499 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defined the types Store and StoreManager.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
StoreManager::StoreManager(ProgramStateManager &stateMgr)
 | 
						|
  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
 | 
						|
    MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
 | 
						|
 | 
						|
StoreRef StoreManager::enterStackFrame(Store OldStore,
 | 
						|
                                       const CallEvent &Call,
 | 
						|
                                       const StackFrameContext *LCtx) {
 | 
						|
  StoreRef Store = StoreRef(OldStore, *this);
 | 
						|
 | 
						|
  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
 | 
						|
  Call.getInitialStackFrameContents(LCtx, InitialBindings);
 | 
						|
 | 
						|
  for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
 | 
						|
                                       E = InitialBindings.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Store = Bind(Store.getStore(), I->first, I->second);
 | 
						|
  }
 | 
						|
 | 
						|
  return Store;
 | 
						|
}
 | 
						|
 | 
						|
const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
 | 
						|
                                              QualType EleTy, uint64_t index) {
 | 
						|
  NonLoc idx = svalBuilder.makeArrayIndex(index);
 | 
						|
  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Merge with the implementation of the same method in MemRegion.cpp
 | 
						|
static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
 | 
						|
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    const RecordDecl *D = RT->getDecl();
 | 
						|
    if (!D->getDefinition())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
 | 
						|
  return StoreRef(store, *this);
 | 
						|
}
 | 
						|
 | 
						|
const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R, 
 | 
						|
                                                        QualType T) {
 | 
						|
  NonLoc idx = svalBuilder.makeZeroArrayIndex();
 | 
						|
  assert(!T.isNull());
 | 
						|
  return MRMgr.getElementRegion(T, idx, R, Ctx);
 | 
						|
}
 | 
						|
 | 
						|
const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
 | 
						|
 | 
						|
  ASTContext &Ctx = StateMgr.getContext();
 | 
						|
 | 
						|
  // Handle casts to Objective-C objects.
 | 
						|
  if (CastToTy->isObjCObjectPointerType())
 | 
						|
    return R->StripCasts();
 | 
						|
 | 
						|
  if (CastToTy->isBlockPointerType()) {
 | 
						|
    // FIXME: We may need different solutions, depending on the symbol
 | 
						|
    // involved.  Blocks can be casted to/from 'id', as they can be treated
 | 
						|
    // as Objective-C objects.  This could possibly be handled by enhancing
 | 
						|
    // our reasoning of downcasts of symbolic objects.
 | 
						|
    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
 | 
						|
      return R;
 | 
						|
 | 
						|
    // We don't know what to make of it.  Return a NULL region, which
 | 
						|
    // will be interpretted as UnknownVal.
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now assume we are casting from pointer to pointer. Other cases should
 | 
						|
  // already be handled.
 | 
						|
  QualType PointeeTy = CastToTy->getPointeeType();
 | 
						|
  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
 | 
						|
 | 
						|
  // Handle casts to void*.  We just pass the region through.
 | 
						|
  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
 | 
						|
    return R;
 | 
						|
 | 
						|
  // Handle casts from compatible types.
 | 
						|
  if (R->isBoundable())
 | 
						|
    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
 | 
						|
      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
 | 
						|
      if (CanonPointeeTy == ObjTy)
 | 
						|
        return R;
 | 
						|
    }
 | 
						|
 | 
						|
  // Process region cast according to the kind of the region being cast.
