293 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the TDDataStructures class, which represents the
 | |
| // Top-down Interprocedural closure of the data structure graph over the
 | |
| // program.  This is useful (but not strictly necessary?) for applications
 | |
| // like pointer analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/DataStructure/DataStructure.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Analysis/DataStructure/DSGraph.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   RegisterAnalysis<TDDataStructures>   // Register the pass
 | |
|   Y("tddatastructure", "Top-down Data Structure Analysis");
 | |
| 
 | |
|   Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined");
 | |
| }
 | |
| 
 | |
| void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N,
 | |
|                                                    hash_set<DSNode*> &Visited) {
 | |
|   if (!N || Visited.count(N)) return;
 | |
|   Visited.insert(N);
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) {
 | |
|     DSNodeHandle &NH = N->getLink(i*N->getPointerSize());
 | |
|     if (DSNode *NN = NH.getNode()) {
 | |
|       const std::vector<GlobalValue*> &Globals = NN->getGlobals();
 | |
|       for (unsigned G = 0, e = Globals.size(); G != e; ++G)
 | |
|         if (Function *F = dyn_cast<Function>(Globals[G]))
 | |
|           ArgsRemainIncomplete.insert(F);
 | |
| 
 | |
|       markReachableFunctionsExternallyAccessible(NN, Visited);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // run - Calculate the top down data structure graphs for each function in the
 | |
| // program.
 | |
| //
 | |
| bool TDDataStructures::run(Module &M) {
 | |
|   BUDataStructures &BU = getAnalysis<BUDataStructures>();
 | |
|   GlobalsGraph = new DSGraph(BU.getGlobalsGraph());
 | |
|   GlobalsGraph->setPrintAuxCalls();
 | |
| 
 | |
|   // Figure out which functions must not mark their arguments complete because
 | |
|   // they are accessible outside this compilation unit.  Currently, these
 | |
|   // arguments are functions which are reachable by global variables in the
 | |
|   // globals graph.
 | |
|   const DSScalarMap &GGSM = GlobalsGraph->getScalarMap();
 | |
|   hash_set<DSNode*> Visited;
 | |
|   for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end();
 | |
|        I != E; ++I)
 | |
|     markReachableFunctionsExternallyAccessible(GGSM.find(*I)->second.getNode(),
 | |
|                                                Visited);
 | |
| 
 | |
|   // Loop over unresolved call nodes.  Any functions passed into (but not
 | |
|   // returned!) from unresolvable call nodes may be invoked outside of the
 | |
|   // current module.
 | |
|   const std::vector<DSCallSite> &Calls = GlobalsGraph->getAuxFunctionCalls();
 | |
|   for (unsigned i = 0, e = Calls.size(); i != e; ++i) {
 | |
|     const DSCallSite &CS = Calls[i];
 | |
|     for (unsigned arg = 0, e = CS.getNumPtrArgs(); arg != e; ++arg)
 | |
|       markReachableFunctionsExternallyAccessible(CS.getPtrArg(arg).getNode(),
 | |
|                                                  Visited);
 | |
|   }
 | |
|   Visited.clear();
 | |
| 
 | |
|   // Functions without internal linkage also have unknown incoming arguments!
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | |
|     if (!I->isExternal() && !I->hasInternalLinkage())
 | |
|       ArgsRemainIncomplete.insert(I);
 | |
| 
 | |
|   // We want to traverse the call graph in reverse post-order.  To do this, we
 | |
|   // calculate a post-order traversal, then reverse it.
 | |
|   hash_set<DSGraph*> VisitedGraph;
 | |
|   std::vector<DSGraph*> PostOrder;
 | |
|   const BUDataStructures::ActualCalleesTy &ActualCallees = 
 | |
|     getAnalysis<BUDataStructures>().getActualCallees();
 | |
| 
 | |
|   // Calculate top-down from main...
 | |
|   if (Function *F = M.getMainFunction())
 | |
|     ComputePostOrder(*F, VisitedGraph, PostOrder, ActualCallees);
 | |
| 
 | |
|   // Next calculate the graphs for each unreachable function...
