2415 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2415 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines BugReporter, a utility class for generating
 | 
						|
//  PathDiagnostics.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ParentMap.h"
 | 
						|
#include "clang/AST/StmtObjC.h"
 | 
						|
#include "clang/Analysis/CFG.h"
 | 
						|
#include "clang/Analysis/ProgramPoint.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/IntrusiveRefCntPtr.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <queue>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
BugReporterVisitor::~BugReporterVisitor() {}
 | 
						|
 | 
						|
void BugReporterContext::anchor() {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper routines for walking the ExplodedGraph and fetching statements.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static inline const Stmt *GetStmt(const ProgramPoint &P) {
 | 
						|
  if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
 | 
						|
    return SP->getStmt();
 | 
						|
  if (Optional<BlockEdge> BE = P.getAs<BlockEdge>())
 | 
						|
    return BE->getSrc()->getTerminator();
 | 
						|
  if (Optional<CallEnter> CE = P.getAs<CallEnter>())
 | 
						|
    return CE->getCallExpr();
 | 
						|
  if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>())
 | 
						|
    return CEE->getCalleeContext()->getCallSite();
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline const ExplodedNode*
 | 
						|
GetPredecessorNode(const ExplodedNode *N) {
 | 
						|
  return N->pred_empty() ? NULL : *(N->pred_begin());
 | 
						|
}
 | 
						|
 | 
						|
static inline const ExplodedNode*
 | 
						|
GetSuccessorNode(const ExplodedNode *N) {
 | 
						|
  return N->succ_empty() ? NULL : *(N->succ_begin());
 | 
						|
}
 | 
						|
 | 
						|
static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
 | 
						|
  for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
 | 
						|
    if (const Stmt *S = GetStmt(N->getLocation()))
 | 
						|
      return S;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const Stmt *GetNextStmt(const ExplodedNode *N) {
 | 
						|
  for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
 | 
						|
    if (const Stmt *S = GetStmt(N->getLocation())) {
 | 
						|
      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
 | 
						|
      // not actual statement points.
 | 
						|
      switch (S->getStmtClass()) {
 | 
						|
        case Stmt::ChooseExprClass:
 | 
						|
        case Stmt::BinaryConditionalOperatorClass: continue;
 | 
						|
        case Stmt::ConditionalOperatorClass: continue;
 | 
						|
        case Stmt::BinaryOperatorClass: {
 | 
						|
          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
 | 
						|
          if (Op == BO_LAnd || Op == BO_LOr)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      return S;
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline const Stmt*
 | 
						|
GetCurrentOrPreviousStmt(const ExplodedNode *N) {
 | 
						|
  if (const Stmt *S = GetStmt(N->getLocation()))
 | 
						|
    return S;
 | 
						|
 | 
						|
  return GetPreviousStmt(N);
 | 
						|
}
 | 
						|
 | 
						|
static inline const Stmt*
 | 
						|
GetCurrentOrNextStmt(const ExplodedNode *N) {
 | 
						|
  if (const Stmt *S = GetStmt(N->getLocation()))
 | 
						|
    return S;
 | 
						|
 | 
						|
  return GetNextStmt(N);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Diagnostic cleanup.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static PathDiagnosticEventPiece *
 | 
						|
eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
 | 
						|
                            PathDiagnosticEventPiece *Y) {
 | 
						|
  // Prefer diagnostics that come from ConditionBRVisitor over
 | 
						|
  // those that came from TrackConstraintBRVisitor.
 | 
						|
  const void *tagPreferred = ConditionBRVisitor::getTag();
 | 
						|
  const void *tagLesser = TrackConstraintBRVisitor::getTag();
 | 
						|
  
 | 
						|
  if (X->getLocation() != Y->getLocation())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
 | 
						|
    return X;
 | 
						|
  
 | 
						|
  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
 | 
						|
    return Y;
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// An optimization pass over PathPieces that removes redundant diagnostics
 | 
						|
/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
 | 
						|
/// BugReporterVisitors use different methods to generate diagnostics, with
 | 
						|
/// one capable of emitting diagnostics in some cases but not in others.  This
 | 
						|
/// can lead to redundant diagnostic pieces at the same point in a path.
 | 
						|
static void removeRedundantMsgs(PathPieces &path) {
 | 
						|
  unsigned N = path.size();
 | 
						|
  if (N < 2)
 | 
						|
    return;
 | 
						|
  // NOTE: this loop intentionally is not using an iterator.  Instead, we
 | 
						|
  // are streaming the path and modifying it in place.  This is done by
 | 
						|
  // grabbing the front, processing it, and if we decide to keep it append
 | 
						|
  // it to the end of the path.  The entire path is processed in this way.
 | 
						|
  for (unsigned i = 0; i < N; ++i) {
 | 
						|
    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
 | 
						|
    path.pop_front();
 | 
						|
    
 | 
						|
    switch (piece->getKind()) {
 | 
						|
      case clang::ento::PathDiagnosticPiece::Call:
 | 
						|
        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
 | 
						|
        break;
 | 
						|
      case clang::ento::PathDiagnosticPiece::Macro:
 | 
						|
        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
 | 
						|
        break;
 | 
						|
      case clang::ento::PathDiagnosticPiece::ControlFlow:
 | 
						|
        break;
 | 
						|
      case clang::ento::PathDiagnosticPiece::Event: {
 | 
						|
        if (i == N-1)
 | 
						|
          break;
 | 
						|
        
 | 
						|
        if (PathDiagnosticEventPiece *nextEvent =
 | 
						|
            dyn_cast<PathDiagnosticEventPiece>(path.front().getPtr())) {
 | 
						|
          PathDiagnosticEventPiece *event =
 | 
						|
            cast<PathDiagnosticEventPiece>(piece);
 | 
						|
          // Check to see if we should keep one of the two pieces.  If we
 | 
						|
          // come up with a preference, record which piece to keep, and consume
 | 
						|
          // another piece from the path.
 | 
						|
          if (PathDiagnosticEventPiece *pieceToKeep =
 | 
						|
              eventsDescribeSameCondition(event, nextEvent)) {
 | 
						|
            piece = pieceToKeep;
 | 
						|
            path.pop_front();
 | 
						|
            ++i;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    path.push_back(piece);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively scan through a path and prune out calls and macros pieces
 | 
						|
/// that aren't needed.  Return true if afterwards the path contains
 | 
						|
/// "interesting stuff" which means it shouldn't be pruned from the parent path.
 | 
						|
bool BugReporter::RemoveUnneededCalls(PathPieces &pieces, BugReport *R) {
 | 
						|
  bool containsSomethingInteresting = false;
 | 
						|
  const unsigned N = pieces.size();
 | 
						|
  
 | 
						|
  for (unsigned i = 0 ; i < N ; ++i) {
 | 
						|
    // Remove the front piece from the path.  If it is still something we
 | 
						|
    // want to keep once we are done, we will push it back on the end.
 | 
						|
    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
 | 
						|
    pieces.pop_front();
 | 
						|
    
 | 
						|
    // Throw away pieces with invalid locations. Note that we can't throw away
 | 
						|
    // calls just yet because they might have something interesting inside them.
 | 
						|
    // If so, their locations will be adjusted as necessary later.
 | 
						|
    if (piece->getKind() != PathDiagnosticPiece::Call &&
 | 
						|
        piece->getLocation().asLocation().isInvalid())
 | 
						|
      continue;
 | 
						|
 | 
						|
    switch (piece->getKind()) {
 | 
						|
      case PathDiagnosticPiece::Call: {
 | 
						|
        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
 | 
						|
        // Check if the location context is interesting.
 | 
						|
        assert(LocationContextMap.count(call));
 | 
						|
        if (R->isInteresting(LocationContextMap[call])) {
 | 
						|
          containsSomethingInteresting = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!RemoveUnneededCalls(call->path, R))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        containsSomethingInteresting = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PathDiagnosticPiece::Macro: {
 | 
						|
        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
 | 
						|
        if (!RemoveUnneededCalls(macro->subPieces, R))
 | 
						|
          continue;
 | 
						|
        containsSomethingInteresting = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PathDiagnosticPiece::Event: {
 | 
						|
        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
 | 
						|
        
 | 
						|
        // We never throw away an event, but we do throw it away wholesale
 | 
						|
        // as part of a path if we throw the entire path away.
 | 
						|
        containsSomethingInteresting |= !event->isPrunable();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case PathDiagnosticPiece::ControlFlow:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    pieces.push_back(piece);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return containsSomethingInteresting;
 | 
						|
}
 | 
						|
 | 
						|
/// Recursively scan through a path and make sure that all call pieces have
 | 
						|
/// valid locations. Note that all other pieces with invalid locations should
 | 
						|
/// have already been pruned out.
 | 
						|
static void adjustCallLocations(PathPieces &Pieces,
 | 
						|
                                PathDiagnosticLocation *LastCallLocation = 0) {
 | 
						|
  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
 | 
						|
    PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
 | 
						|
 | 
						|
    if (!Call) {
 | 
						|
      assert((*I)->getLocation().asLocation().isValid());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LastCallLocation) {
 | 
						|
      if (!Call->callEnter.asLocation().isValid() ||
 | 
						|
          Call->getCaller()->isImplicit())
 | 
						|
        Call->callEnter = *LastCallLocation;
 | 
						|
      if (!Call->callReturn.asLocation().isValid() ||
 | 
						|
          Call->getCaller()->isImplicit())
 | 
						|
        Call->callReturn = *LastCallLocation;
 | 
						|
    }
 | 
						|
 | 
						|
    // Recursively clean out the subclass.  Keep this call around if
 | 
						|
    // it contains any informative diagnostics.
 | 
						|
    PathDiagnosticLocation *ThisCallLocation;
 | 
						|
    if (Call->callEnterWithin.asLocation().isValid() &&
 | 
						|
        !Call->getCallee()->isImplicit())
 | 
						|
      ThisCallLocation = &Call->callEnterWithin;
 | 
						|
    else
 | 
						|
      ThisCallLocation = &Call->callEnter;
 | 
						|
 | 
						|
    assert(ThisCallLocation && "Outermost call has an invalid location");
 | 
						|
    adjustCallLocations(Call->path, ThisCallLocation);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// PathDiagnosticBuilder and its associated routines and helper objects.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
typedef llvm::DenseMap<const ExplodedNode*,
 | 
						|
const ExplodedNode*> NodeBackMap;
 | 
						|
 | 
						|
namespace {
 | 
						|
class NodeMapClosure : public BugReport::NodeResolver {
 | 
						|
  NodeBackMap& M;
 | 
						|
public:
 | 
						|
  NodeMapClosure(NodeBackMap *m) : M(*m) {}
 | 
						|
  ~NodeMapClosure() {}
 | 
						|
 | 
						|
  const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
 | 
						|
    NodeBackMap::iterator I = M.find(N);
 | 
						|
    return I == M.end() ? 0 : I->second;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class PathDiagnosticBuilder : public BugReporterContext {
 | 
						|
  BugReport *R;
 | 
						|
  PathDiagnosticConsumer *PDC;
 | 
						|
  NodeMapClosure NMC;
 | 
						|
public:
 | 
						|
  const LocationContext *LC;
 | 
						|
  
