402 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			402 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- FuzzyMatch.h - Approximate identifier matching  ---------*- C++-*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// To check for a match between a Pattern ('u_p') and a Word ('unique_ptr'),
 | 
						|
// we consider the possible partial match states:
 | 
						|
//
 | 
						|
//     u n i q u e _ p t r
 | 
						|
//   +---------------------
 | 
						|
//   |A . . . . . . . . . .
 | 
						|
//  u|
 | 
						|
//   |. . . . . . . . . . .
 | 
						|
//  _|
 | 
						|
//   |. . . . . . . O . . .
 | 
						|
//  p|
 | 
						|
//   |. . . . . . . . . . B
 | 
						|
//
 | 
						|
// Each dot represents some prefix of the pattern being matched against some
 | 
						|
// prefix of the word.
 | 
						|
//   - A is the initial state: '' matched against ''
 | 
						|
//   - O is an intermediate state: 'u_' matched against 'unique_'
 | 
						|
//   - B is the target state: 'u_p' matched against 'unique_ptr'
 | 
						|
//
 | 
						|
// We aim to find the best path from A->B.
 | 
						|
//  - Moving right (consuming a word character)
 | 
						|
//    Always legal: not all word characters must match.
 | 
						|
//  - Moving diagonally (consuming both a word and pattern character)
 | 
						|
//    Legal if the characters match.
 | 
						|
//  - Moving down (consuming a pattern character) is never legal.
 | 
						|
//    Never legal: all pattern characters must match something.
 | 
						|
// Characters are matched case-insensitively.
 | 
						|
// The first pattern character may only match the start of a word segment.
 | 
						|
//
 | 
						|
// The scoring is based on heuristics:
 | 
						|
//  - when matching a character, apply a bonus or penalty depending on the
 | 
						|
//    match quality (does case match, do word segments align, etc)
 | 
						|
//  - when skipping a character, apply a penalty if it hurts the match
 | 
						|
//    (it starts a word segment, or splits the matched region, etc)
 | 
						|
//
 | 
						|
// These heuristics require the ability to "look backward" one character, to
 | 
						|
// see whether it was matched or not. Therefore the dynamic-programming matrix
 | 
						|
// has an extra dimension (last character matched).
 | 
						|
// Each entry also has an additional flag indicating whether the last-but-one
 | 
						|
// character matched, which is needed to trace back through the scoring table
 | 
						|
// and reconstruct the match.
 | 
						|
//
 | 
						|
// We treat strings as byte-sequences, so only ASCII has first-class support.
 | 
						|
//
 | 
						|
// This algorithm was inspired by VS code's client-side filtering, and aims
 | 
						|
// to be mostly-compatible.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "FuzzyMatch.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace clangd {
 | 
						|
 | 
						|
constexpr int FuzzyMatcher::MaxPat;
 | 
						|
constexpr int FuzzyMatcher::MaxWord;
 | 
						|
 | 
						|
static char lower(char C) { return C >= 'A' && C <= 'Z' ? C + ('a' - 'A') : C; }
 | 
						|
// A "negative infinity" score that won't overflow.
 | 
						|
// We use this to mark unreachable states and forbidden solutions.
 | 
						|
// Score field is 15 bits wide, min value is -2^14, we use half of that.
 | 
						|
static constexpr int AwfulScore = -(1 << 13);
 | 
						|
static bool isAwful(int S) { return S < AwfulScore / 2; }
 | 
						|
static constexpr int PerfectBonus = 4; // Perfect per-pattern-char score.
 | 
						|
 | 
						|
FuzzyMatcher::FuzzyMatcher(llvm::StringRef Pattern)
 | 
						|
    : PatN(std::min<int>(MaxPat, Pattern.size())),
 | 
						|
      ScoreScale(PatN ? float{1} / (PerfectBonus * PatN) : 0), WordN(0) {
 | 
						|
  std::copy(Pattern.begin(), Pattern.begin() + PatN, Pat);
 | 
						|
  for (int I = 0; I < PatN; ++I)
 | 
						|
    LowPat[I] = lower(Pat[I]);
 | 
						|
  Scores[0][0][Miss] = {0, Miss};
 | 
						|
  Scores[0][0][Match] = {AwfulScore, Miss};
 | 
						|
  for (int P = 0; P <= PatN; ++P)
 | 
						|
    for (int W = 0; W < P; ++W)
 | 
						|
      for (Action A : {Miss, Match})
 | 
						|
        Scores[P][W][A] = {AwfulScore, Miss};
 | 
						|
  PatTypeSet = calculateRoles(llvm::StringRef(Pat, PatN),
 | 
						|
                              llvm::makeMutableArrayRef(PatRole, PatN));
 | 
						|
}
 | 
						|
 | 
						|
llvm::Optional<float> FuzzyMatcher::match(llvm::StringRef Word) {
 | 
						|
  if (!(WordContainsPattern = init(Word)))
 | 
						|
    return llvm::None;
 | 
						|
  if (!PatN)
 | 
						|
    return 1;
 | 
						|
  buildGraph();
 | 
						|
  auto Best = std::max(Scores[PatN][WordN][Miss].Score,
 | 
						|
                       Scores[PatN][WordN][Match].Score);
 | 
						|
  if (isAwful(Best))
 | 
						|
    return llvm::None;
 | 
						|
  float Score =
 | 
						|
      ScoreScale * std::min(PerfectBonus * PatN, std::max<int>(0, Best));
 | 
						|
  // If the pattern is as long as the word, we have an exact string match,
 | 
						|
  // since every pattern character must match something.
 | 
						|
  if (WordN == PatN)
 | 
						|
    Score *= 2; // May not be perfect 2 if case differs in a significant way.
 | 
						|
  return Score;
 | 
						|
}
 | 
						|
 | 
						|
// We get CharTypes from a lookup table. Each is 2 bits, 4 fit in each byte.
 | 
						|
// The top 6 bits of the char select the byte, the bottom 2 select the offset.
 | 
						|
// e.g. 'q' = 010100 01 = byte 28 (55), bits 3-2 (01) -> Lower.
 | 
						|
constexpr static uint8_t CharTypes[] = {
 | 
						|
    0x00, 0x00, 0x00, 0x00, // Control characters
 | 
						|
    0x00, 0x00, 0x00, 0x00, // Control characters
 | 
						|
    0xff, 0xff, 0xff, 0xff, // Punctuation
 | 
						|
    0x55, 0x55, 0xf5, 0xff, // Numbers->Lower, more Punctuation.
 | 
						|
    0xab, 0xaa, 0xaa, 0xaa, // @ and A-O
 | 
						|
    0xaa, 0xaa, 0xea, 0xff, // P-Z, more Punctuation.
 | 
						|
    0x57, 0x55, 0x55, 0x55, // ` and a-o
 | 
						|
    0x55, 0x55, 0xd5, 0x3f, // p-z, Punctuation, DEL.
 | 
						|
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // Bytes over 127 -> Lower.
 | 
						|
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // (probably UTF-8).
 | 
						|
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
 | 
						|
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
 | 
						|
};
 | 
						|
 | 
						|
// The Role can be determined from the Type of a character and its neighbors:
 | 
						|
//
 | 
						|
//   Example  | Chars | Type | Role
 | 
						|
//   ---------+--------------+-----
 | 
						|
//   F(o)oBar | Foo   | Ull  | Tail
 | 
						|
//   Foo(B)ar | oBa   | lUl  | Head
 | 
						|
//   (f)oo    | ^fo   | Ell  | Head
 | 
						|
//   H(T)TP   | HTT   | UUU  | Tail
 | 
						|
//
 | 
						|
// Our lookup table maps a 6 bit key (Prev, Curr, Next) to a 2-bit Role.
 | 
						|
// A byte packs 4 Roles. (Prev, Curr) selects a byte, Next selects the offset.
 | 
						|
// e.g. Lower, Upper, Lower -> 01 10 01 -> byte 6 (aa), bits 3-2 (10) -> Head.
 | 
						|
constexpr static uint8_t CharRoles[] = {
 | 
						|
    // clang-format off
 | 
						|
    //         Curr= Empty Lower Upper Separ
 | 
						|
    /* Prev=Empty */ 0x00, 0xaa, 0xaa, 0xff, // At start, Lower|Upper->Head
 | 
						|
    /* Prev=Lower */ 0x00, 0x55, 0xaa, 0xff, // In word, Upper->Head;Lower->Tail
 | 
						|
    /* Prev=Upper */ 0x00, 0x55, 0x59, 0xff, // Ditto, but U(U)U->Tail
 | 
						|
    /* Prev=Separ */ 0x00, 0xaa, 0xaa, 0xff, // After separator, like at start
 | 
						|
    // clang-format on
 | 
						|
};
 | 
						|
 | 
						|
template <typename T> static T packedLookup(const uint8_t *Data, int I) {
 | 
						|
  return static_cast<T>((Data[I >> 2] >> ((I & 3) * 2)) & 3);
 | 
						|
}
 | 
						|
CharTypeSet calculateRoles(llvm::StringRef Text,
 | 
						|
                           llvm::MutableArrayRef<CharRole> Roles) {
 | 
						|
  assert(Text.size() == Roles.size());
 | 
						|
  if (Text.size() == 0)
 | 
						|
    return 0;
 | 
						|
  CharType Type = packedLookup<CharType>(CharTypes, Text[0]);
 | 
						|
  CharTypeSet TypeSet = 1 << Type;
 | 
						|
  // Types holds a sliding window of (Prev, Curr, Next) types.
 | 
						|
  // Initial value is (Empty, Empty, type of Text[0]).
 | 
						|
  int Types = Type;
 | 
						|
  // Rotate slides in the type of the next character.
 | 
						|
  auto Rotate = [&](CharType T) { Types = ((Types << 2) | T) & 0x3f; };
 | 
						|
  for (unsigned I = 0; I < Text.size() - 1; ++I) {
 | 
						|
    // For each character, rotate in the next, and look up the role.
 | 
						|
    Type = packedLookup<CharType>(CharTypes, Text[I + 1]);
 | 
						|
    TypeSet |= 1 << Type;
 | 
						|
    Rotate(Type);
 | 
						|
    Roles[I] = packedLookup<CharRole>(CharRoles, Types);
 | 
						|
  }
 | 
						|
  // For the last character, the "next character" is Empty.
 | 
						|
  Rotate(Empty);
 | 
						|
  Roles[Text.size() - 1] = packedLookup<CharRole>(CharRoles, Types);
 | 
						|
  return TypeSet;
 | 
						|
}
 | 
						|
 | 
						|
// Sets up the data structures matching Word.
 | 
						|
// Returns false if we can cheaply determine that no match is possible.
 | 
						|
bool FuzzyMatcher::init(llvm::StringRef NewWord) {
 | 
						|
  WordN = std::min<int>(MaxWord, NewWord.size());
 | 
						|
  if (PatN > WordN)
 | 
						|
    return false;
 | 
						|
  std::copy(NewWord.begin(), NewWord.begin() + WordN, Word);
 | 
						|
  if (PatN == 0)
 | 
						|
    return true;
 | 
						|
  for (int I = 0; I < WordN; ++I)
 | 
						|
    LowWord[I] = lower(Word[I]);
 | 
						|
 | 
						|
  // Cheap subsequence check.
 | 
						|
  for (int W = 0, P = 0; P != PatN; ++W) {
 | 
						|
    if (W == WordN)
 | 
						|
      return false;
 | 
						|
    if (LowWord[W] == LowPat[P])
 | 
						|
      ++P;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: some words are hard to tokenize algorithmically.
 | 
						|
  // e.g. vsprintf is V S Print F, and should match [pri] but not [int].
 | 
						|
  // We could add a tokenization dictionary for common stdlib names.
 | 
						|
  WordTypeSet = calculateRoles(llvm::StringRef(Word, WordN),
 | 
						|
                               llvm::makeMutableArrayRef(WordRole, WordN));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// The forwards pass finds the mappings of Pattern onto Word.
 | 
						|
// Score = best score achieved matching Word[..W] against Pat[..P].
 | 
						|
// Unlike other tables, indices range from 0 to N *inclusive*
 | 
						|
// Matched = whether we chose to match Word[W] with Pat[P] or not.
 | 
						|
//
 | 
						|
// Points are mostly assigned to matched characters, with 1 being a good score
 | 
						|
// and 3 being a great one. So we treat the score range as [0, 3 * PatN].
 | 
						|
// This range is not strict: we can apply larger bonuses/penalties, or penalize
 | 
						|
// non-matched characters.
 | 
						|
void FuzzyMatcher::buildGraph() {
 | 
						|
  for (int W = 0; W < WordN; ++W) {
 | 
						|
    Scores[0][W + 1][Miss] = {Scores[0][W][Miss].Score - skipPenalty(W, Miss),
 | 
						|
                              Miss};
 | 
						|
    Scores[0][W + 1][Match] = {AwfulScore, Miss};
 | 
						|
  }
 | 
						|
  for (int P = 0; P < PatN; ++P) {
 | 
						|
    for (int W = P; W < WordN; ++W) {
 | 
						|
      auto &Score = Scores[P + 1][W + 1], &PreMiss = Scores[P + 1][W];
 | 
						|
 | 
						|
      auto MatchMissScore = PreMiss[Match].Score;
 | 
						|
      auto MissMissScore = PreMiss[Miss].Score;
 | 
						|
      if (P < PatN - 1) { // Skipping trailing characters is always free.
 | 
						|
        MatchMissScore -= skipPenalty(W, Match);
 | 
						|
        MissMissScore -= skipPenalty(W, Miss);
 | 
						|
      }
 | 
						|
      Score[Miss] = (MatchMissScore > MissMissScore)
 | 
						|
                        ? ScoreInfo{MatchMissScore, Match}
 | 
						|
                        : ScoreInfo{MissMissScore, Miss};
 | 
						|
 | 
						|
      auto &PreMatch = Scores[P][W];
 | 
						|
      auto MatchMatchScore =
 | 
						|
          allowMatch(P, W, Match)
 | 
						|
              ? PreMatch[Match].Score + matchBonus(P, W, Match)
 | 
						|
              : AwfulScore;
 | 
						|
      auto MissMatchScore = allowMatch(P, W, Miss)
 | 
						|
                                ? PreMatch[Miss].Score + matchBonus(P, W, Miss)
 | 
						|
                                : AwfulScore;
 | 
						|
      Score[Match] = (MatchMatchScore > MissMatchScore)
 | 
						|
                         ? ScoreInfo{MatchMatchScore, Match}
 | 
						|
                         : ScoreInfo{MissMatchScore, Miss};
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool FuzzyMatcher::allowMatch(int P, int W, Action Last) const {
 | 
						|
  if (LowPat[P] != LowWord[W])
 | 
						|
    return false;
 | 
						|
  // We require a "strong" match:
 | 
						|
  // - for the first pattern character.  [foo] !~ "barefoot"
 | 
						|
  // - after a gap.                      [pat] !~ "patnther"
 | 
						|
  if (Last == Miss) {
 | 
						|
    // We're banning matches outright, so conservatively accept some other cases
 | 
						|
    // where our segmentation might be wrong:
 | 
						|
    //  - allow matching B in ABCDef (but not in NDEBUG)
 | 
						|
    //  - we'd like to accept print in sprintf, but too many false positives
 | 
						|
    if (WordRole[W] == Tail &&
 | 
						|
        (Word[W] == LowWord[W] || !(WordTypeSet & 1 << Lower)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int FuzzyMatcher::skipPenalty(int W, Action Last) const {
 | 
						|
  if (W == 0) // Skipping the first character.
 | 
						|
    return 3;
 | 
						|
  if (WordRole[W] == Head) // Skipping a segment.
 | 
						|
    return 1; // We want to keep this lower than a consecutive match bonus.
 | 
						|
  // Instead of penalizing non-consecutive matches, we give a bonus to a
 | 
						|
  // consecutive match in matchBonus. This produces a better score distribution
 | 
						|
  // than penalties in case of small patterns, e.g. 'up' for 'unique_ptr'.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
int FuzzyMatcher::matchBonus(int P, int W, Action Last) const {
 | 
						|
  assert(LowPat[P] == LowWord[W]);
 | 
						|
  int S = 1;
 | 
						|
  bool IsPatSingleCase =
 | 
						|
      (PatTypeSet == 1 << Lower) || (PatTypeSet == 1 << Upper);
 | 
						|
  // Bonus: case matches, or a Head in the pattern aligns with one in the word.
 | 
						|
  // Single-case patterns lack segmentation signals and we assume any character
 | 
						|
  // can be a head of a segment.
 | 
						|
  if (Pat[P] == Word[W] ||
 | 
						|
      (WordRole[W] == Head && (IsPatSingleCase || PatRole[P] == Head)))
 | 
						|
    ++S;
 | 
						|
  // Bonus: a consecutive match. First character match also gets a bonus to
 | 
						|
  // ensure prefix final match score normalizes to 1.0.
 | 
						|
  if (W == 0 || Last == Match)
 | 
						|
    S += 2;
 | 
						|
  // Penalty: matching inside a segment (and previous char wasn't matched).
 | 
						|
  if (WordRole[W] == Tail && P && Last == Miss)
 | 
						|
    S -= 3;
 | 
						|
  // Penalty: a Head in the pattern matches in the middle of a word segment.
 | 
						|
  if (PatRole[P] == Head && WordRole[W] == Tail)
 | 
						|
    --S;
 | 
						|
  // Penalty: matching the first pattern character in the middle of a segment.
 | 
						|
  if (P == 0 && WordRole[W] == Tail)
 | 
						|
    S -= 4;
 | 
						|
  assert(S <= PerfectBonus);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
llvm::SmallString<256> FuzzyMatcher::dumpLast(llvm::raw_ostream &OS) const {
 | 
						|
  llvm::SmallString<256> Result;
 | 
						|
  OS << "=== Match \"" << llvm::StringRef(Word, WordN) << "\" against ["
 | 
						|
     << llvm::StringRef(Pat, PatN) << "] ===\n";
 | 
						|
  if (PatN == 0) {
 | 
						|
    OS << "Pattern is empty: perfect match.\n";
 | 
						|
    return Result = llvm::StringRef(Word, WordN);
 | 
						|
  }
 | 
						|
  if (WordN == 0) {
 | 
						|
    OS << "Word is empty: no match.\n";
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  if (!WordContainsPattern) {
 | 
						|
    OS << "Substring check failed.\n";
 | 
						|
    return Result;
 | 
						|
  } else if (isAwful(std::max(Scores[PatN][WordN][Match].Score,
 | 
						|
                              Scores[PatN][WordN][Miss].Score))) {
 | 
						|
    OS << "Substring check passed, but all matches are forbidden\n";
 | 
						|
  }
 | 
						|
  if (!(PatTypeSet & 1 << Upper))
 | 
						|
    OS << "Lowercase query, so scoring ignores case\n";
 | 
						|
 | 
						|
  // Traverse Matched table backwards to reconstruct the Pattern/Word mapping.
