1539 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1539 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// These classes wrap the information about a call or function
 | 
						|
// definition used to handle ABI compliancy.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ABIInfo.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
ABIInfo::~ABIInfo() {}
 | 
						|
 | 
						|
void ABIArgInfo::dump() const {
 | 
						|
  fprintf(stderr, "(ABIArgInfo Kind=");
 | 
						|
  switch (TheKind) {
 | 
						|
  case Direct:
 | 
						|
    fprintf(stderr, "Direct");
 | 
						|
    break;
 | 
						|
  case Extend:
 | 
						|
    fprintf(stderr, "Extend");
 | 
						|
    break;
 | 
						|
  case Ignore:
 | 
						|
    fprintf(stderr, "Ignore");
 | 
						|
    break;
 | 
						|
  case Coerce:
 | 
						|
    fprintf(stderr, "Coerce Type=");
 | 
						|
    getCoerceToType()->print(llvm::errs());
 | 
						|
    break;
 | 
						|
  case Indirect:
 | 
						|
    fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
 | 
						|
    break;
 | 
						|
  case Expand:
 | 
						|
    fprintf(stderr, "Expand");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  fprintf(stderr, ")\n");
 | 
						|
}
 | 
						|
 | 
						|
static bool isEmptyRecord(ASTContext &Context, QualType T);
 | 
						|
 | 
						|
/// isEmptyField - Return true iff a the field is "empty", that is it
 | 
						|
/// is an unnamed bit-field or an (array of) empty record(s).
 | 
						|
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) {
 | 
						|
  if (FD->isUnnamedBitfield())
 | 
						|
    return true;
 | 
						|
 | 
						|
  QualType FT = FD->getType();
 | 
						|
  // Constant arrays of empty records count as empty, strip them off.
 | 
						|
  while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
 | 
						|
    FT = AT->getElementType();
 | 
						|
 | 
						|
  return isEmptyRecord(Context, FT);
 | 
						|
}
 | 
						|
 | 
						|
/// isEmptyRecord - Return true iff a structure contains only empty
 | 
						|
/// fields. Note that a structure with a flexible array member is not
 | 
						|
/// considered empty.
 | 
						|
static bool isEmptyRecord(ASTContext &Context, QualType T) {
 | 
						|
  const RecordType *RT = T->getAsRecordType();
 | 
						|
  if (!RT)
 | 
						|
    return 0;
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  if (RD->hasFlexibleArrayMember())
 | 
						|
    return false;
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i)
 | 
						|
    if (!isEmptyField(Context, *i))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSingleElementStruct - Determine if a structure is a "single
 | 
						|
/// element struct", i.e. it has exactly one non-empty field or
 | 
						|
/// exactly one field which is itself a single element
 | 
						|
/// struct. Structures with flexible array members are never
 | 
						|
/// considered single element structs.
 | 
						|
///
 | 
						|
/// \return The field declaration for the single non-empty field, if
 | 
						|
/// it exists.
 | 
						|
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
 | 
						|
  const RecordType *RT = T->getAsStructureType();
 | 
						|
  if (!RT)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
  if (RD->hasFlexibleArrayMember())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const Type *Found = 0;
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
    QualType FT = FD->getType();
 | 
						|
 | 
						|
    // Ignore empty fields.
 | 
						|
    if (isEmptyField(Context, FD))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we already found an element then this isn't a single-element
 | 
						|
    // struct.
 | 
						|
    if (Found)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Treat single element arrays as the element.
 | 
						|
    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
 | 
						|
      if (AT->getSize().getZExtValue() != 1)
 | 
						|
        break;
 | 
						|
      FT = AT->getElementType();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
 | 
						|
      Found = FT.getTypePtr();
 | 
						|
    } else {
 | 
						|
      Found = isSingleElementStruct(FT, Context);
 | 
						|
      if (!Found)
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Found;
 | 
						|
}
 | 
						|
 | 
						|
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
 | 
						|
  if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
  return Size == 32 || Size == 64;
 | 
						|
}
 | 
						|
 | 
						|
static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
 | 
						|
                                           ASTContext &Context) {
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
 | 
						|
    if (!is32Or64BitBasicType(FD->getType(), Context))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
 | 
						|
    // how to expand them yet, and the predicate for telling if a bitfield still
 | 
						|
    // counts as "basic" is more complicated than what we were doing previously.
 | 
						|
    if (FD->isBitField())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) {
 | 
						|
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
         i != e; ++i) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
 | 
						|
    if (FD->getType()->isVectorType() &&
 | 
						|
        Context.getTypeSize(FD->getType()) >= 128)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (const RecordType* RT = FD->getType()->getAsRecordType())
 | 
						|
      if (typeContainsSSEVector(RT->getDecl(), Context))
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// DefaultABIInfo - The default implementation for ABI specific
 | 
						|
/// details. This implementation provides information which results in
 | 
						|
/// self-consistent and sensible LLVM IR generation, but does not
 | 
						|
/// conform to any particular ABI.
 | 
						|
class DefaultABIInfo : public ABIInfo {
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy,
 | 
						|
                                ASTContext &Context,
 | 
						|
                                llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy,
 | 
						|
                                  ASTContext &Context,
 | 
						|
                                  llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                           llvm::LLVMContext &VMContext) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
 | 
						|
                                            VMContext);
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it)
 | 
						|
      it->info = classifyArgumentType(it->type, Context, VMContext);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
/// X86_32ABIInfo - The X86-32 ABI information.
 | 
						|
class X86_32ABIInfo : public ABIInfo {
 | 
						|
  ASTContext &Context;
 | 
						|
  bool IsDarwin;
 | 
						|
 | 
						|
  static bool isRegisterSize(unsigned Size) {
 | 
						|
    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
 | 
						|
  }
 | 
						|
 | 
						|
  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
 | 
						|
 | 
						|
  static unsigned getIndirectArgumentAlignment(QualType Ty,
 | 
						|
                                               ASTContext &Context);
 | 
						|
 | 
						|
public:
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy,
 | 
						|
                                ASTContext &Context,
 | 
						|
                                llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy,
 | 
						|
                                  ASTContext &Context,
 | 
						|
                                  llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                           llvm::LLVMContext &VMContext) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
 | 
						|
                                            VMContext);
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it)
 | 
						|
      it->info = classifyArgumentType(it->type, Context, VMContext);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
 | 
						|
  X86_32ABIInfo(ASTContext &Context, bool d)
 | 
						|
    : ABIInfo(), Context(Context), IsDarwin(d) {}
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// shouldReturnTypeInRegister - Determine if the given type should be
 | 
						|
/// passed in a register (for the Darwin ABI).
 | 
						|
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
 | 
						|
                                               ASTContext &Context) {
 | 
						|
  uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
 | 
						|
  // Type must be register sized.