 | 
						|
  switch (R->getKind()) {
 | 
						|
    case MemRegion::CXXThisRegionKind:
 | 
						|
    case MemRegion::GenericMemSpaceRegionKind:
 | 
						|
    case MemRegion::StackLocalsSpaceRegionKind:
 | 
						|
    case MemRegion::StackArgumentsSpaceRegionKind:
 | 
						|
    case MemRegion::HeapSpaceRegionKind:
 | 
						|
    case MemRegion::UnknownSpaceRegionKind:
 | 
						|
    case MemRegion::StaticGlobalSpaceRegionKind:
 | 
						|
    case MemRegion::GlobalInternalSpaceRegionKind:
 | 
						|
    case MemRegion::GlobalSystemSpaceRegionKind:
 | 
						|
    case MemRegion::GlobalImmutableSpaceRegionKind: {
 | 
						|
      llvm_unreachable("Invalid region cast");
 | 
						|
    }
 | 
						|
 | 
						|
    case MemRegion::FunctionTextRegionKind:
 | 
						|
    case MemRegion::BlockTextRegionKind:
 | 
						|
    case MemRegion::BlockDataRegionKind:
 | 
						|
    case MemRegion::StringRegionKind:
 | 
						|
      // FIXME: Need to handle arbitrary downcasts.
 | 
						|
    case MemRegion::SymbolicRegionKind:
 | 
						|
    case MemRegion::AllocaRegionKind:
 | 
						|
    case MemRegion::CompoundLiteralRegionKind:
 | 
						|
    case MemRegion::FieldRegionKind:
 | 
						|
    case MemRegion::ObjCIvarRegionKind:
 | 
						|
    case MemRegion::ObjCStringRegionKind:
 | 
						|
    case MemRegion::VarRegionKind:
 | 
						|
    case MemRegion::CXXTempObjectRegionKind:
 | 
						|
    case MemRegion::CXXBaseObjectRegionKind:
 | 
						|
      return MakeElementRegion(R, PointeeTy);
 | 
						|
 | 
						|
    case MemRegion::ElementRegionKind: {
 | 
						|
      // If we are casting from an ElementRegion to another type, the
 | 
						|
      // algorithm is as follows:
 | 
						|
      //
 | 
						|
      // (1) Compute the "raw offset" of the ElementRegion from the
 | 
						|
      //     base region.  This is done by calling 'getAsRawOffset()'.
 | 
						|
      //
 | 
						|
      // (2a) If we get a 'RegionRawOffset' after calling
 | 
						|
      //      'getAsRawOffset()', determine if the absolute offset
 | 
						|
      //      can be exactly divided into chunks of the size of the
 | 
						|
      //      casted-pointee type.  If so, create a new ElementRegion with
 | 
						|
      //      the pointee-cast type as the new ElementType and the index
 | 
						|
      //      being the offset divded by the chunk size.  If not, create
 | 
						|
      //      a new ElementRegion at offset 0 off the raw offset region.
 | 
						|
      //
 | 
						|
      // (2b) If we don't a get a 'RegionRawOffset' after calling
 | 
						|
      //      'getAsRawOffset()', it means that we are at offset 0.
 | 
						|
      //
 | 
						|
      // FIXME: Handle symbolic raw offsets.
 | 
						|
 | 
						|
      const ElementRegion *elementR = cast<ElementRegion>(R);
 | 
						|
      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
 | 
						|
      const MemRegion *baseR = rawOff.getRegion();
 | 
						|
 | 
						|
      // If we cannot compute a raw offset, throw up our hands and return
 | 
						|
      // a NULL MemRegion*.
 | 
						|
      if (!baseR)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
      CharUnits off = rawOff.getOffset();
 | 
						|
 | 
						|
      if (off.isZero()) {
 | 
						|
        // Edge case: we are at 0 bytes off the beginning of baseR.  We
 | 
						|
        // check to see if type we are casting to is the same as the base
 | 
						|
        // region.  If so, just return the base region.
 | 
						|
        if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
 | 
						|
          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
 | 
						|
          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
 | 
						|
          if (CanonPointeeTy == ObjTy)
 | 
						|
            return baseR;
 | 
						|
        }
 | 
						|
 | 
						|
        // Otherwise, create a new ElementRegion at offset 0.
 | 
						|
        return MakeElementRegion(baseR, PointeeTy);
 | 
						|
      }
 | 
						|
 | 
						|
      // We have a non-zero offset from the base region.  We want to determine
 | 
						|
      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
 | 
						|
      // we create an ElementRegion whose index is that value.  Otherwise, we
 | 
						|
      // create two ElementRegions, one that reflects a raw offset and the other
 | 
						|
      // that reflects the cast.
