3858 lines
		
	
	
		
			146 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3858 lines
		
	
	
		
			146 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a simple peephole instruction selector for the x86 target
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<>
 | |
|   NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
 | |
| 
 | |
|   /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
 | |
|   /// Representation.
 | |
|   ///
 | |
|   enum TypeClass {
 | |
|     cByte, cShort, cInt, cFP, cLong
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// getClass - Turn a primitive type into a "class" number which is based on the
 | |
| /// size of the type, and whether or not it is floating point.
 | |
| ///
 | |
| static inline TypeClass getClass(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::SByteTyID:
 | |
|   case Type::UByteTyID:   return cByte;      // Byte operands are class #0
 | |
|   case Type::ShortTyID:
 | |
|   case Type::UShortTyID:  return cShort;     // Short operands are class #1
 | |
|   case Type::IntTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::PointerTyID: return cInt;       // Int's and pointers are class #2
 | |
| 
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:  return cFP;        // Floating Point is #3
 | |
| 
 | |
|   case Type::LongTyID:
 | |
|   case Type::ULongTyID:   return cLong;      // Longs are class #4
 | |
|   default:
 | |
|     assert(0 && "Invalid type to getClass!");
 | |
|     return cByte;  // not reached
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getClassB - Just like getClass, but treat boolean values as bytes.
 | |
| static inline TypeClass getClassB(const Type *Ty) {
 | |
|   if (Ty == Type::BoolTy) return cByte;
 | |
|   return getClass(Ty);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct ISel : public FunctionPass, InstVisitor<ISel> {
 | |
|     TargetMachine &TM;
 | |
|     MachineFunction *F;                 // The function we are compiling into
 | |
|     MachineBasicBlock *BB;              // The current MBB we are compiling
 | |
|     int VarArgsFrameIndex;              // FrameIndex for start of varargs area
 | |
|     int ReturnAddressIndex;             // FrameIndex for the return address
 | |
| 
 | |
|     std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs
 | |
| 
 | |
|     // MBBMap - Mapping between LLVM BB -> Machine BB
 | |
|     std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
 | |
| 
 | |
|     // AllocaMap - Mapping from fixed sized alloca instructions to the
 | |
|     // FrameIndex for the alloca.
 | |
|     std::map<AllocaInst*, unsigned> AllocaMap;
 | |
| 
 | |
|     ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
 | |
| 
 | |
|     /// runOnFunction - Top level implementation of instruction selection for
 | |
|     /// the entire function.
 | |
|     ///
 | |
|     bool runOnFunction(Function &Fn) {
 | |
|       // First pass over the function, lower any unknown intrinsic functions
 | |
|       // with the IntrinsicLowering class.
 | |
|       LowerUnknownIntrinsicFunctionCalls(Fn);
 | |
| 
 | |
|       F = &MachineFunction::construct(&Fn, TM);
 | |
| 
 | |
|       // Create all of the machine basic blocks for the function...
 | |
|       for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|         F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
 | |
| 
 | |
|       BB = &F->front();
 | |
| 
 | |
|       // Set up a frame object for the return address.  This is used by the
 | |
|       // llvm.returnaddress & llvm.frameaddress intrinisics.
 | |
|       ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
 | |
| 
 | |
|       // Copy incoming arguments off of the stack...
 | |
|       LoadArgumentsToVirtualRegs(Fn);
 | |
| 
 | |
|       // Instruction select everything except PHI nodes
 | |
|       visit(Fn);
 | |
| 
 | |
|       // Select the PHI nodes
 | |
|       SelectPHINodes();
 | |
| 
 | |
|       // Insert the FP_REG_KILL instructions into blocks that need them.
 | |
|       InsertFPRegKills();
 | |
| 
 | |
|       RegMap.clear();
 | |
|       MBBMap.clear();
 | |
|       AllocaMap.clear();
 | |
|       F = 0;
 | |
|       // We always build a machine code representation for the function
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 Simple Instruction Selection";
 | |
|     }
 | |
| 
 | |
|     /// visitBasicBlock - This method is called when we are visiting a new basic
 | |
|     /// block.  This simply creates a new MachineBasicBlock to emit code into
 | |
|     /// and adds it to the current MachineFunction.  Subsequent visit* for
 | |
|     /// instructions will be invoked for all instructions in the basic block.