 | 
						|
  PathDiagnosticBuilder(GRBugReporter &br,
 | 
						|
                        BugReport *r, NodeBackMap *Backmap,
 | 
						|
                        PathDiagnosticConsumer *pdc)
 | 
						|
    : BugReporterContext(br),
 | 
						|
      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
 | 
						|
  {}
 | 
						|
 | 
						|
  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
 | 
						|
 | 
						|
  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
 | 
						|
                                            const ExplodedNode *N);
 | 
						|
 | 
						|
  BugReport *getBugReport() { return R; }
 | 
						|
 | 
						|
  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
 | 
						|
  
 | 
						|
  ParentMap& getParentMap() { return LC->getParentMap(); }
 | 
						|
 | 
						|
  const Stmt *getParent(const Stmt *S) {
 | 
						|
    return getParentMap().getParent(S);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual NodeMapClosure& getNodeResolver() { return NMC; }
 | 
						|
 | 
						|
  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
 | 
						|
 | 
						|
  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
 | 
						|
    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
 | 
						|
  }
 | 
						|
 | 
						|
  bool supportsLogicalOpControlFlow() const {
 | 
						|
    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
PathDiagnosticLocation
 | 
						|
PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
 | 
						|
  if (const Stmt *S = GetNextStmt(N))
 | 
						|
    return PathDiagnosticLocation(S, getSourceManager(), LC);
 | 
						|
 | 
						|
  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
 | 
						|
                                               getSourceManager());
 | 
						|
}
 | 
						|
 | 
						|
PathDiagnosticLocation
 | 
						|
PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
 | 
						|
                                          const ExplodedNode *N) {
 | 
						|
 | 
						|
  // Slow, but probably doesn't matter.
 | 
						|
  if (os.str().empty())
 | 
						|
    os << ' ';
 | 
						|
 | 
						|
  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
 | 
						|
 | 
						|
  if (Loc.asStmt())
 | 
						|
    os << "Execution continues on line "
 | 
						|
       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
 | 
						|
       << '.';
 | 
						|
  else {
 | 
						|
    os << "Execution jumps to the end of the ";
 | 
						|
    const Decl *D = N->getLocationContext()->getDecl();
 | 
						|
    if (isa<ObjCMethodDecl>(D))
 | 
						|
      os << "method";
 | 
						|
    else if (isa<FunctionDecl>(D))
 | 
						|
      os << "function";
 | 
						|
    else {
 | 
						|
      assert(isa<BlockDecl>(D));
 | 
						|
      os << "anonymous block";
 | 
						|
    }
 | 
						|
    os << '.';
 | 
						|
  }
 | 
						|
 | 
						|
  return Loc;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsNested(const Stmt *S, ParentMap &PM) {
 | 
						|
  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const Stmt *Parent = PM.getParentIgnoreParens(S);
 | 
						|
 | 
						|
  if (Parent)
 | 
						|
    switch (Parent->getStmtClass()) {
 | 
						|
      case Stmt::ForStmtClass:
 | 
						|
      case Stmt::DoStmtClass:
 | 
						|
      case Stmt::WhileStmtClass:
 | 
						|
        return true;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
PathDiagnosticLocation
 | 
						|
PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
 | 
						|
  assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
 | 
						|
  ParentMap &P = getParentMap();
 | 
						|
  SourceManager &SMgr = getSourceManager();
 | 
						|
 | 
						|
  while (IsNested(S, P)) {
 | 
						|
    const Stmt *Parent = P.getParentIgnoreParens(S);
 | 
						|
 | 
						|
    if (!Parent)
 | 
						|
      break;
 | 
						|
 | 
						|
    switch (Parent->getStmtClass()) {
 | 
						|
      case Stmt::BinaryOperatorClass: {
 | 
						|
        const BinaryOperator *B = cast<BinaryOperator>(Parent);
 | 
						|
        if (B->isLogicalOp())
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Stmt::CompoundStmtClass:
 | 
						|
      case Stmt::StmtExprClass:
 | 
						|
        return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
      case Stmt::ChooseExprClass:
 | 
						|
        // Similar to '?' if we are referring to condition, just have the edge
 | 
						|
        // point to the entire choose expression.
 | 
						|
        if (cast<ChooseExpr>(Parent)->getCond() == S)
 | 
						|
          return PathDiagnosticLocation(Parent, SMgr, LC);
 | 
						|
        else
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
      case Stmt::BinaryConditionalOperatorClass:
 | 
						|
      case Stmt::ConditionalOperatorClass:
 | 
						|
        // For '?', if we are referring to condition, just have the edge point
 | 
						|
        // to the entire '?' expression.
 | 
						|
        if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
 | 
						|
          return PathDiagnosticLocation(Parent, SMgr, LC);
 | 
						|
        else
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
      case Stmt::DoStmtClass:
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
      case Stmt::ForStmtClass:
 | 
						|
        if (cast<ForStmt>(Parent)->getBody() == S)
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
        break;
 | 
						|
      case Stmt::IfStmtClass:
 | 
						|
        if (cast<IfStmt>(Parent)->getCond() != S)
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
        break;
 | 
						|
      case Stmt::ObjCForCollectionStmtClass:
 | 
						|
        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
        break;
 | 
						|
      case Stmt::WhileStmtClass:
 | 
						|
        if (cast<WhileStmt>(Parent)->getCond() != S)
 | 
						|
          return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    S = Parent;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
 | 
						|
 | 
						|
  // Special case: DeclStmts can appear in for statement declarations, in which
 | 
						|
  //  case the ForStmt is the context.
 | 
						|
  if (isa<DeclStmt>(S)) {
 | 
						|
    if (const Stmt *Parent = P.getParent(S)) {
 | 
						|
      switch (Parent->getStmtClass()) {
 | 
						|
        case Stmt::ForStmtClass:
 | 
						|
        case Stmt::ObjCForCollectionStmtClass:
 | 
						|
          return PathDiagnosticLocation(Parent, SMgr, LC);
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (isa<BinaryOperator>(S)) {
 | 
						|
    // Special case: the binary operator represents the initialization
 | 
						|
    // code in a for statement (this can happen when the variable being
 | 
						|
    // initialized is an old variable.
 | 
						|
    if (const ForStmt *FS =
 | 
						|
          dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
 | 
						|
      if (FS->getInit() == S)
 | 
						|
        return PathDiagnosticLocation(FS, SMgr, LC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return PathDiagnosticLocation(S, SMgr, LC);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// "Visitors only" path diagnostic generation algorithm.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
 | 
						|
                                               PathDiagnosticBuilder &PDB,
 | 
						|
                                               const ExplodedNode *N,
 | 
						|
                                      ArrayRef<BugReporterVisitor *> visitors) {
 | 
						|
  // All path generation skips the very first node (the error node).
 | 
						|
  // This is because there is special handling for the end-of-path note.
 | 
						|
  N = N->getFirstPred();
 | 
						|
  if (!N)
 | 
						|
    return true;
 | 
						|
 | 
						|
  BugReport *R = PDB.getBugReport();
 | 
						|
  while (const ExplodedNode *Pred = N->getFirstPred()) {
 | 
						|
    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
 | 
						|
                                                  E = visitors.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // Visit all the node pairs, but throw the path pieces away.
 | 
						|
      PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
 | 
						|
      delete Piece;
 | 
						|
    }
 | 
						|
 | 
						|
    N = Pred;
 | 
						|
  }
 | 
						|
 | 
						|
  return R->isValid();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// "Minimal" path diagnostic generation algorithm.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
 | 
						|
typedef SmallVector<StackDiagPair, 6> StackDiagVector;
 | 
						|
 | 
						|
static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
 | 
						|
                                         StackDiagVector &CallStack) {
 | 
						|
  // If the piece contains a special message, add it to all the call
 | 
						|
  // pieces on the active stack.
 | 
						|
  if (PathDiagnosticEventPiece *ep =
 | 
						|
        dyn_cast<PathDiagnosticEventPiece>(P)) {
 | 
						|
 | 
						|
    if (ep->hasCallStackHint())
 | 
						|
      for (StackDiagVector::iterator I = CallStack.begin(),
 | 
						|
                                     E = CallStack.end(); I != E; ++I) {
 | 
						|
        PathDiagnosticCallPiece *CP = I->first;
 | 
						|
        const ExplodedNode *N = I->second;
 | 
						|
        std::string stackMsg = ep->getCallStackMessage(N);
 | 
						|
 | 
						|
        // The last message on the path to final bug is the most important
 | 
						|
        // one. Since we traverse the path backwards, do not add the message
 | 
						|
        // if one has been previously added.
 | 
						|
        if  (!CP->hasCallStackMessage())
 | 
						|
          CP->setCallStackMessage(stackMsg);
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
 | 
						|
 | 
						|
static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
 | 
						|
                                          PathDiagnosticBuilder &PDB,
 | 
						|
                                          const ExplodedNode *N,
 | 
						|
                                      ArrayRef<BugReporterVisitor *> visitors) {
 | 
						|
 | 
						|
  SourceManager& SMgr = PDB.getSourceManager();
 | 
						|
  const LocationContext *LC = PDB.LC;
 | 
						|
  const ExplodedNode *NextNode = N->pred_empty()
 | 
						|
                                        ? NULL : *(N->pred_begin());
 | 
						|
 | 
						|
  StackDiagVector CallStack;
 | 
						|
 | 
						|
  while (NextNode) {
 | 
						|
    N = NextNode;
 | 
						|
    PDB.LC = N->getLocationContext();
 | 
						|
    NextNode = GetPredecessorNode(N);
 | 
						|
 | 
						|
    ProgramPoint P = N->getLocation();
 | 
						|
 | 
						|
    do {
 | 
						|
      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
 | 
						|
        PathDiagnosticCallPiece *C =
 | 
						|
            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
 | 
						|
        GRBugReporter& BR = PDB.getBugReporter();
 | 
						|
        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
 | 
						|
        PD.getActivePath().push_front(C);
 | 
						|
        PD.pushActivePath(&C->path);
 | 
						|
        CallStack.push_back(StackDiagPair(C, N));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
 | 
						|
        // Flush all locations, and pop the active path.
 | 
						|
        bool VisitedEntireCall = PD.isWithinCall();
 | 
						|
        PD.popActivePath();
 | 
						|
 | 
						|
        // Either we just added a bunch of stuff to the top-level path, or
 | 
						|
        // we have a previous CallExitEnd.  If the former, it means that the
 | 
						|
        // path terminated within a function call.  We must then take the
 | 
						|
        // current contents of the active path and place it within
 | 
						|
        // a new PathDiagnosticCallPiece.
 | 
						|
        PathDiagnosticCallPiece *C;
 | 
						|
        if (VisitedEntireCall) {
 | 
						|
          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
 | 
						|
        } else {
 | 
						|
          const Decl *Caller = CE->getLocationContext()->getDecl();
 | 
						|
          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
 | 
						|
          GRBugReporter& BR = PDB.getBugReporter();
 | 
						|
          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
 | 
						|
        }
 | 
						|
 | 
						|
        C->setCallee(*CE, SMgr);
 | 
						|
        if (!CallStack.empty()) {
 | 
						|
          assert(CallStack.back().first == C);
 | 
						|
          CallStack.pop_back();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
 | 
						|
        const CFGBlock *Src = BE->getSrc();
 | 
						|
        const CFGBlock *Dst = BE->getDst();
 | 
						|
        const Stmt *T = Src->getTerminator();
 | 
						|
 | 
						|
        if (!T)
 | 
						|
          break;
 | 
						|
 | 
						|
        PathDiagnosticLocation Start =
 | 
						|
            PathDiagnosticLocation::createBegin(T, SMgr,
 | 
						|
                N->getLocationContext());
 | 
						|
 | 
						|
        switch (T->getStmtClass()) {
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
 | 
						|
        case Stmt::GotoStmtClass:
 | 
						|
        case Stmt::IndirectGotoStmtClass: {
 | 
						|
          const Stmt *S = GetNextStmt(N);
 | 
						|
 | 
						|
          if (!S)
 | 
						|
            break;
 | 
						|
 | 
						|
          std::string sbuf;
 | 
						|
          llvm::raw_string_ostream os(sbuf);
 | 
						|
          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
 | 
						|
 | 
						|
          os << "Control jumps to line "
 | 
						|
              << End.asLocation().getExpansionLineNumber();
 | 
						|
          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
              Start, End, os.str()));
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        case Stmt::SwitchStmtClass: {
 | 
						|
          // Figure out what case arm we took.
 | 
						|
          std::string sbuf;
 | 
						|
          llvm::raw_string_ostream os(sbuf);
 | 
						|
 | 
						|
          if (const Stmt *S = Dst->getLabel()) {
 | 
						|
            PathDiagnosticLocation End(S, SMgr, LC);
 | 
						|
 | 
						|
            switch (S->getStmtClass()) {
 | 
						|
            default:
 | 
						|
              os << "No cases match in the switch statement. "
 | 
						|
              "Control jumps to line "
 | 
						|
              << End.asLocation().getExpansionLineNumber();
 | 
						|
              break;
 | 
						|
            case Stmt::DefaultStmtClass:
 | 
						|
              os << "Control jumps to the 'default' case at line "
 | 
						|
              << End.asLocation().getExpansionLineNumber();
 | 
						|
              break;
 | 
						|
 | 
						|
            case Stmt::CaseStmtClass: {
 | 
						|
              os << "Control jumps to 'case ";
 | 
						|
              const CaseStmt *Case = cast<CaseStmt>(S);
 | 
						|
              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
 | 
						|
 | 
						|
              // Determine if it is an enum.
 | 
						|
              bool GetRawInt = true;
 | 
						|
 | 
						|
              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
 | 
						|
                // FIXME: Maybe this should be an assertion.  Are there cases
 | 
						|
                // were it is not an EnumConstantDecl?
 | 
						|
                const EnumConstantDecl *D =
 | 
						|
                    dyn_cast<EnumConstantDecl>(DR->getDecl());
 | 
						|
 | 
						|
                if (D) {
 | 
						|
                  GetRawInt = false;
 | 
						|
                  os << *D;
 | 
						|
                }
 | 
						|
              }
 | 
						|
 | 
						|
              if (GetRawInt)
 | 
						|
                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
 | 
						|
 | 
						|
              os << ":'  at line "
 | 
						|
                  << End.asLocation().getExpansionLineNumber();
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            }
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, os.str()));
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            os << "'Default' branch taken. ";
 | 
						|
            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, os.str()));
 | 
						|
          }
 | 
						|
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        case Stmt::BreakStmtClass:
 | 
						|
        case Stmt::ContinueStmtClass: {
 | 
						|
          std::string sbuf;
 | 
						|
          llvm::raw_string_ostream os(sbuf);
 | 
						|
          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
 | 
						|
          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
              Start, End, os.str()));
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        // Determine control-flow for ternary '?'.
 | 
						|
        case Stmt::BinaryConditionalOperatorClass:
 | 
						|
        case Stmt::ConditionalOperatorClass: {
 | 
						|
          std::string sbuf;
 | 
						|
          llvm::raw_string_ostream os(sbuf);
 | 
						|
          os << "'?' condition is ";
 | 
						|
 | 
						|
          if (*(Src->succ_begin()+1) == Dst)
 | 
						|
            os << "false";
 | 
						|
          else
 | 
						|
            os << "true";
 | 
						|
 | 
						|
          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
 | 
						|
 | 
						|
          if (const Stmt *S = End.asStmt())
 | 
						|
            End = PDB.getEnclosingStmtLocation(S);
 | 
						|
 | 
						|
          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
              Start, End, os.str()));
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        // Determine control-flow for short-circuited '&&' and '||'.
 | 
						|
        case Stmt::BinaryOperatorClass: {
 | 
						|
          if (!PDB.supportsLogicalOpControlFlow())
 | 
						|
            break;
 | 
						|
 | 
						|
          const BinaryOperator *B = cast<BinaryOperator>(T);
 | 
						|
          std::string sbuf;
 | 
						|
          llvm::raw_string_ostream os(sbuf);
 | 
						|
          os << "Left side of '";
 | 
						|
 | 
						|
          if (B->getOpcode() == BO_LAnd) {
 | 
						|
            os << "&&" << "' is ";
 | 
						|
 | 
						|
            if (*(Src->succ_begin()+1) == Dst) {
 | 
						|
              os << "false";
 | 
						|
              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
 | 
						|
              PathDiagnosticLocation Start =
 | 
						|
                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
 | 
						|
              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                  Start, End, os.str()));
 | 
						|
            }
 | 
						|
            else {
 | 
						|
              os << "true";
 | 
						|
              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
 | 
						|
              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
 | 
						|
              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                  Start, End, os.str()));
 | 
						|
            }
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            assert(B->getOpcode() == BO_LOr);
 | 
						|
            os << "||" << "' is ";
 | 
						|
 | 
						|
            if (*(Src->succ_begin()+1) == Dst) {
 | 
						|
              os << "false";
 | 
						|
              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
 | 
						|
              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
 | 
						|
              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                  Start, End, os.str()));
 | 
						|
            }
 | 
						|
            else {
 | 
						|
              os << "true";
 | 
						|
              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
 | 
						|
              PathDiagnosticLocation Start =
 | 
						|
                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
 | 
						|
              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                  Start, End, os.str()));
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        case Stmt::DoStmtClass:  {
 | 
						|
          if (*(Src->succ_begin()) == Dst) {
 | 
						|
            std::string sbuf;
 | 
						|
            llvm::raw_string_ostream os(sbuf);
 | 
						|
 | 
						|
            os << "Loop condition is true. ";
 | 
						|
            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
 | 
						|
 | 
						|
            if (const Stmt *S = End.asStmt())
 | 
						|
              End = PDB.getEnclosingStmtLocation(S);
 | 
						|
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, os.str()));
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
 | 
						|
 | 
						|
            if (const Stmt *S = End.asStmt())
 | 
						|
              End = PDB.getEnclosingStmtLocation(S);
 | 
						|
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, "Loop condition is false.  Exiting loop"));
 | 
						|
          }
 | 
						|
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        case Stmt::WhileStmtClass:
 | 
						|
        case Stmt::ForStmtClass: {
 | 
						|
          if (*(Src->succ_begin()+1) == Dst) {
 | 
						|
            std::string sbuf;
 | 
						|
            llvm::raw_string_ostream os(sbuf);
 | 
						|
 | 
						|
            os << "Loop condition is false. ";
 | 
						|
            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
 | 
						|
            if (const Stmt *S = End.asStmt())
 | 
						|
              End = PDB.getEnclosingStmtLocation(S);
 | 
						|
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, os.str()));
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
 | 
						|
            if (const Stmt *S = End.asStmt())
 | 
						|
              End = PDB.getEnclosingStmtLocation(S);
 | 
						|
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, "Loop condition is true.  Entering loop body"));
 | 
						|
          }
 | 
						|
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        case Stmt::IfStmtClass: {
 | 
						|
          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
 | 
						|
 | 
						|
          if (const Stmt *S = End.asStmt())
 | 
						|
            End = PDB.getEnclosingStmtLocation(S);
 | 
						|
 | 
						|
          if (*(Src->succ_begin()+1) == Dst)
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, "Taking false branch"));
 | 
						|
          else
 | 
						|
            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
 | 
						|
                Start, End, "Taking true branch"));
 | 
						|
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } while(0);
 | 
						|
 | 
						|
    if (NextNode) {
 | 
						|
      // Add diagnostic pieces from custom visitors.
 | 
						|
      BugReport *R = PDB.getBugReport();
 | 
						|
      for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
 | 
						|
                                                    E = visitors.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
 | 
						|
          PD.getActivePath().push_front(p);
 | 
						|
          updateStackPiecesWithMessage(p, CallStack);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PDB.getBugReport()->isValid())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // After constructing the full PathDiagnostic, do a pass over it to compact
 | 
						|
  // PathDiagnosticPieces that occur within a macro.
 | 
						|
  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// "Extensive" PathDiagnostic generation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool IsControlFlowExpr(const Stmt *S) {
 | 
						|
  const Expr *E = dyn_cast<Expr>(S);
 | 
						|
 | 
						|
  if (!E)
 | 
						|
    return false;
 | 
						|
 | 
						|
  E = E->IgnoreParenCasts();
 | 
						|
 | 
						|
  if (isa<AbstractConditionalOperator>(E))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
 | 
						|
    if (B->isLogicalOp())
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class ContextLocation : public PathDiagnosticLocation {
 | 
						|
  bool IsDead;
 | 
						|
public:
 | 
						|
  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
 | 
						|
    : PathDiagnosticLocation(L), IsDead(isdead) {}
 | 
						|
 | 
						|
  void markDead() { IsDead = true; }
 | 
						|
  bool isDead() const { return IsDead; }
 | 
						|
};
 | 
						|
 | 
						|
class EdgeBuilder {
 | 
						|
  std::vector<ContextLocation> CLocs;
 | 
						|
  typedef std::vector<ContextLocation>::iterator iterator;
 | 
						|
  PathDiagnostic &PD;
 | 
						|
  PathDiagnosticBuilder &PDB;
 | 
						|
  PathDiagnosticLocation PrevLoc;
 | 
						|
 | 
						|
  bool IsConsumedExpr(const PathDiagnosticLocation &L);
 | 
						|
 | 
						|
  bool containsLocation(const PathDiagnosticLocation &Container,
 | 
						|
                        const PathDiagnosticLocation &Containee);
 | 
						|
 | 
						|
  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
 | 
						|
 | 
						|
  PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
 | 
						|
                                         bool firstCharOnly = false) {
 | 
						|
    if (const Stmt *S = L.asStmt()) {
 | 
						|
      const Stmt *Original = S;
 | 
						|
      while (1) {
 | 
						|
        // Adjust the location for some expressions that are best referenced
 | 
						|
        // by one of their subexpressions.
 | 
						|
        switch (S->getStmtClass()) {
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
          case Stmt::ParenExprClass:
 | 
						|
          case Stmt::GenericSelectionExprClass:
 | 
						|
            S = cast<Expr>(S)->IgnoreParens();
 | 
						|
            firstCharOnly = true;
 | 
						|
            continue;
 | 
						|
          case Stmt::BinaryConditionalOperatorClass:
 | 
						|
          case Stmt::ConditionalOperatorClass:
 | 
						|
            S = cast<AbstractConditionalOperator>(S)->getCond();
 | 
						|
            firstCharOnly = true;
 | 
						|
            continue;
 | 
						|
          case Stmt::ChooseExprClass:
 | 
						|
            S = cast<ChooseExpr>(S)->getCond();
 | 
						|
            firstCharOnly = true;
 | 
						|
            continue;
 | 
						|
          case Stmt::BinaryOperatorClass:
 | 
						|
            S = cast<BinaryOperator>(S)->getLHS();
 | 
						|
            firstCharOnly = true;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (S != Original)
 | 
						|
        L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
 | 
						|
    }
 | 
						|
 | 
						|
    if (firstCharOnly)
 | 
						|
      L  = PathDiagnosticLocation::createSingleLocation(L);
 | 
						|
 | 
						|
    return L;
 | 
						|
  }
 | 
						|
 | 
						|
  void popLocation() {
 | 
						|
    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
 | 
						|
      // For contexts, we only one the first character as the range.
 | 
						|
      rawAddEdge(cleanUpLocation(CLocs.back(), true));
 | 
						|
    }
 | 
						|
    CLocs.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
 | 
						|
    : PD(pd), PDB(pdb) {
 | 
						|
 | 
						|
      // If the PathDiagnostic already has pieces, add the enclosing statement
 | 
						|
      // of the first piece as a context as well.
 | 
						|
      if (!PD.path.empty()) {
 | 
						|
        PrevLoc = (*PD.path.begin())->getLocation();
 | 
						|
 | 
						|
        if (const Stmt *S = PrevLoc.asStmt())
 | 
						|
          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  ~EdgeBuilder() {
 | 
						|
    while (!CLocs.empty()) popLocation();
 | 
						|
    
 | 
						|
    // Finally, add an initial edge from the start location of the first
 | 
						|
    // statement (if it doesn't already exist).
 | 
						|
    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
 | 
						|
                                                       PDB.LC,
 | 
						|
                                                       PDB.getSourceManager());
 | 
						|
    if (L.isValid())
 | 
						|
      rawAddEdge(L);
 | 
						|
  }
 | 
						|
 | 
						|
  void flushLocations() {
 | 
						|
    while (!CLocs.empty())
 | 
						|
      popLocation();
 | 
						|
    PrevLoc = PathDiagnosticLocation();
 | 
						|
  }
 | 
						|
  
 | 
						|
  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
 | 
						|
 | 
						|
  void rawAddEdge(PathDiagnosticLocation NewLoc);
 | 
						|
 | 
						|
  void addContext(const Stmt *S);
 | 
						|
  void addContext(const PathDiagnosticLocation &L);
 | 
						|
  void addExtendedContext(const Stmt *S);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
PathDiagnosticLocation
 | 
						|
EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
 | 
						|
  if (const Stmt *S = L.asStmt()) {
 | 
						|
    if (IsControlFlowExpr(S))
 | 
						|
      return L;
 | 
						|
 | 
						|
    return PDB.getEnclosingStmtLocation(S);
 | 
						|
  }
 | 
						|
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
 | 
						|
                                   const PathDiagnosticLocation &Containee) {
 | 
						|
 | 
						|
  if (Container == Containee)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Container.asDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (const Stmt *S = Containee.asStmt())
 | 
						|
    if (const Stmt *ContainerS = Container.asStmt()) {
 | 
						|
      while (S) {
 | 
						|
        if (S == ContainerS)
 | 
						|
          return true;
 | 
						|
        S = PDB.getParent(S);
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // Less accurate: compare using source ranges.
 | 
						|
  SourceRange ContainerR = Container.asRange();
 | 
						|
  SourceRange ContaineeR = Containee.asRange();
 | 
						|
 | 
						|
  SourceManager &SM = PDB.getSourceManager();
 | 
						|
  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
 | 
						|
  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
 | 
						|
  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
 | 
						|
  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
 | 
						|
 | 
						|
  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
 | 
						|
  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
 | 
						|
  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
 | 
						|
  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
 | 
						|
 | 
						|
  assert(ContainerBegLine <= ContainerEndLine);
 | 
						|
  assert(ContaineeBegLine <= ContaineeEndLine);
 | 
						|
 | 
						|
  return (ContainerBegLine <= ContaineeBegLine &&
 | 
						|
          ContainerEndLine >= ContaineeEndLine &&
 | 
						|
          (ContainerBegLine != ContaineeBegLine ||
 | 
						|
           SM.getExpansionColumnNumber(ContainerRBeg) <=
 | 
						|
           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
 | 
						|
          (ContainerEndLine != ContaineeEndLine ||
 | 
						|
           SM.getExpansionColumnNumber(ContainerREnd) >=
 | 
						|
           SM.getExpansionColumnNumber(ContaineeREnd)));
 | 
						|
}
 | 
						|
 | 
						|
void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
 | 
						|
  if (!PrevLoc.isValid()) {
 | 
						|
    PrevLoc = NewLoc;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
 | 
						|
  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
 | 
						|
 | 
						|
  if (PrevLocClean.asLocation().isInvalid()) {
 | 
						|
    PrevLoc = NewLoc;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
 | 
						|
    return;
 | 
						|
 | 
						|
  // FIXME: Ignore intra-macro edges for now.
 | 
						|
  if (NewLocClean.asLocation().getExpansionLoc() ==
 | 
						|
      PrevLocClean.asLocation().getExpansionLoc())
 | 
						|
    return;
 | 
						|
 | 
						|
  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
 | 
						|
  PrevLoc = NewLoc;
 | 
						|
}
 | 
						|
 | 
						|
void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
 | 
						|
 | 
						|
  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
 | 
						|
    return;
 | 
						|
 | 
						|
  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
 | 
						|
 | 
						|
  while (!CLocs.empty()) {
 | 
						|
    ContextLocation &TopContextLoc = CLocs.back();
 | 
						|
 | 
						|
    // Is the top location context the same as the one for the new location?
 | 
						|
    if (TopContextLoc == CLoc) {
 | 
						|
      if (alwaysAdd) {
 | 
						|
        if (IsConsumedExpr(TopContextLoc) &&
 | 
						|
            !IsControlFlowExpr(TopContextLoc.asStmt()))
 | 
						|
            TopContextLoc.markDead();
 | 
						|
 | 
						|
        rawAddEdge(NewLoc);
 | 
						|
      }
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (containsLocation(TopContextLoc, CLoc)) {
 | 
						|
      if (alwaysAdd) {
 | 
						|
        rawAddEdge(NewLoc);
 | 
						|
 | 
						|
        if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
 | 
						|
          CLocs.push_back(ContextLocation(CLoc, true));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      CLocs.push_back(CLoc);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Context does not contain the location.  Flush it.
 | 
						|
    popLocation();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reach here, there is no enclosing context.  Just add the edge.
 | 
						|
  rawAddEdge(NewLoc);
 | 
						|
}
 | 
						|
 | 
						|
bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
 | 
						|
  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
 | 
						|
    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void EdgeBuilder::addExtendedContext(const Stmt *S) {
 | 
						|
  if (!S)
 | 
						|
    return;
 | 
						|
 | 
						|
  const Stmt *Parent = PDB.getParent(S);
 | 
						|
  while (Parent) {
 | 
						|
    if (isa<CompoundStmt>(Parent))
 | 
						|
      Parent = PDB.getParent(Parent);
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Parent) {
 | 
						|
    switch (Parent->getStmtClass()) {
 | 
						|
      case Stmt::DoStmtClass:
 | 
						|
      case Stmt::ObjCAtSynchronizedStmtClass:
 | 
						|
        addContext(Parent);
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  addContext(S);
 | 
						|
}
 | 
						|
 | 
						|
void EdgeBuilder::addContext(const Stmt *S) {
 | 
						|
  if (!S)
 | 
						|
    return;
 | 
						|
 | 
						|
  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
 | 
						|
  addContext(L);
 | 
						|
}
 | 
						|
 | 
						|
void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
 | 
						|
  while (!CLocs.empty()) {
 | 
						|
    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
 | 
						|
 | 
						|
    // Is the top location context the same as the one for the new location?
 | 
						|
    if (TopContextLoc == L)
 | 
						|
      return;
 | 
						|
 | 
						|
    if (containsLocation(TopContextLoc, L)) {
 | 
						|
      CLocs.push_back(L);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Context does not contain the location.  Flush it.
 | 
						|
    popLocation();
 | 
						|
  }
 | 
						|
 | 
						|
  CLocs.push_back(L);
 | 
						|
}
 | 
						|
 | 
						|
// Cone-of-influence: support the reverse propagation of "interesting" symbols
 | 
						|
// and values by tracing interesting calculations backwards through evaluated
 | 
						|
// expressions along a path.  This is probably overly complicated, but the idea
 | 
						|
// is that if an expression computed an "interesting" value, the child
 | 
						|
// expressions are are also likely to be "interesting" as well (which then
 | 
						|
// propagates to the values they in turn compute).  This reverse propagation
 | 
						|
// is needed to track interesting correlations across function call boundaries,
 | 
						|
// where formal arguments bind to actual arguments, etc.  This is also needed
 | 
						|
// because the constraint solver sometimes simplifies certain symbolic values
 | 
						|
// into constants when appropriate, and this complicates reasoning about
 | 
						|
// interesting values.
 | 
						|
typedef llvm::DenseSet<const Expr *> InterestingExprs;
 | 
						|
 | 
						|
static void reversePropagateIntererstingSymbols(BugReport &R,
 | 
						|
                                                InterestingExprs &IE,
 | 
						|
                                                const ProgramState *State,
 | 
						|
                                                const Expr *Ex,
 | 
						|
                                                const LocationContext *LCtx) {
 | 
						|
  SVal V = State->getSVal(Ex, LCtx);
 | 
						|
  if (!(R.isInteresting(V) || IE.count(Ex)))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  switch (Ex->getStmtClass()) {
 | 
						|
    default:
 | 
						|
      if (!isa<CastExpr>(Ex))
 | 
						|
        break;
 | 
						|
      // Fall through.
 | 
						|
    case Stmt::BinaryOperatorClass:
 | 
						|
    case Stmt::UnaryOperatorClass: {
 | 
						|
      for (Stmt::const_child_iterator CI = Ex->child_begin(),
 | 
						|
            CE = Ex->child_end();
 | 
						|
            CI != CE; ++CI) {
 | 
						|
        if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
 | 
						|
          IE.insert(child);
 | 
						|
          SVal ChildV = State->getSVal(child, LCtx);
 | 
						|
          R.markInteresting(ChildV);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  R.markInteresting(V);
 | 
						|
}
 | 
						|
 | 
						|
static void reversePropagateInterestingSymbols(BugReport &R,
 | 
						|
                                               InterestingExprs &IE,
 | 
						|
                                               const ProgramState *State,
 | 
						|
                                               const LocationContext *CalleeCtx,
 | 
						|
                                               const LocationContext *CallerCtx)
 | 
						|
{
 | 
						|
  // FIXME: Handle non-CallExpr-based CallEvents.
 | 
						|
  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
 | 
						|
  const Stmt *CallSite = Callee->getCallSite();
 | 
						|
  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
 | 
						|
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
 | 
						|
      FunctionDecl::param_const_iterator PI = FD->param_begin(), 
 | 
						|
                                         PE = FD->param_end();
 | 
						|
      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
 | 
						|
      for (; AI != AE && PI != PE; ++AI, ++PI) {
 | 
						|
        if (const Expr *ArgE = *AI) {
 | 
						|
          if (const ParmVarDecl *PD = *PI) {
 | 
						|
            Loc LV = State->getLValue(PD, CalleeCtx);
 | 
						|
            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
 | 
						|
              IE.insert(ArgE);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the terminator is a loop and the destination is the
 | 
						|
/// false branch.
 | 
						|
static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
 | 
						|
  switch (Term->getStmtClass()) {
 | 
						|
    case Stmt::ForStmtClass:
 | 
						|
    case Stmt::WhileStmtClass:
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      // Note that we intentionally do not include do..while here.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Did we take the false branch?
 | 
						|
  const CFGBlock *Src = BE->getSrc();
 | 
						|
  assert(Src->succ_size() == 2);
 | 
						|
  return (*(Src->succ_begin()+1) == BE->getDst());
 | 
						|
}
 | 
						|
 | 
						|
static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
 | 
						|
                                            PathDiagnosticBuilder &PDB,
 | 
						|
                                            const ExplodedNode *N,
 | 
						|
                                      ArrayRef<BugReporterVisitor *> visitors) {
 | 
						|
  EdgeBuilder EB(PD, PDB);
 | 
						|
  const SourceManager& SM = PDB.getSourceManager();
 | 
						|
  StackDiagVector CallStack;
 | 
						|
  InterestingExprs IE;
 | 
						|
 | 
						|
  // Record the last "looping back" diagnostic.  This is used
 | 
						|
  // for determining if we should emit a diagnostic for skipped loops.
 | 
						|
  std::pair<const Stmt *, PathDiagnosticEventPiece *>
 | 
						|
    LastLoopDiagnostic((Stmt*)0, (PathDiagnosticEventPiece*)0);
 | 
						|
 | 
						|
  const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
 | 
						|
  while (NextNode) {
 | 
						|
    N = NextNode;
 | 
						|
    NextNode = GetPredecessorNode(N);
 | 
						|
    ProgramPoint P = N->getLocation();
 | 
						|
 | 
						|
    do {
 | 
						|
      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
 | 
						|
        if (const Expr *Ex = PS->getStmtAs<Expr>())
 | 
						|
          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
 | 
						|
                                              N->getState().getPtr(), Ex,
 | 
						|
                                              N->getLocationContext());
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
 | 
						|
        const Stmt *S = CE->getCalleeContext()->getCallSite();
 | 
						|
        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
 | 
						|
            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
 | 
						|
                                                N->getState().getPtr(), Ex,
 | 
						|
                                                N->getLocationContext());
 | 
						|
        }
 | 
						|
        
 | 
						|
        PathDiagnosticCallPiece *C =
 | 
						|
          PathDiagnosticCallPiece::construct(N, *CE, SM);
 | 
						|
        GRBugReporter& BR = PDB.getBugReporter();
 | 
						|
        BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
 | 
						|
 | 
						|
        EB.addEdge(C->callReturn, true);
 | 
						|
        EB.flushLocations();
 | 
						|
 | 
						|
        PD.getActivePath().push_front(C);
 | 
						|
        PD.pushActivePath(&C->path);
 | 
						|
        CallStack.push_back(StackDiagPair(C, N));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Pop the call hierarchy if we are done walking the contents
 | 
						|
      // of a function call.
 | 
						|
      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
 | 
						|
        // Add an edge to the start of the function.
 | 
						|
        const Decl *D = CE->getCalleeContext()->getDecl();
 | 
						|
        PathDiagnosticLocation pos =
 | 
						|
          PathDiagnosticLocation::createBegin(D, SM);
 | 
						|
        EB.addEdge(pos);
 | 
						|
        
 | 
						|
        // Flush all locations, and pop the active path.
 | 
						|
        bool VisitedEntireCall = PD.isWithinCall();
 | 
						|
        EB.flushLocations();
 | 
						|
        PD.popActivePath();
 | 
						|
        PDB.LC = N->getLocationContext();
 | 
						|
 | 
						|
        // Either we just added a bunch of stuff to the top-level path, or
 | 
						|
        // we have a previous CallExitEnd.  If the former, it means that the
 | 
						|
        // path terminated within a function call.  We must then take the
 | 
						|
        // current contents of the active path and place it within
 | 
						|
        // a new PathDiagnosticCallPiece.
 | 
						|
        PathDiagnosticCallPiece *C;
 | 
						|
        if (VisitedEntireCall) {
 | 
						|
          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
 | 
						|
        } else {
 | 
						|
          const Decl *Caller = CE->getLocationContext()->getDecl();
 | 
						|
          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
 | 
						|
          GRBugReporter& BR = PDB.getBugReporter();
 | 
						|
          BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
 | 
						|
        }
 | 
						|
 | 
						|
        C->setCallee(*CE, SM);
 | 
						|
        EB.addContext(C->getLocation());
 | 
						|
 | 
						|
        if (!CallStack.empty()) {
 | 
						|
          assert(CallStack.back().first == C);
 | 
						|
          CallStack.pop_back();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Note that is important that we update the LocationContext
 | 
						|
      // after looking at CallExits.  CallExit basically adds an
 | 
						|
      // edge in the *caller*, so we don't want to update the LocationContext
 | 
						|
      // too soon.
 | 
						|
      PDB.LC = N->getLocationContext();
 | 
						|
 | 
						|
      // Block edges.
 | 
						|
      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
 | 
						|
        // Does this represent entering a call?  If so, look at propagating
 | 
						|
        // interesting symbols across call boundaries.
 | 
						|
        if (NextNode) {
 | 
						|
          const LocationContext *CallerCtx = NextNode->getLocationContext();
 | 
						|
          const LocationContext *CalleeCtx = PDB.LC;
 | 
						|
          if (CallerCtx != CalleeCtx) {
 | 
						|
            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
 | 
						|
                                               N->getState().getPtr(),
 | 
						|
                                               CalleeCtx, CallerCtx);
 | 
						|
          }
 | 
						|
        }
 | 
						|
       
 | 
						|
        // Are we jumping to the head of a loop?  Add a special diagnostic.
 | 
						|
        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
 | 
						|
          PathDiagnosticLocation L(Loop, SM, PDB.LC);
 | 
						|
          const CompoundStmt *CS = NULL;
 | 
						|
 | 
						|
          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
 | 
						|
            CS = dyn_cast<CompoundStmt>(FS->getBody());
 | 
						|
          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
 | 
						|
            CS = dyn_cast<CompoundStmt>(WS->getBody());
 | 
						|
 | 
						|
          PathDiagnosticEventPiece *p =
 | 
						|
            new PathDiagnosticEventPiece(L,
 | 
						|
                                        "Looping back to the head of the loop");
 | 
						|
          p->setPrunable(true);
 | 
						|
 | 
						|
          // Record the loop diagnostic for later consultation.  We can
 | 
						|
          // use this to determine whether or not to emit a "skipped loop"
 | 
						|
          // event.
 | 
						|
          LastLoopDiagnostic.first = Loop;
 | 
						|
          LastLoopDiagnostic.second = p;
 | 
						|
 | 
						|
          EB.addEdge(p->getLocation(), true);
 | 
						|
          PD.getActivePath().push_front(p);
 | 
						|
 | 
						|
          if (CS) {
 | 
						|
            PathDiagnosticLocation BL =
 | 
						|
              PathDiagnosticLocation::createEndBrace(CS, SM);
 | 
						|
            EB.addEdge(BL);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (const Stmt *Term = BE->getSrc()->getTerminator()) {
 | 
						|
          // Are we jumping past the loop body without ever executing the
 | 
						|
          // loop (because the condition was false)?
 | 
						|
          if (isLoopJumpPastBody(Term, &*BE) &&
 | 
						|
              !PD.getActivePath().empty() &&
 | 
						|
              PD.getActivePath().front() != LastLoopDiagnostic.second &&
 | 
						|
              Term != LastLoopDiagnostic.first)
 | 
						|
          {
 | 
						|
            PathDiagnosticLocation L(Term, SM, PDB.LC);
 | 
						|
            PathDiagnosticEventPiece *PE =
 | 
						|
            new PathDiagnosticEventPiece(L,
 | 
						|
                                         "Loop body executed 0 times");
 | 
						|
            PE->setPrunable(true);
 | 
						|
            LastLoopDiagnostic.first = 0;
 | 
						|
            LastLoopDiagnostic.second = 0;
 | 
						|
 | 
						|
            EB.addEdge(PE->getLocation(), true);
 | 
						|
            PD.getActivePath().push_front(PE);
 | 
						|
          }
 | 
						|
 | 
						|
          EB.addContext(Term);
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
 | 
						|
        CFGElement First = BE->getFirstElement();
 | 
						|
        if (CFGStmt S = First.getAs<CFGStmt>()) {
 | 
						|
          const Stmt *stmt = S.getStmt();
 | 
						|
          if (IsControlFlowExpr(stmt)) {
 | 
						|
            // Add the proper context for '&&', '||', and '?'.
 | 
						|
            EB.addContext(stmt);
 | 
						|
          }
 | 
						|
          else
 | 
						|
            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
 | 
						|
        }
 | 
						|
        
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      
 | 
						|
    } while (0);
 | 
						|
 | 
						|
    if (!NextNode)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Add pieces from custom visitors.
 | 
						|
    BugReport *R = PDB.getBugReport();
 | 
						|
    for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
 | 
						|
                                                  E = visitors.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
 | 
						|
        const PathDiagnosticLocation &Loc = p->getLocation();
 | 
						|
        EB.addEdge(Loc, true);
 | 
						|
        PD.getActivePath().push_front(p);
 | 
						|
        updateStackPiecesWithMessage(p, CallStack);
 | 
						|
 | 
						|
        if (const Stmt *S = Loc.asStmt())
 | 
						|
          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return PDB.getBugReport()->isValid();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Methods for BugType and subclasses.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
BugType::~BugType() { }
 | 
						|
 | 
						|
void BugType::FlushReports(BugReporter &BR) {}
 | 
						|
 | 
						|
void BuiltinBug::anchor() {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Methods for BugReport and subclasses.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void BugReport::NodeResolver::anchor() {}
 | 
						|
 | 
						|
void BugReport::addVisitor(BugReporterVisitor* visitor) {
 | 
						|
  if (!visitor)
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  visitor->Profile(ID);
 | 
						|
  void *InsertPos;
 | 
						|
 | 
						|
  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
 | 
						|
    delete visitor;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  CallbacksSet.InsertNode(visitor, InsertPos);
 | 
						|
  Callbacks.push_back(visitor);
 | 
						|
  ++ConfigurationChangeToken;
 | 
						|
}
 | 
						|
 | 
						|
BugReport::~BugReport() {
 | 
						|
  for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
 | 
						|
    delete *I;
 | 
						|
  }
 | 
						|
  while (!interestingSymbols.empty()) {
 | 
						|
    popInterestingSymbolsAndRegions();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const Decl *BugReport::getDeclWithIssue() const {
 | 
						|
  if (DeclWithIssue)
 | 
						|
    return DeclWithIssue;
 | 
						|
  
 | 
						|
  const ExplodedNode *N = getErrorNode();
 | 
						|
  if (!N)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  const LocationContext *LC = N->getLocationContext();
 | 
						|
  return LC->getCurrentStackFrame()->getDecl();
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
 | 
						|
  hash.AddPointer(&BT);
 | 
						|
  hash.AddString(Description);
 | 
						|
  PathDiagnosticLocation UL = getUniqueingLocation();
 | 
						|
  if (UL.isValid()) {
 | 
						|
    UL.Profile(hash);
 | 
						|
  } else if (Location.isValid()) {
 | 
						|
    Location.Profile(hash);
 | 
						|
  } else {
 | 
						|
    assert(ErrorNode);
 | 
						|
    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
 | 
						|
  }
 | 
						|
 | 
						|
  for (SmallVectorImpl<SourceRange>::const_iterator I =
 | 
						|
      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
 | 
						|
    const SourceRange range = *I;
 | 
						|
    if (!range.isValid())
 | 
						|
      continue;
 | 
						|
    hash.AddInteger(range.getBegin().getRawEncoding());
 | 
						|
    hash.AddInteger(range.getEnd().getRawEncoding());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::markInteresting(SymbolRef sym) {
 | 
						|
  if (!sym)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the symbol wasn't already in our set, note a configuration change.
 | 
						|
  if (getInterestingSymbols().insert(sym).second)
 | 
						|
    ++ConfigurationChangeToken;
 | 
						|
 | 
						|
  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
 | 
						|
    getInterestingRegions().insert(meta->getRegion());
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::markInteresting(const MemRegion *R) {
 | 
						|
  if (!R)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the base region wasn't already in our set, note a configuration change.
 | 
						|
  R = R->getBaseRegion();
 | 
						|
  if (getInterestingRegions().insert(R).second)
 | 
						|
    ++ConfigurationChangeToken;
 | 
						|
 | 
						|
  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
 | 
						|
    getInterestingSymbols().insert(SR->getSymbol());
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::markInteresting(SVal V) {
 | 
						|
  markInteresting(V.getAsRegion());
 | 
						|
  markInteresting(V.getAsSymbol());
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::markInteresting(const LocationContext *LC) {
 | 
						|
  if (!LC)
 | 
						|
    return;
 | 
						|
  InterestingLocationContexts.insert(LC);
 | 
						|
}
 | 
						|
 | 
						|
bool BugReport::isInteresting(SVal V) {
 | 
						|
  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
 | 
						|
}
 | 
						|
 | 
						|
bool BugReport::isInteresting(SymbolRef sym) {
 | 
						|
  if (!sym)
 | 
						|
    return false;
 | 
						|
  // We don't currently consider metadata symbols to be interesting
 | 
						|
  // even if we know their region is interesting. Is that correct behavior?
 | 
						|
  return getInterestingSymbols().count(sym);
 | 
						|
}
 | 
						|
 | 
						|
bool BugReport::isInteresting(const MemRegion *R) {
 | 
						|
  if (!R)
 | 
						|
    return false;
 | 
						|
  R = R->getBaseRegion();
 | 
						|
  bool b = getInterestingRegions().count(R);
 | 
						|
  if (b)
 | 
						|
    return true;
 | 
						|
  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
 | 
						|
    return getInterestingSymbols().count(SR->getSymbol());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool BugReport::isInteresting(const LocationContext *LC) {
 | 
						|
  if (!LC)
 | 
						|
    return false;
 | 
						|
  return InterestingLocationContexts.count(LC);
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::lazyInitializeInterestingSets() {
 | 
						|
  if (interestingSymbols.empty()) {
 | 
						|
    interestingSymbols.push_back(new Symbols());
 | 
						|
    interestingRegions.push_back(new Regions());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BugReport::Symbols &BugReport::getInterestingSymbols() {
 | 
						|
  lazyInitializeInterestingSets();
 | 
						|
  return *interestingSymbols.back();
 | 
						|
}
 | 
						|
 | 
						|
BugReport::Regions &BugReport::getInterestingRegions() {
 | 
						|
  lazyInitializeInterestingSets();
 | 
						|
  return *interestingRegions.back();
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::pushInterestingSymbolsAndRegions() {
 | 
						|
  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
 | 
						|
  interestingRegions.push_back(new Regions(getInterestingRegions()));
 | 
						|
}
 | 
						|
 | 
						|
void BugReport::popInterestingSymbolsAndRegions() {
 | 
						|
  delete interestingSymbols.back();
 | 
						|
  interestingSymbols.pop_back();
 | 
						|
  delete interestingRegions.back();
 | 
						|
  interestingRegions.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
const Stmt *BugReport::getStmt() const {
 | 
						|
  if (!ErrorNode)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  ProgramPoint ProgP = ErrorNode->getLocation();
 | 
						|
  const Stmt *S = NULL;
 | 
						|
 | 
						|
  if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
 | 
						|
    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
 | 
						|
    if (BE->getBlock() == &Exit)
 | 
						|
      S = GetPreviousStmt(ErrorNode);
 | 
						|
  }
 | 
						|
  if (!S)
 | 
						|
    S = GetStmt(ProgP);
 | 
						|
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
 | 
						|
BugReport::getRanges() {
 | 
						|
    // If no custom ranges, add the range of the statement corresponding to
 | 
						|
    // the error node.
 | 
						|
    if (Ranges.empty()) {
 | 
						|
      if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
 | 
						|
        addRange(E->getSourceRange());
 | 
						|
      else
 | 
						|
        return std::make_pair(ranges_iterator(), ranges_iterator());
 | 
						|
    }
 | 
						|
 | 
						|
    // User-specified absence of range info.
 | 
						|
    if (Ranges.size() == 1 && !Ranges.begin()->isValid())
 | 
						|
      return std::make_pair(ranges_iterator(), ranges_iterator());
 | 
						|
 | 
						|
    return std::make_pair(Ranges.begin(), Ranges.end());
 | 
						|
}
 | 
						|
 | 
						|
PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
 | 
						|
  if (ErrorNode) {
 | 
						|
    assert(!Location.isValid() &&
 | 
						|
     "Either Location or ErrorNode should be specified but not both.");
 | 
						|
 | 
						|
    if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
 | 
						|
      const LocationContext *LC = ErrorNode->getLocationContext();
 | 
						|
 | 
						|
      // For member expressions, return the location of the '.' or '->'.
 | 
						|
      if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
 | 
						|
        return PathDiagnosticLocation::createMemberLoc(ME, SM);
 | 
						|
      // For binary operators, return the location of the operator.
 | 
						|
      if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
 | 
						|
        return PathDiagnosticLocation::createOperatorLoc(B, SM);
 | 
						|
 | 
						|
      if (ErrorNode->getLocation().getAs<PostStmtPurgeDeadSymbols>())
 | 
						|
        return PathDiagnosticLocation::createEnd(S, SM, LC);
 | 
						|
 | 
						|
      return PathDiagnosticLocation::createBegin(S, SM, LC);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(Location.isValid());
 | 
						|
    return Location;
 | 
						|
  }
 | 
						|
 | 
						|
  return PathDiagnosticLocation();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Methods for BugReporter and subclasses.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
BugReportEquivClass::~BugReportEquivClass() { }
 | 
						|
GRBugReporter::~GRBugReporter() { }
 | 
						|
BugReporterData::~BugReporterData() {}
 | 
						|
 | 
						|
ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
 | 
						|
 | 
						|
ProgramStateManager&
 | 
						|
GRBugReporter::getStateManager() { return Eng.getStateManager(); }
 | 
						|
 | 
						|
BugReporter::~BugReporter() {
 | 
						|
  FlushReports();
 | 
						|
 | 
						|
  // Free the bug reports we are tracking.
 | 
						|
  typedef std::vector<BugReportEquivClass *> ContTy;
 | 
						|
  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    delete *I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BugReporter::FlushReports() {
 | 
						|
  if (BugTypes.isEmpty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // First flush the warnings for each BugType.  This may end up creating new
 | 
						|
  // warnings and new BugTypes.
 | 
						|
  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
 | 
						|
  // Turn NSErrorChecker into a proper checker and remove this.
 | 
						|
  SmallVector<const BugType*, 16> bugTypes;
 | 
						|
  for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
 | 
						|
    bugTypes.push_back(*I);
 | 
						|
  for (SmallVector<const BugType*, 16>::iterator
 | 
						|
         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
 | 
						|
    const_cast<BugType*>(*I)->FlushReports(*this);
 | 
						|
 | 
						|
  // We need to flush reports in deterministic order to ensure the order
 | 
						|
  // of the reports is consistent between runs.
 | 
						|
  typedef std::vector<BugReportEquivClass *> ContVecTy;
 | 
						|
  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
 | 
						|
       EI != EE; ++EI){
 | 
						|
    BugReportEquivClass& EQ = **EI;
 | 
						|
    FlushReport(EQ);
 | 
						|
  }
 | 
						|
 | 
						|
  // BugReporter owns and deletes only BugTypes created implicitly through
 | 
						|
  // EmitBasicReport.
 | 
						|
  // FIXME: There are leaks from checkers that assume that the BugTypes they
 | 
						|
  // create will be destroyed by the BugReporter.
 | 
						|
  for (llvm::StringMap<BugType*>::iterator
 | 
						|
         I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
 | 
						|
  // Remove all references to the BugType objects.
 | 
						|
  BugTypes = F.getEmptySet();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// PathDiagnostics generation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
 | 
						|
                 std::pair<ExplodedNode*, unsigned> >
 | 
						|
MakeReportGraph(const ExplodedGraph* G,
 | 
						|
                SmallVectorImpl<const ExplodedNode*> &nodes) {
 | 
						|
 | 
						|
  // Create the trimmed graph.  It will contain the shortest paths from the
 | 
						|
  // error nodes to the root.  In the new graph we should only have one
 | 
						|
  // error node unless there are two or more error nodes with the same minimum
 | 
						|
  // path length.
 | 
						|
  ExplodedGraph* GTrim;
 | 
						|
  InterExplodedGraphMap* NMap;
 | 
						|
 | 
						|
  llvm::DenseMap<const void*, const void*> InverseMap;
 | 
						|
  llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
 | 
						|
                                   &InverseMap);
 | 
						|
 | 
						|
  // Create owning pointers for GTrim and NMap just to ensure that they are
 | 
						|
  // released when this function exists.
 | 
						|
  OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
 | 
						|
  OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
 | 
						|
 | 
						|
  // Find the (first) error node in the trimmed graph.  We just need to consult
 | 
						|
  // the node map (NMap) which maps from nodes in the original graph to nodes
 | 
						|
  // in the new graph.
 | 
						|
 | 
						|
  std::queue<const ExplodedNode*> WS;
 | 
						|
  typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
 | 
						|
  IndexMapTy IndexMap;
 | 
						|
 | 
						|
  for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
 | 
						|
    const ExplodedNode *originalNode = nodes[nodeIndex];
 | 
						|
    if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
 | 
						|
      WS.push(N);
 | 
						|
      IndexMap[originalNode] = nodeIndex;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!WS.empty() && "No error node found in the trimmed graph.");
 | 
						|
 | 
						|
  // Create a new (third!) graph with a single path.  This is the graph
 | 
						|
  // that will be returned to the caller.
 | 
						|
  ExplodedGraph *GNew = new ExplodedGraph();
 | 
						|
 | 
						|
  // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
 | 
						|
  // to the root node, and then construct a new graph that contains only
 | 
						|
  // a single path.
 | 
						|
  llvm::DenseMap<const void*,unsigned> Visited;
 | 
						|
 | 
						|
  unsigned cnt = 0;
 | 
						|
  const ExplodedNode *Root = 0;
 | 
						|
 | 
						|
  while (!WS.empty()) {
 | 
						|
    const ExplodedNode *Node = WS.front();
 | 
						|
    WS.pop();
 | 
						|
 | 
						|
    if (Visited.find(Node) != Visited.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Visited[Node] = cnt++;
 | 
						|
 | 
						|
    if (Node->pred_empty()) {
 | 
						|
      Root = Node;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
 | 
						|
         E=Node->pred_end(); I!=E; ++I)
 | 
						|
      WS.push(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Root);
 | 
						|
 | 
						|
  // Now walk from the root down the BFS path, always taking the successor
 | 
						|
  // with the lowest number.
 | 
						|
  ExplodedNode *Last = 0, *First = 0;
 | 
						|
  NodeBackMap *BM = new NodeBackMap();
 | 
						|
  unsigned NodeIndex = 0;
 | 
						|
 | 
						|
  for ( const ExplodedNode *N = Root ;;) {
 | 
						|
    // Lookup the number associated with the current node.
 | 
						|
    llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
 | 
						|
    assert(I != Visited.end());
 | 
						|
 | 
						|
    // Create the equivalent node in the new graph with the same state
 | 
						|
    // and location.
 | 
						|
    ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
 | 
						|
 | 
						|
    // Store the mapping to the original node.
 | 
						|
    llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
 | 
						|
    assert(IMitr != InverseMap.end() && "No mapping to original node.");
 | 
						|
    (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
 | 
						|
 | 
						|
    // Link up the new node with the previous node.
 | 
						|
    if (Last)
 | 
						|
      NewN->addPredecessor(Last, *GNew);
 | 
						|
 | 
						|
    Last = NewN;
 | 
						|
 | 
						|
    // Are we at the final node?
 | 
						|
    IndexMapTy::iterator IMI =
 | 
						|
      IndexMap.find((const ExplodedNode*)(IMitr->second));
 | 
						|
    if (IMI != IndexMap.end()) {
 | 
						|
      First = NewN;
 | 
						|
      NodeIndex = IMI->second;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Find the next successor node.  We choose the node that is marked
 | 
						|
    // with the lowest DFS number.
 | 
						|
    ExplodedNode::const_succ_iterator SI = N->succ_begin();
 | 
						|
    ExplodedNode::const_succ_iterator SE = N->succ_end();
 | 
						|
    N = 0;
 | 
						|
 | 
						|
    for (unsigned MinVal = 0; SI != SE; ++SI) {
 | 
						|
 | 
						|
      I = Visited.find(*SI);
 | 
						|
 | 
						|
      if (I == Visited.end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!N || I->second < MinVal) {
 | 
						|
        N = *SI;
 | 
						|
        MinVal = I->second;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(N);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(First);
 | 
						|
 | 
						|
  return std::make_pair(std::make_pair(GNew, BM),
 | 
						|
                        std::make_pair(First, NodeIndex));
 | 
						|
}
 | 
						|
 | 
						|
/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
 | 
						|
///  and collapses PathDiagosticPieces that are expanded by macros.
 | 
						|
static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
 | 
						|
  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
 | 
						|
                                SourceLocation> > MacroStackTy;
 | 
						|
 | 
						|
  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
 | 
						|
          PiecesTy;
 | 
						|
 | 
						|
  MacroStackTy MacroStack;
 | 
						|
  PiecesTy Pieces;
 | 
						|
 | 
						|
  for (PathPieces::const_iterator I = path.begin(), E = path.end();
 | 
						|
       I!=E; ++I) {
 | 
						|
    
