588 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			588 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines RangeConstraintManager, a class that tracks simple
 | 
						|
//  equality and inequality constraints on symbolic values of ProgramState.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SimpleConstraintManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/ImmutableSet.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
/// A Range represents the closed range [from, to].  The caller must
 | 
						|
/// guarantee that from <= to.  Note that Range is immutable, so as not
 | 
						|
/// to subvert RangeSet's immutability.
 | 
						|
namespace {
 | 
						|
class Range : public std::pair<const llvm::APSInt*,
 | 
						|
                                                const llvm::APSInt*> {
 | 
						|
public:
 | 
						|
  Range(const llvm::APSInt &from, const llvm::APSInt &to)
 | 
						|
    : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
 | 
						|
    assert(from <= to);
 | 
						|
  }
 | 
						|
  bool Includes(const llvm::APSInt &v) const {
 | 
						|
    return *first <= v && v <= *second;
 | 
						|
  }
 | 
						|
  const llvm::APSInt &From() const {
 | 
						|
    return *first;
 | 
						|
  }
 | 
						|
  const llvm::APSInt &To() const {
 | 
						|
    return *second;
 | 
						|
  }
 | 
						|
  const llvm::APSInt *getConcreteValue() const {
 | 
						|
    return &From() == &To() ? &From() : NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  void Profile(llvm::FoldingSetNodeID &ID) const {
 | 
						|
    ID.AddPointer(&From());
 | 
						|
    ID.AddPointer(&To());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class RangeTrait : public llvm::ImutContainerInfo<Range> {
 | 
						|
public:
 | 
						|
  // When comparing if one Range is less than another, we should compare
 | 
						|
  // the actual APSInt values instead of their pointers.  This keeps the order
 | 
						|
  // consistent (instead of comparing by pointer values) and can potentially
 | 
						|
  // be used to speed up some of the operations in RangeSet.
 | 
						|
  static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
 | 
						|
    return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
 | 
						|
                                       *lhs.second < *rhs.second);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// RangeSet contains a set of ranges. If the set is empty, then
 | 
						|
///  there the value of a symbol is overly constrained and there are no
 | 
						|
///  possible values for that symbol.
 | 
						|
class RangeSet {
 | 
						|
  typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
 | 
						|
  PrimRangeSet ranges; // no need to make const, since it is an
 | 
						|
                       // ImmutableSet - this allows default operator=
 | 
						|
                       // to work.
 | 
						|
public:
 | 
						|
  typedef PrimRangeSet::Factory Factory;
 | 
						|
  typedef PrimRangeSet::iterator iterator;
 | 
						|
 | 
						|
  RangeSet(PrimRangeSet RS) : ranges(RS) {}
 | 
						|
 | 
						|
  iterator begin() const { return ranges.begin(); }
 | 
						|
  iterator end() const { return ranges.end(); }
 | 
						|
 | 
						|
  bool isEmpty() const { return ranges.isEmpty(); }
 | 
						|
 | 
						|
  /// Construct a new RangeSet representing '{ [from, to] }'.
 | 
						|
  RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
 | 
						|
    : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
 | 
						|
 | 
						|
  /// Profile - Generates a hash profile of this RangeSet for use
 | 
						|
  ///  by FoldingSet.
 | 
						|
  void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
 | 
						|
 | 
						|
  /// getConcreteValue - If a symbol is contrained to equal a specific integer
 | 
						|
  ///  constant then this method returns that value.  Otherwise, it returns
 | 
						|
  ///  NULL.
 | 
						|
  const llvm::APSInt* getConcreteValue() const {
 | 
						|
    return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void IntersectInRange(BasicValueFactory &BV, Factory &F,
 | 
						|
                        const llvm::APSInt &Lower,
 | 
						|
                        const llvm::APSInt &Upper,
 | 
						|
                        PrimRangeSet &newRanges,
 | 
						|
                        PrimRangeSet::iterator &i,
 | 
						|
                        PrimRangeSet::iterator &e) const {
 | 
						|
    // There are six cases for each range R in the set:
 | 
						|
    //   1. R is entirely before the intersection range.
 | 
						|
    //   2. R is entirely after the intersection range.
 | 
						|
    //   3. R contains the entire intersection range.
 | 
						|
    //   4. R starts before the intersection range and ends in the middle.
 | 
						|
    //   5. R starts in the middle of the intersection range and ends after it.