 | |
|     ///
 | |
|     void visitBasicBlock(BasicBlock &LLVM_BB) {
 | |
|       BB = MBBMap[&LLVM_BB];
 | |
|     }
 | |
| 
 | |
|     /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | |
|     /// function, lowering any calls to unknown intrinsic functions into the
 | |
|     /// equivalent LLVM code.
 | |
|     ///
 | |
|     void LowerUnknownIntrinsicFunctionCalls(Function &F);
 | |
| 
 | |
|     /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
 | |
|     /// from the stack into virtual registers.
 | |
|     ///
 | |
|     void LoadArgumentsToVirtualRegs(Function &F);
 | |
| 
 | |
|     /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
|     /// because we have to generate our sources into the source basic blocks,
 | |
|     /// not the current one.
 | |
|     ///
 | |
|     void SelectPHINodes();
 | |
| 
 | |
|     /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
 | |
|     /// that need them.  This only occurs due to the floating point stackifier
 | |
|     /// not being aggressive enough to handle arbitrary global stackification.
 | |
|     ///
 | |
|     void InsertFPRegKills();
 | |
| 
 | |
|     // Visitation methods for various instructions.  These methods simply emit
 | |
|     // fixed X86 code for each instruction.
 | |
|     //
 | |
| 
 | |
|     // Control flow operators
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitBranchInst(BranchInst &BI);
 | |
| 
 | |
|     struct ValueRecord {
 | |
|       Value *Val;
 | |
|       unsigned Reg;
 | |
|       const Type *Ty;
 | |
|       ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
 | |
|       ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
 | |
|     };
 | |
|     void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
|                 const std::vector<ValueRecord> &Args);
 | |
|     void visitCallInst(CallInst &I);
 | |
|     void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
 | |
| 
 | |
|     // Arithmetic operators
 | |
|     void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
 | |
|     void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
 | |
|     void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
 | |
|     void visitMul(BinaryOperator &B);
 | |
| 
 | |
|     void visitDiv(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitRem(BinaryOperator &B) { visitDivRem(B); }
 | |
|     void visitDivRem(BinaryOperator &B);
 | |
| 
 | |
|     // Bitwise operators
 | |
|     void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
 | |
|     void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
 | |
|     void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
 | |
| 
 | |
|     // Comparison operators...
 | |
|     void visitSetCondInst(SetCondInst &I);
 | |
|     unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | |
|                             MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator MBBI);
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
|     
 | |
|     
 | |
|     // Memory Instructions
 | |
|     void visitLoadInst(LoadInst &I);
 | |
|     void visitStoreInst(StoreInst &I);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|     void visitAllocaInst(AllocaInst &I);
 | |
|     void visitMallocInst(MallocInst &I);
 | |
|     void visitFreeInst(FreeInst &I);
 | |
|     
 | |
|     // Other operators
 | |
|     void visitShiftInst(ShiftInst &I);
 | |
|     void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
 | |
|     void visitCastInst(CastInst &I);
 | |
|     void visitVANextInst(VANextInst &I);
 | |
|     void visitVAArgInst(VAArgInst &I);
 | |
| 
 | |
|     void visitInstruction(Instruction &I) {
 | |
|       std::cerr << "Cannot instruction select: " << I;
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     /// promote32 - Make a value 32-bits wide, and put it somewhere.
 | |
|     ///
 | |
|     void promote32(unsigned targetReg, const ValueRecord &VR);
 | |
| 
 | |
|     /// getAddressingMode - Get the addressing mode to use to address the
 | |
|     /// specified value.  The returned value should be used with addFullAddress.
 | |
|     void getAddressingMode(Value *Addr, X86AddressMode &AM);
 | |
| 
 | |
| 
 | |
|     /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
 | |
|     /// expressions.
 | |
|     void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | |
|                      std::vector<Value*> &GEPOps,
 | |
|                      std::vector<const Type*> &GEPTypes,
 | |
|                      X86AddressMode &AM);
 | |
| 
 | |
|     /// isGEPFoldable - Return true if the specified GEP can be completely
 | |
|     /// folded into the addressing mode of a load/store or lea instruction.
 | |
|     bool isGEPFoldable(MachineBasicBlock *MBB,
 | |
|                        Value *Src, User::op_iterator IdxBegin,
 | |
|                        User::op_iterator IdxEnd, X86AddressMode &AM);
 | |
| 
 | |
|     /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
 | |
|     /// constant expression GEP support.
