1168 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1168 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "FindTarget.h"
 | 
						|
#include "AST.h"
 | 
						|
#include "HeuristicResolver.h"
 | 
						|
#include "support/Logger.h"
 | 
						|
#include "clang/AST/ASTTypeTraits.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclBase.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/DeclVisitor.h"
 | 
						|
#include "clang/AST/DeclarationName.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprConcepts.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/NestedNameSpecifier.h"
 | 
						|
#include "clang/AST/PrettyPrinter.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/AST/TemplateBase.h"
 | 
						|
#include "clang/AST/Type.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/AST/TypeLocVisitor.h"
 | 
						|
#include "clang/AST/TypeVisitor.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "clang/Basic/OperatorKinds.h"
 | 
						|
#include "clang/Basic/SourceLocation.h"
 | 
						|
#include "clang/Basic/Specifiers.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace clangd {
 | 
						|
namespace {
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
 | 
						|
  std::string S = std::string(N.getNodeKind().asStringRef());
 | 
						|
  {
 | 
						|
    llvm::raw_string_ostream OS(S);
 | 
						|
    OS << ": ";
 | 
						|
    N.print(OS, PrintingPolicy(LangOptions()));
 | 
						|
  }
 | 
						|
  std::replace(S.begin(), S.end(), '\n', ' ');
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
const NamedDecl *getTemplatePattern(const NamedDecl *D) {
 | 
						|
  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
 | 
						|
    if (const auto *Result = CRD->getTemplateInstantiationPattern())
 | 
						|
      return Result;
 | 
						|
    // getTemplateInstantiationPattern returns null if the Specialization is
 | 
						|
    // incomplete (e.g. the type didn't need to be complete), fall back to the
 | 
						|
    // primary template.
 | 
						|
    if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
 | 
						|
      if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
 | 
						|
        return Spec->getSpecializedTemplate()->getTemplatedDecl();
 | 
						|
  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    return FD->getTemplateInstantiationPattern();
 | 
						|
  } else if (auto *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    // Hmm: getTIP returns its arg if it's not an instantiation?!
 | 
						|
    VarDecl *T = VD->getTemplateInstantiationPattern();
 | 
						|
    return (T == D) ? nullptr : T;
 | 
						|
  } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
 | 
						|
    return ED->getInstantiatedFromMemberEnum();
 | 
						|
  } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
 | 
						|
    if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
 | 
						|
      if (const DeclContext *ParentPat =
 | 
						|
              dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
 | 
						|
        for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
 | 
						|
          if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
 | 
						|
            return BaseND;
 | 
						|
  } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
 | 
						|
    if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
 | 
						|
      if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
 | 
						|
        for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
 | 
						|
          return BaseECD;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// TargetFinder locates the entities that an AST node refers to.
 | 
						|
//
 | 
						|
// Typically this is (possibly) one declaration and (possibly) one type, but
 | 
						|
// may be more:
 | 
						|
//  - for ambiguous nodes like OverloadExpr
 | 
						|
//  - if we want to include e.g. both typedefs and the underlying type
 | 
						|
//
 | 
						|
// This is organized as a set of mutually recursive helpers for particular node
 | 
						|
// types, but for most nodes this is a short walk rather than a deep traversal.
 | 
						|
//
 | 
						|
// It's tempting to do e.g. typedef resolution as a second normalization step,
 | 
						|
// after finding the 'primary' decl etc. But we do this monolithically instead
 | 
						|
// because:
 | 
						|
//  - normalization may require these traversals again (e.g. unwrapping a
 | 
						|
//    typedef reveals a decltype which must be traversed)
 | 
						|
//  - it doesn't simplify that much, e.g. the first stage must still be able
 | 
						|
//    to yield multiple decls to handle OverloadExpr
 | 
						|
//  - there are cases where it's required for correctness. e.g:
 | 
						|
//      template<class X> using pvec = vector<x*>; pvec<int> x;
 | 
						|
//    There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
 | 
						|
//    and both are lossy. We must know upfront what the caller ultimately wants.
 | 
						|
//
 | 
						|
// FIXME: improve common dependent scope using name lookup in primary templates.
 | 
						|
// We currently handle several dependent constructs, but some others remain to
 | 
						|
// be handled:
 | 
						|
//  - UnresolvedUsingTypenameDecl
 | 
						|
struct TargetFinder {
 | 
						|
  using RelSet = DeclRelationSet;
 | 
						|
  using Rel = DeclRelation;
 | 
						|
 | 
						|
private:
 | 
						|
  const HeuristicResolver *Resolver;
 | 
						|
  llvm::SmallDenseMap<const NamedDecl *,
 | 
						|
                      std::pair<RelSet, /*InsertionOrder*/ size_t>>
 | 
						|
      Decls;
 | 
						|
  llvm::SmallDenseMap<const Decl *, RelSet> Seen;
 | 
						|
  RelSet Flags;
 | 
						|
 | 
						|
  template <typename T> void debug(T &Node, RelSet Flags) {
 | 
						|
    dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
 | 
						|
  }
 | 
						|
 | 
						|
  void report(const NamedDecl *D, RelSet Flags) {
 | 
						|
    dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
 | 
						|
    auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
 | 
						|
    // If already exists, update the flags.
 | 
						|
    if (!It.second)
 | 
						|
      It.first->second.first |= Flags;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
 | 
						|
 | 
						|
  llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
 | 
						|
    using ValTy = std::pair<const NamedDecl *, RelSet>;
 | 
						|
    llvm::SmallVector<ValTy, 1> Result;
 | 
						|
    Result.resize(Decls.size());
 | 
						|
    for (const auto &Elem : Decls)
 | 
						|
      Result[Elem.second.second] = {Elem.first, Elem.second.first};
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  void add(const Decl *Dcl, RelSet Flags) {
 | 
						|
    const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
 | 
						|
    if (!D)
 | 
						|
      return;
 | 
						|
    debug(*D, Flags);
 | 
						|
 | 
						|
    // Avoid recursion (which can arise in the presence of heuristic
 | 
						|
    // resolution of dependent names) by exiting early if we have
 | 
						|
    // already seen this decl with all flags in Flags.