 | 
						|
    //   6. R is entirely contained in the intersection range.
 | 
						|
    // These correspond to each of the conditions below.
 | 
						|
    for (/* i = begin(), e = end() */; i != e; ++i) {
 | 
						|
      if (i->To() < Lower) {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (i->From() > Upper) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (i->Includes(Lower)) {
 | 
						|
        if (i->Includes(Upper)) {
 | 
						|
          newRanges = F.add(newRanges, Range(BV.getValue(Lower),
 | 
						|
                                             BV.getValue(Upper)));
 | 
						|
          break;
 | 
						|
        } else
 | 
						|
          newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
 | 
						|
      } else {
 | 
						|
        if (i->Includes(Upper)) {
 | 
						|
          newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
 | 
						|
          break;
 | 
						|
        } else
 | 
						|
          newRanges = F.add(newRanges, *i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const llvm::APSInt &getMinValue() const {
 | 
						|
    assert(!isEmpty());
 | 
						|
    return ranges.begin()->From();
 | 
						|
  }
 | 
						|
 | 
						|
  bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
 | 
						|
    // This function has nine cases, the cartesian product of range-testing
 | 
						|
    // both the upper and lower bounds against the symbol's type.
 | 
						|
    // Each case requires a different pinning operation.
 | 
						|
    // The function returns false if the described range is entirely outside
 | 
						|
    // the range of values for the associated symbol.
 | 
						|
    APSIntType Type(getMinValue());
 | 
						|
    APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower);
 | 
						|
    APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper);
 | 
						|
 | 
						|
    switch (LowerTest) {
 | 
						|
    case APSIntType::RTR_Below:
 | 
						|
      switch (UpperTest) {
 | 
						|
      case APSIntType::RTR_Below:
 | 
						|
        // The entire range is outside the symbol's set of possible values.
 | 
						|
        // If this is a conventionally-ordered range, the state is infeasible.
 | 
						|
        if (Lower < Upper)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // However, if the range wraps around, it spans all possible values.
 | 
						|
        Lower = Type.getMinValue();
 | 
						|
        Upper = Type.getMaxValue();
 | 
						|
        break;
 | 
						|
      case APSIntType::RTR_Within:
 | 
						|
        // The range starts below what's possible but ends within it. Pin.
 | 
						|
        Lower = Type.getMinValue();
 | 
						|
        Type.apply(Upper);
 | 
						|
        break;
 | 
						|
      case APSIntType::RTR_Above:
 | 
						|
        // The range spans all possible values for the symbol. Pin.
 | 
						|
        Lower = Type.getMinValue();
 | 
						|
        Upper = Type.getMaxValue();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case APSIntType::RTR_Within:
 | 
						|
      switch (UpperTest) {
 | 
						|
      case APSIntType::RTR_Below:
 | 
						|
        // The range wraps around, but all lower values are not possible.
 | 
						|
        Type.apply(Lower);
 | 
						|
        Upper = Type.getMaxValue();
 | 
						|
        break;
 | 
						|
      case APSIntType::RTR_Within:
 | 
						|
        // The range may or may not wrap around, but both limits are valid.
 | 
						|
        Type.apply(Lower);
 | 
						|
        Type.apply(Upper);
 | 
						|
        break;
 | 
						|
      case APSIntType::RTR_Above:
 | 
						|
        // The range starts within what's possible but ends above it. Pin.
 | 
						|
        Type.apply(Lower);
 | 
						|
        Upper = Type.getMaxValue();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case APSIntType::RTR_Above:
 | 
						|
      switch (UpperTest) {
 | 
						|
      case APSIntType::RTR_Below:
 | 
						|
        // The range wraps but is outside the symbol's set of possible values.
 | 
						|
        return false;
 | 
						|
      case APSIntType::RTR_Within:
 | 
						|
        // The range starts above what's possible but ends within it (wrap).
 | 
						|
        Lower = Type.getMinValue();
 | 
						|
        Type.apply(Upper);
 | 
						|
        break;
 | 
						|
      case APSIntType::RTR_Above:
 | 
						|
        // The entire range is outside the symbol's set of possible values.
 | 
						|
        // If this is a conventionally-ordered range, the state is infeasible.
 | 
						|
        if (Lower < Upper)
 | 
						|
          return false;
 | 
						|
 | 
						|
        // However, if the range wraps around, it spans all possible values.