 | |
|     ///
 | |
|     void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | |
|                           Value *Src, User::op_iterator IdxBegin,
 | |
|                           User::op_iterator IdxEnd, unsigned TargetReg);
 | |
| 
 | |
|     /// emitCastOperation - Common code shared between visitCastInst and
 | |
|     /// constant expression cast support.
 | |
|     ///
 | |
|     void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
 | |
|                            Value *Src, const Type *DestTy, unsigned TargetReg);
 | |
| 
 | |
|     /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | |
|     /// and constant expression support.
 | |
|     ///
 | |
|     void emitSimpleBinaryOperation(MachineBasicBlock *BB,
 | |
|                                    MachineBasicBlock::iterator IP,
 | |
|                                    Value *Op0, Value *Op1,
 | |
|                                    unsigned OperatorClass, unsigned TargetReg);
 | |
| 
 | |
|     /// emitBinaryFPOperation - This method handles emission of floating point
 | |
|     /// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | |
|     void emitBinaryFPOperation(MachineBasicBlock *BB,
 | |
|                                MachineBasicBlock::iterator IP,
 | |
|                                Value *Op0, Value *Op1,
 | |
|                                unsigned OperatorClass, unsigned TargetReg);
 | |
| 
 | |
|     void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
 | |
|                       Value *Op0, Value *Op1, unsigned TargetReg);
 | |
| 
 | |
|     void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | |
|                     unsigned DestReg, const Type *DestTy,
 | |
|                     unsigned Op0Reg, unsigned Op1Reg);
 | |
|     void doMultiplyConst(MachineBasicBlock *MBB, 
 | |
|                          MachineBasicBlock::iterator MBBI,
 | |
|                          unsigned DestReg, const Type *DestTy,
 | |
|                          unsigned Op0Reg, unsigned Op1Val);
 | |
| 
 | |
|     void emitDivRemOperation(MachineBasicBlock *BB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Op0, Value *Op1, bool isDiv,
 | |
|                              unsigned TargetReg);
 | |
| 
 | |
|     /// emitSetCCOperation - Common code shared between visitSetCondInst and
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitSetCCOperation(MachineBasicBlock *BB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Op0, Value *Op1, unsigned Opcode,
 | |
|                             unsigned TargetReg);
 | |
| 
 | |
|     /// emitShiftOperation - Common code shared between visitShiftInst and
 | |
|     /// constant expression support.
 | |
|     ///
 | |
|     void emitShiftOperation(MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Op, Value *ShiftAmount, bool isLeftShift,
 | |
|                             const Type *ResultTy, unsigned DestReg);
 | |
|       
 | |
|     /// emitSelectOperation - Common code shared between visitSelectInst and the
 | |
|     /// constant expression support.
 | |
|     void emitSelectOperation(MachineBasicBlock *MBB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                              unsigned DestReg);
 | |
| 
 | |
|     /// copyConstantToRegister - Output the instructions required to put the
 | |
|     /// specified constant into the specified register.
 | |
|     ///
 | |
|     void copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                 MachineBasicBlock::iterator MBBI,
 | |
|                                 Constant *C, unsigned Reg);
 | |
| 
 | |
|     void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | |
|                    unsigned LHS, unsigned RHS);
 | |
| 
 | |
|     /// makeAnotherReg - This method returns the next register number we haven't
 | |
|     /// yet used.
 | |
|     ///
 | |
|     /// Long values are handled somewhat specially.  They are always allocated
 | |
|     /// as pairs of 32 bit integer values.  The register number returned is the
 | |
|     /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
 | |
|     /// of the long value.
 | |
|     ///
 | |
|     unsigned makeAnotherReg(const Type *Ty) {
 | |
|       assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
 | |
|              "Current target doesn't have X86 reg info??");
 | |
|       const X86RegisterInfo *MRI =
 | |
|         static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
 | |
|       if (Ty == Type::LongTy || Ty == Type::ULongTy) {
 | |
|         const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
 | |
|         // Create the lower part
 | |
|         F->getSSARegMap()->createVirtualRegister(RC);
 | |
|         // Create the upper part.
 | |
|         return F->getSSARegMap()->createVirtualRegister(RC)-1;
 | |
|       }
 | |
| 
 | |
|       // Add the mapping of regnumber => reg class to MachineFunction
 | |
|       const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
 | |
|       return F->getSSARegMap()->createVirtualRegister(RC);
 | |
|     }
 | |
| 
 | |
|     /// getReg - This method turns an LLVM value into a register number.
 | |
|     ///
 | |
|     unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
 | |
|     unsigned getReg(Value *V) {
 | |
|       // Just append to the end of the current bb.
 | |
|       MachineBasicBlock::iterator It = BB->end();
 | |
|       return getReg(V, BB, It);
 | |
|     }
 | |
|     unsigned getReg(Value *V, MachineBasicBlock *MBB,
 | |
|                     MachineBasicBlock::iterator IPt);
 | |
| 
 | |
|     /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | |
|     /// that is to be statically allocated with the initial stack frame
 | |
|     /// adjustment.
 | |
|     unsigned getFixedSizedAllocaFI(AllocaInst *AI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// dyn_castFixedAlloca - If the specified value is a fixed size alloca
 | |
| /// instruction in the entry block, return it.  Otherwise, return a null
 | |
| /// pointer.
 | |
| static AllocaInst *dyn_castFixedAlloca(Value *V) {
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     BasicBlock *BB = AI->getParent();
 | |
|     if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
 | |
|       return AI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getReg - This method turns an LLVM value into a register number.
 | |
| ///
 | |
| unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
 | |
|                       MachineBasicBlock::iterator IPt) {
 | |
|   // If this operand is a constant, emit the code to copy the constant into
 | |
|   // the register here...
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     unsigned Reg = makeAnotherReg(V->getType());
 | |
|     copyConstantToRegister(MBB, IPt, C, Reg);
 | |
|     return Reg;
 | |
|   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | |
|     // Do not emit noop casts at all, unless it's a double -> float cast.
 | |
|     if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
 | |
|         (CI->getType() != Type::FloatTy || 
 | |
|          CI->getOperand(0)->getType() != Type::DoubleTy))
 | |
|       return getReg(CI->getOperand(0), MBB, IPt);
 | |
|   } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
 | |
|     // If the alloca address couldn't be folded into the instruction addressing,
 | |
|     // emit an explicit LEA as appropriate.
 | |
|     unsigned Reg = makeAnotherReg(V->getType());
 | |
|     unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|     addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
 | |
|     return Reg;
 | |
|   }
 | |
| 
 | |
|   unsigned &Reg = RegMap[V];
 | |
|   if (Reg == 0) {
 | |
|     Reg = makeAnotherReg(V->getType());
 | |
|     RegMap[V] = Reg;
 | |
|   }
 | |
| 
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
 | |
| /// that is to be statically allocated with the initial stack frame
 | |
| /// adjustment.
 | |
| unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
 | |
|   // Already computed this?
 | |
|   std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
 | |
|   if (I != AllocaMap.end() && I->first == AI) return I->second;
 | |
| 
 | |
|   const Type *Ty = AI->getAllocatedType();
 | |
|   ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
 | |
|   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | |
|   TySize *= CUI->getValue();   // Get total allocated size...
 | |
|   unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
 | |
|       
 | |
|   // Create a new stack object using the frame manager...
 | |
|   int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
 | |
|   AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
 | |
|   return FrameIdx;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// copyConstantToRegister - Output the instructions required to put the
 | |
| /// specified constant into the specified register.
 | |
| ///
 | |
| void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
 | |
|                                   MachineBasicBlock::iterator IP,
 | |
|                                   Constant *C, unsigned R) {
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     unsigned Class = 0;
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|       emitGEPOperation(MBB, IP, CE->getOperand(0),
 | |
|                        CE->op_begin()+1, CE->op_end(), R);
 | |
|       return;
 | |
|     case Instruction::Cast:
 | |
|       emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
 | |
|       return;
 | |
| 
 | |
|     case Instruction::Xor: ++Class; // FALL THROUGH
 | |
|     case Instruction::Or:  ++Class; // FALL THROUGH
 | |
|     case Instruction::And: ++Class; // FALL THROUGH
 | |
|     case Instruction::Sub: ++Class; // FALL THROUGH
 | |
|     case Instruction::Add:
 | |
|       emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | |
|                                 Class, R);
 | |
|       return;
 | |
| 
 | |
|     case Instruction::Mul:
 | |
|       emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
 | |
|       return;
 | |
| 
 | |
|     case Instruction::Div:
 | |
|     case Instruction::Rem:
 | |
|       emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | |
|                           CE->getOpcode() == Instruction::Div, R);
 | |
|       return;
 | |
| 
 | |
|     case Instruction::SetNE:
 | |
|     case Instruction::SetEQ:
 | |
|     case Instruction::SetLT:
 | |
|     case Instruction::SetGT:
 | |
|     case Instruction::SetLE:
 | |
|     case Instruction::SetGE:
 | |
|       emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | |
|                          CE->getOpcode(), R);
 | |
|       return;
 | |
| 
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::Shr:
 | |
|       emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | |
|                          CE->getOpcode() == Instruction::Shl, CE->getType(), R);
 | |
|       return;
 | |
| 
 | |
|     case Instruction::Select:
 | |
|       emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
 | |
|                           CE->getOperand(2), R);
 | |
|       return;
 | |
| 
 | |
|     default:
 | |
|       std::cerr << "Offending expr: " << *C << "\n";
 | |
|       assert(0 && "Constant expression not yet handled!\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (C->getType()->isIntegral()) {
 | |
|     unsigned Class = getClassB(C->getType());
 | |
| 
 | |
|     if (Class == cLong) {
 | |
|       // Copy the value into the register pair.
 | |
|       uint64_t Val = cast<ConstantInt>(C)->getRawValue();
 | |
|       BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
 | |
|       BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(Class <= cInt && "Type not handled yet!");
 | |
| 
 | |
|     static const unsigned IntegralOpcodeTab[] = {
 | |
|       X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
 | |
|     };
 | |
| 
 | |
|     if (C->getType() == Type::BoolTy) {
 | |
|       BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
 | |
|     } else {
 | |
|       ConstantInt *CI = cast<ConstantInt>(C);
 | |
|       BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
 | |
|     }
 | |
|   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|     if (CFP->isExactlyValue(+0.0))
 | |
|       BuildMI(*MBB, IP, X86::FLD0, 0, R);
 | |
|     else if (CFP->isExactlyValue(+1.0))
 | |
|       BuildMI(*MBB, IP, X86::FLD1, 0, R);
 | |
|     else {
 | |
|       // Otherwise we need to spill the constant to memory...
 | |
|       MachineConstantPool *CP = F->getConstantPool();
 | |
|       unsigned CPI = CP->getConstantPoolIndex(CFP);
 | |
|       const Type *Ty = CFP->getType();
 | |
| 
 | |
|       assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|       unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
 | |
|       addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
 | |
|     }
 | |
| 
 | |
|   } else if (isa<ConstantPointerNull>(C)) {
 | |
|     // Copy zero (null pointer) to the register.
 | |
|     BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | |
|     BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
 | |
|   } else {
 | |
|     std::cerr << "Offending constant: " << *C << "\n";
 | |
|     assert(0 && "Type not handled yet!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
 | |
| /// the stack into virtual registers.
 | |
| ///
 | |
| void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
 | |
|   // Emit instructions to load the arguments...  On entry to a function on the
 | |
|   // X86, the stack frame looks like this:
 | |
|   //
 | |
|   // [ESP] -- return address
 | |
|   // [ESP + 4] -- first argument (leftmost lexically)
 | |
|   // [ESP + 8] -- second argument, if first argument is four bytes in size
 | |
|   //    ... 
 | |
|   //
 | |
|   unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
 | |
|   MachineFrameInfo *MFI = F->getFrameInfo();
 | |
| 
 | |
|   for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
 | |
|     bool ArgLive = !I->use_empty();
 | |
|     unsigned Reg = ArgLive ? getReg(*I) : 0;
 | |
|     int FI;          // Frame object index
 | |
| 
 | |
|     switch (getClassB(I->getType())) {
 | |
|     case cByte:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(1, ArgOffset);
 | |
|         addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
 | |
|       }
 | |
|       break;
 | |
|     case cShort:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(2, ArgOffset);
 | |
|         addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
 | |
|       }
 | |
|       break;
 | |
|     case cInt:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
 | |
|       }
 | |
|       break;
 | |
|     case cLong:
 | |
|       if (ArgLive) {
 | |
|         FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
|         addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
 | |
|         addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
 | |
|       }
 | |
|       ArgOffset += 4;   // longs require 4 additional bytes
 | |
|       break;
 | |
|     case cFP:
 | |
|       if (ArgLive) {
 | |
|         unsigned Opcode;
 | |
|         if (I->getType() == Type::FloatTy) {
 | |
|           Opcode = X86::FLD32m;
 | |
|           FI = MFI->CreateFixedObject(4, ArgOffset);
 | |
|         } else {
 | |
|           Opcode = X86::FLD64m;
 | |
|           FI = MFI->CreateFixedObject(8, ArgOffset);
 | |
|         }
 | |
|         addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
 | |
|       }
 | |
|       if (I->getType() == Type::DoubleTy)
 | |
|         ArgOffset += 4;   // doubles require 4 additional bytes
 | |
|       break;
 | |
|     default:
 | |
|       assert(0 && "Unhandled argument type!");
 | |
|     }
 | |
|     ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
 | |
|   }
 | |
| 
 | |
|   // If the function takes variable number of arguments, add a frame offset for
 | |
|   // the start of the first vararg value... this is used to expand
 | |
|   // llvm.va_start.
 | |
|   if (Fn.getFunctionType()->isVarArg())
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
 | |
| /// because we have to generate our sources into the source basic blocks, not
 | |
| /// the current one.
 | |
| ///
 | |
| void ISel::SelectPHINodes() {
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   const Function &LF = *F->getFunction();  // The LLVM function...
 | |
|   for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
 | |
|     const BasicBlock *BB = I;
 | |
|     MachineBasicBlock &MBB = *MBBMap[I];
 | |
| 
 | |
|     // Loop over all of the PHI nodes in the LLVM basic block...
 | |
|     MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
 | |
|     for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
 | |
| 
 | |
|       // Create a new machine instr PHI node, and insert it.
 | |
|       unsigned PHIReg = getReg(*PN);
 | |
|       MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
 | |
|                                     X86::PHI, PN->getNumOperands(), PHIReg);
 | |
| 
 | |
|       MachineInstr *LongPhiMI = 0;
 | |
|       if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
 | |
|         LongPhiMI = BuildMI(MBB, PHIInsertPoint,
 | |
|                             X86::PHI, PN->getNumOperands(), PHIReg+1);
 | |
| 
 | |
|       // PHIValues - Map of blocks to incoming virtual registers.  We use this
 | |
|       // so that we only initialize one incoming value for a particular block,
 | |
|       // even if the block has multiple entries in the PHI node.
 | |
|       //
 | |
|       std::map<MachineBasicBlock*, unsigned> PHIValues;
 | |
| 
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
 | |
|         unsigned ValReg;
 | |
|         std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
 | |
|           PHIValues.lower_bound(PredMBB);
 | |
| 
 | |
|         if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
 | |
|           // We already inserted an initialization of the register for this
 | |
|           // predecessor.  Recycle it.
 | |
|           ValReg = EntryIt->second;
 | |
| 
 | |
|         } else {        
 | |
|           // Get the incoming value into a virtual register.
 | |
|           //
 | |
|           Value *Val = PN->getIncomingValue(i);
 | |
| 
 | |
|           // If this is a constant or GlobalValue, we may have to insert code
 | |
|           // into the basic block to compute it into a virtual register.
 | |
|           if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
 | |
|             // Simple constants get emitted at the end of the basic block,
 | |
|             // before any terminator instructions.  We "know" that the code to
 | |
|             // move a constant into a register will never clobber any flags.
 | |
|             ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
 | |
|           } else {
 | |
|             // Because we don't want to clobber any values which might be in
 | |
|             // physical registers with the computation of this constant (which
 | |
|             // might be arbitrarily complex if it is a constant expression),
 | |
|             // just insert the computation at the top of the basic block.
 | |
|             MachineBasicBlock::iterator PI = PredMBB->begin();
 | |
|             
 | |
|             // Skip over any PHI nodes though!