 | 
						|
  // The Score table has cumulative scores, subtracting along this path gives
 | 
						|
  // us the per-letter scores.
 | 
						|
  Action Last =
 | 
						|
      (Scores[PatN][WordN][Match].Score > Scores[PatN][WordN][Miss].Score)
 | 
						|
          ? Match
 | 
						|
          : Miss;
 | 
						|
  int S[MaxWord];
 | 
						|
  Action A[MaxWord];
 | 
						|
  for (int W = WordN - 1, P = PatN - 1; W >= 0; --W) {
 | 
						|
    A[W] = Last;
 | 
						|
    const auto &Cell = Scores[P + 1][W + 1][Last];
 | 
						|
    if (Last == Match)
 | 
						|
      --P;
 | 
						|
    const auto &Prev = Scores[P + 1][W][Cell.Prev];
 | 
						|
    S[W] = Cell.Score - Prev.Score;
 | 
						|
    Last = Cell.Prev;
 | 
						|
  }
 | 
						|
  for (int I = 0; I < WordN; ++I) {
 | 
						|
    if (A[I] == Match && (I == 0 || A[I - 1] == Miss))
 | 
						|
      Result.push_back('[');
 | 
						|
    if (A[I] == Miss && I > 0 && A[I - 1] == Match)
 | 
						|
      Result.push_back(']');
 | 
						|
    Result.push_back(Word[I]);
 | 
						|
  }
 | 
						|
  if (A[WordN - 1] == Match)
 | 
						|
    Result.push_back(']');
 | 
						|
 | 
						|
  for (char C : llvm::StringRef(Word, WordN))
 | 
						|
    OS << " " << C << " ";
 | 
						|
  OS << "\n";
 | 
						|
  for (int I = 0, J = 0; I < WordN; I++)
 | 
						|
    OS << " " << (A[I] == Match ? Pat[J++] : ' ') << " ";
 | 
						|
  OS << "\n";
 | 
						|
  for (int I = 0; I < WordN; I++)
 | 
						|
    OS << llvm::format("%2d ", S[I]);
 | 
						|
  OS << "\n";
 | 
						|
 | 
						|
  OS << "\nSegmentation:";
 | 
						|
  OS << "\n'" << llvm::StringRef(Word, WordN) << "'\n ";
 | 
						|
  for (int I = 0; I < WordN; ++I)
 | 
						|
    OS << "?-+ "[static_cast<int>(WordRole[I])];
 | 
						|
  OS << "\n[" << llvm::StringRef(Pat, PatN) << "]\n ";
 | 
						|
  for (int I = 0; I < PatN; ++I)
 | 
						|
    OS << "?-+ "[static_cast<int>(PatRole[I])];
 | 
						|
  OS << "\n";
 | 
						|
 | 
						|
  OS << "\nScoring table (last-Miss, last-Match):\n";
 | 
						|
  OS << " |    ";
 | 
						|
  for (char C : llvm::StringRef(Word, WordN))
 | 
						|
    OS << "  " << C << " ";
 | 
						|
  OS << "\n";
 | 
						|
  OS << "-+----" << std::string(WordN * 4, '-') << "\n";
 | 
						|
  for (int I = 0; I <= PatN; ++I) {
 | 
						|
    for (Action A : {Miss, Match}) {
 | 
						|
      OS << ((I && A == Miss) ? Pat[I - 1] : ' ') << "|";
 | 
						|
      for (int J = 0; J <= WordN; ++J) {
 | 
						|
        if (!isAwful(Scores[I][J][A].Score))
 | 
						|
          OS << llvm::format("%3d%c", Scores[I][J][A].Score,
 | 
						|
                             Scores[I][J][A].Prev == Match ? '*' : ' ');
 | 
						|
        else
 | 
						|
          OS << "    ";
 | 
						|
      }
 | 
						|
      OS << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace clangd
 | 
						|
} // namespace clang
 |