 | 
						|
        Lower = Type.getMinValue();
 | 
						|
        Upper = Type.getMaxValue();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  // Returns a set containing the values in the receiving set, intersected with
 | 
						|
  // the closed range [Lower, Upper]. Unlike the Range type, this range uses
 | 
						|
  // modular arithmetic, corresponding to the common treatment of C integer
 | 
						|
  // overflow. Thus, if the Lower bound is greater than the Upper bound, the
 | 
						|
  // range is taken to wrap around. This is equivalent to taking the
 | 
						|
  // intersection with the two ranges [Min, Upper] and [Lower, Max],
 | 
						|
  // or, alternatively, /removing/ all integers between Upper and Lower.
 | 
						|
  RangeSet Intersect(BasicValueFactory &BV, Factory &F,
 | 
						|
                     llvm::APSInt Lower, llvm::APSInt Upper) const {
 | 
						|
    if (!pin(Lower, Upper))
 | 
						|
      return F.getEmptySet();
 | 
						|
 | 
						|
    PrimRangeSet newRanges = F.getEmptySet();
 | 
						|
 | 
						|
    PrimRangeSet::iterator i = begin(), e = end();
 | 
						|
    if (Lower <= Upper)
 | 
						|
      IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
 | 
						|
    else {
 | 
						|
      // The order of the next two statements is important!
 | 
						|
      // IntersectInRange() does not reset the iteration state for i and e.
 | 
						|
      // Therefore, the lower range most be handled first.
 | 
						|
      IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
 | 
						|
      IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
 | 
						|
    }
 | 
						|
 | 
						|
    return newRanges;
 | 
						|
  }
 | 
						|
 | 
						|
  void print(raw_ostream &os) const {
 | 
						|
    bool isFirst = true;
 | 
						|
    os << "{ ";
 | 
						|
    for (iterator i = begin(), e = end(); i != e; ++i) {
 | 
						|
      if (isFirst)
 | 
						|
        isFirst = false;
 | 
						|
      else
 | 
						|
        os << ", ";
 | 
						|
 | 
						|
      os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
 | 
						|
         << ']';
 | 
						|
    }
 | 
						|
    os << " }";
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const RangeSet &other) const {
 | 
						|
    return ranges == other.ranges;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
 | 
						|
                                 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
 | 
						|
                                                             RangeSet))
 | 
						|
 | 
						|
namespace {
 | 
						|
class RangeConstraintManager : public SimpleConstraintManager{
 | 
						|
  RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
 | 
						|
public:
 | 
						|
  RangeConstraintManager(SubEngine *subengine, BasicValueFactory &BVF)
 | 
						|
    : SimpleConstraintManager(subengine, BVF) {}
 | 
						|
 | 
						|
  ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& Int,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& Int,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& Int,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& Int,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& Int,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
 | 
						|
                             const llvm::APSInt& Int,
 | 
						|
                             const llvm::APSInt& Adjustment);
 | 
						|
 | 
						|
  const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
 | 
						|
  ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym);
 | 
						|
 | 
						|
  ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);
 | 
						|
 | 
						|
  void print(ProgramStateRef St, raw_ostream &Out,
 | 
						|
             const char* nl, const char *sep);
 | 
						|
 | 
						|
private:
 | 
						|
  RangeSet::Factory F;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
ConstraintManager *
 | 
						|
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
 | 
						|
  return new RangeConstraintManager(Eng, StMgr.getBasicVals());
 | 
						|
}
 | 
						|
 | 
						|
const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
 | 
						|
                                                      SymbolRef sym) const {
 | 
						|
  const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
 | 
						|
  return T ? T->getConcreteValue() : NULL;
 | 
						|
}
 | 
						|
 | 
						|
ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
 | 
						|
                                                    SymbolRef Sym) {
 | 
						|
  const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
 | 
						|
 | 
						|
  // If we don't have any information about this symbol, it's underconstrained.
 | 
						|
  if (!Ranges)
 | 
						|
    return ConditionTruthVal();
 | 
						|
 | 
						|
  // If we have a concrete value, see if it's zero.
 | 
						|
  if (const llvm::APSInt *Value = Ranges->getConcreteValue())
 | 
						|
    return *Value == 0;
 | 
						|
 | 
						|
  BasicValueFactory &BV = getBasicVals();
 | 
						|
  APSIntType IntType = BV.getAPSIntType(Sym->getType());
 | 
						|
  llvm::APSInt Zero = IntType.getZeroValue();
 | 
						|
 | 
						|
  // Check if zero is in the set of possible values.
 | 
						|
  if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Zero is a possible value, but it is not the /only/ possible value.
 | 
						|
  return ConditionTruthVal();
 | 
						|
}
 | 
						|
 | 
						|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
 | 
						|
/// as marked in LSymbols, mark it as dead in DSymbols.
 | 
						|
ProgramStateRef 
 | 
						|
RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
 | 
						|
                                           SymbolReaper& SymReaper) {
 | 
						|
 | 
						|
  ConstraintRangeTy CR = state->get<ConstraintRange>();
 | 
						|
  ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
 | 
						|
 | 
						|
  for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
 | 
						|
    SymbolRef sym = I.getKey();
 | 
						|
    if (SymReaper.maybeDead(sym))
 | 
						|
      CR = CRFactory.remove(CR, sym);
 | 
						|
  }
 | 
						|
 | 
						|
  return state->set<ConstraintRange>(CR);
 | 
						|
}
 | 
						|
 | 
						|
RangeSet
 | 
						|
RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
 | 
						|
  if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
 | 
						|
    return *V;
 | 
						|
 | 
						|
  // Lazily generate a new RangeSet representing all possible values for the
 | 
						|
  // given symbol type.
 | 
						|
  BasicValueFactory &BV = getBasicVals();
 | 
						|
  QualType T = sym->getType();
 | 
						|
 | 
						|
  RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
 | 
						|
 | 
						|
  // Special case: references are known to be non-zero.
 | 
						|
  if (T->isReferenceType()) {
 | 
						|
    APSIntType IntType = BV.getAPSIntType(T);
 | 
						|
    Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
 | 
						|
                                     --IntType.getZeroValue());
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
//===------------------------------------------------------------------------===
 | 
						|
// assumeSymX methods: public interface for RangeConstraintManager.
 | 
						|
//===------------------------------------------------------------------------===/
 | 
						|
 | 
						|
// The syntax for ranges below is mathematical, using [x, y] for closed ranges
 | 
						|
// and (x, y) for open ranges. These ranges are modular, corresponding with
 | 
						|
// a common treatment of C integer overflow. This means that these methods
 | 
						|
// do not have to worry about overflow; RangeSet::Intersect can handle such a
 | 
						|
// "wraparound" range.
 | 
						|
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
 | 
						|
// UINT_MAX, 0, 1, and 2.
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
 | 
						|
                                    const llvm::APSInt &Int,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Before we do any real work, see if the value can even show up.
 | 
						|
  APSIntType AdjustmentType(Adjustment);
 | 
						|
  if (AdjustmentType.testInRange(Int) != APSIntType::RTR_Within)
 | 
						|
    return St;
 | 
						|
 | 
						|
  llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
 | 
						|
  llvm::APSInt Upper = Lower;
 | 
						|
  --Lower;
 | 
						|
  ++Upper;
 | 
						|
 | 
						|
  // [Int-Adjustment+1, Int-Adjustment-1]
 | 
						|
  // Notice that the lower bound is greater than the upper bound.
 | 
						|
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
 | 
						|
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
 | 
						|
                                    const llvm::APSInt &Int,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Before we do any real work, see if the value can even show up.
 | 
						|
  APSIntType AdjustmentType(Adjustment);
 | 
						|
  if (AdjustmentType.testInRange(Int) != APSIntType::RTR_Within)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // [Int-Adjustment, Int-Adjustment]
 | 
						|
  llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
 | 
						|
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
 | 
						|
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
 | 
						|
                                    const llvm::APSInt &Int,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Before we do any real work, see if the value can even show up.
 | 
						|
  APSIntType AdjustmentType(Adjustment);
 | 
						|
  switch (AdjustmentType.testInRange(Int)) {
 | 
						|
  case APSIntType::RTR_Below:
 | 
						|
    return NULL;
 | 
						|
  case APSIntType::RTR_Within:
 | 
						|
    break;
 | 
						|
  case APSIntType::RTR_Above:
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case for Int == Min. This is always false.
 | 
						|
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | 
						|
  llvm::APSInt Min = AdjustmentType.getMinValue();
 | 
						|
  if (ComparisonVal == Min)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  llvm::APSInt Lower = Min-Adjustment;
 | 
						|
  llvm::APSInt Upper = ComparisonVal-Adjustment;
 | 
						|
  --Upper;
 | 
						|
 | 
						|
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | 
						|
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
 | 
						|
                                    const llvm::APSInt &Int,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Before we do any real work, see if the value can even show up.
 | 
						|
  APSIntType AdjustmentType(Adjustment);
 | 
						|
  switch (AdjustmentType.testInRange(Int)) {
 | 
						|
  case APSIntType::RTR_Below:
 | 
						|
    return St;
 | 
						|
  case APSIntType::RTR_Within:
 | 
						|
    break;
 | 
						|
  case APSIntType::RTR_Above:
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case for Int == Max. This is always false.
 | 
						|
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | 
						|
  llvm::APSInt Max = AdjustmentType.getMaxValue();
 | 
						|
  if (ComparisonVal == Max)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  llvm::APSInt Lower = ComparisonVal-Adjustment;
 | 
						|
  llvm::APSInt Upper = Max-Adjustment;
 | 
						|
  ++Lower;
 | 
						|
 | 
						|
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | 
						|
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
 | 
						|
                                    const llvm::APSInt &Int,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Before we do any real work, see if the value can even show up.
 | 
						|
  APSIntType AdjustmentType(Adjustment);
 | 
						|
  switch (AdjustmentType.testInRange(Int)) {
 | 
						|
  case APSIntType::RTR_Below:
 | 
						|
    return St;
 | 
						|
  case APSIntType::RTR_Within:
 | 
						|
    break;
 | 
						|
  case APSIntType::RTR_Above:
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case for Int == Min. This is always feasible.
 | 
						|
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | 
						|
  llvm::APSInt Min = AdjustmentType.getMinValue();
 | 
						|
  if (ComparisonVal == Min)
 | 
						|
    return St;
 | 
						|
 | 
						|
  llvm::APSInt Max = AdjustmentType.getMaxValue();
 | 
						|
  llvm::APSInt Lower = ComparisonVal-Adjustment;
 | 
						|
  llvm::APSInt Upper = Max-Adjustment;
 | 
						|
 | 
						|
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | 
						|
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef 
 | 
						|
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
 | 
						|
                                    const llvm::APSInt &Int,
 | 
						|
                                    const llvm::APSInt &Adjustment) {
 | 
						|
  // Before we do any real work, see if the value can even show up.
 | 
						|
  APSIntType AdjustmentType(Adjustment);
 | 
						|
  switch (AdjustmentType.testInRange(Int)) {
 | 
						|
  case APSIntType::RTR_Below:
 | 
						|
    return NULL;
 | 
						|
  case APSIntType::RTR_Within:
 | 
						|
    break;
 | 
						|
  case APSIntType::RTR_Above:
 | 
						|
    return St;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case for Int == Max. This is always feasible.
 | 
						|
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | 
						|
  llvm::APSInt Max = AdjustmentType.getMaxValue();
 | 
						|
  if (ComparisonVal == Max)
 | 
						|
    return St;
 | 
						|
 | 
						|
  llvm::APSInt Min = AdjustmentType.getMinValue();
 | 
						|
  llvm::APSInt Lower = Min-Adjustment;
 | 
						|
  llvm::APSInt Upper = ComparisonVal-Adjustment;
 | 
						|
 | 
						|
  RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | 
						|
  return New.isEmpty() ? NULL : St->set<ConstraintRange>(Sym, New);
 | 
						|
}
 | 
						|
 | 
						|
//===------------------------------------------------------------------------===
 | 
						|
// Pretty-printing.
 | 
						|
//===------------------------------------------------------------------------===/
 | 
						|
 | 
						|
void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
 | 
						|
                                   const char* nl, const char *sep) {
 | 
						|
 | 
						|
  ConstraintRangeTy Ranges = St->get<ConstraintRange>();
 | 
						|
 | 
						|
  if (Ranges.isEmpty()) {
 | 
						|
    Out << nl << sep << "Ranges are empty." << nl;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << nl << sep << "Ranges of symbol values:";
 | 
						|
  for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
 | 
						|
    Out << nl << ' ' << I.getKey() << " : ";
 | 
						|
    I.getData().print(Out);
 | 
						|
  }
 | 
						|
  Out << nl;
 | 
						|
}
 |