 | 
						|
 | 
						|
      // Compute the index for the new ElementRegion.
 | 
						|
      int64_t newIndex = 0;
 | 
						|
      const MemRegion *newSuperR = 0;
 | 
						|
 | 
						|
      // We can only compute sizeof(PointeeTy) if it is a complete type.
 | 
						|
      if (IsCompleteType(Ctx, PointeeTy)) {
 | 
						|
        // Compute the size in **bytes**.
 | 
						|
        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
 | 
						|
        if (!pointeeTySize.isZero()) {
 | 
						|
          // Is the offset a multiple of the size?  If so, we can layer the
 | 
						|
          // ElementRegion (with elementType == PointeeTy) directly on top of
 | 
						|
          // the base region.
 | 
						|
          if (off % pointeeTySize == 0) {
 | 
						|
            newIndex = off / pointeeTySize;
 | 
						|
            newSuperR = baseR;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!newSuperR) {
 | 
						|
        // Create an intermediate ElementRegion to represent the raw byte.
 | 
						|
        // This will be the super region of the final ElementRegion.
 | 
						|
        newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
 | 
						|
      }
 | 
						|
 | 
						|
      return MakeElementRegion(newSuperR, PointeeTy, newIndex);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unreachable");
 | 
						|
}
 | 
						|
 | 
						|
static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
 | 
						|
  const MemRegion *MR = V.getAsRegion();
 | 
						|
  if (!MR)
 | 
						|
    return true;
 | 
						|
 | 
						|
  const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
 | 
						|
  if (!TVR)
 | 
						|
    return true;
 | 
						|
 | 
						|
  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
 | 
						|
  if (!RD)
 | 
						|
    return true;
 | 
						|
 | 
						|
  const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
 | 
						|
  if (!Expected)
 | 
						|
    Expected = Ty->getAsCXXRecordDecl();
 | 
						|
 | 
						|
  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
 | 
						|
}
 | 
						|
 | 
						|
SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
 | 
						|
  // Sanity check to avoid doing the wrong thing in the face of
 | 
						|
  // reinterpret_cast.
 | 
						|
  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Walk through the cast path to create nested CXXBaseRegions.
 | 
						|
  SVal Result = Derived;
 | 
						|
  for (CastExpr::path_const_iterator I = Cast->path_begin(),
 | 
						|
                                     E = Cast->path_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
 | 
						|
  // Walk through the path to create nested CXXBaseRegions.
 | 
						|
  SVal Result = Derived;
 | 
						|
  for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Result = evalDerivedToBase(Result, I->Base->getType(),
 | 
						|
                               I->Base->isVirtual());
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
 | 
						|
                                     bool IsVirtual) {
 | 
						|
  Optional<loc::MemRegionVal> DerivedRegVal =
 | 
						|
      Derived.getAs<loc::MemRegionVal>();
 | 
						|
  if (!DerivedRegVal)
 | 
						|
    return Derived;
 | 
						|
 | 
						|
  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
 | 
						|
  if (!BaseDecl)
 | 
						|
    BaseDecl = BaseType->getAsCXXRecordDecl();
 | 
						|
  assert(BaseDecl && "not a C++ object?");
 | 
						|
 | 
						|
  const MemRegion *BaseReg =
 | 
						|
    MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(),
 | 
						|
                                 IsVirtual);
 | 
						|
 | 
						|
  return loc::MemRegionVal(BaseReg);
 | 
						|
}
 | 
						|
 | 
						|
SVal StoreManager::evalDynamicCast(SVal Base, QualType DerivedType,
 | 
						|
                                   bool &Failed) {
 | 
						|
  Failed = false;
 | 
						|
 | 
						|
  Optional<loc::MemRegionVal> BaseRegVal = Base.getAs<loc::MemRegionVal>();
 | 
						|
  if (!BaseRegVal)
 | 
						|
    return UnknownVal();
 | 
						|
  const MemRegion *BaseRegion = BaseRegVal->stripCasts(/*StripBases=*/false);
 | 
						|
 | 
						|
  // Assume the derived class is a pointer or a reference to a CXX record.