 | 
						|
    PathDiagnosticPiece *piece = I->getPtr();
 | 
						|
 | 
						|
    // Recursively compact calls.
 | 
						|
    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
 | 
						|
      CompactPathDiagnostic(call->path, SM);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Get the location of the PathDiagnosticPiece.
 | 
						|
    const FullSourceLoc Loc = piece->getLocation().asLocation();
 | 
						|
 | 
						|
    // Determine the instantiation location, which is the location we group
 | 
						|
    // related PathDiagnosticPieces.
 | 
						|
    SourceLocation InstantiationLoc = Loc.isMacroID() ?
 | 
						|
                                      SM.getExpansionLoc(Loc) :
 | 
						|
                                      SourceLocation();
 | 
						|
 | 
						|
    if (Loc.isFileID()) {
 | 
						|
      MacroStack.clear();
 | 
						|
      Pieces.push_back(piece);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Loc.isMacroID());
 | 
						|
 | 
						|
    // Is the PathDiagnosticPiece within the same macro group?
 | 
						|
    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
 | 
						|
      MacroStack.back().first->subPieces.push_back(piece);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // We aren't in the same group.  Are we descending into a new macro
 | 
						|
    // or are part of an old one?
 | 
						|
    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
 | 
						|
 | 
						|
    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
 | 
						|
                                          SM.getExpansionLoc(Loc) :
 | 
						|
                                          SourceLocation();
 | 
						|
 | 
						|
    // Walk the entire macro stack.
 | 
						|
    while (!MacroStack.empty()) {
 | 
						|
      if (InstantiationLoc == MacroStack.back().second) {
 | 
						|
        MacroGroup = MacroStack.back().first;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ParentInstantiationLoc == MacroStack.back().second) {
 | 
						|
        MacroGroup = MacroStack.back().first;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      MacroStack.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
 | 
						|
      // Create a new macro group and add it to the stack.
 | 
						|
      PathDiagnosticMacroPiece *NewGroup =
 | 
						|
        new PathDiagnosticMacroPiece(
 | 
						|
          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
 | 
						|
 | 
						|
      if (MacroGroup)
 | 
						|
        MacroGroup->subPieces.push_back(NewGroup);
 | 
						|
      else {
 | 
						|
        assert(InstantiationLoc.isFileID());
 | 
						|
        Pieces.push_back(NewGroup);
 | 
						|
      }
 | 
						|
 | 
						|
      MacroGroup = NewGroup;
 | 
						|
      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, add the PathDiagnosticPiece to the group.
 | 
						|
    MacroGroup->subPieces.push_back(piece);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now take the pieces and construct a new PathDiagnostic.
 | 
						|
  path.clear();
 | 
						|
 | 
						|
  for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
 | 
						|
    path.push_back(*I);
 | 
						|
}
 | 
						|
 | 
						|
bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
 | 
						|
                                           PathDiagnosticConsumer &PC,
 | 
						|
                                           ArrayRef<BugReport *> &bugReports) {
 | 
						|
  assert(!bugReports.empty());
 | 
						|
 | 
						|
  bool HasValid = false;
 | 
						|
  SmallVector<const ExplodedNode *, 10> errorNodes;
 | 
						|
  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
 | 
						|
                                      E = bugReports.end(); I != E; ++I) {
 | 
						|
    if ((*I)->isValid()) {
 | 
						|
      HasValid = true;
 | 
						|
      errorNodes.push_back((*I)->getErrorNode());
 | 
						|
    } else {
 | 
						|
      errorNodes.push_back(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If all the reports have been marked invalid, we're done.
 | 
						|
  if (!HasValid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Construct a new graph that contains only a single path from the error
 | 
						|
  // node to a root.
 | 
						|
  const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
 | 
						|
  std::pair<ExplodedNode*, unsigned> >&
 | 
						|
    GPair = MakeReportGraph(&getGraph(), errorNodes);
 | 
						|
 | 
						|
  // Find the BugReport with the original location.
 | 
						|
  assert(GPair.second.second < bugReports.size());
 | 
						|
  BugReport *R = bugReports[GPair.second.second];
 | 
						|
  assert(R && "No original report found for sliced graph.");
 | 
						|
  assert(R->isValid() && "Report selected from trimmed graph marked invalid.");
 | 
						|
 | 
						|
  OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
 | 
						|
  OwningPtr<NodeBackMap> BackMap(GPair.first.second);
 | 
						|
  const ExplodedNode *N = GPair.second.first;
 | 
						|
 | 
						|
  // Start building the path diagnostic...
 | 
						|
  PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
 | 
						|
 | 
						|
  // Register additional node visitors.
 | 
						|
  R->addVisitor(new NilReceiverBRVisitor());
 | 
						|
  R->addVisitor(new ConditionBRVisitor());
 | 
						|
  R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
 | 
						|
 | 
						|
  BugReport::VisitorList visitors;
 | 
						|
  unsigned originalReportConfigToken, finalReportConfigToken;
 | 
						|
 | 
						|
  // While generating diagnostics, it's possible the visitors will decide
 | 
						|
  // new symbols and regions are interesting, or add other visitors based on
 | 
						|
  // the information they find. If they do, we need to regenerate the path
 | 
						|
  // based on our new report configuration.
 | 
						|
  do {
 | 
						|
    // Get a clean copy of all the visitors.
 | 
						|
    for (BugReport::visitor_iterator I = R->visitor_begin(),
 | 
						|
                                     E = R->visitor_end(); I != E; ++I)
 | 
						|
       visitors.push_back((*I)->clone());
 | 
						|
 | 
						|
    // Clear out the active path from any previous work.
 | 
						|
    PD.resetPath();
 | 
						|
    originalReportConfigToken = R->getConfigurationChangeToken();
 | 
						|
 | 
						|
    // Generate the very last diagnostic piece - the piece is visible before 
 | 
						|
    // the trace is expanded.
 | 
						|
    PathDiagnosticPiece *LastPiece = 0;
 | 
						|
    for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
 | 
						|
        I != E; ++I) {
 | 
						|
      if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
 | 
						|
        assert (!LastPiece &&
 | 
						|
            "There can only be one final piece in a diagnostic.");
 | 
						|
        LastPiece = Piece;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (PDB.getGenerationScheme() != PathDiagnosticConsumer::None) {
 | 
						|
      if (!LastPiece)
 | 
						|
        LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
 | 
						|
      if (LastPiece)
 | 
						|
        PD.setEndOfPath(LastPiece);
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (PDB.getGenerationScheme()) {
 | 
						|
    case PathDiagnosticConsumer::Extensive:
 | 
						|
      if (!GenerateExtensivePathDiagnostic(PD, PDB, N, visitors)) {
 | 
						|
        assert(!R->isValid() && "Failed on valid report");
 | 
						|
        // Try again. We'll filter out the bad report when we trim the graph.
 | 
						|
        // FIXME: It would be more efficient to use the same intermediate
 | 
						|
        // trimmed graph, and just repeat the shortest-path search.
 | 
						|
        return generatePathDiagnostic(PD, PC, bugReports);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PathDiagnosticConsumer::Minimal:
 | 
						|
      if (!GenerateMinimalPathDiagnostic(PD, PDB, N, visitors)) {
 | 
						|
        assert(!R->isValid() && "Failed on valid report");
 | 
						|
        // Try again. We'll filter out the bad report when we trim the graph.
 | 
						|
        return generatePathDiagnostic(PD, PC, bugReports);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case PathDiagnosticConsumer::None:
 | 
						|
      if (!GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors)) {
 | 
						|
        assert(!R->isValid() && "Failed on valid report");
 | 
						|
        // Try again. We'll filter out the bad report when we trim the graph.
 | 
						|
        return generatePathDiagnostic(PD, PC, bugReports);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Clean up the visitors we used.
 | 
						|
    llvm::DeleteContainerPointers(visitors);
 | 
						|
 | 
						|
    // Did anything change while generating this path?
 | 
						|
    finalReportConfigToken = R->getConfigurationChangeToken();
 | 
						|
  } while(finalReportConfigToken != originalReportConfigToken);
 | 
						|
 | 
						|
  // Finally, prune the diagnostic path of uninteresting stuff.
 | 
						|
  if (!PD.path.empty()) {
 | 
						|
    // Remove messages that are basically the same.
 | 
						|
    removeRedundantMsgs(PD.getMutablePieces());
 | 
						|
 | 
						|
    if (R->shouldPrunePath() &&
 | 
						|
        getEngine().getAnalysisManager().options.shouldPrunePaths()) {
 | 
						|
      bool hasSomethingInteresting = RemoveUnneededCalls(PD.getMutablePieces(),
 | 
						|
                                                         R);
 | 
						|
      assert(hasSomethingInteresting);
 | 
						|
      (void) hasSomethingInteresting;
 | 
						|
    }
 | 
						|
 | 
						|
    adjustCallLocations(PD.getMutablePieces());
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void BugReporter::Register(BugType *BT) {
 | 
						|
  BugTypes = F.add(BugTypes, BT);
 | 
						|
}
 | 
						|
 | 
						|
void BugReporter::emitReport(BugReport* R) {
 | 
						|
  // Compute the bug report's hash to determine its equivalence class.
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  R->Profile(ID);
 | 
						|
 | 
						|
  // Lookup the equivance class.  If there isn't one, create it.
 | 
						|
  BugType& BT = R->getBugType();
 | 
						|
  Register(&BT);
 | 
						|
  void *InsertPos;
 | 
						|
  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
 | 
						|
 | 
						|
  if (!EQ) {
 | 
						|
    EQ = new BugReportEquivClass(R);
 | 
						|
    EQClasses.InsertNode(EQ, InsertPos);
 | 
						|
    EQClassesVector.push_back(EQ);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    EQ->AddReport(R);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Emitting reports in equivalence classes.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
struct FRIEC_WLItem {
 | 
						|
  const ExplodedNode *N;
 | 
						|
  ExplodedNode::const_succ_iterator I, E;
 | 
						|
  