 | 
						|
  if (!isRegisterSize(Size))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Ty->isVectorType()) {
 | 
						|
    // 64- and 128- bit vectors inside structures are not returned in
 | 
						|
    // registers.
 | 
						|
    if (Size == 64 || Size == 128)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a builtin, pointer, or complex type, it is ok.
 | 
						|
  if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Arrays are treated like records.
 | 
						|
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
 | 
						|
    return shouldReturnTypeInRegister(AT->getElementType(), Context);
 | 
						|
 | 
						|
  // Otherwise, it must be a record type.
 | 
						|
  const RecordType *RT = Ty->getAsRecordType();
 | 
						|
  if (!RT) return false;
 | 
						|
 | 
						|
  // Structure types are passed in register if all fields would be
 | 
						|
  // passed in a register.
 | 
						|
  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
 | 
						|
         e = RT->getDecl()->field_end(); i != e; ++i) {
 | 
						|
    const FieldDecl *FD = *i;
 | 
						|
 | 
						|
    // Empty fields are ignored.
 | 
						|
    if (isEmptyField(Context, FD))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check fields recursively.
 | 
						|
    if (!shouldReturnTypeInRegister(FD->getType(), Context))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
 | 
						|
                                            ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  if (RetTy->isVoidType()) {
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  } else if (const VectorType *VT = RetTy->getAsVectorType()) {
 | 
						|
    // On Darwin, some vectors are returned in registers.
 | 
						|
    if (IsDarwin) {
 | 
						|
      uint64_t Size = Context.getTypeSize(RetTy);
 | 
						|
 | 
						|
      // 128-bit vectors are a special case; they are returned in
 | 
						|
      // registers and we need to make sure to pick a type the LLVM
 | 
						|
      // backend will like.
 | 
						|
      if (Size == 128)
 | 
						|
        return
 | 
						|
          ABIArgInfo::getCoerce(VMContext.getVectorType(llvm::Type::Int64Ty,
 | 
						|
                                                           2));
 | 
						|
 | 
						|
      // Always return in register if it fits in a general purpose
 | 
						|
      // register, or if it is 64 bits and has a single element.
 | 
						|
      if ((Size == 8 || Size == 16 || Size == 32) ||
 | 
						|
          (Size == 64 && VT->getNumElements() == 1))
 | 
						|
        return ABIArgInfo::getCoerce(VMContext.getIntegerType(Size));
 | 
						|
 | 
						|
      return ABIArgInfo::getIndirect(0);
 | 
						|
    }
 | 
						|
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
 | 
						|
    // Structures with flexible arrays are always indirect.
 | 
						|
    if (const RecordType *RT = RetTy->getAsStructureType())
 | 
						|
      if (RT->getDecl()->hasFlexibleArrayMember())
 | 
						|
        return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
    // Outside of Darwin, structs and unions are always indirect.
 | 
						|
    if (!IsDarwin && !RetTy->isAnyComplexType())
 | 
						|
      return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
    // Classify "single element" structs as their element type.
 | 
						|
    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
 | 
						|
      if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
 | 
						|
        if (BT->isIntegerType()) {
 | 
						|
          // We need to use the size of the structure, padding
 | 
						|
          // bit-fields can adjust that to be larger than the single
 | 
						|
          // element type.
 | 
						|
          uint64_t Size = Context.getTypeSize(RetTy);
 | 
						|
          return ABIArgInfo::getCoerce(
 | 
						|
            VMContext.getIntegerType((unsigned) Size));
 | 
						|
        } else if (BT->getKind() == BuiltinType::Float) {
 | 
						|
          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
 | 
						|
                 "Unexpect single element structure size!");
 | 
						|
          return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
 | 
						|
        } else if (BT->getKind() == BuiltinType::Double) {
 | 
						|
          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
 | 
						|
                 "Unexpect single element structure size!");
 | 
						|
          return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
 | 
						|
        }
 | 
						|
      } else if (SeltTy->isPointerType()) {
 | 
						|
        // FIXME: It would be really nice if this could come out as the proper
 | 
						|
        // pointer type.
 | 
						|
        llvm::Type *PtrTy =
 | 
						|
          VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty);
 | 
						|
        return ABIArgInfo::getCoerce(PtrTy);
 | 
						|
      } else if (SeltTy->isVectorType()) {
 | 
						|
        // 64- and 128-bit vectors are never returned in a
 | 
						|
        // register when inside a structure.
 | 
						|
        uint64_t Size = Context.getTypeSize(RetTy);
 | 
						|
        if (Size == 64 || Size == 128)
 | 
						|
          return ABIArgInfo::getIndirect(0);
 | 
						|
 | 
						|
        return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Small structures which are register sized are generally returned
 | 
						|
    // in a register.
 | 
						|
    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
 | 
						|
      uint64_t Size = Context.getTypeSize(RetTy);
 | 
						|
      return ABIArgInfo::getCoerce(VMContext.getIntegerType(Size));
 | 
						|
    }
 | 
						|
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  } else {
 | 
						|
    return (RetTy->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty,
 | 
						|
                                                     ASTContext &Context) {
 | 
						|
  unsigned Align = Context.getTypeAlign(Ty);
 | 
						|
  if (Align < 128) return 0;
 | 
						|
  if (const RecordType* RT = Ty->getAsRecordType())
 | 
						|
    if (typeContainsSSEVector(RT->getDecl(), Context))
 | 
						|
      return 16;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
 | 
						|
                                               ASTContext &Context,
 | 
						|
                                           llvm::LLVMContext &VMContext) const {
 | 
						|
  // FIXME: Set alignment on indirect arguments.
 | 
						|
  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
 | 
						|
    // Structures with flexible arrays are always indirect.
 | 
						|
    if (const RecordType *RT = Ty->getAsStructureType())
 | 
						|
      if (RT->getDecl()->hasFlexibleArrayMember())
 | 
						|
        return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, 
 | 
						|
                                                                    Context));
 | 
						|
 | 
						|
    // Ignore empty structs.
 | 
						|
    if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
 | 
						|
      return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
    // Expand structs with size <= 128-bits which consist only of
 | 
						|
    // basic types (int, long long, float, double, xxx*). This is
 | 
						|
    // non-recursive and does not ignore empty fields.
 | 
						|
    if (const RecordType *RT = Ty->getAsStructureType()) {
 | 
						|
      if (Context.getTypeSize(Ty) <= 4*32 &&
 | 
						|
          areAllFields32Or64BitBasicType(RT->getDecl(), Context))
 | 
						|
        return ABIArgInfo::getExpand();
 | 
						|
    }
 | 
						|
 | 
						|
    return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
 | 
						|
  } else {
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                      CodeGenFunction &CGF) const {
 | 
						|
  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
 | 
						|
  const llvm::Type *BP = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty);
 | 
						|
  const llvm::Type *BPP = VMContext.getPointerTypeUnqual(BP);
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | 
						|
                                                       "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
  llvm::Type *PTy =
 | 
						|
    VMContext.getPointerTypeUnqual(CGF.ConvertType(Ty));
 | 
						|
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | 
						|
 | 
						|
  uint64_t Offset =
 | 
						|
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(Addr,
 | 
						|
                      VMContext.getConstantInt(llvm::Type::Int32Ty, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  return AddrTyped;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// X86_64ABIInfo - The X86_64 ABI information.