 | 
						|
    auto Res = Seen.try_emplace(D);
 | 
						|
    if (!Res.second && Res.first->second.contains(Flags))
 | 
						|
      return;
 | 
						|
    Res.first->second |= Flags;
 | 
						|
 | 
						|
    if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
 | 
						|
      D = UDD->getNominatedNamespaceAsWritten();
 | 
						|
 | 
						|
    if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
 | 
						|
      add(TND->getUnderlyingType(), Flags | Rel::Underlying);
 | 
						|
      Flags |= Rel::Alias; // continue with the alias.
 | 
						|
    } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
 | 
						|
      // no Underlying as this is a non-renaming alias.
 | 
						|
      for (const UsingShadowDecl *S : UD->shadows())
 | 
						|
        add(S->getUnderlyingDecl(), Flags);
 | 
						|
      Flags |= Rel::Alias; // continue with the alias.
 | 
						|
    } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
 | 
						|
      add(UED->getEnumDecl(), Flags);
 | 
						|
      Flags |= Rel::Alias; // continue with the alias.
 | 
						|
    } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
 | 
						|
      add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
 | 
						|
      Flags |= Rel::Alias; // continue with the alias
 | 
						|
    } else if (const UnresolvedUsingValueDecl *UUVD =
 | 
						|
                   dyn_cast<UnresolvedUsingValueDecl>(D)) {
 | 
						|
      if (Resolver) {
 | 
						|
        for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
 | 
						|
          add(Target, Flags); // no Underlying as this is a non-renaming alias
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Flags |= Rel::Alias; // continue with the alias
 | 
						|
    } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
 | 
						|
      // Include the Introducing decl, but don't traverse it. This may end up
 | 
						|
      // including *all* shadows, which we don't want.
 | 
						|
      report(USD->getIntroducer(), Flags | Rel::Alias);
 | 
						|
      // Shadow decls are synthetic and not themselves interesting.
 | 
						|
      // Record the underlying decl instead, if allowed.
 | 
						|
      D = USD->getTargetDecl();
 | 
						|
    } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
 | 
						|
      D = DG->getDeducedTemplate();
 | 
						|
    } else if (const ObjCImplementationDecl *IID =
 | 
						|
                   dyn_cast<ObjCImplementationDecl>(D)) {
 | 
						|
      // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
 | 
						|
      // pair as long as the interface isn't implicit.
 | 
						|
      if (const auto *CID = IID->getClassInterface())
 | 
						|
        if (const auto *DD = CID->getDefinition())
 | 
						|
          if (!DD->isImplicitInterfaceDecl())
 | 
						|
            D = DD;
 | 
						|
    } else if (const ObjCCategoryImplDecl *CID =
 | 
						|
                   dyn_cast<ObjCCategoryImplDecl>(D)) {
 | 
						|
      // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
 | 
						|
      D = CID->getCategoryDecl();
 | 
						|
    }
 | 
						|
    if (!D)
 | 
						|
      return;
 | 
						|
 | 
						|
    if (const Decl *Pat = getTemplatePattern(D)) {
 | 
						|
      assert(Pat != D);
 | 
						|
      add(Pat, Flags | Rel::TemplatePattern);
 | 
						|
      // Now continue with the instantiation.
 | 
						|
      Flags |= Rel::TemplateInstantiation;
 | 
						|
    }
 | 
						|
 | 
						|
    report(D, Flags);
 | 
						|
  }
 | 
						|
 | 
						|
  void add(const Stmt *S, RelSet Flags) {
 | 
						|
    if (!S)
 | 
						|
      return;
 | 
						|
    debug(*S, Flags);
 | 
						|
    struct Visitor : public ConstStmtVisitor<Visitor> {
 | 
						|
      TargetFinder &Outer;
 | 
						|
      RelSet Flags;
 | 
						|
      Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
 | 
						|
 | 
						|
      void VisitCallExpr(const CallExpr *CE) {
 | 
						|
        Outer.add(CE->getCalleeDecl(), Flags);
 | 
						|
      }
 | 
						|
      void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
 | 
						|
        Outer.add(E->getNamedConcept(), Flags);
 | 
						|
      }
 | 
						|
      void VisitDeclRefExpr(const DeclRefExpr *DRE) {
 | 
						|
        const Decl *D = DRE->getDecl();
 | 
						|
        // UsingShadowDecl allows us to record the UsingDecl.
 | 
						|
        // getFoundDecl() returns the wrong thing in other cases (templates).
 | 
						|
        if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
 | 
						|
          D = USD;
 | 
						|
        Outer.add(D, Flags);
 | 
						|
      }
 | 
						|
      void VisitMemberExpr(const MemberExpr *ME) {
 | 
						|
        const Decl *D = ME->getMemberDecl();
 | 
						|
        if (auto *USD =
 | 
						|
                llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
 | 
						|
          D = USD;
 | 
						|
        Outer.add(D, Flags);
 | 
						|
      }
 | 
						|
      void VisitOverloadExpr(const OverloadExpr *OE) {
 | 
						|
        for (auto *D : OE->decls())
 | 
						|
          Outer.add(D, Flags);
 | 
						|
      }
 | 
						|
      void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
 | 
						|
        Outer.add(SE->getPack(), Flags);
 | 
						|
      }
 | 
						|
      void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
 | 
						|
        Outer.add(CCE->getConstructor(), Flags);
 | 
						|
      }
 | 
						|
      void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
 | 
						|
        for (const DesignatedInitExpr::Designator &D :
 | 
						|
             llvm::reverse(DIE->designators()))
 | 
						|
          if (D.isFieldDesignator()) {
 | 
						|
            Outer.add(D.getField(), Flags);
 | 
						|
            // We don't know which designator was intended, we assume the outer.