 | 
						|
  DerivedType = DerivedType->getPointeeType();
 | 
						|
  assert(!DerivedType.isNull());
 | 
						|
  const CXXRecordDecl *DerivedDecl = DerivedType->getAsCXXRecordDecl();
 | 
						|
  if (!DerivedDecl && !DerivedType->isVoidType())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
 | 
						|
  // derived to base).
 | 
						|
  const MemRegion *SR = BaseRegion;
 | 
						|
  while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
 | 
						|
    QualType BaseType = TSR->getLocationType()->getPointeeType();
 | 
						|
    assert(!BaseType.isNull());
 | 
						|
    const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
 | 
						|
    if (!SRDecl)
 | 
						|
      return UnknownVal();
 | 
						|
 | 
						|
    // If found the derived class, the cast succeeds.
 | 
						|
    if (SRDecl == DerivedDecl)
 | 
						|
      return loc::MemRegionVal(TSR);
 | 
						|
 | 
						|
    if (!DerivedType->isVoidType()) {
 | 
						|
      // Static upcasts are marked as DerivedToBase casts by Sema, so this will
 | 
						|
      // only happen when multiple or virtual inheritance is involved.
 | 
						|
      CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
 | 
						|
                         /*DetectVirtual=*/false);
 | 
						|
      if (SRDecl->isDerivedFrom(DerivedDecl, Paths))
 | 
						|
        return evalDerivedToBase(loc::MemRegionVal(TSR), Paths.front());
 | 
						|
    }
 | 
						|
 | 
						|
    if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
 | 
						|
      // Drill down the chain to get the derived classes.
 | 
						|
      SR = R->getSuperRegion();
 | 
						|
    else {
 | 
						|
      // We reached the bottom of the hierarchy.
 | 
						|
 | 
						|
      // If this is a cast to void*, return the region.
 | 
						|
      if (DerivedType->isVoidType())
 | 
						|
        return loc::MemRegionVal(TSR);
 | 
						|
 | 
						|
      // We did not find the derived class. We we must be casting the base to
 | 
						|
      // derived, so the cast should fail.
 | 
						|
      Failed = true;
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CastRetrievedVal - Used by subclasses of StoreManager to implement
 | 
						|
///  implicit casts that arise from loads from regions that are reinterpreted
 | 
						|
///  as another region.
 | 
						|
SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
 | 
						|
                                    QualType castTy, bool performTestOnly) {
 | 
						|
  
 | 
						|
  if (castTy.isNull() || V.isUnknownOrUndef())
 | 
						|
    return V;
 | 
						|
  
 | 
						|
  ASTContext &Ctx = svalBuilder.getContext();
 | 
						|
 | 
						|
  if (performTestOnly) {  
 | 
						|
    // Automatically translate references to pointers.
 | 
						|
    QualType T = R->getValueType();
 | 
						|
    if (const ReferenceType *RT = T->getAs<ReferenceType>())
 | 
						|
      T = Ctx.getPointerType(RT->getPointeeType());
 | 
						|
    
 | 
						|
    assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return svalBuilder.dispatchCast(V, castTy);
 | 
						|
}
 | 
						|
 | 
						|
SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
 | 
						|
  if (Base.isUnknownOrUndef())
 | 
						|
    return Base;
 | 
						|
 | 
						|
  Loc BaseL = Base.castAs<Loc>();
 | 
						|
  const MemRegion* BaseR = 0;
 | 
						|
 | 
						|
  switch (BaseL.getSubKind()) {
 | 
						|
  case loc::MemRegionKind:
 | 
						|
    BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion();
 | 
						|
    break;
 | 
						|
 | 
						|
  case loc::GotoLabelKind:
 | 
						|
    // These are anormal cases. Flag an undefined value.