 | 
						|
class X86_64ABIInfo : public ABIInfo {
 | 
						|
  enum Class {
 | 
						|
    Integer = 0,
 | 
						|
    SSE,
 | 
						|
    SSEUp,
 | 
						|
    X87,
 | 
						|
    X87Up,
 | 
						|
    ComplexX87,
 | 
						|
    NoClass,
 | 
						|
    Memory
 | 
						|
  };
 | 
						|
 | 
						|
  /// merge - Implement the X86_64 ABI merging algorithm.
 | 
						|
  ///
 | 
						|
  /// Merge an accumulating classification \arg Accum with a field
 | 
						|
  /// classification \arg Field.
 | 
						|
  ///
 | 
						|
  /// \param Accum - The accumulating classification. This should
 | 
						|
  /// always be either NoClass or the result of a previous merge
 | 
						|
  /// call. In addition, this should never be Memory (the caller
 | 
						|
  /// should just return Memory for the aggregate).
 | 
						|
  Class merge(Class Accum, Class Field) const;
 | 
						|
 | 
						|
  /// classify - Determine the x86_64 register classes in which the
 | 
						|
  /// given type T should be passed.
 | 
						|
  ///
 | 
						|
  /// \param Lo - The classification for the parts of the type
 | 
						|
  /// residing in the low word of the containing object.
 | 
						|
  ///
 | 
						|
  /// \param Hi - The classification for the parts of the type
 | 
						|
  /// residing in the high word of the containing object.
 | 
						|
  ///
 | 
						|
  /// \param OffsetBase - The bit offset of this type in the
 | 
						|
  /// containing object.  Some parameters are classified different
 | 
						|
  /// depending on whether they straddle an eightbyte boundary.
 | 
						|
  ///
 | 
						|
  /// If a word is unused its result will be NoClass; if a type should
 | 
						|
  /// be passed in Memory then at least the classification of \arg Lo
 | 
						|
  /// will be Memory.
 | 
						|
  ///
 | 
						|
  /// The \arg Lo class will be NoClass iff the argument is ignored.
 | 
						|
  ///
 | 
						|
  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
 | 
						|
  /// also be ComplexX87.
 | 
						|
  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
 | 
						|
                Class &Lo, Class &Hi) const;
 | 
						|
 | 
						|
  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
 | 
						|
  /// to coerce to, chose the best way to pass Ty in the same place
 | 
						|
  /// that \arg CoerceTo would be passed, but while keeping the
 | 
						|
  /// emitted code as simple as possible.
 | 
						|
  ///
 | 
						|
  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
 | 
						|
  /// the ways we might want to pass things, instead of constructing an LLVM
 | 
						|
  /// type. This makes this code more explicit, and it makes it clearer that we
 | 
						|
  /// are also doing this for correctness in the case of passing scalar types.
 | 
						|
  ABIArgInfo getCoerceResult(QualType Ty,
 | 
						|
                             const llvm::Type *CoerceTo,
 | 
						|
                             ASTContext &Context) const;
 | 
						|
 | 
						|
  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
 | 
						|
  /// such that the argument will be passed in memory.
 | 
						|
  ABIArgInfo getIndirectResult(QualType Ty,
 | 
						|
                               ASTContext &Context) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy,
 | 
						|
                                ASTContext &Context,
 | 
						|
                                llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyArgumentType(QualType Ty,
 | 
						|
                                  ASTContext &Context,
 | 
						|
                                  llvm::LLVMContext &VMContext,
 | 
						|
                                  unsigned &neededInt,
 | 
						|
                                  unsigned &neededSSE) const;
 | 
						|
 | 
						|
public:
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                           llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
 | 
						|
                                          Class Field) const {
 | 
						|
  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
 | 
						|
  // classified recursively so that always two fields are
 | 
						|
  // considered. The resulting class is calculated according to
 | 
						|
  // the classes of the fields in the eightbyte:
 | 
						|
  //
 | 
						|
  // (a) If both classes are equal, this is the resulting class.
 | 
						|
  //
 | 
						|
  // (b) If one of the classes is NO_CLASS, the resulting class is
 | 
						|
  // the other class.
 | 
						|
  //
 | 
						|
  // (c) If one of the classes is MEMORY, the result is the MEMORY
 | 
						|
  // class.
 | 
						|
  //
 | 
						|
  // (d) If one of the classes is INTEGER, the result is the
 | 
						|
  // INTEGER.
 | 
						|
  //
 | 
						|
  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
 | 
						|
  // MEMORY is used as class.
 | 
						|
  //
 | 
						|
  // (f) Otherwise class SSE is used.
 | 
						|
 | 
						|
  // Accum should never be memory (we should have returned) or
 | 
						|
  // ComplexX87 (because this cannot be passed in a structure).
 | 
						|
  assert((Accum != Memory && Accum != ComplexX87) &&
 | 
						|
         "Invalid accumulated classification during merge.");
 | 
						|
  if (Accum == Field || Field == NoClass)
 | 
						|
    return Accum;
 | 
						|
  else if (Field == Memory)
 | 
						|
    return Memory;
 | 
						|
  else if (Accum == NoClass)
 | 
						|
    return Field;
 | 
						|
  else if (Accum == Integer || Field == Integer)
 | 
						|
    return Integer;
 | 
						|
  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
 | 
						|
           Accum == X87 || Accum == X87Up)
 | 
						|
    return Memory;
 | 
						|
  else
 | 
						|
    return SSE;
 | 
						|
}
 | 
						|
 | 
						|
void X86_64ABIInfo::classify(QualType Ty,
 | 
						|
                             ASTContext &Context,
 | 
						|
                             uint64_t OffsetBase,
 | 
						|
                             Class &Lo, Class &Hi) const {
 | 
						|
  // FIXME: This code can be simplified by introducing a simple value class for
 | 
						|
  // Class pairs with appropriate constructor methods for the various
 | 
						|
  // situations.
 | 
						|
 | 
						|
  // FIXME: Some of the split computations are wrong; unaligned vectors
 | 
						|
  // shouldn't be passed in registers for example, so there is no chance they
 | 
						|
  // can straddle an eightbyte. Verify & simplify.
 | 
						|
 | 
						|
  Lo = Hi = NoClass;
 | 
						|
 | 
						|
  Class &Current = OffsetBase < 64 ? Lo : Hi;
 | 
						|
  Current = Memory;
 | 
						|
 | 
						|
  if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
 | 
						|
    BuiltinType::Kind k = BT->getKind();
 | 
						|
 | 
						|
    if (k == BuiltinType::Void) {
 | 
						|
      Current = NoClass;
 | 
						|
    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
 | 
						|
      Lo = Integer;
 | 
						|
      Hi = Integer;
 | 
						|
    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
 | 
						|
      Current = Integer;
 | 
						|
    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
 | 
						|
      Current = SSE;
 | 
						|
    } else if (k == BuiltinType::LongDouble) {
 | 
						|
      Lo = X87;
 | 
						|
      Hi = X87Up;
 | 
						|
    }
 | 
						|
    // FIXME: _Decimal32 and _Decimal64 are SSE.
 | 
						|
    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
 | 
						|
  } else if (const EnumType *ET = Ty->getAsEnumType()) {
 | 
						|
    // Classify the underlying integer type.
 | 
						|
    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
 | 
						|
  } else if (Ty->hasPointerRepresentation()) {
 | 
						|
    Current = Integer;
 | 
						|
  } else if (const VectorType *VT = Ty->getAsVectorType()) {
 | 
						|
    uint64_t Size = Context.getTypeSize(VT);
 | 
						|
    if (Size == 32) {
 | 
						|
      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
 | 
						|
      // float> as integer.
 | 
						|
      Current = Integer;
 | 
						|
 | 
						|
      // If this type crosses an eightbyte boundary, it should be
 | 
						|
      // split.
 | 
						|
      uint64_t EB_Real = (OffsetBase) / 64;
 | 
						|
      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
 | 
						|
      if (EB_Real != EB_Imag)
 | 
						|
        Hi = Lo;
 | 
						|
    } else if (Size == 64) {
 | 
						|
      // gcc passes <1 x double> in memory. :(
 | 
						|
      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
 | 
						|
        return;
 | 
						|
 | 
						|
      // gcc passes <1 x long long> as INTEGER.
 | 
						|
      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
 | 
						|
        Current = Integer;
 | 
						|
      else
 | 
						|
        Current = SSE;
 | 
						|
 | 
						|
      // If this type crosses an eightbyte boundary, it should be
 | 
						|
      // split.
 | 
						|
      if (OffsetBase && OffsetBase != 64)
 | 
						|
        Hi = Lo;
 | 
						|
    } else if (Size == 128) {
 | 
						|
      Lo = SSE;
 | 
						|
      Hi = SSEUp;
 | 
						|
    }
 | 
						|
  } else if (const ComplexType *CT = Ty->getAsComplexType()) {
 | 
						|
    QualType ET = Context.getCanonicalType(CT->getElementType());
 | 
						|
 | 
						|
    uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
    if (ET->isIntegralType()) {
 | 
						|
      if (Size <= 64)
 | 
						|
        Current = Integer;
 | 
						|
      else if (Size <= 128)
 | 
						|
        Lo = Hi = Integer;
 | 
						|
    } else if (ET == Context.FloatTy)
 | 
						|
      Current = SSE;
 | 
						|
    else if (ET == Context.DoubleTy)
 | 
						|
      Lo = Hi = SSE;
 | 
						|
    else if (ET == Context.LongDoubleTy)
 | 
						|
      Current = ComplexX87;
 | 
						|
 | 
						|
    // If this complex type crosses an eightbyte boundary then it
 | 
						|
    // should be split.
 | 
						|
    uint64_t EB_Real = (OffsetBase) / 64;
 | 
						|
    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
 | 
						|
    if (Hi == NoClass && EB_Real != EB_Imag)
 | 
						|
      Hi = Lo;
 | 
						|
  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
 | 
						|
    // Arrays are treated like structures.
 | 
						|
 | 
						|
    uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | 
						|
    // than two eightbytes, ..., it has class MEMORY.
 | 
						|
    if (Size > 128)
 | 
						|
      return;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
 | 
						|
    // fields, it has class MEMORY.
 | 
						|
    //
 | 
						|
    // Only need to check alignment of array base.
 | 
						|
    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Otherwise implement simplified merge. We could be smarter about
 | 
						|
    // this, but it isn't worth it and would be harder to verify.
 | 
						|
    Current = NoClass;
 | 
						|
    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
 | 
						|
    uint64_t ArraySize = AT->getSize().getZExtValue();
 | 
						|
    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
 | 
						|
      Class FieldLo, FieldHi;
 | 
						|
      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
 | 
						|
      Lo = merge(Lo, FieldLo);
 | 
						|
      Hi = merge(Hi, FieldHi);
 | 
						|
      if (Lo == Memory || Hi == Memory)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do post merger cleanup (see below). Only case we worry about is Memory.
 | 
						|
    if (Hi == Memory)
 | 
						|
      Lo = Memory;
 | 
						|
    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
 | 
						|
  } else if (const RecordType *RT = Ty->getAsRecordType()) {
 | 
						|
    uint64_t Size = Context.getTypeSize(Ty);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
 | 
						|
    // than two eightbytes, ..., it has class MEMORY.
 | 
						|
    if (Size > 128)
 | 
						|
      return;
 | 
						|
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
 | 
						|
    // Assume variable sized types are passed in memory.
 | 
						|
    if (RD->hasFlexibleArrayMember())
 | 
						|
      return;
 | 
						|
 | 
						|
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | 
						|
 | 
						|
    // Reset Lo class, this will be recomputed.
 | 
						|
    Current = NoClass;
 | 
						|
    unsigned idx = 0;
 | 
						|
    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
 | 
						|
           i != e; ++i, ++idx) {
 | 
						|
      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | 
						|
      bool BitField = i->isBitField();
 | 
						|
 | 
						|
      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
 | 
						|
      // fields, it has class MEMORY.
 | 
						|
      //
 | 
						|
      // Note, skip this test for bit-fields, see below.
 | 
						|
      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
 | 
						|
        Lo = Memory;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Classify this field.
 | 
						|
      //
 | 
						|
      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
 | 
						|
      // exceeds a single eightbyte, each is classified
 | 
						|
      // separately. Each eightbyte gets initialized to class
 | 
						|
      // NO_CLASS.
 | 
						|
      Class FieldLo, FieldHi;
 | 
						|
 | 
						|
      // Bit-fields require special handling, they do not force the
 | 
						|
      // structure to be passed in memory even if unaligned, and
 | 
						|
      // therefore they can straddle an eightbyte.
 | 
						|
      if (BitField) {
 | 
						|
        // Ignore padding bit-fields.
 | 
						|
        if (i->isUnnamedBitfield())
 | 
						|
          continue;
 | 
						|
 | 
						|
        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
 | 
						|
        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
 | 
						|
 | 
						|
        uint64_t EB_Lo = Offset / 64;
 | 
						|
        uint64_t EB_Hi = (Offset + Size - 1) / 64;
 | 
						|
        FieldLo = FieldHi = NoClass;
 | 
						|
        if (EB_Lo) {
 | 
						|
          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
 | 
						|
          FieldLo = NoClass;
 | 
						|
          FieldHi = Integer;
 | 
						|
        } else {
 | 
						|
          FieldLo = Integer;
 | 
						|
          FieldHi = EB_Hi ? Integer : NoClass;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
 | 
						|
      Lo = merge(Lo, FieldLo);
 | 
						|
      Hi = merge(Hi, FieldHi);
 | 
						|
      if (Lo == Memory || Hi == Memory)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
 | 
						|
    //
 | 
						|
    // (a) If one of the classes is MEMORY, the whole argument is
 | 
						|
    // passed in memory.
 | 
						|
    //
 | 
						|
    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
 | 
						|
 | 
						|
    // The first of these conditions is guaranteed by how we implement
 | 
						|
    // the merge (just bail).
 | 
						|
    //
 | 
						|
    // The second condition occurs in the case of unions; for example
 | 
						|
    // union { _Complex double; unsigned; }.
 | 
						|
    if (Hi == Memory)
 | 
						|
      Lo = Memory;
 | 
						|
    if (Hi == SSEUp && Lo != SSE)
 | 
						|
      Hi = SSE;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
 | 
						|
                                          const llvm::Type *CoerceTo,
 | 
						|
                                          ASTContext &Context) const {
 | 
						|
  if (CoerceTo == llvm::Type::Int64Ty) {
 | 
						|
    // Integer and pointer types will end up in a general purpose
 | 
						|
    // register.
 | 
						|
    if (Ty->isIntegralType() || Ty->isPointerType())
 | 
						|
      return (Ty->isPromotableIntegerType() ?
 | 
						|
              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  } else if (CoerceTo == llvm::Type::DoubleTy) {
 | 
						|
    // FIXME: It would probably be better to make CGFunctionInfo only map using
 | 
						|
    // canonical types than to canonize here.
 | 
						|
    QualType CTy = Context.getCanonicalType(Ty);
 | 
						|
 | 
						|
    // Float and double end up in a single SSE reg.
 | 
						|
    if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
 | 
						|
      return ABIArgInfo::getDirect();
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return ABIArgInfo::getCoerce(CoerceTo);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
 | 
						|
                                            ASTContext &Context) const {
 | 
						|
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
 | 
						|
  // place naturally.
 | 
						|
  if (!CodeGenFunction::hasAggregateLLVMType(Ty))
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
 | 
						|
  // FIXME: Set alignment correctly.
 | 
						|
  return ABIArgInfo::getIndirect(0);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
 | 
						|
                                            ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
 | 
						|
  // classification algorithm.
 | 
						|
  X86_64ABIInfo::Class Lo, Hi;
 | 
						|
  classify(RetTy, Context, 0, Lo, Hi);
 | 
						|
 | 
						|
  // Check some invariants.
 | 
						|
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | 
						|
  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
 | 
						|
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | 
						|
 | 
						|
  const llvm::Type *ResType = 0;
 | 
						|
  switch (Lo) {
 | 
						|
  case NoClass:
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
  case SSEUp:
 | 
						|
  case X87Up:
 | 
						|
    assert(0 && "Invalid classification for lo word.");
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
 | 
						|
    // hidden argument.
 | 
						|
  case Memory:
 | 
						|
    return getIndirectResult(RetTy, Context);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
 | 
						|
    // available register of the sequence %rax, %rdx is used.
 | 
						|
  case Integer:
 | 
						|
    ResType = llvm::Type::Int64Ty; break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
 | 
						|
    // available SSE register of the sequence %xmm0, %xmm1 is used.
 | 
						|
  case SSE:
 | 
						|
    ResType = llvm::Type::DoubleTy; break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
 | 
						|
    // returned on the X87 stack in %st0 as 80-bit x87 number.
 | 
						|
  case X87:
 | 
						|
    ResType = llvm::Type::X86_FP80Ty; break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
 | 
						|
    // part of the value is returned in %st0 and the imaginary part in
 | 
						|
    // %st1.
 | 
						|
  case ComplexX87:
 | 
						|
    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
 | 
						|
    ResType = VMContext.getStructType(llvm::Type::X86_FP80Ty,
 | 
						|
                                    llvm::Type::X86_FP80Ty,
 | 
						|
                                    NULL);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Hi) {
 | 
						|
    // Memory was handled previously and X87 should
 | 
						|
    // never occur as a hi class.
 | 
						|
  case Memory:
 | 
						|
  case X87:
 | 
						|
    assert(0 && "Invalid classification for hi word.");
 | 
						|
 | 
						|
  case ComplexX87: // Previously handled.
 | 
						|
  case NoClass: break;
 | 
						|
 | 
						|
  case Integer:
 | 
						|
    ResType = VMContext.getStructType(ResType, llvm::Type::Int64Ty, NULL);
 | 
						|
    break;
 | 
						|
  case SSE:
 | 
						|
    ResType = VMContext.getStructType(ResType, llvm::Type::DoubleTy, NULL);
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
 | 
						|
    // is passed in the upper half of the last used SSE register.
 | 
						|
    //
 | 
						|
    // SSEUP should always be preceeded by SSE, just widen.
 | 
						|
  case SSEUp:
 | 
						|
    assert(Lo == SSE && "Unexpected SSEUp classification.");
 | 
						|
    ResType = VMContext.getVectorType(llvm::Type::DoubleTy, 2);
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
 | 
						|
    // returned together with the previous X87 value in %st0.
 | 
						|
  case X87Up:
 | 
						|
    // If X87Up is preceeded by X87, we don't need to do
 | 
						|
    // anything. However, in some cases with unions it may not be
 | 
						|
    // preceeded by X87. In such situations we follow gcc and pass the
 | 
						|
    // extra bits in an SSE reg.
 | 
						|
    if (Lo != X87)
 | 
						|
      ResType = VMContext.getStructType(ResType, llvm::Type::DoubleTy, NULL);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return getCoerceResult(RetTy, ResType, Context);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
 | 
						|
                                               llvm::LLVMContext &VMContext,
 | 
						|
                                               unsigned &neededInt,
 | 
						|
                                               unsigned &neededSSE) const {
 | 
						|
  X86_64ABIInfo::Class Lo, Hi;
 | 
						|
  classify(Ty, Context, 0, Lo, Hi);
 | 
						|
 | 
						|
  // Check some invariants.
 | 
						|
  // FIXME: Enforce these by construction.
 | 
						|
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
 | 
						|
  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
 | 
						|
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
 | 
						|
 | 
						|
  neededInt = 0;
 | 
						|
  neededSSE = 0;
 | 
						|
  const llvm::Type *ResType = 0;
 | 
						|
  switch (Lo) {
 | 
						|
  case NoClass:
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
 | 
						|
    // on the stack.
 | 
						|
  case Memory:
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
 | 
						|
    // COMPLEX_X87, it is passed in memory.
 | 
						|
  case X87:
 | 
						|
  case ComplexX87:
 | 
						|
    return getIndirectResult(Ty, Context);
 | 
						|
 | 
						|
  case SSEUp:
 | 
						|
  case X87Up:
 | 
						|
    assert(0 && "Invalid classification for lo word.");
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
 | 
						|
    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
 | 
						|
    // and %r9 is used.
 | 
						|
  case Integer:
 | 
						|
    ++neededInt;
 | 
						|
    ResType = llvm::Type::Int64Ty;
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
 | 
						|
    // available SSE register is used, the registers are taken in the
 | 
						|
    // order from %xmm0 to %xmm7.
 | 
						|
  case SSE:
 | 
						|
    ++neededSSE;
 | 
						|
    ResType = llvm::Type::DoubleTy;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Hi) {
 | 
						|
    // Memory was handled previously, ComplexX87 and X87 should
 | 
						|
    // never occur as hi classes, and X87Up must be preceed by X87,
 | 
						|
    // which is passed in memory.
 | 
						|
  case Memory:
 | 
						|
  case X87:
 | 
						|
  case ComplexX87:
 | 
						|
    assert(0 && "Invalid classification for hi word.");
 | 
						|
    break;
 | 
						|
 | 
						|
  case NoClass: break;
 | 
						|
  case Integer:
 | 
						|
    ResType = VMContext.getStructType(ResType, llvm::Type::Int64Ty, NULL);
 | 
						|
    ++neededInt;
 | 
						|
    break;
 | 
						|
 | 
						|
    // X87Up generally doesn't occur here (long double is passed in
 | 
						|
    // memory), except in situations involving unions.
 | 
						|
  case X87Up:
 | 
						|
  case SSE:
 | 
						|
    ResType = VMContext.getStructType(ResType, llvm::Type::DoubleTy, NULL);
 | 
						|
    ++neededSSE;
 | 
						|
    break;
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
 | 
						|
    // eightbyte is passed in the upper half of the last used SSE
 | 
						|
    // register.
 | 
						|
  case SSEUp:
 | 
						|
    assert(Lo == SSE && "Unexpected SSEUp classification.");
 | 
						|
    ResType = VMContext.getVectorType(llvm::Type::DoubleTy, 2);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return getCoerceResult(Ty, ResType, Context);
 | 
						|
}
 | 
						|
 | 
						|
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                                llvm::LLVMContext &VMContext) const {
 | 
						|
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
 | 
						|
                                          Context, VMContext);
 | 
						|
 | 
						|
  // Keep track of the number of assigned registers.
 | 
						|
  unsigned freeIntRegs = 6, freeSSERegs = 8;
 | 
						|
 | 
						|
  // If the return value is indirect, then the hidden argument is consuming one
 | 
						|
  // integer register.
 | 
						|
  if (FI.getReturnInfo().isIndirect())
 | 
						|
    --freeIntRegs;
 | 
						|
 | 
						|
  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
 | 
						|
  // get assigned (in left-to-right order) for passing as follows...
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    unsigned neededInt, neededSSE;
 | 
						|
    it->info = classifyArgumentType(it->type, Context, VMContext, 
 | 
						|
                                    neededInt, neededSSE);
 | 
						|
 | 
						|
    // AMD64-ABI 3.2.3p3: If there are no registers available for any
 | 
						|
    // eightbyte of an argument, the whole argument is passed on the
 | 
						|
    // stack. If registers have already been assigned for some
 | 
						|
    // eightbytes of such an argument, the assignments get reverted.
 | 
						|
    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
 | 
						|
      freeIntRegs -= neededInt;
 | 
						|
      freeSSERegs -= neededSSE;
 | 
						|
    } else {
 | 
						|
      it->info = getIndirectResult(it->type, Context);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
 | 
						|
                                        QualType Ty,
 | 
						|
                                        CodeGenFunction &CGF) {
 | 
						|
  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
 | 
						|
  llvm::Value *overflow_arg_area_p =
 | 
						|
    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
 | 
						|
  llvm::Value *overflow_arg_area =
 | 
						|
    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
 | 
						|
  // byte boundary if alignment needed by type exceeds 8 byte boundary.
 | 
						|
  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
 | 
						|
  if (Align > 8) {
 | 
						|
    // Note that we follow the ABI & gcc here, even though the type
 | 
						|
    // could in theory have an alignment greater than 16. This case
 | 
						|
    // shouldn't ever matter in practice.
 | 
						|
 | 
						|
    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
 | 
						|
    llvm::Value *Offset = VMContext.getConstantInt(llvm::Type::Int32Ty, 15);
 | 
						|
    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
 | 
						|
    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
 | 
						|
                                                    llvm::Type::Int64Ty);
 | 
						|
    llvm::Value *Mask = VMContext.getConstantInt(llvm::Type::Int64Ty, ~15LL);
 | 
						|
    overflow_arg_area =
 | 
						|
      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
 | 
						|
                                 overflow_arg_area->getType(),
 | 
						|
                                 "overflow_arg_area.align");
 | 
						|
  }
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
 | 
						|
  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | 
						|
  llvm::Value *Res =
 | 
						|
    CGF.Builder.CreateBitCast(overflow_arg_area,
 | 
						|
                              VMContext.getPointerTypeUnqual(LTy));
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
 | 
						|
  // l->overflow_arg_area + sizeof(type).
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
 | 
						|
  // an 8 byte boundary.
 | 
						|
 | 
						|
  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
 | 
						|
  llvm::Value *Offset = VMContext.getConstantInt(llvm::Type::Int32Ty,
 | 
						|
                                               (SizeInBytes + 7)  & ~7);
 | 
						|
  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
 | 
						|
                                            "overflow_arg_area.next");
 | 
						|
  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                      CodeGenFunction &CGF) const {
 | 
						|
  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
 | 
						|
  
 | 
						|
  // Assume that va_list type is correct; should be pointer to LLVM type:
 | 
						|
  // struct {
 | 
						|
  //   i32 gp_offset;
 | 
						|
  //   i32 fp_offset;
 | 
						|
  //   i8* overflow_arg_area;
 | 
						|
  //   i8* reg_save_area;
 | 
						|
  // };
 | 
						|
  unsigned neededInt, neededSSE;
 | 
						|
  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
 | 
						|
                                       neededInt, neededSSE);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
 | 
						|
  // in the registers. If not go to step 7.
 | 
						|
  if (!neededInt && !neededSSE)
 | 
						|
    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
 | 
						|
  // general purpose registers needed to pass type and num_fp to hold
 | 
						|
  // the number of floating point registers needed.