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | |
|     ComputePostOrder(*I, VisitedGraph, PostOrder, ActualCallees);
 | |
| 
 | |
|   VisitedGraph.clear();   // Release memory!
 | |
| 
 | |
|   // Visit each of the graphs in reverse post-order now!
 | |
|   while (!PostOrder.empty()) {
 | |
|     inlineGraphIntoCallees(*PostOrder.back());
 | |
|     PostOrder.pop_back();
 | |
|   }
 | |
| 
 | |
|   ArgsRemainIncomplete.clear();
 | |
|   GlobalsGraph->removeTriviallyDeadNodes();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) {
 | |
|   DSGraph *&G = DSInfo[&F];
 | |
|   if (G == 0) { // Not created yet?  Clone BU graph...
 | |
|     G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F));
 | |
|     G->getAuxFunctionCalls().clear();
 | |
|     G->setPrintAuxCalls();
 | |
|     G->setGlobalsGraph(GlobalsGraph);
 | |
|   }
 | |
|   return *G;
 | |
| }
 | |
| 
 | |
| 
 | |
| void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited,
 | |
|                                         std::vector<DSGraph*> &PostOrder,
 | |
|                       const BUDataStructures::ActualCalleesTy &ActualCallees) {
 | |
|   if (F.isExternal()) return;
 | |
|   DSGraph &G = getOrCreateDSGraph(F);
 | |
|   if (Visited.count(&G)) return;
 | |
|   Visited.insert(&G);
 | |
|   
 | |
|   // Recursively traverse all of the callee graphs.
 | |
|   const std::vector<DSCallSite> &FunctionCalls = G.getFunctionCalls();
 | |
| 
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
 | |
|     Instruction *CallI = FunctionCalls[i].getCallSite().getInstruction();
 | |
|     std::pair<BUDataStructures::ActualCalleesTy::const_iterator,
 | |
|       BUDataStructures::ActualCalleesTy::const_iterator>
 | |
|          IP = ActualCallees.equal_range(CallI);
 | |
| 
 | |
|     for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first;
 | |
|          I != IP.second; ++I)
 | |
|       ComputePostOrder(*I->second, Visited, PostOrder, ActualCallees);
 | |
|   }
 | |
| 
 | |
|   PostOrder.push_back(&G);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| // releaseMemory - If the pass pipeline is done with this pass, we can release
 | |
| // our memory... here...
 | |
| //
 | |
| // FIXME: This should be releaseMemory and will work fine, except that LoadVN
 | |
| // has no way to extend the lifetime of the pass, which screws up ds-aa.
 | |
| //
 | |
| void TDDataStructures::releaseMyMemory() {
 | |
|   for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
 | |
|          E = DSInfo.end(); I != E; ++I) {
 | |
|     I->second->getReturnNodes().erase(I->first);
 | |
|     if (I->second->getReturnNodes().empty())
 | |
|       delete I->second;
 | |
|   }
 | |
| 
 | |
|   // Empty map so next time memory is released, data structures are not
 | |
|   // re-deleted.
 | |
|   DSInfo.clear();
 | |
|   delete GlobalsGraph;
 | |
|   GlobalsGraph = 0;
 | |
| }
 | |
| 
 | |
| void TDDataStructures::inlineGraphIntoCallees(DSGraph &Graph) {
 | |
|   // Recompute the Incomplete markers and eliminate unreachable nodes.
 | |
|   Graph.maskIncompleteMarkers();
 | |
| 
 | |
|   // If any of the functions has incomplete incoming arguments, don't mark any
 | |
|   // of them as complete.
 | |
|   bool HasIncompleteArgs = false;
 | |
|   const DSGraph::ReturnNodesTy &GraphReturnNodes = Graph.getReturnNodes();
 | |
|   for (DSGraph::ReturnNodesTy::const_iterator I = GraphReturnNodes.begin(),
 | |
|          E = GraphReturnNodes.end(); I != E; ++I)
 | |
|     if (ArgsRemainIncomplete.count(I->first)) {
 | |
|       HasIncompleteArgs = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Now fold in the necessary globals from the GlobalsGraph.  A global G
 | |
|   // must be folded in if it exists in the current graph (i.e., is not dead)
 | |
|   // and it was not inlined from any of my callers.  If it was inlined from
 | |
|   // a caller, it would have been fully consistent with the GlobalsGraph
 | |
|   // in the caller so folding in is not necessary.  Otherwise, this node came
 | |
|   // solely from this function's BU graph and so has to be made consistent.
 | |
|   // 
 | |
|   Graph.updateFromGlobalGraph();
 | |
| 
 | |
|   // Recompute the Incomplete markers.  Depends on whether args are complete
 | |
|   unsigned Flags
 | |
|     = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs;
 | |
|   Graph.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals);
 | |
| 
 | |
|   // Delete dead nodes.  Treat globals that are unreachable as dead also.
 | |
|   Graph.removeDeadNodes(DSGraph::RemoveUnreachableGlobals);
 | |
| 
 | |
|   // We are done with computing the current TD Graph! Now move on to
 | |
|   // inlining the current graph into the graphs for its callees, if any.