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
      void VisitGotoStmt(const GotoStmt *Goto) {
 | 
						|
        if (auto *LabelDecl = Goto->getLabel())
 | 
						|
          Outer.add(LabelDecl, Flags);
 | 
						|
      }
 | 
						|
      void VisitLabelStmt(const LabelStmt *Label) {
 | 
						|
        if (auto *LabelDecl = Label->getDecl())
 | 
						|
          Outer.add(LabelDecl, Flags);
 | 
						|
      }
 | 
						|
      void
 | 
						|
      VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
 | 
						|
        if (Outer.Resolver) {
 | 
						|
          for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
 | 
						|
            Outer.add(D, Flags);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
 | 
						|
        if (Outer.Resolver) {
 | 
						|
          for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
 | 
						|
            Outer.add(D, Flags);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
 | 
						|
        Outer.add(OIRE->getDecl(), Flags);
 | 
						|
      }
 | 
						|
      void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
 | 
						|
        Outer.add(OME->getMethodDecl(), Flags);
 | 
						|
      }
 | 
						|
      void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
 | 
						|
        if (OPRE->isExplicitProperty())
 | 
						|
          Outer.add(OPRE->getExplicitProperty(), Flags);
 | 
						|
        else {
 | 
						|
          if (OPRE->isMessagingGetter())
 | 
						|
            Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
 | 
						|
          if (OPRE->isMessagingSetter())
 | 
						|
            Outer.add(OPRE->getImplicitPropertySetter(), Flags);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
 | 
						|
        Outer.add(OPE->getProtocol(), Flags);
 | 
						|
      }
 | 
						|
      void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
 | 
						|
        Outer.add(OVE->getSourceExpr(), Flags);
 | 
						|
      }
 | 
						|
      void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
 | 
						|
        Outer.add(POE->getSyntacticForm(), Flags);
 | 
						|
      }
 | 
						|
      void VisitCXXNewExpr(const CXXNewExpr *CNE) {
 | 
						|
        Outer.add(CNE->getOperatorNew(), Flags);
 | 
						|
      }
 | 
						|
      void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
 | 
						|
        Outer.add(CDE->getOperatorDelete(), Flags);
 | 
						|
      }
 | 
						|
    };
 | 
						|
    Visitor(*this, Flags).Visit(S);
 | 
						|
  }
 | 
						|
 | 
						|
  void add(QualType T, RelSet Flags) {
 | 
						|
    if (T.isNull())
 | 
						|
      return;
 | 
						|
    debug(T, Flags);
 | 
						|
    struct Visitor : public TypeVisitor<Visitor> {
 | 
						|
      TargetFinder &Outer;
 | 
						|
      RelSet Flags;
 | 
						|
      Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
 | 
						|
 | 
						|
      void VisitTagType(const TagType *TT) {
 | 
						|
        Outer.add(TT->getAsTagDecl(), Flags);
 | 
						|
      }
 | 
						|
 | 
						|
      void VisitElaboratedType(const ElaboratedType *ET) {
 | 
						|
        Outer.add(ET->desugar(), Flags);
 | 
						|
      }
 | 
						|
 | 
						|
      void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
 | 
						|
        Outer.add(ICNT->getDecl(), Flags);
 | 
						|
      }
 | 
						|
 | 
						|
      void VisitDecltypeType(const DecltypeType *DTT) {
 | 
						|
        Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
 | 
						|
      }
 | 
						|
      void VisitDeducedType(const DeducedType *DT) {
 | 
						|
        // FIXME: In practice this doesn't work: the AutoType you find inside
 | 
						|
        // TypeLoc never has a deduced type. https://llvm.org/PR42914
 | 
						|
        Outer.add(DT->getDeducedType(), Flags | Rel::Underlying);
 | 
						|
      }
 | 
						|
      void VisitDeducedTemplateSpecializationType(
 | 
						|
          const DeducedTemplateSpecializationType *DTST) {
 | 
						|
        // FIXME: This is a workaround for https://llvm.org/PR42914,
 | 
						|
        // which is causing DTST->getDeducedType() to be empty. We
 | 
						|
        // fall back to the template pattern and miss the instantiation
 | 
						|
        // even when it's known in principle. Once that bug is fixed,
 | 
						|
        // this method can be removed (the existing handling in
 | 
						|
        // VisitDeducedType() is sufficient).
 | 
						|
        if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
 | 
						|
          Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
 | 
						|
      }
 | 
						|
      void VisitDependentNameType(const DependentNameType *DNT) {
 | 
						|
        if (Outer.Resolver) {
 | 
						|
          for (const NamedDecl *ND :
 | 
						|
               Outer.Resolver->resolveDependentNameType(DNT)) {
 | 
						|
            Outer.add(ND, Flags);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      void VisitDependentTemplateSpecializationType(
 | 
						|
          const DependentTemplateSpecializationType *DTST) {
 | 
						|
        if (Outer.Resolver) {
 | 
						|
          for (const NamedDecl *ND :
 | 
						|
               Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
 | 
						|
            Outer.add(ND, Flags);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      void VisitTypedefType(const TypedefType *TT) {
 | 
						|
        Outer.add(TT->getDecl(), Flags);
 | 
						|
      }
 | 
						|
      void
 | 
						|
      VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
 | 
						|
        // Have to handle these case-by-case.
 | 
						|
 | 
						|
        // templated type aliases: there's no specialized/instantiated using
 | 
						|
        // decl to point to. So try to find a decl for the underlying type
 | 
						|
        // (after substitution), and failing that point to the (templated) using
 | 
						|
        // decl.
 | 
						|
        if (TST->isTypeAlias()) {
 | 
						|
          Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
 | 
						|
          // Don't *traverse* the alias, which would result in traversing the
 | 
						|
          // template of the underlying type.