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
 | 
						|
  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
 | 
						|
  // l->fp_offset > 304 - num_fp * 16 go to step 7.
 | 
						|
  //
 | 
						|
  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
 | 
						|
  // register save space).
 | 
						|
 | 
						|
  llvm::Value *InRegs = 0;
 | 
						|
  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
 | 
						|
  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
 | 
						|
  if (neededInt) {
 | 
						|
    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
 | 
						|
    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
 | 
						|
    InRegs =
 | 
						|
      CGF.Builder.CreateICmpULE(gp_offset,
 | 
						|
                                VMContext.getConstantInt(llvm::Type::Int32Ty,
 | 
						|
                                                       48 - neededInt * 8),
 | 
						|
                                "fits_in_gp");
 | 
						|
  }
 | 
						|
 | 
						|
  if (neededSSE) {
 | 
						|
    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
 | 
						|
    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
 | 
						|
    llvm::Value *FitsInFP =
 | 
						|
      CGF.Builder.CreateICmpULE(fp_offset,
 | 
						|
                                VMContext.getConstantInt(llvm::Type::Int32Ty,
 | 
						|
                                                       176 - neededSSE * 16),
 | 
						|
                                "fits_in_fp");
 | 
						|
    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
 | 
						|
  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
 | 
						|
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
 | 
						|
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
 | 
						|
 | 
						|
  // Emit code to load the value if it was passed in registers.
 | 
						|
 | 
						|
  CGF.EmitBlock(InRegBlock);
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
 | 
						|
  // an offset of l->gp_offset and/or l->fp_offset. This may require
 | 
						|
  // copying to a temporary location in case the parameter is passed
 | 
						|
  // in different register classes or requires an alignment greater
 | 
						|
  // than 8 for general purpose registers and 16 for XMM registers.
 | 
						|
  //
 | 
						|
  // FIXME: This really results in shameful code when we end up needing to
 | 
						|
  // collect arguments from different places; often what should result in a
 | 
						|
  // simple assembling of a structure from scattered addresses has many more
 | 
						|
  // loads than necessary. Can we clean this up?
 | 
						|
  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
 | 
						|
  llvm::Value *RegAddr =
 | 
						|
    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
 | 
						|
                           "reg_save_area");
 | 
						|
  if (neededInt && neededSSE) {
 | 
						|
    // FIXME: Cleanup.
 | 
						|
    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
 | 
						|
    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
 | 
						|
    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
 | 
						|
    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
 | 
						|
    const llvm::Type *TyLo = ST->getElementType(0);
 | 
						|
    const llvm::Type *TyHi = ST->getElementType(1);
 | 
						|
    assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
 | 
						|
           "Unexpected ABI info for mixed regs");
 | 
						|
    const llvm::Type *PTyLo = VMContext.getPointerTypeUnqual(TyLo);
 | 
						|
    const llvm::Type *PTyHi = VMContext.getPointerTypeUnqual(TyHi);
 | 
						|
    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
 | 
						|
    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | 
						|
    llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
 | 
						|
    llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
 | 
						|
    llvm::Value *V =
 | 
						|
      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
 | 
						|
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | 
						|
    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
 | 
						|
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | 
						|
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(Tmp,
 | 
						|
                                        VMContext.getPointerTypeUnqual(LTy));
 | 
						|
  } else if (neededInt) {
 | 
						|
    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
 | 
						|
    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
 | 
						|
                                        VMContext.getPointerTypeUnqual(LTy));
 | 
						|
  } else {
 | 
						|
    if (neededSSE == 1) {
 | 
						|
      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | 
						|
      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
 | 
						|
                                          VMContext.getPointerTypeUnqual(LTy));
 | 
						|
    } else {
 | 
						|
      assert(neededSSE == 2 && "Invalid number of needed registers!");
 | 
						|
      // SSE registers are spaced 16 bytes apart in the register save
 | 
						|
      // area, we need to collect the two eightbytes together.
 | 
						|
      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
 | 
						|
      llvm::Value *RegAddrHi =
 | 
						|
        CGF.Builder.CreateGEP(RegAddrLo,
 | 
						|
                            VMContext.getConstantInt(llvm::Type::Int32Ty, 16));
 | 
						|
      const llvm::Type *DblPtrTy =
 | 
						|
        VMContext.getPointerTypeUnqual(llvm::Type::DoubleTy);
 | 
						|
      const llvm::StructType *ST = VMContext.getStructType(llvm::Type::DoubleTy,
 | 
						|
                                                         llvm::Type::DoubleTy,
 | 
						|
                                                         NULL);
 | 
						|
      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
 | 
						|
      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
 | 
						|
                                                           DblPtrTy));
 | 
						|
      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
 | 
						|
      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
 | 
						|
                                                           DblPtrTy));
 | 
						|
      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
 | 
						|
      RegAddr = CGF.Builder.CreateBitCast(Tmp,
 | 
						|
                                          VMContext.getPointerTypeUnqual(LTy));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // AMD64-ABI 3.5.7p5: Step 5. Set:
 | 
						|
  // l->gp_offset = l->gp_offset + num_gp * 8
 | 
						|
  // l->fp_offset = l->fp_offset + num_fp * 16.
 | 
						|
  if (neededInt) {
 | 
						|
    llvm::Value *Offset = VMContext.getConstantInt(llvm::Type::Int32Ty,
 | 
						|
                                                 neededInt * 8);
 | 
						|
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
 | 
						|
                            gp_offset_p);
 | 
						|
  }
 | 
						|
  if (neededSSE) {
 | 
						|
    llvm::Value *Offset = VMContext.getConstantInt(llvm::Type::Int32Ty,
 | 
						|
                                                 neededSSE * 16);
 | 
						|
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
 | 
						|
                            fp_offset_p);
 | 
						|
  }
 | 
						|
  CGF.EmitBranch(ContBlock);
 | 
						|
 | 
						|
  // Emit code to load the value if it was passed in memory.
 | 
						|
 | 
						|
  CGF.EmitBlock(InMemBlock);
 | 
						|
  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
 | 
						|
 | 
						|
  // Return the appropriate result.
 | 
						|
 | 
						|
  CGF.EmitBlock(ContBlock);
 | 
						|
  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
 | 
						|
                                                 "vaarg.addr");
 | 
						|
  ResAddr->reserveOperandSpace(2);
 | 
						|
  ResAddr->addIncoming(RegAddr, InRegBlock);
 | 
						|
  ResAddr->addIncoming(MemAddr, InMemBlock);
 | 
						|
 | 
						|
  return ResAddr;
 | 
						|
}
 | 
						|
 | 
						|
// ABI Info for PIC16
 | 
						|
class PIC16ABIInfo : public ABIInfo {
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy,
 | 
						|
                                ASTContext &Context,
 | 
						|
                                llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy,
 | 
						|
                                  ASTContext &Context,
 | 
						|
                                  llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                           llvm::LLVMContext &VMContext) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
 | 
						|
                                            VMContext);
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it)
 | 
						|
      it->info = classifyArgumentType(it->type, Context, VMContext);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
 | 
						|
                                            ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  if (RetTy->isVoidType()) {
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  } else {
 | 
						|
    return ABIArgInfo::getDirect();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
 | 
						|
                                              ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  return ABIArgInfo::getDirect();
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
class ARMABIInfo : public ABIInfo {
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy,
 | 
						|
                                ASTContext &Context,
 | 
						|
                                llvm::LLVMContext &VMCOntext) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy,
 | 
						|
                                  ASTContext &Context,
 | 
						|
                                  llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                           llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
 | 
						|
void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                             llvm::LLVMContext &VMContext) const {
 | 
						|
  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 
 | 
						|
                                          VMContext);
 | 
						|
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    it->info = classifyArgumentType(it->type, Context, VMContext);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
 | 
						|
                                            ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
 | 
						|
  // backend doesn't support byval.
 | 
						|
  // FIXME: This doesn't handle alignment > 64 bits.
 | 
						|
  const llvm::Type* ElemTy;
 | 
						|
  unsigned SizeRegs;
 | 
						|
  if (Context.getTypeAlign(Ty) > 32) {
 | 
						|
    ElemTy = llvm::Type::Int64Ty;
 | 
						|
    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
 | 
						|
  } else {
 | 
						|
    ElemTy = llvm::Type::Int32Ty;
 | 
						|
    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
 | 
						|
  }
 | 
						|
  std::vector<const llvm::Type*> LLVMFields;
 | 
						|
  LLVMFields.push_back(VMContext.getArrayType(ElemTy, SizeRegs));
 | 
						|
  const llvm::Type* STy = VMContext.getStructType(LLVMFields, true);
 | 
						|
  return ABIArgInfo::getCoerce(STy);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
 | 
						|
                                          ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  if (RetTy->isVoidType()) {
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
 | 
						|
    // Aggregates <= 4 bytes are returned in r0; other aggregates
 | 
						|
    // are returned indirectly.
 | 
						|
    uint64_t Size = Context.getTypeSize(RetTy);
 | 
						|
    if (Size <= 32)
 | 
						|
      return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  } else {
 | 
						|
    return (RetTy->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                      CodeGenFunction &CGF) const {
 | 
						|
  llvm::LLVMContext &VMContext = CGF.getLLVMContext();                                        
 | 
						|
 | 
						|
  // FIXME: Need to handle alignment
 | 
						|
  const llvm::Type *BP = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty);
 | 
						|
  const llvm::Type *BPP = VMContext.getPointerTypeUnqual(BP);
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
 | 
						|
                                                       "ap");
 | 
						|
  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
 | 
						|
  llvm::Type *PTy =
 | 
						|
    VMContext.getPointerTypeUnqual(CGF.ConvertType(Ty));
 | 
						|
  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
 | 
						|
 | 
						|
  uint64_t Offset =
 | 
						|
    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
 | 
						|
  llvm::Value *NextAddr =
 | 
						|
    Builder.CreateGEP(Addr,
 | 
						|
                      VMContext.getConstantInt(llvm::Type::Int32Ty, Offset),
 | 
						|
                      "ap.next");
 | 
						|
  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
 | 
						|
 | 
						|
  return AddrTyped;
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
 | 
						|
                                              ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  if (RetTy->isVoidType()) {
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  } else {
 | 
						|
    return (RetTy->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class SystemZABIInfo : public ABIInfo {
 | 
						|
  bool isPromotableIntegerType(QualType Ty) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
 | 
						|
                                llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
 | 
						|
                                  llvm::LLVMContext &VMContext) const;
 | 
						|
 | 
						|
  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
 | 
						|
                          llvm::LLVMContext &VMContext) const {
 | 
						|
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
 | 
						|
                                            Context, VMContext);
 | 
						|
    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
 | 
						|
         it != ie; ++it)
 | 
						|
      it->info = classifyArgumentType(it->type, Context, VMContext);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                 CodeGenFunction &CGF) const;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
 | 
						|
  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
 | 
						|
  if (const BuiltinType *BT = Ty->getAsBuiltinType())
 | 
						|
    switch (BT->getKind()) {
 | 
						|
    case BuiltinType::Bool:
 | 
						|
    case BuiltinType::Char_S:
 | 
						|
    case BuiltinType::Char_U:
 | 
						|
    case BuiltinType::SChar:
 | 
						|
    case BuiltinType::UChar:
 | 
						|
    case BuiltinType::Short:
 | 
						|
    case BuiltinType::UShort:
 | 
						|
    case BuiltinType::Int:
 | 
						|
    case BuiltinType::UInt:
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  // FIXME: Implement
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
 | 
						|
                                              ASTContext &Context,
 | 
						|
                                            llvm::LLVMContext &VMContext) const {
 | 
						|
  if (RetTy->isVoidType()) {
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  } else {
 | 
						|
    return (isPromotableIntegerType(RetTy) ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
 | 
						|
                                                ASTContext &Context,
 | 
						|
                                            llvm::LLVMContext &VMContext) const {
 | 
						|
  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  } else {
 | 
						|
    return (isPromotableIntegerType(Ty) ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
 | 
						|
                                                ASTContext &Context,
 | 
						|
                                          llvm::LLVMContext &VMContext) const {
 | 
						|
  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
 | 
						|
    return ABIArgInfo::getIndirect(0);
 | 
						|
  } else {
 | 
						|
    return (Ty->isPromotableIntegerType() ?
 | 
						|
            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
 | 
						|
                                       CodeGenFunction &CGF) const {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
const ABIInfo &CodeGenTypes::getABIInfo() const {
 | 
						|
  if (TheABIInfo)
 | 
						|
    return *TheABIInfo;
 | 
						|
 | 
						|
  // For now we just cache this in the CodeGenTypes and don't bother
 | 
						|
  // to free it.
 | 
						|
  const char *TargetPrefix = getContext().Target.getTargetPrefix();
 | 
						|
  if (strcmp(TargetPrefix, "x86") == 0) {
 | 
						|
    bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
 | 
						|
    switch (getContext().Target.getPointerWidth(0)) {
 | 
						|
    case 32:
 | 
						|
      return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
 | 
						|
    case 64:
 | 
						|
      return *(TheABIInfo = new X86_64ABIInfo());
 | 
						|
    }
 | 
						|
  } else if (strcmp(TargetPrefix, "arm") == 0) {
 | 
						|
    // FIXME: Support for OABI?
 | 
						|
    return *(TheABIInfo = new ARMABIInfo());
 | 
						|
  } else if (strcmp(TargetPrefix, "pic16") == 0) {
 | 
						|
    return *(TheABIInfo = new PIC16ABIInfo());
 | 
						|
  } else if (strcmp(TargetPrefix, "s390x") == 0) {
 | 
						|
    return *(TheABIInfo = new SystemZABIInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  return *(TheABIInfo = new DefaultABIInfo);
 | 
						|
}
 |