143 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- Square root of x86 long double numbers ------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
 | 
						|
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
 | 
						|
 | 
						|
#include "FPBits.h"
 | 
						|
#include "Sqrt.h"
 | 
						|
 | 
						|
#include "utils/CPP/TypeTraits.h"
 | 
						|
 | 
						|
namespace __llvm_libc {
 | 
						|
namespace fputil {
 | 
						|
 | 
						|
namespace internal {
 | 
						|
 | 
						|
template <>
 | 
						|
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
 | 
						|
  // Use binary search to shift the leading 1 bit similar to float.
 | 
						|
  // With MantissaWidth<long double> = 63, it will take
 | 
						|
  // ceil(log2(63)) = 6 steps checking the mantissa bits.
 | 
						|
  constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
 | 
						|
  constexpr __uint128_t bounds[nsteps] = {
 | 
						|
      __uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56,
 | 
						|
      __uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63};
 | 
						|
  constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1};
 | 
						|
 | 
						|
  for (int i = 0; i < nsteps; ++i) {
 | 
						|
    if (mantissa < bounds[i]) {
 | 
						|
      exponent -= shifts[i];
 | 
						|
      mantissa <<= shifts[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // namespace internal
 | 
						|
 | 
						|
// Correctly rounded SQRT with round to nearest, ties to even.
 | 
						|
// Shift-and-add algorithm.
 | 
						|
template <> inline long double sqrt<long double, 0>(long double x) {
 | 
						|
  using UIntType = typename FPBits<long double>::UIntType;
 | 
						|
  constexpr UIntType One = UIntType(1)
 | 
						|
                           << int(MantissaWidth<long double>::value);
 | 
						|
 | 
						|
  FPBits<long double> bits(x);
 | 
						|
 | 
						|
  if (bits.isInfOrNaN()) {
 | 
						|
    if (bits.encoding.sign && (bits.encoding.mantissa == 0)) {
 | 
						|
      // sqrt(-Inf) = NaN
 | 
						|
      return FPBits<long double>::buildNaN(One >> 1);
 | 
						|
    } else {
 | 
						|
      // sqrt(NaN) = NaN
 | 
						|
      // sqrt(+Inf) = +Inf
 | 
						|
      return x;
 | 
						|
    }
 | 
						|
  } else if (bits.isZero()) {
 | 
						|
    // sqrt(+0) = +0
 | 
						|
    // sqrt(-0) = -0
 | 
						|
    return x;
 | 
						|
  } else if (bits.encoding.sign) {
 | 
						|
    // sqrt( negative numbers ) = NaN
 | 
						|
    return FPBits<long double>::buildNaN(One >> 1);
 | 
						|
  } else {
 | 
						|
    int xExp = bits.getExponent();
 | 
						|
    UIntType xMant = bits.encoding.mantissa;
 | 
						|
 | 
						|
    // Step 1a: Normalize denormal input
 | 
						|
    if (bits.encoding.implicitBit) {
 | 
						|
      xMant |= One;
 | 
						|
    } else if (bits.encoding.exponent == 0) {
 | 
						|
      internal::normalize<long double>(xExp, xMant);
 | 
						|
    }
 | 
						|
 | 
						|
    // Step 1b: Make sure the exponent is even.
 | 
						|
    if (xExp & 1) {
 | 
						|
      --xExp;
 | 
						|
      xMant <<= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
 | 
						|
    // 1 <= xMant < 4.  So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
 | 
						|
    // Notice that the output of sqrt is always in the normal range.
 | 
						|
    // To perform shift-and-add algorithm to find y, let denote:
 | 
						|
    //   y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
 | 
						|
    //   r(n) = 2^n ( xMant - y(n)^2 ).
 | 
						|
    // That leads to the following recurrence formula:
 | 
						|
    //   r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
 | 
						|
    // with the initial conditions: y(0) = 1, and r(0) = x - 1.
 | 
						|
    // So the nth digit y_n of the mantissa of sqrt(x) can be found by:
 | 
						|
    //   y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
 | 
						|
    //         0 otherwise.
 | 
						|
    UIntType y = One;
 | 
						|
    UIntType r = xMant - One;
 | 
						|
 | 
						|
    for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
 | 
						|
      r <<= 1;
 | 
						|
      UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
 | 
						|
      if (r >= tmp) {
 | 
						|
        r -= tmp;
 | 
						|
        y += current_bit;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We compute one more iteration in order to round correctly.
 | 
						|
    bool lsb = y & 1; // Least significant bit
 | 
						|
    bool rb = false;  // Round bit
 | 
						|
    r <<= 2;
 | 
						|
    UIntType tmp = (y << 2) + 1;
 | 
						|
    if (r >= tmp) {
 | 
						|
      r -= tmp;
 | 
						|
      rb = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Append the exponent field.
 | 
						|
    xExp = ((xExp >> 1) + FPBits<long double>::exponentBias);
 | 
						|
    y |= (static_cast<UIntType>(xExp)
 | 
						|
          << (MantissaWidth<long double>::value + 1));
 | 
						|
 | 
						|
    // Round to nearest, ties to even
 | 
						|
    if (rb && (lsb || (r != 0))) {
 | 
						|
      ++y;
 | 
						|
    }
 | 
						|
 | 
						|
    // Extract output
 | 
						|
    FPBits<long double> out(0.0L);
 | 
						|
    out.encoding.exponent = xExp;
 | 
						|
    out.encoding.implicitBit = 1;
 | 
						|
    out.encoding.mantissa = (y & (One - 1));
 | 
						|
 | 
						|
    return out;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // namespace fputil
 | 
						|
} // namespace __llvm_libc
 | 
						|
 | 
						|
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
 |