 | 
						|
          Outer.report(
 | 
						|
              TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
 | 
						|
              Flags | Rel::Alias | Rel::TemplatePattern);
 | 
						|
        }
 | 
						|
        // specializations of template template parameters aren't instantiated
 | 
						|
        // into decls, so they must refer to the parameter itself.
 | 
						|
        else if (const auto *Parm =
 | 
						|
                     llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
 | 
						|
                         TST->getTemplateName().getAsTemplateDecl()))
 | 
						|
          Outer.add(Parm, Flags);
 | 
						|
        // class template specializations have a (specialized) CXXRecordDecl.
 | 
						|
        else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
 | 
						|
          Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
 | 
						|
        else {
 | 
						|
          // fallback: the (un-specialized) declaration from primary template.
 | 
						|
          if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
 | 
						|
            Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
 | 
						|
        Outer.add(TTPT->getDecl(), Flags);
 | 
						|
      }
 | 
						|
      void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
 | 
						|
        Outer.add(OIT->getDecl(), Flags);
 | 
						|
      }
 | 
						|
      void VisitObjCObjectType(const ObjCObjectType *OOT) {
 | 
						|
        // Make all of the protocols targets since there's no child nodes for
 | 
						|
        // protocols. This isn't needed for the base type, which *does* have a
 | 
						|
        // child `ObjCInterfaceTypeLoc`. This structure is a hack, but it works
 | 
						|
        // well for go-to-definition.
 | 
						|
        unsigned NumProtocols = OOT->getNumProtocols();
 | 
						|
        for (unsigned I = 0; I < NumProtocols; I++)
 | 
						|
          Outer.add(OOT->getProtocol(I), Flags);
 | 
						|
      }
 | 
						|
    };
 | 
						|
    Visitor(*this, Flags).Visit(T.getTypePtr());
 | 
						|
  }
 | 
						|
 | 
						|
  void add(const NestedNameSpecifier *NNS, RelSet Flags) {
 | 
						|
    if (!NNS)
 | 
						|
      return;
 | 
						|
    debug(*NNS, Flags);
 | 
						|
    switch (NNS->getKind()) {
 | 
						|
    case NestedNameSpecifier::Namespace:
 | 
						|
      add(NNS->getAsNamespace(), Flags);
 | 
						|
      return;
 | 
						|
    case NestedNameSpecifier::NamespaceAlias:
 | 
						|
      add(NNS->getAsNamespaceAlias(), Flags);
 | 
						|
      return;
 | 
						|
    case NestedNameSpecifier::Identifier:
 | 
						|
      if (Resolver) {
 | 
						|
        add(QualType(Resolver->resolveNestedNameSpecifierToType(NNS), 0),
 | 
						|
            Flags);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    case NestedNameSpecifier::TypeSpec:
 | 
						|
    case NestedNameSpecifier::TypeSpecWithTemplate:
 | 
						|
      add(QualType(NNS->getAsType(), 0), Flags);
 | 
						|
      return;
 | 
						|
    case NestedNameSpecifier::Global:
 | 
						|
      // This should be TUDecl, but we can't get a pointer to it!
 | 
						|
      return;
 | 
						|
    case NestedNameSpecifier::Super:
 | 
						|
      add(NNS->getAsRecordDecl(), Flags);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
 | 
						|
  }
 | 
						|
 | 
						|
  void add(const CXXCtorInitializer *CCI, RelSet Flags) {
 | 
						|
    if (!CCI)
 | 
						|
      return;
 | 
						|
    debug(*CCI, Flags);
 | 
						|
 | 
						|
    if (CCI->isAnyMemberInitializer())
 | 
						|
      add(CCI->getAnyMember(), Flags);
 | 
						|
    // Constructor calls contain a TypeLoc node, so we don't handle them here.
 | 
						|
  }
 | 
						|
 | 
						|
  void add(const TemplateArgument &Arg, RelSet Flags) {
 | 
						|
    // Only used for template template arguments.
 | 
						|
    // For type and non-type template arguments, SelectionTree
 | 
						|
    // will hit a more specific node (e.g. a TypeLoc or a
 | 
						|
    // DeclRefExpr).
 | 
						|
    if (Arg.getKind() == TemplateArgument::Template ||
 | 
						|
        Arg.getKind() == TemplateArgument::TemplateExpansion) {
 | 
						|
      if (TemplateDecl *TD = Arg.getAsTemplate().getAsTemplateDecl()) {
 | 
						|
        report(TD, Flags);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
 | 
						|
allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
 | 
						|
  dlog("allTargetDecls({0})", nodeToString(N));
 | 
						|
  TargetFinder Finder(Resolver);
 | 
						|
  DeclRelationSet Flags;
 | 
						|
  if (const Decl *D = N.get<Decl>())
 | 
						|
    Finder.add(D, Flags);
 | 
						|
  else if (const Stmt *S = N.get<Stmt>())
 | 
						|
    Finder.add(S, Flags);
 | 
						|
  else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
 | 
						|
    Finder.add(NNSL->getNestedNameSpecifier(), Flags);
 | 
						|
  else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
 | 
						|
    Finder.add(NNS, Flags);
 | 
						|
  else if (const TypeLoc *TL = N.get<TypeLoc>())
 | 
						|
    Finder.add(TL->getType(), Flags);
 | 
						|
  else if (const QualType *QT = N.get<QualType>())
 | 
						|
    Finder.add(*QT, Flags);
 | 
						|
  else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
 | 
						|
    Finder.add(CCI, Flags);
 | 
						|
  else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
 | 
						|
    Finder.add(TAL->getArgument(), Flags);
 | 
						|
  else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
 | 
						|
    Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
 | 
						|
  return Finder.takeDecls();
 | 
						|
}
 | 
						|
 | 
						|
llvm::SmallVector<const NamedDecl *, 1>
 | 
						|
targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
 | 
						|
           const HeuristicResolver *Resolver) {
 | 
						|
  llvm::SmallVector<const NamedDecl *, 1> Result;
 | 
						|
  for (const auto &Entry : allTargetDecls(N, Resolver)) {
 | 
						|
    if (!(Entry.second & ~Mask))
 | 
						|
      Result.push_back(Entry.first);
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
llvm::SmallVector<const NamedDecl *, 1>
 | 
						|
explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask,
 | 
						|
                         const HeuristicResolver *Resolver) {
 | 
						|
  assert(!(Mask & (DeclRelation::TemplatePattern |
 | 
						|
                   DeclRelation::TemplateInstantiation)) &&
 | 
						|
         "explicitReferenceTargets handles templates on its own");
 | 
						|
  auto Decls = allTargetDecls(N, Resolver);
 | 
						|
 | 
						|
  // We prefer to return template instantiation, but fallback to template
 | 
						|
  // pattern if instantiation is not available.
 | 
						|
  Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
 | 
						|
 | 
						|
  llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
 | 
						|
  llvm::SmallVector<const NamedDecl *, 1> Targets;
 | 
						|
  bool SeenTemplateInstantiations = false;
 | 
						|
  for (auto &D : Decls) {
 | 
						|
    if (D.second & ~Mask)
 | 
						|
      continue;
 | 
						|
    if (D.second & DeclRelation::TemplatePattern) {
 | 
						|
      TemplatePatterns.push_back(D.first);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (D.second & DeclRelation::TemplateInstantiation)
 | 
						|
      SeenTemplateInstantiations = true;
 | 
						|
    Targets.push_back(D.first);
 | 
						|
  }
 | 
						|
  if (!SeenTemplateInstantiations)
 | 
						|
    Targets.insert(Targets.end(), TemplatePatterns.begin(),
 | 
						|
                   TemplatePatterns.end());
 | 
						|
  return Targets;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
 | 
						|
                                          const HeuristicResolver *Resolver) {
 | 
						|
  struct Visitor : ConstDeclVisitor<Visitor> {
 | 
						|
    Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
 | 
						|
 | 
						|
    const HeuristicResolver *Resolver;
 | 
						|
    llvm::SmallVector<ReferenceLoc> Refs;
 | 
						|
 | 
						|
    void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
 | 
						|
      // We want to keep it as non-declaration references, as the
 | 
						|
      // "using namespace" declaration doesn't have a name.
 | 
						|
      Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
 | 
						|
                                  D->getIdentLocation(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {D->getNominatedNamespaceAsWritten()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitUsingDecl(const UsingDecl *D) {
 | 
						|
      // "using ns::identifier;" is a non-declaration reference.
 | 
						|
      Refs.push_back(ReferenceLoc{
 | 
						|
          D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
 | 
						|
          explicitReferenceTargets(DynTypedNode::create(*D),
 | 
						|
                                   DeclRelation::Underlying, Resolver)});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
 | 
						|
      // For namespace alias, "namespace Foo = Target;", we add two references.
 | 
						|
      // Add a declaration reference for Foo.
 | 
						|
      VisitNamedDecl(D);
 | 
						|
      // Add a non-declaration reference for Target.
 | 
						|
      Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
 | 
						|
                                  D->getTargetNameLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {D->getAliasedNamespace()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitNamedDecl(const NamedDecl *ND) {
 | 
						|
      // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
 | 
						|
      // as their underlying decls, covering the same range, will be visited.
 | 
						|
      if (llvm::isa<ClassTemplateDecl>(ND) ||
 | 
						|
          llvm::isa<FunctionTemplateDecl>(ND) ||
 | 
						|
          llvm::isa<VarTemplateDecl>(ND) ||
 | 
						|
          llvm::isa<TypeAliasTemplateDecl>(ND))
 | 
						|
        return;
 | 
						|
      // FIXME: decide on how to surface destructors when we need them.
 | 
						|
      if (llvm::isa<CXXDestructorDecl>(ND))
 | 
						|
        return;
 | 
						|
      // Filter anonymous decls, name location will point outside the name token
 | 
						|
      // and the clients are not prepared to handle that.
 | 
						|
      if (ND->getDeclName().isIdentifier() &&
 | 
						|
          !ND->getDeclName().getAsIdentifierInfo())
 | 
						|
        return;
 | 
						|
      Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
 | 
						|
                                  ND->getLocation(),
 | 
						|
                                  /*IsDecl=*/true,
 | 
						|
                                  {ND}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
 | 
						|
      // The class template name in a deduction guide targets the class
 | 
						|
      // template.
 | 
						|
      Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
 | 
						|
                                  DG->getNameInfo().getLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {DG->getDeducedTemplate()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
 | 
						|
      // The name may have several tokens, we can only report the first.
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  OMD->getSelectorStartLoc(),
 | 
						|
                                  /*IsDecl=*/true,
 | 
						|
                                  {OMD}});
 | 
						|
    }
 | 
						|
 | 
						|
    void visitProtocolList(
 | 
						|
        llvm::iterator_range<ObjCProtocolList::iterator> Protocols,
 | 
						|
        llvm::iterator_range<const SourceLocation *> Locations) {
 | 
						|
      for (const auto &P : llvm::zip(Protocols, Locations)) {
 | 
						|
        Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                    std::get<1>(P),
 | 
						|
                                    /*IsDecl=*/false,
 | 
						|
                                    {std::get<0>(P)}});
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCInterfaceDecl(const ObjCInterfaceDecl *OID) {
 | 
						|
      if (OID->isThisDeclarationADefinition())
 | 
						|
        visitProtocolList(OID->protocols(), OID->protocol_locs());
 | 
						|
      Base::VisitObjCInterfaceDecl(OID); // Visit the interface's name.
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
 | 
						|
      visitProtocolList(OCD->protocols(), OCD->protocol_locs());
 | 
						|
      // getLocation is the extended class's location, not the category's.
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  OCD->getLocation(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {OCD->getClassInterface()}});
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  OCD->getCategoryNameLoc(),
 | 
						|
                                  /*IsDecl=*/true,
 | 
						|
                                  {OCD}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  OCID->getLocation(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {OCID->getClassInterface()}});
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  OCID->getCategoryNameLoc(),
 | 
						|
                                  /*IsDecl=*/true,
 | 
						|
                                  {OCID->getCategoryDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCProtocolDecl(const ObjCProtocolDecl *OPD) {
 | 
						|
      if (OPD->isThisDeclarationADefinition())
 | 
						|
        visitProtocolList(OPD->protocols(), OPD->protocol_locs());
 | 
						|
      Base::VisitObjCProtocolDecl(OPD); // Visit the protocol's name.
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  Visitor V{Resolver};
 | 
						|
  V.Visit(D);
 | 
						|
  return V.Refs;
 | 
						|
}
 | 
						|
 | 
						|
llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
 | 
						|
                                          const HeuristicResolver *Resolver) {
 | 
						|
  struct Visitor : ConstStmtVisitor<Visitor> {
 | 
						|
    Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
 | 
						|
 | 
						|
    const HeuristicResolver *Resolver;
 | 
						|
    // FIXME: handle more complicated cases: more ObjC, designated initializers.
 | 
						|
    llvm::SmallVector<ReferenceLoc> Refs;
 | 
						|
 | 
						|
    void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
 | 
						|
      Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
 | 
						|
                                  E->getConceptNameLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {E->getNamedConcept()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitDeclRefExpr(const DeclRefExpr *E) {
 | 
						|
      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
 | 
						|
                                  E->getNameInfo().getLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {E->getFoundDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
 | 
						|
      Refs.push_back(ReferenceLoc{
 | 
						|
          E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
 | 
						|
          explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitMemberExpr(const MemberExpr *E) {
 | 
						|
      // Skip destructor calls to avoid duplication: TypeLoc within will be
 | 
						|
      // visited separately.
 | 
						|
      if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
 | 
						|
        return;
 | 
						|
      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
 | 
						|
                                  E->getMemberNameInfo().getLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {E->getFoundDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void
 | 
						|
    VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
 | 
						|
      Refs.push_back(ReferenceLoc{
 | 
						|
          E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
 | 
						|
          /*IsDecl=*/false,
 | 
						|
          explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitOverloadExpr(const OverloadExpr *E) {
 | 
						|
      Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
 | 
						|
                                  E->getNameInfo().getLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  llvm::SmallVector<const NamedDecl *, 1>(
 | 
						|
                                      E->decls().begin(), E->decls().end())});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  E->getPackLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {E->getPack()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
 | 
						|
      Refs.push_back(ReferenceLoc{
 | 
						|
          NestedNameSpecifierLoc(), E->getLocation(),
 | 
						|
          /*IsDecl=*/false,
 | 
						|
          // Select the getter, setter, or @property depending on the call.
 | 
						|
          explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  OIRE->getLocation(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {OIRE->getDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
 | 
						|
      // The name may have several tokens, we can only report the first.
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  E->getSelectorStartLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {E->getMethodDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
 | 
						|
      for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
 | 
						|
        if (!D.isFieldDesignator())
 | 
						|
          continue;
 | 
						|
 | 
						|
        Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                    D.getFieldLoc(),
 | 
						|
                                    /*IsDecl=*/false,
 | 
						|
                                    {D.getField()}});
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitGotoStmt(const GotoStmt *GS) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  GS->getLabelLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {GS->getLabel()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitLabelStmt(const LabelStmt *LS) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  LS->getIdentLoc(),
 | 
						|
                                  /*IsDecl=*/true,
 | 
						|
                                  {LS->getDecl()}});
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  Visitor V{Resolver};
 | 
						|
  V.Visit(S);
 | 
						|
  return V.Refs;
 | 
						|
}
 | 
						|
 | 
						|
llvm::SmallVector<ReferenceLoc>
 | 
						|
refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
 | 
						|
  struct Visitor : TypeLocVisitor<Visitor> {
 | 
						|
    Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
 | 
						|
 | 
						|
    const HeuristicResolver *Resolver;
 | 
						|
    llvm::SmallVector<ReferenceLoc> Refs;
 | 
						|
 | 
						|
    void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
 | 
						|
      // We only know about qualifier, rest if filled by inner locations.
 | 
						|
      size_t InitialSize = Refs.size();
 | 
						|
      Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
 | 
						|
      size_t NewSize = Refs.size();
 | 
						|
      // Add qualifier for the newly-added refs.
 | 
						|
      for (unsigned I = InitialSize; I < NewSize; ++I) {
 | 
						|
        ReferenceLoc *Ref = &Refs[I];
 | 
						|
        // Fill in the qualifier.
 | 
						|
        assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
 | 
						|
        Ref->Qualifier = L.getQualifierLoc();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitTagTypeLoc(TagTypeLoc L) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  L.getNameLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {L.getDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  L.getNameLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {L.getDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
 | 
						|
      // We must ensure template type aliases are included in results if they
 | 
						|
      // were written in the source code, e.g. in
 | 
						|
      //    template <class T> using valias = vector<T>;
 | 
						|
      //    ^valias<int> x;
 | 
						|
      // 'explicitReferenceTargets' will return:
 | 
						|
      //    1. valias with mask 'Alias'.
 | 
						|
      //    2. 'vector<int>' with mask 'Underlying'.
 | 
						|
      //  we want to return only #1 in this case.
 | 
						|
      Refs.push_back(ReferenceLoc{
 | 
						|
          NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
 | 
						|
          explicitReferenceTargets(DynTypedNode::create(L.getType()),
 | 
						|
                                   DeclRelation::Alias, Resolver)});
 | 
						|
    }
 | 
						|
    void VisitDeducedTemplateSpecializationTypeLoc(
 | 
						|
        DeducedTemplateSpecializationTypeLoc L) {
 | 
						|
      Refs.push_back(ReferenceLoc{
 | 
						|
          NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
 | 
						|
          explicitReferenceTargets(DynTypedNode::create(L.getType()),
 | 
						|
                                   DeclRelation::Alias, Resolver)});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  TL.getNameLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {TL.getDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitDependentTemplateSpecializationTypeLoc(
 | 
						|
        DependentTemplateSpecializationTypeLoc L) {
 | 
						|
      Refs.push_back(
 | 
						|
          ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
 | 
						|
                       /*IsDecl=*/false,
 | 
						|
                       explicitReferenceTargets(
 | 
						|
                           DynTypedNode::create(L.getType()), {}, Resolver)});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
 | 
						|
      Refs.push_back(
 | 
						|
          ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
 | 
						|
                       /*IsDecl=*/false,
 | 
						|
                       explicitReferenceTargets(
 | 
						|
                           DynTypedNode::create(L.getType()), {}, Resolver)});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitTypedefTypeLoc(TypedefTypeLoc L) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  L.getNameLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {L.getTypedefNameDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
 | 
						|
      Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                  L.getNameLoc(),
 | 
						|
                                  /*IsDecl=*/false,
 | 
						|
                                  {L.getIFaceDecl()}});
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc L) {
 | 
						|
      unsigned NumProtocols = L.getNumProtocols();
 | 
						|
      for (unsigned I = 0; I < NumProtocols; I++) {
 | 
						|
        Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                                    L.getProtocolLoc(I),
 | 
						|
                                    /*IsDecl=*/false,
 | 
						|
                                    {L.getProtocol(I)}});
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  Visitor V{Resolver};
 | 
						|
  V.Visit(L.getUnqualifiedLoc());
 | 
						|
  return V.Refs;
 | 
						|
}
 | 
						|
 | 
						|
class ExplicitReferenceCollector
 | 
						|
    : public RecursiveASTVisitor<ExplicitReferenceCollector> {
 | 
						|
public:
 | 
						|
  ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
 | 
						|
                             const HeuristicResolver *Resolver)
 | 
						|
      : Out(Out), Resolver(Resolver) {
 | 
						|
    assert(Out);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitTypeLoc(TypeLoc TTL) {
 | 
						|
    if (TypeLocsToSkip.count(TTL.getBeginLoc()))
 | 
						|
      return true;
 | 
						|
    visitNode(DynTypedNode::create(TTL));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
 | 
						|
    // ElaboratedTypeLoc will reports information for its inner type loc.
 | 
						|
    // Otherwise we loose information about inner types loc's qualifier.
 | 
						|
    TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
 | 
						|
    TypeLocsToSkip.insert(Inner.getBeginLoc());
 | 
						|
    return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitStmt(Stmt *S) {
 | 
						|
    visitNode(DynTypedNode::create(*S));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
 | 
						|
    visitNode(DynTypedNode::create(*OVE));
 | 
						|
    // Not clear why the source expression is skipped by default...
 | 
						|
    // FIXME: can we just make RecursiveASTVisitor do this?
 | 
						|
    return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
 | 
						|
    visitNode(DynTypedNode::create(*POE));
 | 
						|
    // Traverse only the syntactic form to find the *written* references.
 | 
						|
    // (The semantic form also contains lots of duplication)
 | 
						|
    return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
 | 
						|
  }
 | 
						|
 | 
						|
  // We re-define Traverse*, since there's no corresponding Visit*.
 | 
						|
  // TemplateArgumentLoc is the only way to get locations for references to
 | 
						|
  // template template parameters.
 | 
						|
  bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
 | 
						|
    switch (A.getArgument().getKind()) {
 | 
						|
    case TemplateArgument::Template:
 | 
						|
    case TemplateArgument::TemplateExpansion:
 | 
						|
      reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
 | 
						|
                                   A.getTemplateNameLoc(),
 | 
						|
                                   /*IsDecl=*/false,
 | 
						|
                                   {A.getArgument()
 | 
						|
                                        .getAsTemplateOrTemplatePattern()
 | 
						|
                                        .getAsTemplateDecl()}},
 | 
						|
                      DynTypedNode::create(A.getArgument()));
 | 
						|
      break;
 | 
						|
    case TemplateArgument::Declaration:
 | 
						|
      break; // FIXME: can this actually happen in TemplateArgumentLoc?
 | 
						|
    case TemplateArgument::Integral:
 | 
						|
    case TemplateArgument::Null:
 | 
						|
    case TemplateArgument::NullPtr:
 | 
						|
      break; // no references.
 | 
						|
    case TemplateArgument::Pack:
 | 
						|
    case TemplateArgument::Type:
 | 
						|
    case TemplateArgument::Expression:
 | 
						|
      break; // Handled by VisitType and VisitExpression.
 | 
						|
    };
 | 
						|
    return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitDecl(Decl *D) {
 | 
						|
    visitNode(DynTypedNode::create(*D));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have to use Traverse* because there is no corresponding Visit*.
 | 
						|
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
 | 
						|
    if (!L.getNestedNameSpecifier())
 | 
						|
      return true;
 | 
						|
    visitNode(DynTypedNode::create(L));
 | 
						|
    // Inner type is missing information about its qualifier, skip it.
 | 
						|
    if (auto TL = L.getTypeLoc())
 | 
						|
      TypeLocsToSkip.insert(TL.getBeginLoc());
 | 
						|
    return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
 | 
						|
    visitNode(DynTypedNode::create(*Init));
 | 
						|
    return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// Obtain information about a reference directly defined in \p N. Does not
 | 
						|
  /// recurse into child nodes, e.g. do not expect references for constructor
 | 
						|
  /// initializers
 | 
						|
  ///
 | 
						|
  /// Any of the fields in the returned structure can be empty, but not all of
 | 
						|
  /// them, e.g.