 | |
|   // 
 | |
|   const std::vector<DSCallSite> &FunctionCalls = Graph.getFunctionCalls();
 | |
|   if (FunctionCalls.empty()) {
 | |
|     DEBUG(std::cerr << "  [TD] No callees for: " << Graph.getFunctionNames()
 | |
|                     << "\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Now that we have information about all of the callees, propagate the
 | |
|   // current graph into the callees.  Clone only the reachable subgraph at
 | |
|   // each call-site, not the entire graph (even though the entire graph
 | |
|   // would be cloned only once, this should still be better on average).
 | |
|   //
 | |
|   DEBUG(std::cerr << "  [TD] Inlining '" << Graph.getFunctionNames() <<"' into "
 | |
|                   << FunctionCalls.size() << " call nodes.\n");
 | |
| 
 | |
|   const BUDataStructures::ActualCalleesTy &ActualCallees =
 | |
|     getAnalysis<BUDataStructures>().getActualCallees();
 | |
| 
 | |
|   // Loop over all the call sites and all the callees at each call site.  Build
 | |
|   // a mapping from called DSGraph's to the call sites in this function that
 | |
|   // invoke them.  This is useful because we can be more efficient if there are
 | |
|   // multiple call sites to the callees in the graph from this caller.
 | |
|   std::multimap<DSGraph*, std::pair<Function*, const DSCallSite*> > CallSites;
 | |
| 
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
 | |
|     Instruction *CallI = FunctionCalls[i].getCallSite().getInstruction();
 | |
|     // For each function in the invoked function list at this call site...
 | |
|     std::pair<BUDataStructures::ActualCalleesTy::const_iterator,
 | |
|       BUDataStructures::ActualCalleesTy::const_iterator>
 | |
|           IP = ActualCallees.equal_range(CallI);
 | |
|     // Loop over each actual callee at this call site
 | |
|     for (BUDataStructures::ActualCalleesTy::const_iterator I = IP.first;
 | |
|          I != IP.second; ++I) {
 | |
|       DSGraph& CalleeGraph = getDSGraph(*I->second);
 | |
|       assert(&CalleeGraph != &Graph && "TD need not inline graph into self!");
 | |
| 
 | |
|       CallSites.insert(std::make_pair(&CalleeGraph,
 | |
|                            std::make_pair(I->second, &FunctionCalls[i])));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we built the mapping, actually perform the inlining a callee graph
 | |
|   // at a time.
 | |
|   std::multimap<DSGraph*,std::pair<Function*,const DSCallSite*> >::iterator CSI;
 | |
|   for (CSI = CallSites.begin(); CSI != CallSites.end(); ) {
 | |
|     DSGraph &CalleeGraph = *CSI->first;
 | |
|     // Iterate through all of the call sites of this graph, cloning and merging
 | |
|     // any nodes required by the call.
 | |
|     ReachabilityCloner RC(CalleeGraph, Graph, DSGraph::StripModRefBits);
 | |
| 
 | |
|     // Clone over any global nodes that appear in both graphs.
 | |
|     for (DSScalarMap::global_iterator
 | |
|            SI = CalleeGraph.getScalarMap().global_begin(),
 | |
|            SE = CalleeGraph.getScalarMap().global_end(); SI != SE; ++SI) {
 | |
|       DSScalarMap::const_iterator GI = Graph.getScalarMap().find(*SI);
 | |
|       if (GI != Graph.getScalarMap().end())
 | |
|         RC.merge(CalleeGraph.getNodeForValue(*SI), GI->second);
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the distinct call sites in the caller of the callee.
 | |
|     for (; CSI != CallSites.end() && CSI->first == &CalleeGraph; ++CSI) {
 | |
|       Function &CF = *CSI->second.first;
 | |
|       const DSCallSite &CS = *CSI->second.second;
 | |
|       DEBUG(std::cerr << "     [TD] Resolving arguments for callee graph '"
 | |
|             << CalleeGraph.getFunctionNames()
 | |
|             << "': " << CF.getFunctionType()->getNumParams()
 | |
|             << " args\n          at call site (DSCallSite*) 0x" << &CS << "\n");
 | |
|       
 | |
|       // Get the formal argument and return nodes for the called function and
 | |
|       // merge them with the cloned subgraph.
 | |
|       RC.mergeCallSite(CalleeGraph.getCallSiteForArguments(CF), CS);
 | |
|       ++NumTDInlines;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(std::cerr << "  [TD] Done inlining into callees for: "
 | |
|         << Graph.getFunctionNames() << " [" << Graph.getGraphSize() << "+"
 | |
|         << Graph.getFunctionCalls().size() << "]\n");
 | |
| }
 |