 | 
						|
  FRIEC_WLItem(const ExplodedNode *n)
 | 
						|
  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
 | 
						|
};  
 | 
						|
}
 | 
						|
 | 
						|
static BugReport *
 | 
						|
FindReportInEquivalenceClass(BugReportEquivClass& EQ,
 | 
						|
                             SmallVectorImpl<BugReport*> &bugReports) {
 | 
						|
 | 
						|
  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
 | 
						|
  assert(I != E);
 | 
						|
  BugType& BT = I->getBugType();
 | 
						|
 | 
						|
  // If we don't need to suppress any of the nodes because they are
 | 
						|
  // post-dominated by a sink, simply add all the nodes in the equivalence class
 | 
						|
  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
 | 
						|
  if (!BT.isSuppressOnSink()) {
 | 
						|
    BugReport *R = I;
 | 
						|
    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
 | 
						|
      const ExplodedNode *N = I->getErrorNode();
 | 
						|
      if (N) {
 | 
						|
        R = I;
 | 
						|
        bugReports.push_back(R);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // For bug reports that should be suppressed when all paths are post-dominated
 | 
						|
  // by a sink node, iterate through the reports in the equivalence class
 | 
						|
  // until we find one that isn't post-dominated (if one exists).  We use a
 | 
						|
  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
 | 
						|
  // this as a recursive function, but we don't want to risk blowing out the
 | 
						|
  // stack for very long paths.
 | 
						|
  BugReport *exampleReport = 0;
 | 
						|
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    const ExplodedNode *errorNode = I->getErrorNode();
 | 
						|
 | 
						|
    if (!errorNode)
 | 
						|
      continue;
 | 
						|
    if (errorNode->isSink()) {
 | 
						|
      llvm_unreachable(
 | 
						|
           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
 | 
						|
    }
 | 
						|
    // No successors?  By definition this nodes isn't post-dominated by a sink.
 | 
						|
    if (errorNode->succ_empty()) {
 | 
						|
      bugReports.push_back(I);
 | 
						|
      if (!exampleReport)
 | 
						|
        exampleReport = I;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point we know that 'N' is not a sink and it has at least one
 | 
						|
    // successor.  Use a DFS worklist to find a non-sink end-of-path node.    
 | 
						|
    typedef FRIEC_WLItem WLItem;
 | 
						|
    typedef SmallVector<WLItem, 10> DFSWorkList;
 | 
						|
    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
 | 
						|
    
 | 
						|
    DFSWorkList WL;
 | 
						|
    WL.push_back(errorNode);
 | 
						|
    Visited[errorNode] = 1;
 | 
						|
    
 | 
						|
    while (!WL.empty()) {
 | 
						|
      WLItem &WI = WL.back();
 | 
						|
      assert(!WI.N->succ_empty());
 | 
						|
            
 | 
						|
      for (; WI.I != WI.E; ++WI.I) {
 | 
						|
        const ExplodedNode *Succ = *WI.I;        
 | 
						|
        // End-of-path node?
 | 
						|
        if (Succ->succ_empty()) {
 | 
						|
          // If we found an end-of-path node that is not a sink.
 | 
						|
          if (!Succ->isSink()) {
 | 
						|
            bugReports.push_back(I);
 | 
						|
            if (!exampleReport)
 | 
						|
              exampleReport = I;
 | 
						|
            WL.clear();
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          // Found a sink?  Continue on to the next successor.
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Mark the successor as visited.  If it hasn't been explored,
 | 
						|
        // enqueue it to the DFS worklist.
 | 
						|
        unsigned &mark = Visited[Succ];
 | 
						|
        if (!mark) {
 | 
						|
          mark = 1;
 | 
						|
          WL.push_back(Succ);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // The worklist may have been cleared at this point.  First
 | 
						|
      // check if it is empty before checking the last item.
 | 
						|
      if (!WL.empty() && &WL.back() == &WI)
 | 
						|
        WL.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // ExampleReport will be NULL if all the nodes in the equivalence class
 | 
						|
  // were post-dominated by sinks.
 | 
						|
  return exampleReport;
 | 
						|
}
 | 
						|
 | 
						|
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
 | 
						|
  SmallVector<BugReport*, 10> bugReports;
 | 
						|
  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
 | 
						|
  if (exampleReport) {
 | 
						|
    const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
 | 
						|
    for (PathDiagnosticConsumers::const_iterator I=C.begin(),
 | 
						|
                                                 E=C.end(); I != E; ++I) {
 | 
						|
      FlushReport(exampleReport, **I, bugReports);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BugReporter::FlushReport(BugReport *exampleReport,
 | 
						|
                              PathDiagnosticConsumer &PD,
 | 
						|
                              ArrayRef<BugReport*> bugReports) {
 | 
						|
 | 
						|
  // FIXME: Make sure we use the 'R' for the path that was actually used.
 | 
						|
  // Probably doesn't make a difference in practice.
 | 
						|
  BugType& BT = exampleReport->getBugType();
 | 
						|
 | 
						|
  OwningPtr<PathDiagnostic>
 | 
						|
    D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
 | 
						|
                         exampleReport->getBugType().getName(),
 | 
						|
                         exampleReport->getDescription(),
 | 
						|
                         exampleReport->getShortDescription(/*Fallback=*/false),
 | 
						|
                         BT.getCategory(),
 | 
						|
                         exampleReport->getUniqueingLocation(),
 | 
						|
                         exampleReport->getUniqueingDecl()));
 | 
						|
 | 
						|
  // Generate the full path diagnostic, using the generation scheme
 | 
						|
  // specified by the PathDiagnosticConsumer. Note that we have to generate
 | 
						|
  // path diagnostics even for consumers which do not support paths, because
 | 
						|
  // the BugReporterVisitors may mark this bug as a false positive.
 | 
						|
  if (!bugReports.empty())
 | 
						|
    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
 | 
						|
      return;
 | 
						|
 | 
						|
  // If the path is empty, generate a single step path with the location
 | 
						|
  // of the issue.
 | 
						|
  if (D->path.empty()) {
 | 
						|
    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
 | 
						|
    PathDiagnosticPiece *piece =
 | 
						|
      new PathDiagnosticEventPiece(L, exampleReport->getDescription());
 | 
						|
    BugReport::ranges_iterator Beg, End;
 | 
						|
    llvm::tie(Beg, End) = exampleReport->getRanges();
 | 
						|
    for ( ; Beg != End; ++Beg)
 | 
						|
      piece->addRange(*Beg);
 | 
						|
    D->setEndOfPath(piece);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the meta data.
 | 
						|
  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
 | 
						|
  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
 | 
						|
                                                e = Meta.end(); i != e; ++i) {
 | 
						|
    D->addMeta(*i);
 | 
						|
  }
 | 
						|
 | 
						|
  PD.HandlePathDiagnostic(D.take());
 | 
						|
}
 | 
						|
 | 
						|
void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
 | 
						|
                                  StringRef name,
 | 
						|
                                  StringRef category,
 | 
						|
                                  StringRef str, PathDiagnosticLocation Loc,
 | 
						|
                                  SourceRange* RBeg, unsigned NumRanges) {
 | 
						|
 | 
						|
  // 'BT' is owned by BugReporter.
 | 
						|
  BugType *BT = getBugTypeForName(name, category);
 | 
						|
  BugReport *R = new BugReport(*BT, str, Loc);
 | 
						|
  R->setDeclWithIssue(DeclWithIssue);
 | 
						|
  for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
 | 
						|
  emitReport(R);
 | 
						|
}
 | 
						|
 | 
						|
BugType *BugReporter::getBugTypeForName(StringRef name,
 | 
						|
                                        StringRef category) {
 | 
						|
  SmallString<136> fullDesc;
 | 
						|
  llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
 | 
						|
  llvm::StringMapEntry<BugType *> &
 | 
						|
      entry = StrBugTypes.GetOrCreateValue(fullDesc);
 | 
						|
  BugType *BT = entry.getValue();
 | 
						|
  if (!BT) {
 | 
						|
    BT = new BugType(name, category);
 | 
						|
    entry.setValue(BT);
 | 
						|
  }
 | 
						|
  return BT;
 | 
						|
}
 |