 | 
						|
    return UndefinedVal();
 | 
						|
 | 
						|
  case loc::ConcreteIntKind:
 | 
						|
    // While these seem funny, this can happen through casts.
 | 
						|
    // FIXME: What we should return is the field offset.  For example,
 | 
						|
    //  add the field offset to the integer value.  That way funny things
 | 
						|
    //  like this work properly:  &(((struct foo *) 0xa)->f)
 | 
						|
    return Base;
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unhandled Base.");
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
 | 
						|
  // of FieldDecl.
 | 
						|
  if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
 | 
						|
    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
 | 
						|
 | 
						|
  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
 | 
						|
}
 | 
						|
 | 
						|
SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
 | 
						|
  return getLValueFieldOrIvar(decl, base);
 | 
						|
}
 | 
						|
 | 
						|
SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset, 
 | 
						|
                                    SVal Base) {
 | 
						|
 | 
						|
  // If the base is an unknown or undefined value, just return it back.
 | 
						|
  // FIXME: For absolute pointer addresses, we just return that value back as
 | 
						|
  //  well, although in reality we should return the offset added to that
 | 
						|
  //  value.
 | 
						|
  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
 | 
						|
    return Base;
 | 
						|
 | 
						|
  const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion();
 | 
						|
 | 
						|
  // Pointer of any type can be cast and used as array base.
 | 
						|
  const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
 | 
						|
 | 
						|
  // Convert the offset to the appropriate size and signedness.
 | 
						|
  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
 | 
						|
 | 
						|
  if (!ElemR) {
 | 
						|
    //
 | 
						|
    // If the base region is not an ElementRegion, create one.
 | 
						|
    // This can happen in the following example:
 | 
						|
    //
 | 
						|
    //   char *p = __builtin_alloc(10);
 | 
						|
    //   p[1] = 8;
 | 
						|
    //
 | 
						|
    //  Observe that 'p' binds to an AllocaRegion.
 | 
						|
    //
 | 
						|
    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
 | 
						|
                                                    BaseRegion, Ctx));
 | 
						|
  }
 | 
						|
 | 
						|
  SVal BaseIdx = ElemR->getIndex();
 | 
						|
 | 
						|
  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  const llvm::APSInt &BaseIdxI =
 | 
						|
      BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
 | 
						|
 | 
						|
  // Only allow non-integer offsets if the base region has no offset itself.
 | 
						|
  // FIXME: This is a somewhat arbitrary restriction. We should be using
 | 
						|
  // SValBuilder here to add the two offsets without checking their types.
 | 
						|
  if (!Offset.getAs<nonloc::ConcreteInt>()) {
 | 
						|
    if (isa<ElementRegion>(BaseRegion->StripCasts()))
 | 
						|
      return UnknownVal();
 | 
						|
 | 
						|
    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
 | 
						|
                                                    ElemR->getSuperRegion(),
 | 
						|
                                                    Ctx));
 | 
						|
  }
 | 
						|
 | 
						|
  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
 | 
						|
  assert(BaseIdxI.isSigned());
 | 
						|
 | 
						|
  // Compute the new index.
 | 
						|
  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
 | 
						|
                                                                    OffI));
 | 
						|
 | 
						|
  // Construct the new ElementRegion.
 | 
						|
  const MemRegion *ArrayR = ElemR->getSuperRegion();
 | 
						|
  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
 | 
						|
                                                  Ctx));
 | 
						|
}
 | 
						|
 | 
						|
StoreManager::BindingsHandler::~BindingsHandler() {}
 | 
						|
 | 
						|
bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
 | 
						|
                                                    Store store,
 | 
						|
                                                    const MemRegion* R,
 | 
						|
                                                    SVal val) {
 | 
						|
  SymbolRef SymV = val.getAsLocSymbol();
 | 
						|
  if (!SymV || SymV != Sym)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Binding) {
 | 
						|
    First = false;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    Binding = R;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |