 
						|
    }
 | 
						|
    unsigned ComputeRegPressure(SDOperand O);
 | 
						|
 | 
						|
    /// InstructionSelectBasicBlock - This callback is invoked by
 | 
						|
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
 | 
						|
 | 
						|
    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
 | 
						|
 | 
						|
    bool isFoldableLoad(SDOperand Op, SDOperand OtherOp,
 | 
						|
                        bool FloatPromoteOk = false);
 | 
						|
    void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM);
 | 
						|
    bool TryToFoldLoadOpStore(SDNode *Node);
 | 
						|
 | 
						|
    bool EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg);
 | 
						|
    void EmitCMP(SDOperand LHS, SDOperand RHS, bool isOnlyUse);
 | 
						|
    bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond);
 | 
						|
    void EmitSelectCC(SDOperand Cond, MVT::ValueType SVT,
 | 
						|
                      unsigned RTrue, unsigned RFalse, unsigned RDest);
 | 
						|
    unsigned SelectExpr(SDOperand N);
 | 
						|
 | 
						|
    X86AddressMode SelectAddrExprs(const X86ISelAddressMode &IAM);
 | 
						|
    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM);
 | 
						|
    void SelectAddress(SDOperand N, X86AddressMode &AM);
 | 
						|
    void Select(SDOperand N);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
 | 
						|
/// the main function.
 | 
						|
static void EmitSpecialCodeForMain(MachineBasicBlock *BB,
 | 
						|
                                   MachineFrameInfo *MFI) {
 | 
						|
  // Switch the FPU to 64-bit precision mode for better compatibility and speed.
 | 
						|
  int CWFrameIdx = MFI->CreateStackObject(2, 2);
 | 
						|
  addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
 | 
						|
 | 
						|
  // Set the high part to be 64-bit precision.
 | 
						|
  addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
 | 
						|
                    CWFrameIdx, 1).addImm(2);
 | 
						|
 | 
						|
  // Reload the modified control word now.
 | 
						|
  addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
 | 
						|
  // If this function has live-in values, emit the copies from pregs to vregs at
 | 
						|
  // the top of the function, before anything else.
 | 
						|
  MachineBasicBlock *BB = MF.begin();
 | 
						|
  if (MF.livein_begin() != MF.livein_end()) {
 | 
						|
    SSARegMap *RegMap = MF.getSSARegMap();
 | 
						|
    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
 | 
						|
         E = MF.livein_end(); LI != E; ++LI) {
 | 
						|
      const TargetRegisterClass *RC = RegMap->getRegClass(LI->second);
 | 
						|
      if (RC == X86::R8RegisterClass) {
 | 
						|
        BuildMI(BB, X86::MOV8rr, 1, LI->second).addReg(LI->first);
 | 
						|
      } else if (RC == X86::R16RegisterClass) {
 | 
						|
        BuildMI(BB, X86::MOV16rr, 1, LI->second).addReg(LI->first);
 | 
						|
      } else if (RC == X86::R32RegisterClass) {
 | 
						|
        BuildMI(BB, X86::MOV32rr, 1, LI->second).addReg(LI->first);
 | 
						|
      } else if (RC == X86::RFPRegisterClass) {
 | 
						|
        BuildMI(BB, X86::FpMOV, 1, LI->second).addReg(LI->first);
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown regclass!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // If this is main, emit special code for main.
 | 
						|
  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
 | 
						|
    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
 | 
						|
/// when it has created a SelectionDAG for us to codegen.
 | 
						|
void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | 
						|
  // While we're doing this, keep track of whether we see any FP code for
 | 
						|
  // FP_REG_KILL insertion.
 | 
						|
  ContainsFPCode = false;
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
 | 
						|
  // Scan the PHI nodes that already are inserted into this basic block.  If any
 | 
						|
  // of them is a PHI of a floating point value, we need to insert an
 | 
						|
  // FP_REG_KILL.
 | 
						|
  SSARegMap *RegMap = MF->getSSARegMap();
 | 
						|
  if (BB != MF->begin())
 | 
						|
    for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      assert(I->getOpcode() == X86::PHI &&
 | 
						|
             "Isn't just PHI nodes?");
 | 
						|
      if (RegMap->getRegClass(I->getOperand(0).getReg()) ==
 | 
						|
          X86::RFPRegisterClass) {
 | 
						|
        ContainsFPCode = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Compute the RegPressureMap, which is an approximation for the number of
 | 
						|
  // registers required to compute each node.
 | 
						|
  ComputeRegPressure(DAG.getRoot());
 | 
						|
 | 
						|
  // Codegen the basic block.
 | 
						|
  Select(DAG.getRoot());
 | 
						|
 | 
						|
  // Finally, look at all of the successors of this block.  If any contain a PHI
 | 
						|
  // node of FP type, we need to insert an FP_REG_KILL in this block.
 | 
						|
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
         E = BB->succ_end(); SI != E && !ContainsFPCode; ++SI)
 | 
						|
    for (MachineBasicBlock::iterator I = (*SI)->begin(), E = (*SI)->end();
 | 
						|
         I != E && I->getOpcode() == X86::PHI; ++I) {
 | 
						|
      if (RegMap->getRegClass(I->getOperand(0).getReg()) ==
 | 
						|
          X86::RFPRegisterClass) {
 | 
						|
        ContainsFPCode = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Final check, check LLVM BB's that are successors to the LLVM BB
 | 
						|
  // corresponding to BB for FP PHI nodes.
 | 
						|
  const BasicBlock *LLVMBB = BB->getBasicBlock();
 | 
						|
  const PHINode *PN;
 | 
						|
  if (!ContainsFPCode)
 | 
						|
    for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
 | 
						|
         SI != E && !ContainsFPCode; ++SI)
 | 
						|
      for (BasicBlock::const_iterator II = SI->begin();
 | 
						|
           (PN = dyn_cast<PHINode>(II)); ++II)
 | 
						|
        if (PN->getType()->isFloatingPoint()) {
 | 
						|
          ContainsFPCode = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
  // Insert FP_REG_KILL instructions into basic blocks that need them.  This
 | 
						|
  // only occurs due to the floating point stackifier not being aggressive
 | 
						|
  // enough to handle arbitrary global stackification.
 | 
						|
  //
 | 
						|
  // Currently we insert an FP_REG_KILL instruction into each block that uses or
 | 
						|
  // defines a floating point virtual register.
 | 
						|
  //
 | 
						|
  // When the global register allocators (like linear scan) finally update live
 | 
						|
  // variable analysis, we can keep floating point values in registers across
 | 
						|
  // basic blocks.  This will be a huge win, but we are waiting on the global
 | 
						|
  // allocators before we can do this.
 | 
						|
  //
 | 
						|
  if (ContainsFPCode) {
 | 
						|
    BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
 | 
						|
    ++NumFPKill;
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear state used for selection.
 | 
						|
  ExprMap.clear();
 | 
						|
  RegPressureMap.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ComputeRegPressure - Compute the RegPressureMap, which is an approximation
 | 
						|
// for the number of registers required to compute each node.  This is basically
 | 
						|
// computing a generalized form of the Sethi-Ullman number for each node.
 | 
						|
unsigned ISel::ComputeRegPressure(SDOperand O) {
 | 
						|
  SDNode *N = O.Val;
 | 
						|
  unsigned &Result = RegPressureMap[N];
 | 
						|
  if (Result) return Result;
 | 
						|
 | 
						|
  // FIXME: Should operations like CALL (which clobber lots o regs) have a
 | 
						|
  // higher fixed cost??
 | 
						|
 | 
						|
  if (N->getNumOperands() == 0) {
 | 
						|
    Result = 1;
 | 
						|
  } else {
 | 
						|
    unsigned MaxRegUse = 0;
 | 
						|
    unsigned NumExtraMaxRegUsers = 0;
 | 
						|
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
      unsigned Regs;
 | 
						|
      if (N->getOperand(i).getOpcode() == ISD::Constant)
 | 
						|
        Regs = 0;
 | 
						|
      else
 | 
						|
        Regs = ComputeRegPressure(N->getOperand(i));
 | 
						|
      if (Regs > MaxRegUse) {
 | 
						|
        MaxRegUse = Regs;
 | 
						|
        NumExtraMaxRegUsers = 0;
 | 
						|
      } else if (Regs == MaxRegUse &&
 | 
						|
                 N->getOperand(i).getValueType() != MVT::Other) {
 | 
						|
        ++NumExtraMaxRegUsers;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (O.getOpcode() != ISD::TokenFactor)
 | 
						|
      Result = MaxRegUse+NumExtraMaxRegUsers;
 | 
						|
    else
 | 
						|
      Result = MaxRegUse == 1 ? 0 : MaxRegUse-1;
 | 
						|
  }
 | 
						|
 | 
						|
  //std::cerr << " WEIGHT: " << Result << " ";  N->dump(); std::cerr << "\n";
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// NodeTransitivelyUsesValue - Return true if N or any of its uses uses Op.
 | 
						|
/// The DAG cannot have cycles in it, by definition, so the visited set is not
 | 
						|
/// needed to prevent infinite loops.  The DAG CAN, however, have unbounded
 | 
						|
/// reuse, so it prevents exponential cases.
 | 
						|
///
 | 
						|
static bool NodeTransitivelyUsesValue(SDOperand N, SDOperand Op,
 | 
						|
                                      std::set<SDNode*> &Visited) {
 | 
						|
  if (N == Op) return true;                        // Found it.
 | 
						|
  SDNode *Node = N.Val;
 | 
						|
  if (Node->getNumOperands() == 0 ||      // Leaf?
 | 
						|
      Node->getNodeDepth() <= Op.getNodeDepth()) return false; // Can't find it?
 | 
						|
  if (!Visited.insert(Node).second) return false;  // Already visited?
 | 
						|
 | 
						|
  // Recurse for the first N-1 operands.
 | 
						|
  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
 | 
						|
    if (NodeTransitivelyUsesValue(Node->getOperand(i), Op, Visited))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Tail recurse for the last operand.
 | 
						|
  return NodeTransitivelyUsesValue(Node->getOperand(0), Op, Visited);
 | 
						|
}
 | 
						|
 | 
						|
X86AddressMode ISel::SelectAddrExprs(const X86ISelAddressMode &IAM) {
 | 
						|
  X86AddressMode Result;
 | 
						|
 | 
						|
  // If we need to emit two register operands, emit the one with the highest
 | 
						|
  // register pressure first.
 | 
						|
  if (IAM.BaseType == X86ISelAddressMode::RegBase &&
 | 
						|
      IAM.Base.Reg.Val && IAM.IndexReg.Val) {
 | 
						|
    bool EmitBaseThenIndex;
 | 
						|
    if (getRegPressure(IAM.Base.Reg) > getRegPressure(IAM.IndexReg)) {
 | 
						|
      std::set<SDNode*> Visited;
 | 
						|
      EmitBaseThenIndex = true;
 | 
						|
      // If Base ends up pointing to Index, we must emit index first.  This is
 | 
						|
      // because of the way we fold loads, we may end up doing bad things with
 | 
						|
      // the folded add.
 | 
						|
      if (NodeTransitivelyUsesValue(IAM.Base.Reg, IAM.IndexReg, Visited))
 | 
						|
        EmitBaseThenIndex = false;
 | 
						|
    } else {
 | 
						|
      std::set<SDNode*> Visited;
 | 
						|
      EmitBaseThenIndex = false;
 | 
						|
      // If Base ends up pointing to Index, we must emit index first.  This is
 | 
						|
      // because of the way we fold loads, we may end up doing bad things with
 | 
						|
      // the folded add.
 | 
						|
      if (NodeTransitivelyUsesValue(IAM.IndexReg, IAM.Base.Reg, Visited))
 | 
						|
        EmitBaseThenIndex = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (EmitBaseThenIndex) {
 | 
						|
      Result.Base.Reg = SelectExpr(IAM.Base.Reg);
 | 
						|
      Result.IndexReg = SelectExpr(IAM.IndexReg);
 | 
						|
    } else {
 | 
						|
      Result.IndexReg = SelectExpr(IAM.IndexReg);
 | 
						|
      Result.Base.Reg = SelectExpr(IAM.Base.Reg);
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (IAM.BaseType == X86ISelAddressMode::RegBase && IAM.Base.Reg.Val) {
 | 
						|
    Result.Base.Reg = SelectExpr(IAM.Base.Reg);
 | 
						|
  } else if (IAM.IndexReg.Val) {
 | 
						|
    Result.IndexReg = SelectExpr(IAM.IndexReg);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (IAM.BaseType) {
 | 
						|
  case X86ISelAddressMode::RegBase:
 | 
						|
    Result.BaseType = X86AddressMode::RegBase;
 | 
						|
    break;
 | 
						|
  case X86ISelAddressMode::FrameIndexBase:
 | 
						|
    Result.BaseType = X86AddressMode::FrameIndexBase;
 | 
						|
    Result.Base.FrameIndex = IAM.Base.FrameIndex;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unknown base type!");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  Result.Scale = IAM.Scale;
 | 
						|
  Result.Disp = IAM.Disp;
 | 
						|
  Result.GV = IAM.GV;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddress - Pattern match the maximal addressing mode for this node and
 | 
						|
/// emit all of the leaf registers.
 | 
						|
void ISel::SelectAddress(SDOperand N, X86AddressMode &AM) {
 | 
						|
  X86ISelAddressMode IAM;
 | 
						|
  MatchAddress(N, IAM);
 | 
						|
  AM = SelectAddrExprs(IAM);
 | 
						|
}
 | 
						|
 | 
						|
/// MatchAddress - Add the specified node to the specified addressing mode,
 | 
						|
/// returning true if it cannot be done.  This just pattern matches for the
 | 
						|
/// addressing mode, it does not cause any code to be emitted.  For that, use
 | 
						|
/// SelectAddress.
 | 
						|
bool ISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) {
 | 
						|
  switch (N.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::FrameIndex:
 | 
						|
    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
 | 
						|
      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
 | 
						|
      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::GlobalAddress:
 | 
						|
    if (AM.GV == 0) {
 | 
						|
      AM.GV = cast<GlobalAddressSDNode>(N)->getGlobal();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::Constant:
 | 
						|
    AM.Disp += cast<ConstantSDNode>(N)->getValue();
 | 
						|
    return false;
 | 
						|
  case ISD::SHL:
 | 
						|
    // We might have folded the load into this shift, so don't regen the value
 | 
						|
    // if so.
 | 
						|
    if (ExprMap.count(N)) break;
 | 
						|
 | 
						|
    if (AM.IndexReg.Val == 0 && AM.Scale == 1)
 | 
						|
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
 | 
						|
        unsigned Val = CN->getValue();
 | 
						|
        if (Val == 1 || Val == 2 || Val == 3) {
 | 
						|
          AM.Scale = 1 << Val;
 | 
						|
          SDOperand ShVal = N.Val->getOperand(0);
 | 
						|
 | 
						|
          // Okay, we know that we have a scale by now.  However, if the scaled
 | 
						|
          // value is an add of something and a constant, we can fold the
 | 
						|
          // constant into the disp field here.
 | 
						|
          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
 | 
						|
              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
 | 
						|
            AM.IndexReg = ShVal.Val->getOperand(0);
 | 
						|
            ConstantSDNode *AddVal =
 | 
						|
              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
 | 
						|
            AM.Disp += AddVal->getValue() << Val;
 | 
						|
          } else {
 | 
						|
            AM.IndexReg = ShVal;
 | 
						|
          }
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    break;
 | 
						|
  case ISD::MUL:
 | 
						|
    // We might have folded the load into this mul, so don't regen the value if
 | 
						|
    // so.
 | 
						|
    if (ExprMap.count(N)) break;
 | 
						|
 | 
						|
    // X*[3,5,9] -> X+X*[2,4,8]
 | 
						|
    if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase &&
 | 
						|
        AM.Base.Reg.Val == 0)
 | 
						|
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
 | 
						|
        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
 | 
						|
          AM.Scale = unsigned(CN->getValue())-1;
 | 
						|
 | 
						|
          SDOperand MulVal = N.Val->getOperand(0);
 | 
						|
          SDOperand Reg;
 | 
						|
 | 
						|
          // Okay, we know that we have a scale by now.  However, if the scaled
 | 
						|
          // value is an add of something and a constant, we can fold the
 | 
						|
          // constant into the disp field here.
 | 
						|
          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
 | 
						|
              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
 | 
						|
            Reg = MulVal.Val->getOperand(0);
 | 
						|
            ConstantSDNode *AddVal =
 | 
						|
              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
 | 
						|
            AM.Disp += AddVal->getValue() * CN->getValue();
 | 
						|
          } else {
 | 
						|
            Reg = N.Val->getOperand(0);
 | 
						|
          }
 | 
						|
 | 
						|
          AM.IndexReg = AM.Base.Reg = Reg;
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ISD::ADD: {
 | 
						|
    // We might have folded the load into this mul, so don't regen the value if
 | 
						|
    // so.
 | 
						|
    if (ExprMap.count(N)) break;
 | 
						|
 | 
						|
    X86ISelAddressMode Backup = AM;
 | 
						|
    if (!MatchAddress(N.Val->getOperand(0), AM) &&
 | 
						|
        !MatchAddress(N.Val->getOperand(1), AM))
 | 
						|
      return false;
 | 
						|
    AM = Backup;
 | 
						|
    if (!MatchAddress(N.Val->getOperand(1), AM) &&
 | 
						|
        !MatchAddress(N.Val->getOperand(0), AM))
 | 
						|
      return false;
 | 
						|
    AM = Backup;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // Is the base register already occupied?
 | 
						|
  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
 | 
						|
    // If so, check to see if the scale index register is set.
 | 
						|
    if (AM.IndexReg.Val == 0) {
 | 
						|
      AM.IndexReg = N;
 | 
						|
      AM.Scale = 1;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we cannot select it.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Default, generate it as a register.
 | 
						|
  AM.BaseType = X86ISelAddressMode::RegBase;
 | 
						|
  AM.Base.Reg = N;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Emit2SetCCsAndLogical - Emit the following sequence of instructions,
 | 
						|
/// assuming that the temporary registers are in the 8-bit register class.
 | 
						|
///
 | 
						|
///  Tmp1 = setcc1
 | 
						|
///  Tmp2 = setcc2
 | 
						|
///  DestReg = logicalop Tmp1, Tmp2
 | 
						|
///
 | 
						|
static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1,
 | 
						|
                                  unsigned SetCC2, unsigned LogicalOp,
 | 
						|
                                  unsigned DestReg) {
 | 
						|
  SSARegMap *RegMap = BB->getParent()->getSSARegMap();
 | 
						|
  unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass);
 | 
						|
  unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass);
 | 
						|
  BuildMI(BB, SetCC1, 0, Tmp1);
 | 
						|
  BuildMI(BB, SetCC2, 0, Tmp2);
 | 
						|
  BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the
 | 
						|
/// condition codes match the specified SetCCOpcode.  Note that some conditions
 | 
						|
/// require multiple instructions to generate the correct value.
 | 
						|
static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg,
 | 
						|
                      ISD::CondCode SetCCOpcode, bool isFP) {
 | 
						|
  unsigned Opc;
 | 
						|
  if (!isFP) {
 | 
						|
    switch (SetCCOpcode) {
 | 
						|
    default: assert(0 && "Illegal integer SetCC!");
 | 
						|
    case ISD::SETEQ: Opc = X86::SETEr; break;
 | 
						|
    case ISD::SETGT: Opc = X86::SETGr; break;
 | 
						|
    case ISD::SETGE: Opc = X86::SETGEr; break;
 | 
						|
    case ISD::SETLT: Opc = X86::SETLr; break;
 | 
						|
    case ISD::SETLE: Opc = X86::SETLEr; break;
 | 
						|
    case ISD::SETNE: Opc = X86::SETNEr; break;
 | 
						|
    case ISD::SETULT: Opc = X86::SETBr; break;
 | 
						|
    case ISD::SETUGT: Opc = X86::SETAr; break;
 | 
						|
    case ISD::SETULE: Opc = X86::SETBEr; break;
 | 
						|
    case ISD::SETUGE: Opc = X86::SETAEr; break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // On a floating point condition, the flags are set as follows:
 | 
						|
    // ZF  PF  CF   op
 | 
						|
    //  0 | 0 | 0 | X > Y
 | 
						|
    //  0 | 0 | 1 | X < Y
 | 
						|
    //  1 | 0 | 0 | X == Y
 | 
						|
    //  1 | 1 | 1 | unordered
 | 
						|
    //
 | 
						|
    switch (SetCCOpcode) {
 | 
						|
    default: assert(0 && "Invalid FP setcc!");
 | 
						|
    case ISD::SETUEQ:
 | 
						|
    case ISD::SETEQ:
 | 
						|
      Opc = X86::SETEr;    // True if ZF = 1
 | 
						|
      break;
 | 
						|
    case ISD::SETOGT:
 | 
						|
    case ISD::SETGT:
 | 
						|
      Opc = X86::SETAr;    // True if CF = 0 and ZF = 0
 | 
						|
      break;
 | 
						|
    case ISD::SETOGE:
 | 
						|
    case ISD::SETGE:
 | 
						|
      Opc = X86::SETAEr;   // True if CF = 0
 | 
						|
      break;
 | 
						|
    case ISD::SETULT:
 | 
						|
    case ISD::SETLT:
 | 
						|
      Opc = X86::SETBr;    // True if CF = 1
 | 
						|
      break;
 | 
						|
    case ISD::SETULE:
 | 
						|
    case ISD::SETLE:
 | 
						|
      Opc = X86::SETBEr;   // True if CF = 1 or ZF = 1
 | 
						|
      break;
 | 
						|
    case ISD::SETONE:
 | 
						|
    case ISD::SETNE:
 | 
						|
      Opc = X86::SETNEr;   // True if ZF = 0
 | 
						|
      break;
 | 
						|
    case ISD::SETUO:
 | 
						|
      Opc = X86::SETPr;    // True if PF = 1
 | 
						|
      break;
 | 
						|
    case ISD::SETO:
 | 
						|
      Opc = X86::SETNPr;   // True if PF = 0
 | 
						|
      break;
 | 
						|
    case ISD::SETOEQ:      // !PF & ZF
 | 
						|
      Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg);
 | 
						|
      return;
 | 
						|
    case ISD::SETOLT:      // !PF & CF
 | 
						|
      Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg);
 | 
						|
      return;
 | 
						|
    case ISD::SETOLE:      // !PF & (CF || ZF)
 | 
						|
      Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg);
 | 
						|
      return;
 | 
						|
    case ISD::SETUGT:      // PF | (!ZF & !CF)
 | 
						|
      Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg);
 | 
						|
      return;
 | 
						|
    case ISD::SETUGE:      // PF | !CF
 | 
						|
      Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg);
 | 
						|
      return;
 | 
						|
    case ISD::SETUNE:      // PF | !ZF
 | 
						|
      Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  BuildMI(BB, Opc, 0, DestReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EmitBranchCC - Emit code into BB that arranges for control to transfer to
 | 
						|
/// the Dest block if the Cond condition is true.  If we cannot fold this
 | 
						|
/// condition into the branch, return true.
 | 
						|
///
 | 
						|
bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain,
 | 
						|
                        SDOperand Cond) {
 | 
						|
  // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A >
 | 
						|
  // B) using two conditional branches instead of one condbr, two setcc's, and
 | 
						|
  // an or.
 | 
						|
  if ((Cond.getOpcode() == ISD::OR ||
 | 
						|
       Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) {
 | 
						|
    // And and or set the flags for us, so there is no need to emit a TST of the
 | 
						|
    // result.  It is only safe to do this if there is only a single use of the
 | 
						|
    // AND/OR though, otherwise we don't know it will be emitted here.
 | 
						|
    Select(Chain);
 | 
						|
    SelectExpr(Cond);
 | 
						|
    BuildMI(BB, X86::JNE, 1).addMBB(Dest);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Codegen br not C -> JE.
 | 
						|
  if (Cond.getOpcode() == ISD::XOR)
 | 
						|
    if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Cond.Val->getOperand(1)))
 | 
						|
      if (NC->isAllOnesValue()) {
 | 
						|
        unsigned CondR;
 | 
						|
        if (getRegPressure(Chain) > getRegPressure(Cond)) {
 | 
						|
          Select(Chain);
 | 
						|
          CondR = SelectExpr(Cond.Val->getOperand(0));
 | 
						|
        } else {
 | 
						|
          CondR = SelectExpr(Cond.Val->getOperand(0));
 | 
						|
          Select(Chain);
 | 
						|
        }
 | 
						|
        BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR);
 | 
						|
        BuildMI(BB, X86::JE, 1).addMBB(Dest);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
  SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Cond);
 | 
						|
  if (SetCC == 0)
 | 
						|
    return true;                       // Can only handle simple setcc's so far.
 | 
						|
 | 
						|
  unsigned Opc;
 | 
						|
 | 
						|
  // Handle integer conditions first.
 | 
						|
  if (MVT::isInteger(SetCC->getOperand(0).getValueType())) {
 | 
						|
    switch (SetCC->getCondition()) {
 | 
						|
    default: assert(0 && "Illegal integer SetCC!");
 | 
						|
    case ISD::SETEQ: Opc = X86::JE; break;
 | 
						|
    case ISD::SETGT: Opc = X86::JG; break;
 | 
						|
    case ISD::SETGE: Opc = X86::JGE; break;
 | 
						|
    case ISD::SETLT: Opc = X86::JL; break;
 | 
						|
    case ISD::SETLE: Opc = X86::JLE; break;
 | 
						|
    case ISD::SETNE: Opc = X86::JNE; break;
 | 
						|
    case ISD::SETULT: Opc = X86::JB; break;
 | 
						|
    case ISD::SETUGT: Opc = X86::JA; break;
 | 
						|
    case ISD::SETULE: Opc = X86::JBE; break;
 | 
						|
    case ISD::SETUGE: Opc = X86::JAE; break;
 | 
						|
    }
 | 
						|
    Select(Chain);
 | 
						|
    EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1), SetCC->hasOneUse());
 | 
						|
    BuildMI(BB, Opc, 1).addMBB(Dest);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Opc2 = 0;  // Second branch if needed.
 | 
						|
 | 
						|
  // On a floating point condition, the flags are set as follows:
 | 
						|
  // ZF  PF  CF   op
 | 
						|
  //  0 | 0 | 0 | X > Y
 | 
						|
  //  0 | 0 | 1 | X < Y
 | 
						|
  //  1 | 0 | 0 | X == Y
 | 
						|
  //  1 | 1 | 1 | unordered
 | 
						|
  //
 | 
						|
  switch (SetCC->getCondition()) {
 | 
						|
  default: assert(0 && "Invalid FP setcc!");
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETEQ:   Opc = X86::JE;  break;     // True if ZF = 1
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETGT:   Opc = X86::JA;  break;     // True if CF = 0 and ZF = 0
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETGE:   Opc = X86::JAE; break;     // True if CF = 0
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:   Opc = X86::JB;  break;     // True if CF = 1
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:   Opc = X86::JBE; break;     // True if CF = 1 or ZF = 1
 | 
						|
  case ISD::SETONE:
 | 
						|
  case ISD::SETNE:   Opc = X86::JNE; break;     // True if ZF = 0
 | 
						|
  case ISD::SETUO:   Opc = X86::JP;  break;     // True if PF = 1
 | 
						|
  case ISD::SETO:    Opc = X86::JNP; break;     // True if PF = 0
 | 
						|
  case ISD::SETUGT:      // PF = 1 | (ZF = 0 & CF = 0)
 | 
						|
    Opc = X86::JA;       // ZF = 0 & CF = 0
 | 
						|
    Opc2 = X86::JP;      // PF = 1
 | 
						|
    break;
 | 
						|
  case ISD::SETUGE:      // PF = 1 | CF = 0
 | 
						|
    Opc = X86::JAE;      // CF = 0
 | 
						|
    Opc2 = X86::JP;      // PF = 1
 | 
						|
    break;
 | 
						|
  case ISD::SETUNE:      // PF = 1 | ZF = 0
 | 
						|
    Opc = X86::JNE;      // ZF = 0
 | 
						|
    Opc2 = X86::JP;      // PF = 1
 | 
						|
    break;
 | 
						|
  case ISD::SETOEQ:      // PF = 0 & ZF = 1
 | 
						|
    //X86::JNP, X86::JE
 | 
						|
    //X86::AND8rr
 | 
						|
    return true;    // FIXME: Emit more efficient code for this branch.
 | 
						|
  case ISD::SETOLT:      // PF = 0 & CF = 1
 | 
						|
    //X86::JNP, X86::JB
 | 
						|
    //X86::AND8rr
 | 
						|
    return true;    // FIXME: Emit more efficient code for this branch.
 | 
						|
  case ISD::SETOLE:      // PF = 0 & (CF = 1 || ZF = 1)
 | 
						|
    //X86::JNP, X86::JBE
 | 
						|
    //X86::AND8rr
 | 
						|
    return true;    // FIXME: Emit more efficient code for this branch.
 | 
						|
  }
 | 
						|
 | 
						|
  Select(Chain);
 | 
						|
  EmitCMP(SetCC->getOperand(0), SetCC->getOperand(1), SetCC->hasOneUse());
 | 
						|
  BuildMI(BB, Opc, 1).addMBB(Dest);
 | 
						|
  if (Opc2)
 | 
						|
    BuildMI(BB, Opc2, 1).addMBB(Dest);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSelectCC - Emit code into BB that performs a select operation between
 | 
						|
/// the two registers RTrue and RFalse, generating a result into RDest.  Return
 | 
						|
/// true if the fold cannot be performed.
 | 
						|
///
 | 
						|
void ISel::EmitSelectCC(SDOperand Cond, MVT::ValueType SVT,
 | 
						|
                        unsigned RTrue, unsigned RFalse, unsigned RDest) {
 | 
						|
  enum Condition {
 | 
						|
    EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP,
 | 
						|
    NOT_SET
 | 
						|
  } CondCode = NOT_SET;
 | 
						|
 | 
						|
  static const unsigned CMOVTAB16[] = {
 | 
						|
    X86::CMOVE16rr,  X86::CMOVNE16rr, X86::CMOVL16rr,  X86::CMOVLE16rr,
 | 
						|
    X86::CMOVG16rr,  X86::CMOVGE16rr, X86::CMOVB16rr,  X86::CMOVBE16rr,
 | 
						|
    X86::CMOVA16rr,  X86::CMOVAE16rr, X86::CMOVP16rr,  X86::CMOVNP16rr,
 | 
						|
  };
 | 
						|
  static const unsigned CMOVTAB32[] = {
 | 
						|
    X86::CMOVE32rr,  X86::CMOVNE32rr, X86::CMOVL32rr,  X86::CMOVLE32rr,
 | 
						|
    X86::CMOVG32rr,  X86::CMOVGE32rr, X86::CMOVB32rr,  X86::CMOVBE32rr,
 | 
						|
    X86::CMOVA32rr,  X86::CMOVAE32rr, X86::CMOVP32rr,  X86::CMOVNP32rr,
 | 
						|
  };
 | 
						|
  static const unsigned CMOVTABFP[] = {
 | 
						|
    X86::FCMOVE ,  X86::FCMOVNE, /*missing*/0, /*missing*/0,
 | 
						|
    /*missing*/0,  /*missing*/0, X86::FCMOVB , X86::FCMOVBE,
 | 
						|
    X86::FCMOVA ,  X86::FCMOVAE, X86::FCMOVP , X86::FCMOVNP
 | 
						|
  };
 | 
						|
 | 
						|
  if (SetCCSDNode *SetCC = dyn_cast<SetCCSDNode>(Cond)) {
 | 
						|
    if (MVT::isInteger(SetCC->getOperand(0).getValueType())) {
 | 
						|
      switch (SetCC->getCondition()) {
 | 
						|
      default: assert(0 && "Unknown integer comparison!");
 | 
						|
      case ISD::SETEQ:  CondCode = EQ; break;
 | 
						|
      case ISD::SETGT:  CondCode = GT; break;
 | 
						|
      case ISD::SETGE:  CondCode = GE; break;
 | 
						|
      case ISD::SETLT:  CondCode = LT; break;
 | 
						|
      case ISD::SETLE:  CondCode = LE; break;
 | 
						|
      case ISD::SETNE:  CondCode = NE; break;
 | 
						|
      case ISD::SETULT: CondCode = B; break;
 | 
						|
      case ISD::SETUGT: CondCode = A; break;
 | 
						|
      case ISD::SETULE: CondCode = BE; break;
 | 
						|
      case ISD::SETUGE: CondCode = AE; break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // On a floating point condition, the flags are set as follows:
 | 
						|
      // ZF  PF  CF   op
 | 
						|
      //  0 | 0 | 0 | X > Y
 | 
						|
      //  0 | 0 | 1 | X < Y
 | 
						|
      //  1 | 0 | 0 | X == Y
 | 
						|
      //  1 | 1 | 1 | unordered
 | 
						|
      //
 | 
						|
      switch (SetCC->getCondition()) {
 | 
						|
      default: assert(0 && "Unknown FP comparison!");
 | 
						|
      case ISD::SETUEQ:
 | 
						|
      case ISD::SETEQ:  CondCode = EQ; break;     // True if ZF = 1
 | 
						|
      case ISD::SETOGT:
 | 
						|
      case ISD::SETGT:  CondCode = A;  break;     // True if CF = 0 and ZF = 0
 | 
						|
      case ISD::SETOGE:
 | 
						|
      case ISD::SETGE:  CondCode = AE; break;     // True if CF = 0
 | 
						|
      case ISD::SETULT:
 | 
						|
      case ISD::SETLT:  CondCode = B;  break;     // True if CF = 1
 | 
						|
      case ISD::SETULE:
 | 
						|
      case ISD::SETLE:  CondCode = BE; break;     // True if CF = 1 or ZF = 1
 | 
						|
      case ISD::SETONE:
 | 
						|
      case ISD::SETNE:  CondCode = NE; break;     // True if ZF = 0
 | 
						|
      case ISD::SETUO:  CondCode = P;  break;     // True if PF = 1
 | 
						|
      case ISD::SETO:   CondCode = NP; break;     // True if PF = 0
 | 
						|
      case ISD::SETUGT:      // PF = 1 | (ZF = 0 & CF = 0)
 | 
						|
      case ISD::SETUGE:      // PF = 1 | CF = 0
 | 
						|
      case ISD::SETUNE:      // PF = 1 | ZF = 0
 | 
						|
      case ISD::SETOEQ:      // PF = 0 & ZF = 1
 | 
						|
      case ISD::SETOLT:      // PF = 0 & CF = 1
 | 
						|
      case ISD::SETOLE:      // PF = 0 & (CF = 1 || ZF = 1)
 | 
						|
        // We cannot emit this comparison as a single cmov.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Opc = 0;
 | 
						|
  if (CondCode != NOT_SET) {
 | 
						|
    switch (SVT) {
 | 
						|
    default: assert(0 && "Cannot select this type!");
 | 
						|
    case MVT::i16: Opc = CMOVTAB16[CondCode]; break;
 | 
						|
    case MVT::i32: Opc = CMOVTAB32[CondCode]; break;
 | 
						|
    case MVT::f64: Opc = CMOVTABFP[CondCode]; break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, if we weren't able to fold this, just emit the condition and test
 | 
						|
  // it.
 | 
						|
  if (CondCode == NOT_SET || Opc == 0) {
 | 
						|
    // Get the condition into the zero flag.
 | 
						|
    unsigned CondReg = SelectExpr(Cond);
 | 
						|
    BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
 | 
						|
 | 
						|
    switch (SVT) {
 | 
						|
    default: assert(0 && "Cannot select this type!");
 | 
						|
    case MVT::i16: Opc = X86::CMOVE16rr; break;
 | 
						|
    case MVT::i32: Opc = X86::CMOVE32rr; break;
 | 
						|
    case MVT::f64: Opc = X86::FCMOVE; break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // FIXME: CMP R, 0 -> TEST R, R
 | 
						|
    EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.Val->hasOneUse());
 | 
						|
    std::swap(RTrue, RFalse);
 | 
						|
  }
 | 
						|
  BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse);
 | 
						|
}
 | 
						|
 | 
						|
void ISel::EmitCMP(SDOperand LHS, SDOperand RHS, bool HasOneUse) {
 | 
						|
  unsigned Opc;
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
 | 
						|
    Opc = 0;
 | 
						|
    if (HasOneUse && isFoldableLoad(LHS, RHS)) {
 | 
						|
      switch (RHS.getValueType()) {
 | 
						|
      default: break;
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  Opc = X86::CMP8mi;  break;
 | 
						|
      case MVT::i16: Opc = X86::CMP16mi; break;
 | 
						|
      case MVT::i32: Opc = X86::CMP32mi; break;
 | 
						|
      }
 | 
						|
      if (Opc) {
 | 
						|
        X86AddressMode AM;
 | 
						|
        EmitFoldedLoad(LHS, AM);
 | 
						|
        addFullAddress(BuildMI(BB, Opc, 5), AM).addImm(CN->getValue());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (RHS.getValueType()) {
 | 
						|
    default: break;
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = X86::CMP8ri;  break;
 | 
						|
    case MVT::i16: Opc = X86::CMP16ri; break;
 | 
						|
    case MVT::i32: Opc = X86::CMP32ri; break;
 | 
						|
    }
 | 
						|
    if (Opc) {
 | 
						|
      unsigned Tmp1 = SelectExpr(LHS);
 | 
						|
      BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(RHS)) {
 | 
						|
    if (CN->isExactlyValue(+0.0) ||
 | 
						|
        CN->isExactlyValue(-0.0)) {
 | 
						|
      unsigned Reg = SelectExpr(LHS);
 | 
						|
      BuildMI(BB, X86::FTST, 1).addReg(Reg);
 | 
						|
      BuildMI(BB, X86::FNSTSW8r, 0);
 | 
						|
      BuildMI(BB, X86::SAHF, 1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Opc = 0;
 | 
						|
  if (HasOneUse && isFoldableLoad(LHS, RHS)) {
 | 
						|
    switch (RHS.getValueType()) {
 | 
						|
    default: break;
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = X86::CMP8mr;  break;
 | 
						|
    case MVT::i16: Opc = X86::CMP16mr; break;
 | 
						|
    case MVT::i32: Opc = X86::CMP32mr; break;
 | 
						|
    }
 | 
						|
    if (Opc) {
 | 
						|
      X86AddressMode AM;
 | 
						|
      EmitFoldedLoad(LHS, AM);
 | 
						|
      unsigned Reg = SelectExpr(RHS);
 | 
						|
      addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(Reg);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (LHS.getValueType()) {
 | 
						|
  default: assert(0 && "Cannot compare this value!");
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:  Opc = X86::CMP8rr;  break;
 | 
						|
  case MVT::i16: Opc = X86::CMP16rr; break;
 | 
						|
  case MVT::i32: Opc = X86::CMP32rr; break;
 | 
						|
  case MVT::f64: Opc = X86::FUCOMIr; break;
 | 
						|
  }
 | 
						|
  unsigned Tmp1, Tmp2;
 | 
						|
  if (getRegPressure(LHS) > getRegPressure(RHS)) {
 | 
						|
    Tmp1 = SelectExpr(LHS);
 | 
						|
    Tmp2 = SelectExpr(RHS);
 | 
						|
  } else {
 | 
						|
    Tmp2 = SelectExpr(RHS);
 | 
						|
    Tmp1 = SelectExpr(LHS);
 | 
						|
  }
 | 
						|
  BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2);
 | 
						|
}
 | 
						|
 | 
						|
/// isFoldableLoad - Return true if this is a load instruction that can safely
 | 
						|
/// be folded into an operation that uses it.
 | 
						|
bool ISel::isFoldableLoad(SDOperand Op, SDOperand OtherOp, bool FloatPromoteOk){
 | 
						|
  if (Op.getOpcode() == ISD::LOAD) {
 | 
						|
    // FIXME: currently can't fold constant pool indexes.
 | 
						|
    if (isa<ConstantPoolSDNode>(Op.getOperand(1)))
 | 
						|
      return false;
 | 
						|
  } else if (FloatPromoteOk && Op.getOpcode() == ISD::EXTLOAD &&
 | 
						|
             cast<MVTSDNode>(Op)->getExtraValueType() == MVT::f32) {
 | 
						|
    // FIXME: currently can't fold constant pool indexes.
 | 
						|
    if (isa<ConstantPoolSDNode>(Op.getOperand(1)))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this load has already been emitted, we clearly can't fold it.
 | 
						|
  assert(Op.ResNo == 0 && "Not a use of the value of the load?");
 | 
						|
  if (ExprMap.count(Op.getValue(1))) return false;
 | 
						|
  assert(!ExprMap.count(Op.getValue(0)) && "Value in map but not token chain?");
 | 
						|
  assert(!ExprMap.count(Op.getValue(1))&&"Token lowered but value not in map?");
 | 
						|
 | 
						|
  // If there is not just one use of its value, we cannot fold.
 | 
						|
  if (!Op.Val->hasNUsesOfValue(1, 0)) return false;
 | 
						|
 | 
						|
  // Finally, we cannot fold the load into the operation if this would induce a
 | 
						|
  // cycle into the resultant dag.  To check for this, see if OtherOp (the other
 | 
						|
  // operand of the operation we are folding the load into) can possible use the
 | 
						|
  // chain node defined by the load.
 | 
						|
  if (OtherOp.Val && !Op.Val->hasNUsesOfValue(0, 1)) { // Has uses of chain?
 | 
						|
    std::set<SDNode*> Visited;
 | 
						|
    if (NodeTransitivelyUsesValue(OtherOp, Op.getValue(1), Visited))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EmitFoldedLoad - Ensure that the arguments of the load are code generated,
 | 
						|
/// and compute the address being loaded into AM.
 | 
						|
void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) {
 | 
						|
  SDOperand Chain   = Op.getOperand(0);
 | 
						|
  SDOperand Address = Op.getOperand(1);
 | 
						|
 | 
						|
  if (getRegPressure(Chain) > getRegPressure(Address)) {
 | 
						|
    Select(Chain);
 | 
						|
    SelectAddress(Address, AM);
 | 
						|
  } else {
 | 
						|
    SelectAddress(Address, AM);
 | 
						|
    Select(Chain);
 | 
						|
  }
 | 
						|
 | 
						|
  // The chain for this load is now lowered.
 | 
						|
  assert(ExprMap.count(SDOperand(Op.Val, 1)) == 0 &&
 | 
						|
         "Load emitted more than once?");
 | 
						|
  if (!ExprMap.insert(std::make_pair(Op.getValue(1), 1)).second)
 | 
						|
    assert(0 && "Load emitted more than once!");
 | 
						|
}
 | 
						|
 | 
						|
// EmitOrOpOp - Pattern match the expression (Op1|Op2), where we know that op1
 | 
						|
// and op2 are i8/i16/i32 values with one use each (the or).  If we can form a
 | 
						|
// SHLD or SHRD, emit the instruction (generating the value into DestReg) and
 | 
						|
// return true.
 | 
						|
bool ISel::EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg) {
 | 
						|
  if (Op1.getOpcode() == ISD::SHL && Op2.getOpcode() == ISD::SRL) {
 | 
						|
    // good!
 | 
						|
  } else if (Op2.getOpcode() == ISD::SHL && Op1.getOpcode() == ISD::SRL) {
 | 
						|
    std::swap(Op1, Op2);  // Op1 is the SHL now.
 | 
						|
  } else {
 | 
						|
    return false;  // No match
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand ShlVal = Op1.getOperand(0);
 | 
						|
  SDOperand ShlAmt = Op1.getOperand(1);
 | 
						|
  SDOperand ShrVal = Op2.getOperand(0);
 | 
						|
  SDOperand ShrAmt = Op2.getOperand(1);
 | 
						|
 | 
						|
  unsigned RegSize = MVT::getSizeInBits(Op1.getValueType());
 | 
						|
 | 
						|
  // Find out if ShrAmt = 32-ShlAmt  or  ShlAmt = 32-ShrAmt.
 | 
						|
  if (ShlAmt.getOpcode() == ISD::SUB && ShlAmt.getOperand(1) == ShrAmt)
 | 
						|
    if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShlAmt.getOperand(0)))
 | 
						|
      if (SubCST->getValue() == RegSize) {
 | 
						|
        // (A >> ShrAmt) | (A << (32-ShrAmt)) ==> ROR A, ShrAmt
 | 
						|
        // (A >> ShrAmt) | (B << (32-ShrAmt)) ==> SHRD A, B, ShrAmt
 | 
						|
        if (ShrVal == ShlVal) {
 | 
						|
          unsigned Reg, ShAmt;
 | 
						|
          if (getRegPressure(ShrVal) > getRegPressure(ShrAmt)) {
 | 
						|
            Reg = SelectExpr(ShrVal);
 | 
						|
            ShAmt = SelectExpr(ShrAmt);
 | 
						|
          } else {
 | 
						|
            ShAmt = SelectExpr(ShrAmt);
 | 
						|
            Reg = SelectExpr(ShrVal);
 | 
						|
          }
 | 
						|
          BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
 | 
						|
          unsigned Opc = RegSize == 8 ? X86::ROR8rCL :
 | 
						|
                        (RegSize == 16 ? X86::ROR16rCL : X86::ROR32rCL);
 | 
						|
          BuildMI(BB, Opc, 1, DestReg).addReg(Reg);
 | 
						|
          return true;
 | 
						|
        } else if (RegSize != 8) {
 | 
						|
          unsigned AReg, BReg;
 | 
						|
          if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
 | 
						|
            BReg = SelectExpr(ShlVal);
 | 
						|
            AReg = SelectExpr(ShrVal);
 | 
						|
          } else {
 | 
						|
            AReg = SelectExpr(ShrVal);
 | 
						|
            BReg = SelectExpr(ShlVal);
 | 
						|
          }
 | 
						|
          unsigned ShAmt = SelectExpr(ShrAmt);
 | 
						|
          BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
 | 
						|
          unsigned Opc = RegSize == 16 ? X86::SHRD16rrCL : X86::SHRD32rrCL;
 | 
						|
          BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  if (ShrAmt.getOpcode() == ISD::SUB && ShrAmt.getOperand(1) == ShlAmt)
 | 
						|
    if (ConstantSDNode *SubCST = dyn_cast<ConstantSDNode>(ShrAmt.getOperand(0)))
 | 
						|
      if (SubCST->getValue() == RegSize) {
 | 
						|
        // (A << ShlAmt) | (A >> (32-ShlAmt)) ==> ROL A, ShrAmt
 | 
						|
        // (A << ShlAmt) | (B >> (32-ShlAmt)) ==> SHLD A, B, ShrAmt
 | 
						|
        if (ShrVal == ShlVal) {
 | 
						|
          unsigned Reg, ShAmt;
 | 
						|
          if (getRegPressure(ShrVal) > getRegPressure(ShlAmt)) {
 | 
						|
            Reg = SelectExpr(ShrVal);
 | 
						|
            ShAmt = SelectExpr(ShlAmt);
 | 
						|
          } else {
 | 
						|
            ShAmt = SelectExpr(ShlAmt);
 | 
						|
            Reg = SelectExpr(ShrVal);
 | 
						|
          }
 | 
						|
          BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
 | 
						|
          unsigned Opc = RegSize == 8 ? X86::ROL8rCL :
 | 
						|
                        (RegSize == 16 ? X86::ROL16rCL : X86::ROL32rCL);
 | 
						|
          BuildMI(BB, Opc, 1, DestReg).addReg(Reg);
 | 
						|
          return true;
 | 
						|
        } else if (RegSize != 8) {
 | 
						|
          unsigned AReg, BReg;
 | 
						|
          if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
 | 
						|
            AReg = SelectExpr(ShlVal);
 | 
						|
            BReg = SelectExpr(ShrVal);
 | 
						|
          } else {
 | 
						|
            BReg = SelectExpr(ShrVal);
 | 
						|
            AReg = SelectExpr(ShlVal);
 | 
						|
          }
 | 
						|
          unsigned ShAmt = SelectExpr(ShlAmt);
 | 
						|
          BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt);
 | 
						|
          unsigned Opc = RegSize == 16 ? X86::SHLD16rrCL : X86::SHLD32rrCL;
 | 
						|
          BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  if (ConstantSDNode *ShrCst = dyn_cast<ConstantSDNode>(ShrAmt))
 | 
						|
    if (ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(ShlAmt))
 | 
						|
      if (ShrCst->getValue() < RegSize && ShlCst->getValue() < RegSize)
 | 
						|
        if (ShrCst->getValue() == RegSize-ShlCst->getValue()) {
 | 
						|
          // (A >> 5) | (A << 27) --> ROR A, 5
 | 
						|
          // (A >> 5) | (B << 27) --> SHRD A, B, 5
 | 
						|
          if (ShrVal == ShlVal) {
 | 
						|
            unsigned Reg = SelectExpr(ShrVal);
 | 
						|
            unsigned Opc = RegSize == 8 ? X86::ROR8ri :
 | 
						|
              (RegSize == 16 ? X86::ROR16ri : X86::ROR32ri);
 | 
						|
            BuildMI(BB, Opc, 2, DestReg).addReg(Reg).addImm(ShrCst->getValue());
 | 
						|
            return true;
 | 
						|
          } else if (RegSize != 8) {
 | 
						|
            unsigned AReg, BReg;
 | 
						|
            if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) {
 | 
						|
              BReg = SelectExpr(ShlVal);
 | 
						|
              AReg = SelectExpr(ShrVal);
 | 
						|
            } else {
 | 
						|
              AReg = SelectExpr(ShrVal);
 | 
						|
              BReg = SelectExpr(ShlVal);
 | 
						|
            }
 | 
						|
            unsigned Opc = RegSize == 16 ? X86::SHRD16rri8 : X86::SHRD32rri8;
 | 
						|
            BuildMI(BB, Opc, 3, DestReg).addReg(AReg).addReg(BReg)
 | 
						|
              .addImm(ShrCst->getValue());
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ISel::SelectExpr(SDOperand N) {
 | 
						|
  unsigned Result;
 | 
						|
  unsigned Tmp1, Tmp2, Tmp3;
 | 
						|
  unsigned Opc = 0;
 | 
						|
  SDNode *Node = N.Val;
 | 
						|
  SDOperand Op0, Op1;
 | 
						|
 | 
						|
  if (Node->getOpcode() == ISD::CopyFromReg) {
 | 
						|
    if (MRegisterInfo::isVirtualRegister(cast<RegSDNode>(Node)->getReg()) ||
 | 
						|
        cast<RegSDNode>(Node)->getReg() == X86::ESP) {
 | 
						|
      // Just use the specified register as our input.
 | 
						|
      return cast<RegSDNode>(Node)->getReg();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned &Reg = ExprMap[N];
 | 
						|
  if (Reg) return Reg;
 | 
						|
 | 
						|
  switch (N.getOpcode()) {
 | 
						|
  default:
 | 
						|
    Reg = Result = (N.getValueType() != MVT::Other) ?
 | 
						|
                            MakeReg(N.getValueType()) : 1;
 | 
						|
    break;
 | 
						|
  case ISD::TAILCALL:
 | 
						|
  case ISD::CALL:
 | 
						|
    // If this is a call instruction, make sure to prepare ALL of the result
 | 
						|
    // values as well as the chain.
 | 
						|
    if (Node->getNumValues() == 1)
 | 
						|
      Reg = Result = 1;  // Void call, just a chain.
 | 
						|
    else {
 | 
						|
      Result = MakeReg(Node->getValueType(0));
 | 
						|
      ExprMap[N.getValue(0)] = Result;
 | 
						|
      for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
 | 
						|
        ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
 | 
						|
      ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::ADD_PARTS:
 | 
						|
  case ISD::SUB_PARTS:
 | 
						|
  case ISD::SHL_PARTS:
 | 
						|
  case ISD::SRL_PARTS:
 | 
						|
  case ISD::SRA_PARTS:
 | 
						|
    Result = MakeReg(Node->getValueType(0));
 | 
						|
    ExprMap[N.getValue(0)] = Result;
 | 
						|
    for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i)
 | 
						|
      ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (N.getOpcode()) {
 | 
						|
  default:
 | 
						|
    Node->dump();
 | 
						|
    assert(0 && "Node not handled!\n");
 | 
						|
  case ISD::CopyFromReg:
 | 
						|
    Select(N.getOperand(0));
 | 
						|
    if (Result == 1) {
 | 
						|
      Reg = Result = ExprMap[N.getValue(0)] =
 | 
						|
        MakeReg(N.getValue(0).getValueType());
 | 
						|
    }
 | 
						|
    switch (Node->getValueType(0)) {
 | 
						|
    default: assert(0 && "Cannot CopyFromReg this!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1,
 | 
						|
              Result).addReg(cast<RegSDNode>(Node)->getReg());
 | 
						|
      return Result;
 | 
						|
    case MVT::i16:
 | 
						|
      BuildMI(BB, X86::MOV16rr, 1,
 | 
						|
              Result).addReg(cast<RegSDNode>(Node)->getReg());
 | 
						|
      return Result;
 | 
						|
    case MVT::i32:
 | 
						|
      BuildMI(BB, X86::MOV32rr, 1,
 | 
						|
              Result).addReg(cast<RegSDNode>(Node)->getReg());
 | 
						|
      return Result;
 | 
						|
    }                                                                   
 | 
						|
 | 
						|
  case ISD::FrameIndex:
 | 
						|
    Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1);
 | 
						|
    return Result;
 | 
						|
  case ISD::ConstantPool:
 | 
						|
    Tmp1 = cast<ConstantPoolSDNode>(N)->getIndex();
 | 
						|
    addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1);
 | 
						|
    return Result;
 | 
						|
  case ISD::ConstantFP:
 | 
						|
    ContainsFPCode = true;
 | 
						|
    Tmp1 = Result;   // Intermediate Register
 | 
						|
    if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
 | 
						|
        cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
 | 
						|
      Tmp1 = MakeReg(MVT::f64);
 | 
						|
 | 
						|
    if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
 | 
						|
        cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
 | 
						|
      BuildMI(BB, X86::FLD0, 0, Tmp1);
 | 
						|
    else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
 | 
						|
             cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
 | 
						|
      BuildMI(BB, X86::FLD1, 0, Tmp1);
 | 
						|
    else
 | 
						|
      assert(0 && "Unexpected constant!");
 | 
						|
    if (Tmp1 != Result)
 | 
						|
      BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1);
 | 
						|
    return Result;
 | 
						|
  case ISD::Constant:
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Cannot use constants of this type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = X86::MOV8ri;  break;
 | 
						|
    case MVT::i16: Opc = X86::MOV16ri; break;
 | 
						|
    case MVT::i32: Opc = X86::MOV32ri; break;
 | 
						|
    }
 | 
						|
    BuildMI(BB, Opc, 1,Result).addImm(cast<ConstantSDNode>(N)->getValue());
 | 
						|
    return Result;
 | 
						|
  case ISD::UNDEF:
 | 
						|
    if (Node->getValueType(0) == MVT::f64) {
 | 
						|
      // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES!
 | 
						|
      BuildMI(BB, X86::FLD0, 0, Result);
 | 
						|
    } else {
 | 
						|
      BuildMI(BB, X86::IMPLICIT_DEF, 0, Result);
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  case ISD::GlobalAddress: {
 | 
						|
    GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
 | 
						|
    BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case ISD::ExternalSymbol: {
 | 
						|
    const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
 | 
						|
    BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case ISD::ZERO_EXTEND: {
 | 
						|
    int DestIs16 = N.getValueType() == MVT::i16;
 | 
						|
    int SrcIs16  = N.getOperand(0).getValueType() == MVT::i16;
 | 
						|
 | 
						|
    // FIXME: This hack is here for zero extension casts from bool to i8.  This
 | 
						|
    // would not be needed if bools were promoted by Legalize.
 | 
						|
    if (N.getValueType() == MVT::i8) {
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFoldableLoad(N.getOperand(0), SDOperand())) {
 | 
						|
      static const unsigned Opc[3] = {
 | 
						|
        X86::MOVZX32rm8, X86::MOVZX32rm16, X86::MOVZX16rm8
 | 
						|
      };
 | 
						|
 | 
						|
      X86AddressMode AM;
 | 
						|
      EmitFoldedLoad(N.getOperand(0), AM);
 | 
						|
      addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM);
 | 
						|
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    static const unsigned Opc[3] = {
 | 
						|
      X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8
 | 
						|
    };
 | 
						|
    Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
    BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case ISD::SIGN_EXTEND: {
 | 
						|
    int DestIs16 = N.getValueType() == MVT::i16;
 | 
						|
    int SrcIs16  = N.getOperand(0).getValueType() == MVT::i16;
 | 
						|
 | 
						|
    // FIXME: Legalize should promote bools to i8!
 | 
						|
    assert(N.getOperand(0).getValueType() != MVT::i1 &&
 | 
						|
           "Sign extend from bool not implemented!");
 | 
						|
 | 
						|
    if (isFoldableLoad(N.getOperand(0), SDOperand())) {
 | 
						|
      static const unsigned Opc[3] = {
 | 
						|
        X86::MOVSX32rm8, X86::MOVSX32rm16, X86::MOVSX16rm8
 | 
						|
      };
 | 
						|
 | 
						|
      X86AddressMode AM;
 | 
						|
      EmitFoldedLoad(N.getOperand(0), AM);
 | 
						|
      addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    static const unsigned Opc[3] = {
 | 
						|
      X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8
 | 
						|
    };
 | 
						|
    Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
    BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case ISD::TRUNCATE:
 | 
						|
    // Fold TRUNCATE (LOAD P) into a smaller load from P.
 | 
						|
    // FIXME: This should be performed by the DAGCombiner.
 | 
						|
    if (isFoldableLoad(N.getOperand(0), SDOperand())) {
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Unknown truncate!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  Opc = X86::MOV8rm;  break;
 | 
						|
      case MVT::i16: Opc = X86::MOV16rm; break;
 | 
						|
      }
 | 
						|
      X86AddressMode AM;
 | 
						|
      EmitFoldedLoad(N.getOperand(0), AM);
 | 
						|
      addFullAddress(BuildMI(BB, Opc, 4, Result), AM);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle cast of LARGER int to SMALLER int using a move to EAX followed by
 | 
						|
    // a move out of AX or AL.
 | 
						|
    switch (N.getOperand(0).getValueType()) {
 | 
						|
    default: assert(0 && "Unknown truncate!");
 | 
						|
    case MVT::i8:  Tmp2 = X86::AL;  Opc = X86::MOV8rr;  break;
 | 
						|
    case MVT::i16: Tmp2 = X86::AX;  Opc = X86::MOV16rr; break;
 | 
						|
    case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break;
 | 
						|
    }
 | 
						|
    Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
    BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
 | 
						|
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Unknown truncate!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Tmp2 = X86::AL;  Opc = X86::MOV8rr;  break;
 | 
						|
    case MVT::i16: Tmp2 = X86::AX;  Opc = X86::MOV16rr; break;
 | 
						|
    }
 | 
						|
    BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
 | 
						|
    return Result;
 | 
						|
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP: {
 | 
						|
    // FIXME: Most of this grunt work should be done by legalize!
 | 
						|
    ContainsFPCode = true;
 | 
						|
 | 
						|
    // Promote the integer to a type supported by FLD.  We do this because there
 | 
						|
    // are no unsigned FLD instructions, so we must promote an unsigned value to
 | 
						|
    // a larger signed value, then use FLD on the larger value.
 | 
						|
    //
 | 
						|
    MVT::ValueType PromoteType = MVT::Other;
 | 
						|
    MVT::ValueType SrcTy = N.getOperand(0).getValueType();
 | 
						|
    unsigned PromoteOpcode = 0;
 | 
						|
    unsigned RealDestReg = Result;
 | 
						|
    switch (SrcTy) {
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
      // We don't have the facilities for directly loading byte sized data from
 | 
						|
      // memory (even signed).  Promote it to 16 bits.
 | 
						|
      PromoteType = MVT::i16;
 | 
						|
      PromoteOpcode = Node->getOpcode() == ISD::SINT_TO_FP ?
 | 
						|
        X86::MOVSX16rr8 : X86::MOVZX16rr8;
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      if (Node->getOpcode() == ISD::UINT_TO_FP) {
 | 
						|
        PromoteType = MVT::i32;
 | 
						|
        PromoteOpcode = X86::MOVZX32rr16;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      // Don't fild into the real destination.
 | 
						|
      if (Node->getOpcode() == ISD::UINT_TO_FP)
 | 
						|
        Result = MakeReg(Node->getValueType(0));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Tmp1 = SelectExpr(N.getOperand(0));  // Get the operand register
 | 
						|
 | 
						|
    if (PromoteType != MVT::Other) {
 | 
						|
      Tmp2 = MakeReg(PromoteType);
 | 
						|
      BuildMI(BB, PromoteOpcode, 1, Tmp2).addReg(Tmp1);
 | 
						|
      SrcTy = PromoteType;
 | 
						|
      Tmp1 = Tmp2;
 | 
						|
    }
 | 
						|
 | 
						|
    // Spill the integer to memory and reload it from there.
 | 
						|
    unsigned Size = MVT::getSizeInBits(SrcTy)/8;
 | 
						|
    MachineFunction *F = BB->getParent();
 | 
						|
    int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
 | 
						|
 | 
						|
    switch (SrcTy) {
 | 
						|
    case MVT::i32:
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
 | 
						|
                        FrameIdx).addReg(Tmp1);
 | 
						|
      addFrameReference(BuildMI(BB, X86::FILD32m, 5, Result), FrameIdx);
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOV16mr, 5),
 | 
						|
                        FrameIdx).addReg(Tmp1);
 | 
						|
      addFrameReference(BuildMI(BB, X86::FILD16m, 5, Result), FrameIdx);
 | 
						|
      break;
 | 
						|
    default: break; // No promotion required.
 | 
						|
    }
 | 
						|
 | 
						|
    if (Node->getOpcode() == ISD::UINT_TO_FP && Result != RealDestReg) {
 | 
						|
      // If this is a cast from uint -> double, we need to be careful when if
 | 
						|
      // the "sign" bit is set.  If so, we don't want to make a negative number,
 | 
						|
      // we want to make a positive number.  Emit code to add an offset if the
 | 
						|
      // sign bit is set.
 | 
						|
 | 
						|
      // Compute whether the sign bit is set by shifting the reg right 31 bits.
 | 
						|
      unsigned IsNeg = MakeReg(MVT::i32);
 | 
						|
      BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(Tmp1).addImm(31);
 | 
						|
 | 
						|
      // Create a CP value that has the offset in one word and 0 in the other.
 | 
						|
      static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy,
 | 
						|
                                                        0x4f80000000000000ULL);
 | 
						|
      unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset);
 | 
						|
      BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(Result)
 | 
						|
        .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0);
 | 
						|
    }
 | 
						|
    return RealDestReg;
 | 
						|
  }
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT: {
 | 
						|
    // FIXME: Most of this grunt work should be done by legalize!
 | 
						|
    Tmp1 = SelectExpr(N.getOperand(0));  // Get the operand register
 | 
						|
 | 
						|
    // Change the floating point control register to use "round towards zero"
 | 
						|
    // mode when truncating to an integer value.
 | 
						|
    //
 | 
						|
    MachineFunction *F = BB->getParent();
 | 
						|
    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
 | 
						|
    addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
 | 
						|
 | 
						|
    // Load the old value of the high byte of the control word...
 | 
						|
    unsigned HighPartOfCW = MakeReg(MVT::i8);
 | 
						|
    addFrameReference(BuildMI(BB, X86::MOV8rm, 4, HighPartOfCW),
 | 
						|
                      CWFrameIdx, 1);
 | 
						|
 | 
						|
    // Set the high part to be round to zero...
 | 
						|
    addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
 | 
						|
                      CWFrameIdx, 1).addImm(12);
 | 
						|
 | 
						|
    // Reload the modified control word now...
 | 
						|
    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
 | 
						|
 | 
						|
    // Restore the memory image of control word to original value
 | 
						|
    addFrameReference(BuildMI(BB, X86::MOV8mr, 5),
 | 
						|
                      CWFrameIdx, 1).addReg(HighPartOfCW);
 | 
						|
 | 
						|
    // We don't have the facilities for directly storing byte sized data to
 | 
						|
    // memory.  Promote it to 16 bits.  We also must promote unsigned values to
 | 
						|
    // larger classes because we only have signed FP stores.
 | 
						|
    MVT::ValueType StoreClass = Node->getValueType(0);
 | 
						|
    if (StoreClass == MVT::i8 || Node->getOpcode() == ISD::FP_TO_UINT)
 | 
						|
      switch (StoreClass) {
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  StoreClass = MVT::i16; break;
 | 
						|
      case MVT::i16: StoreClass = MVT::i32; break;
 | 
						|
      case MVT::i32: StoreClass = MVT::i64; break;
 | 
						|
      default: assert(0 && "Unknown store class!");
 | 
						|
      }
 | 
						|
 | 
						|
    // Spill the integer to memory and reload it from there.
 | 
						|
    unsigned Size = MVT::getSizeInBits(StoreClass)/8;
 | 
						|
    int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size);
 | 
						|
 | 
						|
    switch (StoreClass) {
 | 
						|
    default: assert(0 && "Unknown store class!");
 | 
						|
    case MVT::i16:
 | 
						|
      addFrameReference(BuildMI(BB, X86::FIST16m, 5), FrameIdx).addReg(Tmp1);
 | 
						|
      break;
 | 
						|
    case MVT::i32:
 | 
						|
      addFrameReference(BuildMI(BB, X86::FIST32m, 5), FrameIdx).addReg(Tmp1);
 | 
						|
      break;
 | 
						|
    case MVT::i64:
 | 
						|
      addFrameReference(BuildMI(BB, X86::FISTP64m, 5), FrameIdx).addReg(Tmp1);
 | 
						|
      break;    }
 | 
						|
 | 
						|
    switch (Node->getValueType(0)) {
 | 
						|
    default:
 | 
						|
      assert(0 && "Unknown integer type!");
 | 
						|
    case MVT::i32:
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Result), FrameIdx);
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Result), FrameIdx);
 | 
						|
      break;
 | 
						|
    case MVT::i8:
 | 
						|
    case MVT::i1:
 | 
						|
      addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Result), FrameIdx);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Reload the original control word now.
 | 
						|
    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case ISD::ADD:
 | 
						|
    Op0 = N.getOperand(0);
 | 
						|
    Op1 = N.getOperand(1);
 | 
						|
 | 
						|
    if (isFoldableLoad(Op0, Op1, true)) {
 | 
						|
      std::swap(Op0, Op1);
 | 
						|
      goto FoldAdd;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFoldableLoad(Op1, Op0, true)) {
 | 
						|
    FoldAdd:
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Cannot add this type!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  Opc = X86::ADD8rm;  break;
 | 
						|
      case MVT::i16: Opc = X86::ADD16rm; break;
 | 
						|
      case MVT::i32: Opc = X86::ADD32rm; break;
 | 
						|
      case MVT::f64:
 | 
						|
        // For F64, handle promoted load operations (from F32) as well!
 | 
						|
        Opc = Op1.getOpcode() == ISD::LOAD ? X86::FADD64m : X86::FADD32m;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      X86AddressMode AM;
 | 
						|
      EmitFoldedLoad(Op1, AM);
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
      addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if we can codegen this as an LEA to fold operations together.
 | 
						|
    if (N.getValueType() == MVT::i32) {
 | 
						|
      ExprMap.erase(N);
 | 
						|
      X86ISelAddressMode AM;
 | 
						|
      MatchAddress(N, AM);
 | 
						|
      ExprMap[N] = Result;
 | 
						|
 | 
						|
      // If this is not just an add, emit the LEA.  For a simple add (like
 | 
						|
      // reg+reg or reg+imm), we just emit an add.  It might be a good idea to
 | 
						|
      // leave this as LEA, then peephole it to 'ADD' after two address elim
 | 
						|
      // happens.
 | 
						|
      if (AM.Scale != 1 || AM.BaseType == X86ISelAddressMode::FrameIndexBase||
 | 
						|
          AM.GV || (AM.Base.Reg.Val && AM.IndexReg.Val && AM.Disp)) {
 | 
						|
        X86AddressMode XAM = SelectAddrExprs(AM);
 | 
						|
        addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), XAM);
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
 | 
						|
      Opc = 0;
 | 
						|
      if (CN->getValue() == 1) {   // add X, 1 -> inc X
 | 
						|
        switch (N.getValueType()) {
 | 
						|
        default: assert(0 && "Cannot integer add this type!");
 | 
						|
        case MVT::i8:  Opc = X86::INC8r; break;
 | 
						|
        case MVT::i16: Opc = X86::INC16r; break;
 | 
						|
        case MVT::i32: Opc = X86::INC32r; break;
 | 
						|
        }
 | 
						|
      } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X
 | 
						|
        switch (N.getValueType()) {
 | 
						|
        default: assert(0 && "Cannot integer add this type!");
 | 
						|
        case MVT::i8:  Opc = X86::DEC8r; break;
 | 
						|
        case MVT::i16: Opc = X86::DEC16r; break;
 | 
						|
        case MVT::i32: Opc = X86::DEC32r; break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (Opc) {
 | 
						|
        Tmp1 = SelectExpr(Op0);
 | 
						|
        BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Cannot add this type!");
 | 
						|
      case MVT::i8:  Opc = X86::ADD8ri; break;
 | 
						|
      case MVT::i16: Opc = X86::ADD16ri; break;
 | 
						|
      case MVT::i32: Opc = X86::ADD32ri; break;
 | 
						|
      }
 | 
						|
      if (Opc) {
 | 
						|
        Tmp1 = SelectExpr(Op0);
 | 
						|
        BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Cannot add this type!");
 | 
						|
    case MVT::i8:  Opc = X86::ADD8rr; break;
 | 
						|
    case MVT::i16: Opc = X86::ADD16rr; break;
 | 
						|
    case MVT::i32: Opc = X86::ADD32rr; break;
 | 
						|
    case MVT::f64: Opc = X86::FpADD; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (getRegPressure(Op0) > getRegPressure(Op1)) {
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
      Tmp2 = SelectExpr(Op1);
 | 
						|
    } else {
 | 
						|
      Tmp2 = SelectExpr(Op1);
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
    }
 | 
						|
 | 
						|
    BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | 
						|
    return Result;
 | 
						|
 | 
						|
  case ISD::FABS:
 | 
						|
  case ISD::FNEG:
 | 
						|
  case ISD::FSIN:
 | 
						|
  case ISD::FCOS:
 | 
						|
  case ISD::FSQRT:
 | 
						|
    assert(N.getValueType()==MVT::f64 && "Illegal type for this operation");
 | 
						|
    Tmp1 = SelectExpr(Node->getOperand(0));
 | 
						|
    switch (N.getOpcode()) {
 | 
						|
    default: assert(0 && "Unreachable!");
 | 
						|
    case ISD::FABS: BuildMI(BB, X86::FABS, 1, Result).addReg(Tmp1); break;
 | 
						|
    case ISD::FNEG: BuildMI(BB, X86::FCHS, 1, Result).addReg(Tmp1); break;
 | 
						|
    case ISD::FSQRT: BuildMI(BB, X86::FSQRT, 1, Result).addReg(Tmp1); break;
 | 
						|
    case ISD::FSIN: BuildMI(BB, X86::FSIN, 1, Result).addReg(Tmp1); break;
 | 
						|
    case ISD::FCOS: BuildMI(BB, X86::FCOS, 1, Result).addReg(Tmp1); break;
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
 | 
						|
  case ISD::MULHU:
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Unsupported VT!");
 | 
						|
    case MVT::i8:  Tmp2 = X86::MUL8r;  break;
 | 
						|
    case MVT::i16: Tmp2 = X86::MUL16r;  break;
 | 
						|
    case MVT::i32: Tmp2 = X86::MUL32r;  break;
 | 
						|
    }
 | 
						|
    // FALL THROUGH
 | 
						|
  case ISD::MULHS: {
 | 
						|
    unsigned MovOpc, LowReg, HiReg;
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Unsupported VT!");
 | 
						|
    case MVT::i8:
 | 
						|
      MovOpc = X86::MOV8rr;
 | 
						|
      LowReg = X86::AL;
 | 
						|
      HiReg = X86::AH;
 | 
						|
      Opc = X86::IMUL8r;
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      MovOpc = X86::MOV16rr;
 | 
						|
      LowReg = X86::AX;
 | 
						|
      HiReg = X86::DX;
 | 
						|
      Opc = X86::IMUL16r;
 | 
						|
      break;
 | 
						|
    case MVT::i32:
 | 
						|
      MovOpc = X86::MOV32rr;
 | 
						|
      LowReg = X86::EAX;
 | 
						|
      HiReg = X86::EDX;
 | 
						|
      Opc = X86::IMUL32r;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (Node->getOpcode() != ISD::MULHS)
 | 
						|
      Opc = Tmp2;  // Get the MULHU opcode.
 | 
						|
 | 
						|
    Op0 = Node->getOperand(0);
 | 
						|
    Op1 = Node->getOperand(1);
 | 
						|
    if (getRegPressure(Op0) > getRegPressure(Op1)) {
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
      Tmp2 = SelectExpr(Op1);
 | 
						|
    } else {
 | 
						|
      Tmp2 = SelectExpr(Op1);
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Implement folding of loads into the memory operands here!
 | 
						|
    BuildMI(BB, MovOpc, 1, LowReg).addReg(Tmp1);
 | 
						|
    BuildMI(BB, Opc, 1).addReg(Tmp2);
 | 
						|
    BuildMI(BB, MovOpc, 1, Result).addReg(HiReg);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::SUB:
 | 
						|
  case ISD::MUL:
 | 
						|
  case ISD::AND:
 | 
						|
  case ISD::OR:
 | 
						|
  case ISD::XOR: {
 | 
						|
    static const unsigned SUBTab[] = {
 | 
						|
      X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0,
 | 
						|
      X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FSUB32m, X86::FSUB64m,
 | 
						|
      X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB  , X86::FpSUB,
 | 
						|
    };
 | 
						|
    static const unsigned MULTab[] = {
 | 
						|
      0, X86::IMUL16rri, X86::IMUL32rri, 0, 0,
 | 
						|
      0, X86::IMUL16rm , X86::IMUL32rm, X86::FMUL32m, X86::FMUL64m,
 | 
						|
      0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL  , X86::FpMUL,
 | 
						|
    };
 | 
						|
    static const unsigned ANDTab[] = {
 | 
						|
      X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0,
 | 
						|
      X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0,
 | 
						|
      X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0,
 | 
						|
    };
 | 
						|
    static const unsigned ORTab[] = {
 | 
						|
      X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0,
 | 
						|
      X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0,
 | 
						|
      X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0,
 | 
						|
    };
 | 
						|
    static const unsigned XORTab[] = {
 | 
						|
      X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0,
 | 
						|
      X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0,
 | 
						|
      X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0,
 | 
						|
    };
 | 
						|
 | 
						|
    Op0 = Node->getOperand(0);
 | 
						|
    Op1 = Node->getOperand(1);
 | 
						|
 | 
						|
    if (Node->getOpcode() == ISD::OR && Op0.hasOneUse() && Op1.hasOneUse())
 | 
						|
      if (EmitOrOpOp(Op0, Op1, Result)) // Match SHLD, SHRD, and rotates.
 | 
						|
        return Result;
 | 
						|
 | 
						|
    if (Node->getOpcode() == ISD::SUB)
 | 
						|
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(0)))
 | 
						|
        if (CN->isNullValue()) {   // 0 - N -> neg N
 | 
						|
          switch (N.getValueType()) {
 | 
						|
          default: assert(0 && "Cannot sub this type!");
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opc = X86::NEG8r;  break;
 | 
						|
          case MVT::i16: Opc = X86::NEG16r; break;
 | 
						|
          case MVT::i32: Opc = X86::NEG32r; break;
 | 
						|
          }
 | 
						|
          Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
          BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
 | 
						|
      if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) {
 | 
						|
        Opc = 0;
 | 
						|
        switch (N.getValueType()) {
 | 
						|
        default: assert(0 && "Cannot add this type!");
 | 
						|
        case MVT::i1:  break;  // Not supported, don't invert upper bits!
 | 
						|
        case MVT::i8:  Opc = X86::NOT8r;  break;
 | 
						|
        case MVT::i16: Opc = X86::NOT16r; break;
 | 
						|
        case MVT::i32: Opc = X86::NOT32r; break;
 | 
						|
        }
 | 
						|
        if (Opc) {
 | 
						|
          Tmp1 = SelectExpr(Op0);
 | 
						|
          BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Fold common multiplies into LEA instructions.
 | 
						|
      if (Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i32) {
 | 
						|
        switch ((int)CN->getValue()) {
 | 
						|
        default: break;
 | 
						|
        case 3:
 | 
						|
        case 5:
 | 
						|
        case 9:
 | 
						|
          // Remove N from exprmap so SelectAddress doesn't get confused.
 | 
						|
          ExprMap.erase(N);
 | 
						|
          X86AddressMode AM;
 | 
						|
          SelectAddress(N, AM);
 | 
						|
          // Restore it to the map.
 | 
						|
          ExprMap[N] = Result;
 | 
						|
          addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM);
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Cannot xor this type!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  Opc = 0; break;
 | 
						|
      case MVT::i16: Opc = 1; break;
 | 
						|
      case MVT::i32: Opc = 2; break;
 | 
						|
      }
 | 
						|
      switch (Node->getOpcode()) {
 | 
						|
      default: assert(0 && "Unreachable!");
 | 
						|
      case ISD::SUB: Opc = SUBTab[Opc]; break;
 | 
						|
      case ISD::MUL: Opc = MULTab[Opc]; break;
 | 
						|
      case ISD::AND: Opc = ANDTab[Opc]; break;
 | 
						|
      case ISD::OR:  Opc =  ORTab[Opc]; break;
 | 
						|
      case ISD::XOR: Opc = XORTab[Opc]; break;
 | 
						|
      }
 | 
						|
      if (Opc) {  // Can't fold MUL:i8 R, imm
 | 
						|
        Tmp1 = SelectExpr(Op0);
 | 
						|
        BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFoldableLoad(Op0, Op1, true))
 | 
						|
      if (Node->getOpcode() != ISD::SUB) {
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
        goto FoldOps;
 | 
						|
      } else {
 | 
						|
        // For FP, emit 'reverse' subract, with a memory operand.
 | 
						|
        if (N.getValueType() == MVT::f64) {
 | 
						|
          if (Op0.getOpcode() == ISD::EXTLOAD)
 | 
						|
            Opc = X86::FSUBR32m;
 | 
						|
          else
 | 
						|
            Opc = X86::FSUBR64m;
 | 
						|
 | 
						|
          X86AddressMode AM;
 | 
						|
          EmitFoldedLoad(Op0, AM);
 | 
						|
          Tmp1 = SelectExpr(Op1);
 | 
						|
          addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    if (isFoldableLoad(Op1, Op0, true)) {
 | 
						|
    FoldOps:
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Cannot operate on this type!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  Opc = 5; break;
 | 
						|
      case MVT::i16: Opc = 6; break;
 | 
						|
      case MVT::i32: Opc = 7; break;
 | 
						|
        // For F64, handle promoted load operations (from F32) as well!
 | 
						|
      case MVT::f64: Opc = Op1.getOpcode() == ISD::LOAD ? 9 : 8; break;
 | 
						|
      }
 | 
						|
      switch (Node->getOpcode()) {
 | 
						|
      default: assert(0 && "Unreachable!");
 | 
						|
      case ISD::SUB: Opc = SUBTab[Opc]; break;
 | 
						|
      case ISD::MUL: Opc = MULTab[Opc]; break;
 | 
						|
      case ISD::AND: Opc = ANDTab[Opc]; break;
 | 
						|
      case ISD::OR:  Opc =  ORTab[Opc]; break;
 | 
						|
      case ISD::XOR: Opc = XORTab[Opc]; break;
 | 
						|
      }
 | 
						|
 | 
						|
      X86AddressMode AM;
 | 
						|
      EmitFoldedLoad(Op1, AM);
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
      if (Opc) {
 | 
						|
        addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
 | 
						|
      } else {
 | 
						|
        assert(Node->getOpcode() == ISD::MUL &&
 | 
						|
               N.getValueType() == MVT::i8 && "Unexpected situation!");
 | 
						|
        // Must use the MUL instruction, which forces use of AL.
 | 
						|
        BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
 | 
						|
        addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM);
 | 
						|
        BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
 | 
						|
      }
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    if (getRegPressure(Op0) > getRegPressure(Op1)) {
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
      Tmp2 = SelectExpr(Op1);
 | 
						|
    } else {
 | 
						|
      Tmp2 = SelectExpr(Op1);
 | 
						|
      Tmp1 = SelectExpr(Op0);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Cannot add this type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = 10; break;
 | 
						|
    case MVT::i16: Opc = 11; break;
 | 
						|
    case MVT::i32: Opc = 12; break;
 | 
						|
    case MVT::f32: Opc = 13; break;
 | 
						|
    case MVT::f64: Opc = 14; break;
 | 
						|
    }
 | 
						|
    switch (Node->getOpcode()) {
 | 
						|
    default: assert(0 && "Unreachable!");
 | 
						|
    case ISD::SUB: Opc = SUBTab[Opc]; break;
 | 
						|
    case ISD::MUL: Opc = MULTab[Opc]; break;
 | 
						|
    case ISD::AND: Opc = ANDTab[Opc]; break;
 | 
						|
    case ISD::OR:  Opc =  ORTab[Opc]; break;
 | 
						|
    case ISD::XOR: Opc = XORTab[Opc]; break;
 | 
						|
    }
 | 
						|
    if (Opc) {
 | 
						|
      BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | 
						|
    } else {
 | 
						|
      assert(Node->getOpcode() == ISD::MUL &&
 | 
						|
             N.getValueType() == MVT::i8 && "Unexpected situation!");
 | 
						|
      // Must use the MUL instruction, which forces use of AL.
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
 | 
						|
      BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2);
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case ISD::ADD_PARTS:
 | 
						|
  case ISD::SUB_PARTS: {
 | 
						|
    assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 &&
 | 
						|
           "Not an i64 add/sub!");
 | 
						|
    // Emit all of the operands.
 | 
						|
    std::vector<unsigned> InVals;
 | 
						|
    for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)
 | 
						|
      InVals.push_back(SelectExpr(N.getOperand(i)));
 | 
						|
    if (N.getOpcode() == ISD::ADD_PARTS) {
 | 
						|
      BuildMI(BB, X86::ADD32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]);
 | 
						|
      BuildMI(BB, X86::ADC32rr,2,Result+1).addReg(InVals[1]).addReg(InVals[3]);
 | 
						|
    } else {
 | 
						|
      BuildMI(BB, X86::SUB32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]);
 | 
						|
      BuildMI(BB, X86::SBB32rr, 2,Result+1).addReg(InVals[1]).addReg(InVals[3]);
 | 
						|
    }
 | 
						|
    return Result+N.ResNo;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::SHL_PARTS:
 | 
						|
  case ISD::SRA_PARTS:
 | 
						|
  case ISD::SRL_PARTS: {
 | 
						|
    assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 &&
 | 
						|
           "Not an i64 shift!");
 | 
						|
    unsigned ShiftOpLo = SelectExpr(N.getOperand(0));
 | 
						|
    unsigned ShiftOpHi = SelectExpr(N.getOperand(1));
 | 
						|
    unsigned TmpReg = MakeReg(MVT::i32);
 | 
						|
    if (N.getOpcode() == ISD::SRA_PARTS) {
 | 
						|
      // If this is a SHR of a Long, then we need to do funny sign extension
 | 
						|
      // stuff.  TmpReg gets the value to use as the high-part if we are
 | 
						|
      // shifting more than 32 bits.
 | 
						|
      BuildMI(BB, X86::SAR32ri, 2, TmpReg).addReg(ShiftOpHi).addImm(31);
 | 
						|
    } else {
 | 
						|
      // Other shifts use a fixed zero value if the shift is more than 32 bits.
 | 
						|
      BuildMI(BB, X86::MOV32ri, 1, TmpReg).addImm(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Initialize CL with the shift amount.
 | 
						|
    unsigned ShiftAmountReg = SelectExpr(N.getOperand(2));
 | 
						|
    BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
 | 
						|
 | 
						|
    unsigned TmpReg2 = MakeReg(MVT::i32);
 | 
						|
    unsigned TmpReg3 = MakeReg(MVT::i32);
 | 
						|
    if (N.getOpcode() == ISD::SHL_PARTS) {
 | 
						|
      // TmpReg2 = shld inHi, inLo
 | 
						|
      BuildMI(BB, X86::SHLD32rrCL, 2,TmpReg2).addReg(ShiftOpHi)
 | 
						|
        .addReg(ShiftOpLo);
 | 
						|
      // TmpReg3 = shl  inLo, CL
 | 
						|
      BuildMI(BB, X86::SHL32rCL, 1, TmpReg3).addReg(ShiftOpLo);
 | 
						|
 | 
						|
      // Set the flags to indicate whether the shift was by more than 32 bits.
 | 
						|
      BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
 | 
						|
 | 
						|
      // DestHi = (>32) ? TmpReg3 : TmpReg2;
 | 
						|
      BuildMI(BB, X86::CMOVNE32rr, 2,
 | 
						|
              Result+1).addReg(TmpReg2).addReg(TmpReg3);
 | 
						|
      // DestLo = (>32) ? TmpReg : TmpReg3;
 | 
						|
      BuildMI(BB, X86::CMOVNE32rr, 2,
 | 
						|
              Result).addReg(TmpReg3).addReg(TmpReg);
 | 
						|
    } else {
 | 
						|
      // TmpReg2 = shrd inLo, inHi
 | 
						|
      BuildMI(BB, X86::SHRD32rrCL,2,TmpReg2).addReg(ShiftOpLo)
 | 
						|
        .addReg(ShiftOpHi);
 | 
						|
      // TmpReg3 = s[ah]r  inHi, CL
 | 
						|
      BuildMI(BB, N.getOpcode() == ISD::SRA_PARTS ? X86::SAR32rCL
 | 
						|
                                                  : X86::SHR32rCL, 1, TmpReg3)
 | 
						|
        .addReg(ShiftOpHi);
 | 
						|
 | 
						|
      // Set the flags to indicate whether the shift was by more than 32 bits.
 | 
						|
      BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
 | 
						|
 | 
						|
      // DestLo = (>32) ? TmpReg3 : TmpReg2;
 | 
						|
      BuildMI(BB, X86::CMOVNE32rr, 2,
 | 
						|
              Result).addReg(TmpReg2).addReg(TmpReg3);
 | 
						|
 | 
						|
      // DestHi = (>32) ? TmpReg : TmpReg3;
 | 
						|
      BuildMI(BB, X86::CMOVNE32rr, 2,
 | 
						|
              Result+1).addReg(TmpReg3).addReg(TmpReg);
 | 
						|
    }
 | 
						|
    return Result+N.ResNo;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::SELECT:
 | 
						|
    if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) {
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
      Tmp3 = SelectExpr(N.getOperand(2));
 | 
						|
    } else {
 | 
						|
      Tmp3 = SelectExpr(N.getOperand(2));
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
    }
 | 
						|
    EmitSelectCC(N.getOperand(0), N.getValueType(), Tmp2, Tmp3, Result);
 | 
						|
    return Result;
 | 
						|
 | 
						|
  case ISD::SDIV:
 | 
						|
  case ISD::UDIV:
 | 
						|
  case ISD::SREM:
 | 
						|
  case ISD::UREM: {
 | 
						|
    assert((N.getOpcode() != ISD::SREM || MVT::isInteger(N.getValueType())) &&
 | 
						|
           "We don't support this operator!");
 | 
						|
 | 
						|
    if (N.getOpcode() == ISD::SDIV) {
 | 
						|
      // We can fold loads into FpDIVs, but not really into any others.
 | 
						|
      if (N.getValueType() == MVT::f64) {
 | 
						|
        // Check for reversed and unreversed DIV.
 | 
						|
        if (isFoldableLoad(N.getOperand(0), N.getOperand(1), true)) {
 | 
						|
          if (N.getOperand(0).getOpcode() == ISD::EXTLOAD)
 | 
						|
            Opc = X86::FDIVR32m;
 | 
						|
          else
 | 
						|
            Opc = X86::FDIVR64m;
 | 
						|
          X86AddressMode AM;
 | 
						|
          EmitFoldedLoad(N.getOperand(0), AM);
 | 
						|
          Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
          addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
 | 
						|
          return Result;
 | 
						|
        } else if (isFoldableLoad(N.getOperand(1), N.getOperand(0), true) &&
 | 
						|
                   N.getOperand(1).getOpcode() == ISD::LOAD) {
 | 
						|
          if (N.getOperand(1).getOpcode() == ISD::EXTLOAD)
 | 
						|
            Opc = X86::FDIV32m;
 | 
						|
          else
 | 
						|
            Opc = X86::FDIV64m;
 | 
						|
          X86AddressMode AM;
 | 
						|
          EmitFoldedLoad(N.getOperand(1), AM);
 | 
						|
          Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
          addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM);
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
        // FIXME: These special cases should be handled by the lowering impl!
 | 
						|
        unsigned RHS = CN->getValue();
 | 
						|
        bool isNeg = false;
 | 
						|
        if ((int)RHS < 0) {
 | 
						|
          isNeg = true;
 | 
						|
          RHS = -RHS;
 | 
						|
        }
 | 
						|
        if (RHS && (RHS & (RHS-1)) == 0) {   // Signed division by power of 2?
 | 
						|
          unsigned Log = log2(RHS);
 | 
						|
          unsigned TmpReg = MakeReg(N.getValueType());
 | 
						|
          unsigned SAROpc, SHROpc, ADDOpc, NEGOpc;
 | 
						|
          switch (N.getValueType()) {
 | 
						|
          default: assert("Unknown type to signed divide!");
 | 
						|
          case MVT::i8:
 | 
						|
            SAROpc = X86::SAR8ri;
 | 
						|
            SHROpc = X86::SHR8ri;
 | 
						|
            ADDOpc = X86::ADD8rr;
 | 
						|
            NEGOpc = X86::NEG8r;
 | 
						|
            break;
 | 
						|
          case MVT::i16:
 | 
						|
            SAROpc = X86::SAR16ri;
 | 
						|
            SHROpc = X86::SHR16ri;
 | 
						|
            ADDOpc = X86::ADD16rr;
 | 
						|
            NEGOpc = X86::NEG16r;
 | 
						|
            break;
 | 
						|
          case MVT::i32:
 | 
						|
            SAROpc = X86::SAR32ri;
 | 
						|
            SHROpc = X86::SHR32ri;
 | 
						|
            ADDOpc = X86::ADD32rr;
 | 
						|
            NEGOpc = X86::NEG32r;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
          BuildMI(BB, SAROpc, 2, TmpReg).addReg(Tmp1).addImm(Log-1);
 | 
						|
          unsigned TmpReg2 = MakeReg(N.getValueType());
 | 
						|
          BuildMI(BB, SHROpc, 2, TmpReg2).addReg(TmpReg).addImm(32-Log);
 | 
						|
          unsigned TmpReg3 = MakeReg(N.getValueType());
 | 
						|
          BuildMI(BB, ADDOpc, 2, TmpReg3).addReg(Tmp1).addReg(TmpReg2);
 | 
						|
 | 
						|
          unsigned TmpReg4 = isNeg ? MakeReg(N.getValueType()) : Result;
 | 
						|
          BuildMI(BB, SAROpc, 2, TmpReg4).addReg(TmpReg3).addImm(Log);
 | 
						|
          if (isNeg)
 | 
						|
            BuildMI(BB, NEGOpc, 1, Result).addReg(TmpReg4);
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
    } else {
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM;
 | 
						|
    bool isDiv    = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV;
 | 
						|
    unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode;
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Cannot sdiv this type!");
 | 
						|
    case MVT::i8:
 | 
						|
      DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r;
 | 
						|
      LoReg = X86::AL;
 | 
						|
      HiReg = X86::AH;
 | 
						|
      MovOpcode = X86::MOV8rr;
 | 
						|
      ClrOpcode = X86::MOV8ri;
 | 
						|
      SExtOpcode = X86::CBW;
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r;
 | 
						|
      LoReg = X86::AX;
 | 
						|
      HiReg = X86::DX;
 | 
						|
      MovOpcode = X86::MOV16rr;
 | 
						|
      ClrOpcode = X86::MOV16ri;
 | 
						|
      SExtOpcode = X86::CWD;
 | 
						|
      break;
 | 
						|
    case MVT::i32:
 | 
						|
      DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r;
 | 
						|
      LoReg = X86::EAX;
 | 
						|
      HiReg = X86::EDX;
 | 
						|
      MovOpcode = X86::MOV32rr;
 | 
						|
      ClrOpcode = X86::MOV32ri;
 | 
						|
      SExtOpcode = X86::CDQ;
 | 
						|
      break;
 | 
						|
    case MVT::f64:
 | 
						|
      BuildMI(BB, X86::FpDIV, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // Set up the low part.
 | 
						|
    BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1);
 | 
						|
 | 
						|
    if (isSigned) {
 | 
						|
      // Sign extend the low part into the high part.
 | 
						|
      BuildMI(BB, SExtOpcode, 0);
 | 
						|
    } else {
 | 
						|
      // Zero out the high part, effectively zero extending the input.
 | 
						|
      BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit the DIV/IDIV instruction.
 | 
						|
    BuildMI(BB, DivOpcode, 1).addReg(Tmp2);
 | 
						|
 | 
						|
    // Get the result of the divide or rem.
 | 
						|
    BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::SHL:
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      if (CN->getValue() == 1) {   // X = SHL Y, 1  -> X = ADD Y, Y
 | 
						|
        switch (N.getValueType()) {
 | 
						|
        default: assert(0 && "Cannot shift this type!");
 | 
						|
        case MVT::i8:  Opc = X86::ADD8rr; break;
 | 
						|
        case MVT::i16: Opc = X86::ADD16rr; break;
 | 
						|
        case MVT::i32: Opc = X86::ADD32rr; break;
 | 
						|
        }
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
        BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1);
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Cannot shift this type!");
 | 
						|
      case MVT::i8:  Opc = X86::SHL8ri; break;
 | 
						|
      case MVT::i16: Opc = X86::SHL16ri; break;
 | 
						|
      case MVT::i32: Opc = X86::SHL32ri; break;
 | 
						|
      }
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
    } else {
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Cannot shift this type!");
 | 
						|
    case MVT::i8 : Opc = X86::SHL8rCL; break;
 | 
						|
    case MVT::i16: Opc = X86::SHL16rCL; break;
 | 
						|
    case MVT::i32: Opc = X86::SHL32rCL; break;
 | 
						|
    }
 | 
						|
    BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
 | 
						|
    BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | 
						|
    return Result;
 | 
						|
  case ISD::SRL:
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Cannot shift this type!");
 | 
						|
      case MVT::i8:  Opc = X86::SHR8ri; break;
 | 
						|
      case MVT::i16: Opc = X86::SHR16ri; break;
 | 
						|
      case MVT::i32: Opc = X86::SHR32ri; break;
 | 
						|
      }
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
    } else {
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Cannot shift this type!");
 | 
						|
    case MVT::i8 : Opc = X86::SHR8rCL; break;
 | 
						|
    case MVT::i16: Opc = X86::SHR16rCL; break;
 | 
						|
    case MVT::i32: Opc = X86::SHR32rCL; break;
 | 
						|
    }
 | 
						|
    BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
 | 
						|
    BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | 
						|
    return Result;
 | 
						|
  case ISD::SRA:
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      switch (N.getValueType()) {
 | 
						|
      default: assert(0 && "Cannot shift this type!");
 | 
						|
      case MVT::i8:  Opc = X86::SAR8ri; break;
 | 
						|
      case MVT::i16: Opc = X86::SAR16ri; break;
 | 
						|
      case MVT::i32: Opc = X86::SAR32ri; break;
 | 
						|
      }
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue());
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
    } else {
 | 
						|
      Tmp2 = SelectExpr(N.getOperand(1));
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    switch (N.getValueType()) {
 | 
						|
    default: assert(0 && "Cannot shift this type!");
 | 
						|
    case MVT::i8 : Opc = X86::SAR8rCL; break;
 | 
						|
    case MVT::i16: Opc = X86::SAR16rCL; break;
 | 
						|
    case MVT::i32: Opc = X86::SAR32rCL; break;
 | 
						|
    }
 | 
						|
    BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2);
 | 
						|
    BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
 | 
						|
    return Result;
 | 
						|
 | 
						|
  case ISD::SETCC:
 | 
						|
    EmitCMP(N.getOperand(0), N.getOperand(1), Node->hasOneUse());
 | 
						|
    EmitSetCC(BB, Result, cast<SetCCSDNode>(N)->getCondition(),
 | 
						|
              MVT::isFloatingPoint(N.getOperand(1).getValueType()));
 | 
						|
    return Result;
 | 
						|
  case ISD::LOAD:
 | 
						|
    // Make sure we generate both values.
 | 
						|
    if (Result != 1) {  // Generate the token
 | 
						|
      if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
 | 
						|
        assert(0 && "Load already emitted!?");
 | 
						|
    } else
 | 
						|
      Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | 
						|
 | 
						|
    switch (Node->getValueType(0)) {
 | 
						|
    default: assert(0 && "Cannot load this type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = X86::MOV8rm; break;
 | 
						|
    case MVT::i16: Opc = X86::MOV16rm; break;
 | 
						|
    case MVT::i32: Opc = X86::MOV32rm; break;
 | 
						|
    case MVT::f64: Opc = X86::FLD64m; ContainsFPCode = true; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1))){
 | 
						|
      Select(N.getOperand(0));
 | 
						|
      addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CP->getIndex());
 | 
						|
    } else {
 | 
						|
      X86AddressMode AM;
 | 
						|
 | 
						|
      SDOperand Chain   = N.getOperand(0);
 | 
						|
      SDOperand Address = N.getOperand(1);
 | 
						|
      if (getRegPressure(Chain) > getRegPressure(Address)) {
 | 
						|
        Select(Chain);
 | 
						|
        SelectAddress(Address, AM);
 | 
						|
      } else {
 | 
						|
        SelectAddress(Address, AM);
 | 
						|
        Select(Chain);
 | 
						|
      }
 | 
						|
 | 
						|
      addFullAddress(BuildMI(BB, Opc, 4, Result), AM);
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
 | 
						|
  case ISD::EXTLOAD:          // Arbitrarily codegen extloads as MOVZX*
 | 
						|
  case ISD::ZEXTLOAD: {
 | 
						|
    // Make sure we generate both values.
 | 
						|
    if (Result != 1)
 | 
						|
      ExprMap[N.getValue(1)] = 1;   // Generate the token
 | 
						|
    else
 | 
						|
      Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | 
						|
 | 
						|
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N.getOperand(1)))
 | 
						|
      if (Node->getValueType(0) == MVT::f64) {
 | 
						|
        assert(cast<MVTSDNode>(Node)->getExtraValueType() == MVT::f32 &&
 | 
						|
               "Bad EXTLOAD!");
 | 
						|
        addConstantPoolReference(BuildMI(BB, X86::FLD32m, 4, Result),
 | 
						|
                                 CP->getIndex());
 | 
						|
        return Result;
 | 
						|
      }
 | 
						|
 | 
						|
    X86AddressMode AM;
 | 
						|
    if (getRegPressure(Node->getOperand(0)) >
 | 
						|
           getRegPressure(Node->getOperand(1))) {
 | 
						|
      Select(Node->getOperand(0)); // chain
 | 
						|
      SelectAddress(Node->getOperand(1), AM);
 | 
						|
    } else {
 | 
						|
      SelectAddress(Node->getOperand(1), AM);
 | 
						|
      Select(Node->getOperand(0)); // chain
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Node->getValueType(0)) {
 | 
						|
    default: assert(0 && "Unknown type to sign extend to.");
 | 
						|
    case MVT::f64:
 | 
						|
      assert(cast<MVTSDNode>(Node)->getExtraValueType() == MVT::f32 &&
 | 
						|
             "Bad EXTLOAD!");
 | 
						|
      addFullAddress(BuildMI(BB, X86::FLD32m, 5, Result), AM);
 | 
						|
      break;
 | 
						|
    case MVT::i32:
 | 
						|
      switch (cast<MVTSDNode>(Node)->getExtraValueType()) {
 | 
						|
      default:
 | 
						|
        assert(0 && "Bad zero extend!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:
 | 
						|
        addFullAddress(BuildMI(BB, X86::MOVZX32rm8, 5, Result), AM);
 | 
						|
        break;
 | 
						|
      case MVT::i16:
 | 
						|
        addFullAddress(BuildMI(BB, X86::MOVZX32rm16, 5, Result), AM);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      assert(cast<MVTSDNode>(Node)->getExtraValueType() <= MVT::i8 &&
 | 
						|
             "Bad zero extend!");
 | 
						|
      addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM);
 | 
						|
      break;
 | 
						|
    case MVT::i8:
 | 
						|
      assert(cast<MVTSDNode>(Node)->getExtraValueType() == MVT::i1 &&
 | 
						|
             "Bad zero extend!");
 | 
						|
      addFullAddress(BuildMI(BB, X86::MOV8rm, 5, Result), AM);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case ISD::SEXTLOAD: {
 | 
						|
    // Make sure we generate both values.
 | 
						|
    if (Result != 1)
 | 
						|
      ExprMap[N.getValue(1)] = 1;   // Generate the token
 | 
						|
    else
 | 
						|
      Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | 
						|
 | 
						|
    X86AddressMode AM;
 | 
						|
    if (getRegPressure(Node->getOperand(0)) >
 | 
						|
           getRegPressure(Node->getOperand(1))) {
 | 
						|
      Select(Node->getOperand(0)); // chain
 | 
						|
      SelectAddress(Node->getOperand(1), AM);
 | 
						|
    } else {
 | 
						|
      SelectAddress(Node->getOperand(1), AM);
 | 
						|
      Select(Node->getOperand(0)); // chain
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Node->getValueType(0)) {
 | 
						|
    case MVT::i8: assert(0 && "Cannot sign extend from bool!");
 | 
						|
    default: assert(0 && "Unknown type to sign extend to.");
 | 
						|
    case MVT::i32:
 | 
						|
      switch (cast<MVTSDNode>(Node)->getExtraValueType()) {
 | 
						|
      default:
 | 
						|
      case MVT::i1: assert(0 && "Cannot sign extend from bool!");
 | 
						|
      case MVT::i8:
 | 
						|
        addFullAddress(BuildMI(BB, X86::MOVSX32rm8, 5, Result), AM);
 | 
						|
        break;
 | 
						|
      case MVT::i16:
 | 
						|
        addFullAddress(BuildMI(BB, X86::MOVSX32rm16, 5, Result), AM);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      assert(cast<MVTSDNode>(Node)->getExtraValueType() == MVT::i8 &&
 | 
						|
             "Cannot sign extend from bool!");
 | 
						|
      addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::DYNAMIC_STACKALLOC:
 | 
						|
    // Generate both result values.
 | 
						|
    if (Result != 1)
 | 
						|
      ExprMap[N.getValue(1)] = 1;   // Generate the token
 | 
						|
    else
 | 
						|
      Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | 
						|
 | 
						|
    // FIXME: We are currently ignoring the requested alignment for handling
 | 
						|
    // greater than the stack alignment.  This will need to be revisited at some
 | 
						|
    // point.  Align = N.getOperand(2);
 | 
						|
 | 
						|
    if (!isa<ConstantSDNode>(N.getOperand(2)) ||
 | 
						|
        cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
 | 
						|
      std::cerr << "Cannot allocate stack object with greater alignment than"
 | 
						|
                << " the stack alignment yet!";
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      Select(N.getOperand(0));
 | 
						|
      BuildMI(BB, X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP)
 | 
						|
        .addImm(CN->getValue());
 | 
						|
    } else {
 | 
						|
      if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
        Select(N.getOperand(0));
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
      } else {
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
        Select(N.getOperand(0));
 | 
						|
      }
 | 
						|
 | 
						|
      // Subtract size from stack pointer, thereby allocating some space.
 | 
						|
      BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(Tmp1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Put a pointer to the space into the result register, by copying the stack
 | 
						|
    // pointer.
 | 
						|
    BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::ESP);
 | 
						|
    return Result;
 | 
						|
 | 
						|
  case ISD::TAILCALL:
 | 
						|
  case ISD::CALL: {
 | 
						|
    // The chain for this call is now lowered.
 | 
						|
    ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1));
 | 
						|
 | 
						|
    bool isDirect = isa<GlobalAddressSDNode>(N.getOperand(1)) ||
 | 
						|
                    isa<ExternalSymbolSDNode>(N.getOperand(1));
 | 
						|
    unsigned Callee = 0;
 | 
						|
    if (isDirect) {
 | 
						|
      Select(N.getOperand(0));
 | 
						|
    } else {
 | 
						|
      if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
        Select(N.getOperand(0));
 | 
						|
        Callee = SelectExpr(N.getOperand(1));
 | 
						|
      } else {
 | 
						|
        Callee = SelectExpr(N.getOperand(1));
 | 
						|
        Select(N.getOperand(0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this call has values to pass in registers, do so now.
 | 
						|
    if (Node->getNumOperands() > 2) {
 | 
						|
      // The first value is passed in (a part of) EAX, the second in EDX.
 | 
						|
      unsigned RegOp1 = SelectExpr(N.getOperand(2));
 | 
						|
      unsigned RegOp2 =
 | 
						|
        Node->getNumOperands() > 3 ? SelectExpr(N.getOperand(3)) : 0;
 | 
						|
      
 | 
						|
      switch (N.getOperand(2).getValueType()) {
 | 
						|
      default: assert(0 && "Bad thing to pass in regs");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  BuildMI(BB, X86::MOV8rr , 1,X86::AL).addReg(RegOp1); break;
 | 
						|
      case MVT::i16: BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); break;
 | 
						|
      case MVT::i32: BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);break;
 | 
						|
      }
 | 
						|
      if (RegOp2)
 | 
						|
        switch (N.getOperand(3).getValueType()) {
 | 
						|
        default: assert(0 && "Bad thing to pass in regs");
 | 
						|
        case MVT::i1:
 | 
						|
        case MVT::i8:
 | 
						|
          BuildMI(BB, X86::MOV8rr , 1, X86::DL).addReg(RegOp2);
 | 
						|
          break;
 | 
						|
        case MVT::i16:
 | 
						|
          BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2);
 | 
						|
          break;
 | 
						|
        case MVT::i32:
 | 
						|
          BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (GlobalAddressSDNode *GASD =
 | 
						|
               dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
 | 
						|
      BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true);
 | 
						|
    } else if (ExternalSymbolSDNode *ESSDN =
 | 
						|
               dyn_cast<ExternalSymbolSDNode>(N.getOperand(1))) {
 | 
						|
      BuildMI(BB, X86::CALLpcrel32,
 | 
						|
              1).addExternalSymbol(ESSDN->getSymbol(), true);
 | 
						|
    } else {
 | 
						|
      if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
        Select(N.getOperand(0));
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
      } else {
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
        Select(N.getOperand(0));
 | 
						|
      }
 | 
						|
 | 
						|
      BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1);
 | 
						|
    }
 | 
						|
    switch (Node->getValueType(0)) {
 | 
						|
    default: assert(0 && "Unknown value type for call result!");
 | 
						|
    case MVT::Other: return 1;
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
 | 
						|
      break;
 | 
						|
    case MVT::i32:
 | 
						|
      BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
 | 
						|
      if (Node->getValueType(1) == MVT::i32)
 | 
						|
        BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX);
 | 
						|
      break;
 | 
						|
    case MVT::f64:     // Floating-point return values live in %ST(0)
 | 
						|
      ContainsFPCode = true;
 | 
						|
      BuildMI(BB, X86::FpGETRESULT, 1, Result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return Result+N.ResNo;
 | 
						|
  }
 | 
						|
  case ISD::READPORT:
 | 
						|
    // First, determine that the size of the operand falls within the acceptable
 | 
						|
    // range for this architecture.
 | 
						|
    //
 | 
						|
    if (Node->getOperand(1).getValueType() != MVT::i16) {
 | 
						|
      std::cerr << "llvm.readport: Address size is not 16 bits\n";
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure we generate both values.
 | 
						|
    if (Result != 1) {  // Generate the token
 | 
						|
      if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second)
 | 
						|
        assert(0 && "readport already emitted!?");
 | 
						|
    } else
 | 
						|
      Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
 | 
						|
    
 | 
						|
    Select(Node->getOperand(0));  // Select the chain.
 | 
						|
 | 
						|
    // If the port is a single-byte constant, use the immediate form.
 | 
						|
    if (ConstantSDNode *Port = dyn_cast<ConstantSDNode>(Node->getOperand(1)))
 | 
						|
      if ((Port->getValue() & 255) == Port->getValue()) {
 | 
						|
        switch (Node->getValueType(0)) {
 | 
						|
        case MVT::i8:
 | 
						|
          BuildMI(BB, X86::IN8ri, 1).addImm(Port->getValue());
 | 
						|
          BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
 | 
						|
          return Result;
 | 
						|
        case MVT::i16:
 | 
						|
          BuildMI(BB, X86::IN16ri, 1).addImm(Port->getValue());
 | 
						|
          BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
 | 
						|
          return Result;
 | 
						|
        case MVT::i32:
 | 
						|
          BuildMI(BB, X86::IN32ri, 1).addImm(Port->getValue());
 | 
						|
          BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
 | 
						|
          return Result;
 | 
						|
        default: break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Now, move the I/O port address into the DX register and use the IN
 | 
						|
    // instruction to get the input data.
 | 
						|
    //
 | 
						|
    Tmp1 = SelectExpr(Node->getOperand(1));
 | 
						|
    BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Tmp1);
 | 
						|
    switch (Node->getValueType(0)) {
 | 
						|
    case MVT::i8:
 | 
						|
      BuildMI(BB, X86::IN8rr, 0);
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL);
 | 
						|
      return Result;
 | 
						|
    case MVT::i16:
 | 
						|
      BuildMI(BB, X86::IN16rr, 0);
 | 
						|
      BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX);
 | 
						|
      return Result;
 | 
						|
    case MVT::i32:
 | 
						|
      BuildMI(BB, X86::IN32rr, 0);
 | 
						|
      BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX);
 | 
						|
      return Result;
 | 
						|
    default:
 | 
						|
      std::cerr << "Cannot do input on this data type";
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
    
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// TryToFoldLoadOpStore - Given a store node, try to fold together a
 | 
						|
/// load/op/store instruction.  If successful return true.
 | 
						|
bool ISel::TryToFoldLoadOpStore(SDNode *Node) {
 | 
						|
  assert(Node->getOpcode() == ISD::STORE && "Can only do this for stores!");
 | 
						|
  SDOperand Chain  = Node->getOperand(0);
 | 
						|
  SDOperand StVal  = Node->getOperand(1);
 | 
						|
  SDOperand StPtr  = Node->getOperand(2);
 | 
						|
 | 
						|
  // The chain has to be a load, the stored value must be an integer binary
 | 
						|
  // operation with one use.
 | 
						|
  if (!StVal.Val->hasOneUse() || StVal.Val->getNumOperands() != 2 ||
 | 
						|
      MVT::isFloatingPoint(StVal.getValueType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Token chain must either be a factor node or the load to fold.
 | 
						|
  if (Chain.getOpcode() != ISD::LOAD && Chain.getOpcode() != ISD::TokenFactor)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDOperand TheLoad;
 | 
						|
 | 
						|
  // Check to see if there is a load from the same pointer that we're storing
 | 
						|
  // to in either operand of the binop.
 | 
						|
  if (StVal.getOperand(0).getOpcode() == ISD::LOAD &&
 | 
						|
      StVal.getOperand(0).getOperand(1) == StPtr)
 | 
						|
    TheLoad = StVal.getOperand(0);
 | 
						|
  else if (StVal.getOperand(1).getOpcode() == ISD::LOAD &&
 | 
						|
           StVal.getOperand(1).getOperand(1) == StPtr)
 | 
						|
    TheLoad = StVal.getOperand(1);
 | 
						|
  else
 | 
						|
    return false;  // No matching load operand.
 | 
						|
 | 
						|
  // We can only fold the load if there are no intervening side-effecting
 | 
						|
  // operations.  This means that the store uses the load as its token chain, or
 | 
						|
  // there are only token factor nodes in between the store and load.
 | 
						|
  if (Chain != TheLoad.getValue(1)) {
 | 
						|
    // Okay, the other option is that we have a store referring to (possibly
 | 
						|
    // nested) token factor nodes.  For now, just try peeking through one level
 | 
						|
    // of token factors to see if this is the case.
 | 
						|
    bool ChainOk = false;
 | 
						|
    if (Chain.getOpcode() == ISD::TokenFactor) {
 | 
						|
      for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
 | 
						|
        if (Chain.getOperand(i) == TheLoad.getValue(1)) {
 | 
						|
          ChainOk = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ChainOk) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TheLoad.getOperand(1) != StPtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that one of the operands of the binop is the load, and that the
 | 
						|
  // load folds into the binop.
 | 
						|
  if (((StVal.getOperand(0) != TheLoad ||
 | 
						|
        !isFoldableLoad(TheLoad, StVal.getOperand(1))) &&
 | 
						|
       (StVal.getOperand(1) != TheLoad ||
 | 
						|
        !isFoldableLoad(TheLoad, StVal.getOperand(0)))))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Finally, check to see if this is one of the ops we can handle!
 | 
						|
  static const unsigned ADDTAB[] = {
 | 
						|
    X86::ADD8mi, X86::ADD16mi, X86::ADD32mi,
 | 
						|
    X86::ADD8mr, X86::ADD16mr, X86::ADD32mr,
 | 
						|
  };
 | 
						|
  static const unsigned SUBTAB[] = {
 | 
						|
    X86::SUB8mi, X86::SUB16mi, X86::SUB32mi,
 | 
						|
    X86::SUB8mr, X86::SUB16mr, X86::SUB32mr,
 | 
						|
  };
 | 
						|
  static const unsigned ANDTAB[] = {
 | 
						|
    X86::AND8mi, X86::AND16mi, X86::AND32mi,
 | 
						|
    X86::AND8mr, X86::AND16mr, X86::AND32mr,
 | 
						|
  };
 | 
						|
  static const unsigned ORTAB[] = {
 | 
						|
    X86::OR8mi, X86::OR16mi, X86::OR32mi,
 | 
						|
    X86::OR8mr, X86::OR16mr, X86::OR32mr,
 | 
						|
  };
 | 
						|
  static const unsigned XORTAB[] = {
 | 
						|
    X86::XOR8mi, X86::XOR16mi, X86::XOR32mi,
 | 
						|
    X86::XOR8mr, X86::XOR16mr, X86::XOR32mr,
 | 
						|
  };
 | 
						|
  static const unsigned SHLTAB[] = {
 | 
						|
    X86::SHL8mi, X86::SHL16mi, X86::SHL32mi,
 | 
						|
    /*Have to put the reg in CL*/0, 0, 0,
 | 
						|
  };
 | 
						|
  static const unsigned SARTAB[] = {
 | 
						|
    X86::SAR8mi, X86::SAR16mi, X86::SAR32mi,
 | 
						|
    /*Have to put the reg in CL*/0, 0, 0,
 | 
						|
  };
 | 
						|
  static const unsigned SHRTAB[] = {
 | 
						|
    X86::SHR8mi, X86::SHR16mi, X86::SHR32mi,
 | 
						|
    /*Have to put the reg in CL*/0, 0, 0,
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned *TabPtr = 0;
 | 
						|
  switch (StVal.getOpcode()) {
 | 
						|
  default:
 | 
						|
    std::cerr << "CANNOT [mem] op= val: ";
 | 
						|
    StVal.Val->dump(); std::cerr << "\n";
 | 
						|
  case ISD::MUL:
 | 
						|
  case ISD::SDIV:
 | 
						|
  case ISD::UDIV:
 | 
						|
  case ISD::SREM:
 | 
						|
  case ISD::UREM: return false;
 | 
						|
 | 
						|
  case ISD::ADD: TabPtr = ADDTAB; break;
 | 
						|
  case ISD::SUB: TabPtr = SUBTAB; break;
 | 
						|
  case ISD::AND: TabPtr = ANDTAB; break;
 | 
						|
  case ISD:: OR: TabPtr =  ORTAB; break;
 | 
						|
  case ISD::XOR: TabPtr = XORTAB; break;
 | 
						|
  case ISD::SHL: TabPtr = SHLTAB; break;
 | 
						|
  case ISD::SRA: TabPtr = SARTAB; break;
 | 
						|
  case ISD::SRL: TabPtr = SHRTAB; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle: [mem] op= CST
 | 
						|
  SDOperand Op0 = StVal.getOperand(0);
 | 
						|
  SDOperand Op1 = StVal.getOperand(1);
 | 
						|
  unsigned Opc = 0;
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1)) {
 | 
						|
    switch (Op0.getValueType()) { // Use Op0's type because of shifts.
 | 
						|
    default: break;
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = TabPtr[0]; break;
 | 
						|
    case MVT::i16: Opc = TabPtr[1]; break;
 | 
						|
    case MVT::i32: Opc = TabPtr[2]; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Opc) {
 | 
						|
      if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second)
 | 
						|
        assert(0 && "Already emitted?");
 | 
						|
      Select(Chain);
 | 
						|
 | 
						|
      X86AddressMode AM;
 | 
						|
      if (getRegPressure(TheLoad.getOperand(0)) >
 | 
						|
          getRegPressure(TheLoad.getOperand(1))) {
 | 
						|
        Select(TheLoad.getOperand(0));
 | 
						|
        SelectAddress(TheLoad.getOperand(1), AM);
 | 
						|
      } else {
 | 
						|
        SelectAddress(TheLoad.getOperand(1), AM);
 | 
						|
        Select(TheLoad.getOperand(0));
 | 
						|
      }
 | 
						|
 | 
						|
      if (StVal.getOpcode() == ISD::ADD) {
 | 
						|
        if (CN->getValue() == 1) {
 | 
						|
          switch (Op0.getValueType()) {
 | 
						|
          default: break;
 | 
						|
          case MVT::i8:
 | 
						|
            addFullAddress(BuildMI(BB, X86::INC8m, 4), AM);
 | 
						|
            return true;
 | 
						|
          case MVT::i16: Opc = TabPtr[1];
 | 
						|
            addFullAddress(BuildMI(BB, X86::INC16m, 4), AM);
 | 
						|
            return true;
 | 
						|
          case MVT::i32: Opc = TabPtr[2];
 | 
						|
            addFullAddress(BuildMI(BB, X86::INC32m, 4), AM);
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        } else if (CN->getValue()+1 == 0) {   // [X] += -1 -> DEC [X]
 | 
						|
          switch (Op0.getValueType()) {
 | 
						|
          default: break;
 | 
						|
          case MVT::i8:
 | 
						|
            addFullAddress(BuildMI(BB, X86::DEC8m, 4), AM);
 | 
						|
            return true;
 | 
						|
          case MVT::i16: Opc = TabPtr[1];
 | 
						|
            addFullAddress(BuildMI(BB, X86::DEC16m, 4), AM);
 | 
						|
            return true;
 | 
						|
          case MVT::i32: Opc = TabPtr[2];
 | 
						|
            addFullAddress(BuildMI(BB, X86::DEC32m, 4), AM);
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      addFullAddress(BuildMI(BB, Opc, 4+1),AM).addImm(CN->getValue());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have [mem] = V op [mem], try to turn it into:
 | 
						|
  // [mem] = [mem] op V.
 | 
						|
  if (Op1 == TheLoad && StVal.getOpcode() != ISD::SUB &&
 | 
						|
      StVal.getOpcode() != ISD::SHL && StVal.getOpcode() != ISD::SRA &&
 | 
						|
      StVal.getOpcode() != ISD::SRL)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  if (Op0 != TheLoad) return false;
 | 
						|
 | 
						|
  switch (Op0.getValueType()) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:  Opc = TabPtr[3]; break;
 | 
						|
  case MVT::i16: Opc = TabPtr[4]; break;
 | 
						|
  case MVT::i32: Opc = TabPtr[5]; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Table entry doesn't exist?
 | 
						|
  if (Opc == 0) return false;
 | 
						|
 | 
						|
  if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second)
 | 
						|
    assert(0 && "Already emitted?");
 | 
						|
  Select(Chain);
 | 
						|
  Select(TheLoad.getOperand(0));
 | 
						|
 | 
						|
  X86AddressMode AM;
 | 
						|
  SelectAddress(TheLoad.getOperand(1), AM);
 | 
						|
  unsigned Reg = SelectExpr(Op1);
 | 
						|
  addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Reg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ISel::Select(SDOperand N) {
 | 
						|
  unsigned Tmp1, Tmp2, Opc;
 | 
						|
 | 
						|
  if (!ExprMap.insert(std::make_pair(N, 1)).second)
 | 
						|
    return;  // Already selected.
 | 
						|
 | 
						|
  SDNode *Node = N.Val;
 | 
						|
 | 
						|
  switch (Node->getOpcode()) {
 | 
						|
  default:
 | 
						|
    Node->dump(); std::cerr << "\n";
 | 
						|
    assert(0 && "Node not handled yet!");
 | 
						|
  case ISD::EntryToken: return;  // Noop
 | 
						|
  case ISD::TokenFactor:
 | 
						|
    if (Node->getNumOperands() == 2) {
 | 
						|
      bool OneFirst =
 | 
						|
        getRegPressure(Node->getOperand(1))>getRegPressure(Node->getOperand(0));
 | 
						|
      Select(Node->getOperand(OneFirst));
 | 
						|
      Select(Node->getOperand(!OneFirst));
 | 
						|
    } else {
 | 
						|
      std::vector<std::pair<unsigned, unsigned> > OpsP;
 | 
						|
      for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 | 
						|
        OpsP.push_back(std::make_pair(getRegPressure(Node->getOperand(i)), i));
 | 
						|
      std::sort(OpsP.begin(), OpsP.end());
 | 
						|
      std::reverse(OpsP.begin(), OpsP.end());
 | 
						|
      for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 | 
						|
        Select(Node->getOperand(OpsP[i].second));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case ISD::CopyToReg:
 | 
						|
    if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
      Select(N.getOperand(0));
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
    } else {
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
      Select(N.getOperand(0));
 | 
						|
    }
 | 
						|
    Tmp2 = cast<RegSDNode>(N)->getReg();
 | 
						|
 | 
						|
    if (Tmp1 != Tmp2) {
 | 
						|
      switch (N.getOperand(1).getValueType()) {
 | 
						|
      default: assert(0 && "Invalid type for operation!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  Opc = X86::MOV8rr; break;
 | 
						|
      case MVT::i16: Opc = X86::MOV16rr; break;
 | 
						|
      case MVT::i32: Opc = X86::MOV32rr; break;
 | 
						|
      case MVT::f64: Opc = X86::FpMOV; ContainsFPCode = true; break;
 | 
						|
      }
 | 
						|
      BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  case ISD::RET:
 | 
						|
    switch (N.getNumOperands()) {
 | 
						|
    default:
 | 
						|
      assert(0 && "Unknown return instruction!");
 | 
						|
    case 3:
 | 
						|
      assert(N.getOperand(1).getValueType() == MVT::i32 &&
 | 
						|
	     N.getOperand(2).getValueType() == MVT::i32 &&
 | 
						|
	     "Unknown two-register value!");
 | 
						|
      if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) {
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
        Tmp2 = SelectExpr(N.getOperand(2));
 | 
						|
      } else {
 | 
						|
        Tmp2 = SelectExpr(N.getOperand(2));
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
      }
 | 
						|
      Select(N.getOperand(0));
 | 
						|
 | 
						|
      BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
 | 
						|
      BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2);
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
        Select(N.getOperand(0));
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
      } else {
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
        Select(N.getOperand(0));
 | 
						|
      }
 | 
						|
      switch (N.getOperand(1).getValueType()) {
 | 
						|
      default: assert(0 && "All other types should have been promoted!!");
 | 
						|
      case MVT::f64:
 | 
						|
	BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1);
 | 
						|
	break;
 | 
						|
      case MVT::i32:
 | 
						|
	BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
 | 
						|
	break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 1:
 | 
						|
      Select(N.getOperand(0));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
 | 
						|
    return;
 | 
						|
  case ISD::BR: {
 | 
						|
    Select(N.getOperand(0));
 | 
						|
    MachineBasicBlock *Dest =
 | 
						|
      cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
 | 
						|
    BuildMI(BB, X86::JMP, 1).addMBB(Dest);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::BRCOND: {
 | 
						|
    MachineBasicBlock *Dest =
 | 
						|
      cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
 | 
						|
 | 
						|
    // Try to fold a setcc into the branch.  If this fails, emit a test/jne
 | 
						|
    // pair.
 | 
						|
    if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) {
 | 
						|
      if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) {
 | 
						|
        Select(N.getOperand(0));
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
      } else {
 | 
						|
        Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
        Select(N.getOperand(0));
 | 
						|
      }
 | 
						|
      BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1);
 | 
						|
      BuildMI(BB, X86::JNE, 1).addMBB(Dest);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::LOAD:
 | 
						|
    // If this load could be folded into the only using instruction, and if it
 | 
						|
    // is safe to emit the instruction here, try to do so now.
 | 
						|
    if (Node->hasNUsesOfValue(1, 0)) {
 | 
						|
      SDOperand TheVal = N.getValue(0);
 | 
						|
      SDNode *User = 0;
 | 
						|
      for (SDNode::use_iterator UI = Node->use_begin(); ; ++UI) {
 | 
						|
        assert(UI != Node->use_end() && "Didn't find use!");
 | 
						|
        SDNode *UN = *UI;
 | 
						|
        for (unsigned i = 0, e = UN->getNumOperands(); i != e; ++i)
 | 
						|
          if (UN->getOperand(i) == TheVal) {
 | 
						|
            User = UN;
 | 
						|
            goto FoundIt;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    FoundIt:
 | 
						|
      // Only handle unary operators right now.
 | 
						|
      if (User->getNumOperands() == 1) {
 | 
						|
        ExprMap.erase(N);
 | 
						|
        SelectExpr(SDOperand(User, 0));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ExprMap.erase(N);
 | 
						|
    SelectExpr(N);
 | 
						|
    return;
 | 
						|
  case ISD::READPORT:
 | 
						|
  case ISD::EXTLOAD:
 | 
						|
  case ISD::SEXTLOAD:
 | 
						|
  case ISD::ZEXTLOAD:
 | 
						|
  case ISD::TAILCALL:
 | 
						|
  case ISD::CALL:
 | 
						|
  case ISD::DYNAMIC_STACKALLOC:
 | 
						|
    ExprMap.erase(N);
 | 
						|
    SelectExpr(N);
 | 
						|
    return;
 | 
						|
  case ISD::CopyFromReg:
 | 
						|
    ExprMap.erase(N);
 | 
						|
    SelectExpr(N.getValue(0));
 | 
						|
    return;
 | 
						|
 | 
						|
  case ISD::TRUNCSTORE: {  // truncstore chain, val, ptr :storety
 | 
						|
    // On X86, we can represent all types except for Bool and Float natively.
 | 
						|
    X86AddressMode AM;
 | 
						|
    MVT::ValueType StoredTy = cast<MVTSDNode>(Node)->getExtraValueType();
 | 
						|
    assert((StoredTy == MVT::i1 || StoredTy == MVT::f32 ||
 | 
						|
            StoredTy == MVT::i16 /*FIXME: THIS IS JUST FOR TESTING!*/)
 | 
						|
           && "Unsupported TRUNCSTORE for this target!");
 | 
						|
 | 
						|
    if (StoredTy == MVT::i16) {
 | 
						|
      // FIXME: This is here just to allow testing.  X86 doesn't really have a
 | 
						|
      // TRUNCSTORE i16 operation, but this is required for targets that do not
 | 
						|
      // have 16-bit integer registers.  We occasionally disable 16-bit integer
 | 
						|
      // registers to test the promotion code.
 | 
						|
      Select(N.getOperand(0));
 | 
						|
      Tmp1 = SelectExpr(N.getOperand(1));
 | 
						|
      SelectAddress(N.getOperand(2), AM);
 | 
						|
 | 
						|
      BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
 | 
						|
      addFullAddress(BuildMI(BB, X86::MOV16mr, 5), AM).addReg(X86::AX);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Store of constant bool?
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
 | 
						|
        Select(N.getOperand(0));
 | 
						|
        SelectAddress(N.getOperand(2), AM);
 | 
						|
      } else {
 | 
						|
        SelectAddress(N.getOperand(2), AM);
 | 
						|
        Select(N.getOperand(0));
 | 
						|
      }
 | 
						|
      addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CN->getValue());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (StoredTy) {
 | 
						|
    default: assert(0 && "Cannot truncstore this type!");
 | 
						|
    case MVT::i1: Opc = X86::MOV8mr; break;
 | 
						|
    case MVT::f32: Opc = X86::FST32m; break;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<std::pair<unsigned, unsigned> > RP;
 | 
						|
    RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0));
 | 
						|
    RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1));
 | 
						|
    RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2));
 | 
						|
    std::sort(RP.begin(), RP.end());
 | 
						|
 | 
						|
    Tmp1 = 0;   // Silence a warning.
 | 
						|
    for (unsigned i = 0; i != 3; ++i)
 | 
						|
      switch (RP[2-i].second) {
 | 
						|
      default: assert(0 && "Unknown operand number!");
 | 
						|
      case 0: Select(N.getOperand(0)); break;
 | 
						|
      case 1: Tmp1 = SelectExpr(N.getOperand(1)); break;
 | 
						|
      case 2: SelectAddress(N.getOperand(2), AM); break;
 | 
						|
      }
 | 
						|
 | 
						|
    addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::STORE: {
 | 
						|
    X86AddressMode AM;
 | 
						|
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      Opc = 0;
 | 
						|
      switch (CN->getValueType(0)) {
 | 
						|
      default: assert(0 && "Invalid type for operation!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i8:  Opc = X86::MOV8mi; break;
 | 
						|
      case MVT::i16: Opc = X86::MOV16mi; break;
 | 
						|
      case MVT::i32: Opc = X86::MOV32mi; break;
 | 
						|
      case MVT::f64: break;
 | 
						|
      }
 | 
						|
      if (Opc) {
 | 
						|
        if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
 | 
						|
          Select(N.getOperand(0));
 | 
						|
          SelectAddress(N.getOperand(2), AM);
 | 
						|
        } else {
 | 
						|
          SelectAddress(N.getOperand(2), AM);
 | 
						|
          Select(N.getOperand(0));
 | 
						|
        }
 | 
						|
        addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else if (GlobalAddressSDNode *GA =
 | 
						|
                      dyn_cast<GlobalAddressSDNode>(N.getOperand(1))) {
 | 
						|
      assert(GA->getValueType(0) == MVT::i32 && "Bad pointer operand");
 | 
						|
 | 
						|
      if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) {
 | 
						|
        Select(N.getOperand(0));
 | 
						|
        SelectAddress(N.getOperand(2), AM);
 | 
						|
      } else {
 | 
						|
        SelectAddress(N.getOperand(2), AM);
 | 
						|
        Select(N.getOperand(0));
 | 
						|
      }
 | 
						|
      addFullAddress(BuildMI(BB, X86::MOV32mi, 4+1),
 | 
						|
                     AM).addGlobalAddress(GA->getGlobal());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if this is a load/op/store combination.
 | 
						|
    if (TryToFoldLoadOpStore(Node))
 | 
						|
      return;
 | 
						|
 | 
						|
    switch (N.getOperand(1).getValueType()) {
 | 
						|
    default: assert(0 && "Cannot store this type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:  Opc = X86::MOV8mr; break;
 | 
						|
    case MVT::i16: Opc = X86::MOV16mr; break;
 | 
						|
    case MVT::i32: Opc = X86::MOV32mr; break;
 | 
						|
    case MVT::f64: Opc = X86::FST64m; break;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<std::pair<unsigned, unsigned> > RP;
 | 
						|
    RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0));
 | 
						|
    RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1));
 | 
						|
    RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2));
 | 
						|
    std::sort(RP.begin(), RP.end());
 | 
						|
 | 
						|
    Tmp1 = 0; // Silence a warning.
 | 
						|
    for (unsigned i = 0; i != 3; ++i)
 | 
						|
      switch (RP[2-i].second) {
 | 
						|
      default: assert(0 && "Unknown operand number!");
 | 
						|
      case 0: Select(N.getOperand(0)); break;
 | 
						|
      case 1: Tmp1 = SelectExpr(N.getOperand(1)); break;
 | 
						|
      case 2: SelectAddress(N.getOperand(2), AM); break;
 | 
						|
      }
 | 
						|
 | 
						|
    addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::CALLSEQ_START:
 | 
						|
  case ISD::CALLSEQ_END:
 | 
						|
    Select(N.getOperand(0));
 | 
						|
    Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
 | 
						|
 | 
						|
    Opc = N.getOpcode() == ISD::CALLSEQ_START ? X86::ADJCALLSTACKDOWN :
 | 
						|
                                                X86::ADJCALLSTACKUP;
 | 
						|
    BuildMI(BB, Opc, 1).addImm(Tmp1);
 | 
						|
    return;
 | 
						|
  case ISD::MEMSET: {
 | 
						|
    Select(N.getOperand(0));  // Select the chain.
 | 
						|
    unsigned Align =
 | 
						|
      (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue();
 | 
						|
    if (Align == 0) Align = 1;
 | 
						|
 | 
						|
    // Turn the byte code into # iterations
 | 
						|
    unsigned CountReg;
 | 
						|
    unsigned Opcode;
 | 
						|
    if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
 | 
						|
      unsigned Val = ValC->getValue() & 255;
 | 
						|
 | 
						|
      // If the value is a constant, then we can potentially use larger sets.
 | 
						|
      switch (Align & 3) {
 | 
						|
      case 2:   // WORD aligned
 | 
						|
        CountReg = MakeReg(MVT::i32);
 | 
						|
        if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
 | 
						|
          BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2);
 | 
						|
        } else {
 | 
						|
          unsigned ByteReg = SelectExpr(Node->getOperand(3));
 | 
						|
          BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
 | 
						|
        }
 | 
						|
        BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
 | 
						|
        Opcode = X86::REP_STOSW;
 | 
						|
        break;
 | 
						|
      case 0:   // DWORD aligned
 | 
						|
        CountReg = MakeReg(MVT::i32);
 | 
						|
        if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
 | 
						|
          BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4);
 | 
						|
        } else {
 | 
						|
          unsigned ByteReg = SelectExpr(Node->getOperand(3));
 | 
						|
          BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
 | 
						|
        }
 | 
						|
        Val = (Val << 8) | Val;
 | 
						|
        BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
 | 
						|
        Opcode = X86::REP_STOSD;
 | 
						|
        break;
 | 
						|
      default:  // BYTE aligned
 | 
						|
        CountReg = SelectExpr(Node->getOperand(3));
 | 
						|
        BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
 | 
						|
        Opcode = X86::REP_STOSB;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // If it's not a constant value we are storing, just fall back.  We could
 | 
						|
      // try to be clever to form 16 bit and 32 bit values, but we don't yet.
 | 
						|
      unsigned ValReg = SelectExpr(Node->getOperand(2));
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
 | 
						|
      CountReg = SelectExpr(Node->getOperand(3));
 | 
						|
      Opcode = X86::REP_STOSB;
 | 
						|
    }
 | 
						|
 | 
						|
    // No matter what the alignment is, we put the source in ESI, the
 | 
						|
    // destination in EDI, and the count in ECX.
 | 
						|
    unsigned TmpReg1 = SelectExpr(Node->getOperand(1));
 | 
						|
    BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
 | 
						|
    BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
 | 
						|
    BuildMI(BB, Opcode, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::MEMCPY: {
 | 
						|
    Select(N.getOperand(0));  // Select the chain.
 | 
						|
    unsigned Align =
 | 
						|
      (unsigned)cast<ConstantSDNode>(Node->getOperand(4))->getValue();
 | 
						|
    if (Align == 0) Align = 1;
 | 
						|
 | 
						|
    // Turn the byte code into # iterations
 | 
						|
    unsigned CountReg;
 | 
						|
    unsigned Opcode;
 | 
						|
    switch (Align & 3) {
 | 
						|
    case 2:   // WORD aligned
 | 
						|
      CountReg = MakeReg(MVT::i32);
 | 
						|
      if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
 | 
						|
        BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2);
 | 
						|
      } else {
 | 
						|
        unsigned ByteReg = SelectExpr(Node->getOperand(3));
 | 
						|
        BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
 | 
						|
      }
 | 
						|
      Opcode = X86::REP_MOVSW;
 | 
						|
      break;
 | 
						|
    case 0:   // DWORD aligned
 | 
						|
      CountReg = MakeReg(MVT::i32);
 | 
						|
      if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Node->getOperand(3))) {
 | 
						|
        BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4);
 | 
						|
      } else {
 | 
						|
        unsigned ByteReg = SelectExpr(Node->getOperand(3));
 | 
						|
        BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
 | 
						|
      }
 | 
						|
      Opcode = X86::REP_MOVSD;
 | 
						|
      break;
 | 
						|
    default:  // BYTE aligned
 | 
						|
      CountReg = SelectExpr(Node->getOperand(3));
 | 
						|
      Opcode = X86::REP_MOVSB;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // No matter what the alignment is, we put the source in ESI, the
 | 
						|
    // destination in EDI, and the count in ECX.
 | 
						|
    unsigned TmpReg1 = SelectExpr(Node->getOperand(1));
 | 
						|
    unsigned TmpReg2 = SelectExpr(Node->getOperand(2));
 | 
						|
    BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
 | 
						|
    BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
 | 
						|
    BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
 | 
						|
    BuildMI(BB, Opcode, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::WRITEPORT:
 | 
						|
    if (Node->getOperand(2).getValueType() != MVT::i16) {
 | 
						|
      std::cerr << "llvm.writeport: Address size is not 16 bits\n";
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
    Select(Node->getOperand(0)); // Emit the chain.
 | 
						|
 | 
						|
    Tmp1 = SelectExpr(Node->getOperand(1));
 | 
						|
    switch (Node->getOperand(1).getValueType()) {
 | 
						|
    case MVT::i8:
 | 
						|
      BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1);
 | 
						|
      Tmp2 = X86::OUT8ir;  Opc = X86::OUT8rr;
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(Tmp1);
 | 
						|
      Tmp2 = X86::OUT16ir; Opc = X86::OUT16rr;
 | 
						|
      break;
 | 
						|
    case MVT::i32:
 | 
						|
      BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1);
 | 
						|
      Tmp2 = X86::OUT32ir; Opc = X86::OUT32rr;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      std::cerr << "llvm.writeport: invalid data type for X86 target";
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the port is a single-byte constant, use the immediate form.
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node->getOperand(2)))
 | 
						|
      if ((CN->getValue() & 255) == CN->getValue()) {
 | 
						|
        BuildMI(BB, Tmp2, 1).addImm(CN->getValue());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
    // Otherwise, move the I/O port address into the DX register.
 | 
						|
    unsigned Reg = SelectExpr(Node->getOperand(2));
 | 
						|
    BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
 | 
						|
    BuildMI(BB, Opc, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert(0 && "Should not be reached!");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// createX86PatternInstructionSelector - This pass converts an LLVM function
 | 
						|
/// into a machine code representation using pattern matching and a machine
 | 
						|
/// description file.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) {
 | 
						|
  return new ISel(TM);
 | 
						|
}
 |