 | 
						|
  ///   - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
 | 
						|
  ///     source location information may be missing,
 | 
						|
  ///   - for dependent code, targets may be empty.
 | 
						|
  ///
 | 
						|
  /// (!) For the purposes of this function declarations are not considered to
 | 
						|
  ///     be references. However, declarations can have references inside them,
 | 
						|
  ///     e.g. 'namespace foo = std' references namespace 'std' and this
 | 
						|
  ///     function will return the corresponding reference.
 | 
						|
  llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
 | 
						|
    if (auto *D = N.get<Decl>())
 | 
						|
      return refInDecl(D, Resolver);
 | 
						|
    if (auto *S = N.get<Stmt>())
 | 
						|
      return refInStmt(S, Resolver);
 | 
						|
    if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
 | 
						|
      // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
 | 
						|
      return {ReferenceLoc{
 | 
						|
          NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
 | 
						|
          explicitReferenceTargets(
 | 
						|
              DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
 | 
						|
              DeclRelation::Alias, Resolver)}};
 | 
						|
    }
 | 
						|
    if (const TypeLoc *TL = N.get<TypeLoc>())
 | 
						|
      return refInTypeLoc(*TL, Resolver);
 | 
						|
    if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
 | 
						|
      // Other type initializers (e.g. base initializer) are handled by visiting
 | 
						|
      // the typeLoc.
 | 
						|
      if (CCI->isAnyMemberInitializer()) {
 | 
						|
        return {ReferenceLoc{NestedNameSpecifierLoc(),
 | 
						|
                             CCI->getMemberLocation(),
 | 
						|
                             /*IsDecl=*/false,
 | 
						|
                             {CCI->getAnyMember()}}};
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // We do not have location information for other nodes (QualType, etc)
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  void visitNode(DynTypedNode N) {
 | 
						|
    for (auto &R : explicitReference(N))
 | 
						|
      reportReference(std::move(R), N);
 | 
						|
  }
 | 
						|
 | 
						|
  void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
 | 
						|
    // Strip null targets that can arise from invalid code.
 | 
						|
    // (This avoids having to check for null everywhere we insert)
 | 
						|
    llvm::erase_value(Ref.Targets, nullptr);
 | 
						|
    // Our promise is to return only references from the source code. If we lack
 | 
						|
    // location information, skip these nodes.
 | 
						|
    // Normally this should not happen in practice, unless there are bugs in the
 | 
						|
    // traversals or users started the traversal at an implicit node.
 | 
						|
    if (Ref.NameLoc.isInvalid()) {
 | 
						|
      dlog("invalid location at node {0}", nodeToString(N));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Out(Ref);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::function_ref<void(ReferenceLoc)> Out;
 | 
						|
  const HeuristicResolver *Resolver;
 | 
						|
  /// TypeLocs starting at these locations must be skipped, see
 | 
						|
  /// TraverseElaboratedTypeSpecifierLoc for details.
 | 
						|
  llvm::DenseSet<SourceLocation> TypeLocsToSkip;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void findExplicitReferences(const Stmt *S,
 | 
						|
                            llvm::function_ref<void(ReferenceLoc)> Out,
 | 
						|
                            const HeuristicResolver *Resolver) {
 | 
						|
  assert(S);
 | 
						|
  ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
 | 
						|
}
 | 
						|
void findExplicitReferences(const Decl *D,
 | 
						|
                            llvm::function_ref<void(ReferenceLoc)> Out,
 | 
						|
                            const HeuristicResolver *Resolver) {
 | 
						|
  assert(D);
 | 
						|
  ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
 | 
						|
}
 | 
						|
void findExplicitReferences(const ASTContext &AST,
 | 
						|
                            llvm::function_ref<void(ReferenceLoc)> Out,
 | 
						|
                            const HeuristicResolver *Resolver) {
 | 
						|
  ExplicitReferenceCollector(Out, Resolver)
 | 
						|
      .TraverseAST(const_cast<ASTContext &>(AST));
 | 
						|
}
 | 
						|
 | 
						|
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
 | 
						|
  switch (R) {
 | 
						|
#define REL_CASE(X)                                                            \
 | 
						|
  case DeclRelation::X:                                                        \
 | 
						|
    return OS << #X;
 | 
						|
    REL_CASE(Alias);
 | 
						|
    REL_CASE(Underlying);
 | 
						|
    REL_CASE(TemplateInstantiation);
 | 
						|
    REL_CASE(TemplatePattern);
 | 
						|
#undef REL_CASE
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled DeclRelation enum");
 | 
						|
}
 | 
						|
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
 | 
						|
  const char *Sep = "";
 | 
						|
  for (unsigned I = 0; I < RS.S.size(); ++I) {
 | 
						|
    if (RS.S.test(I)) {
 | 
						|
      OS << Sep << static_cast<DeclRelation>(I);
 | 
						|
      Sep = "|";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
 | 
						|
  // note we cannot print R.NameLoc without a source manager.
 | 
						|
  OS << "targets = {";
 | 
						|
  bool First = true;
 | 
						|
  for (const NamedDecl *T : R.Targets) {
 | 
						|
    if (!First)
 | 
						|
      OS << ", ";
 | 
						|
    else
 | 
						|
      First = false;
 | 
						|
    OS << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
 | 
						|
  }
 | 
						|
  OS << "}";
 | 
						|
  if (R.Qualifier) {
 | 
						|
    OS << ", qualifier = '";
 | 
						|
    R.Qualifier.getNestedNameSpecifier()->print(OS,
 | 
						|
                                                PrintingPolicy(LangOptions()));
 | 
						|
    OS << "'";
 | 
						|
  }
 | 
						|
  if (R.IsDecl)
 | 
						|
    OS << ", decl";
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace clangd
 | 
						|
} // namespace clang
 |