 | |
|             while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
 | |
|               ++PI;
 | |
|             
 | |
|             ValReg = getReg(Val, PredMBB, PI);
 | |
|           }
 | |
| 
 | |
|           // Remember that we inserted a value for this PHI for this predecessor
 | |
|           PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
 | |
|         }
 | |
| 
 | |
|         PhiMI->addRegOperand(ValReg);
 | |
|         PhiMI->addMachineBasicBlockOperand(PredMBB);
 | |
|         if (LongPhiMI) {
 | |
|           LongPhiMI->addRegOperand(ValReg+1);
 | |
|           LongPhiMI->addMachineBasicBlockOperand(PredMBB);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Now that we emitted all of the incoming values for the PHI node, make
 | |
|       // sure to reposition the InsertPoint after the PHI that we just added.
 | |
|       // This is needed because we might have inserted a constant into this
 | |
|       // block, right after the PHI's which is before the old insert point!
 | |
|       PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
 | |
|       ++PHIInsertPoint;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RequiresFPRegKill - The floating point stackifier pass cannot insert
 | |
| /// compensation code on critical edges.  As such, it requires that we kill all
 | |
| /// FP registers on the exit from any blocks that either ARE critical edges, or
 | |
| /// branch to a block that has incoming critical edges.
 | |
| ///
 | |
| /// Note that this kill instruction will eventually be eliminated when
 | |
| /// restrictions in the stackifier are relaxed.
 | |
| ///
 | |
| static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
 | |
| #if 0
 | |
|   const BasicBlock *BB = MBB->getBasicBlock ();
 | |
|   for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
 | |
|     const BasicBlock *Succ = *SI;
 | |
|     pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
 | |
|     ++PI;  // Block have at least one predecessory
 | |
|     if (PI != PE) {             // If it has exactly one, this isn't crit edge
 | |
|       // If this block has more than one predecessor, check all of the
 | |
|       // predecessors to see if they have multiple successors.  If so, then the
 | |
|       // block we are analyzing needs an FPRegKill.
 | |
|       for (PI = pred_begin(Succ); PI != PE; ++PI) {
 | |
|         const BasicBlock *Pred = *PI;
 | |
|         succ_const_iterator SI2 = succ_begin(Pred);
 | |
|         ++SI2;  // There must be at least one successor of this block.
 | |
|         if (SI2 != succ_end(Pred))
 | |
|           return true;   // Yes, we must insert the kill on this edge.
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // If we got this far, there is no need to insert the kill instruction.
 | |
|   return false;
 | |
| #else
 | |
|   return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
 | |
| // need them.  This only occurs due to the floating point stackifier not being
 | |
| // aggressive enough to handle arbitrary global stackification.
 | |
| //
 | |
| // Currently we insert an FP_REG_KILL instruction into each block that uses or
 | |
| // defines a floating point virtual register.
 | |
| //
 | |
| // When the global register allocators (like linear scan) finally update live
 | |
| // variable analysis, we can keep floating point values in registers across
 | |
| // portions of the CFG that do not involve critical edges.  This will be a big
 | |
| // win, but we are waiting on the global allocators before we can do this.
 | |
| //
 | |
| // With a bit of work, the floating point stackifier pass can be enhanced to
 | |
| // break critical edges as needed (to make a place to put compensation code),
 | |
| // but this will require some infrastructure improvements as well.
 | |
| //
 | |
| void ISel::InsertFPRegKills() {
 | |
|   SSARegMap &RegMap = *F->getSSARegMap();
 | |
| 
 | |
|   for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | |
|     for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand& MO = I->getOperand(i);
 | |
|         if (MO.isRegister() && MO.getReg()) {
 | |
|           unsigned Reg = MO.getReg();
 | |
|           if (MRegisterInfo::isVirtualRegister(Reg))
 | |
|             if (RegMap.getRegClass(Reg)->getSize() == 10)
 | |
|               goto UsesFPReg;
 | |
|         }
 | |
|       }
 | |
|     // If we haven't found an FP register use or def in this basic block, check
 | |
|     // to see if any of our successors has an FP PHI node, which will cause a
 | |
|     // copy to be inserted into this block.
 | |
|     for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
 | |
|          SE = BB->succ_end(); SI != SE; ++SI) {
 | |
|       MachineBasicBlock *SBB = *SI;
 | |
|       for (MachineBasicBlock::iterator I = SBB->begin();
 | |
|            I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
 | |
|         if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
 | |
|           goto UsesFPReg;
 | |
|       }
 | |
|     }
 | |
|     continue;
 | |
|   UsesFPReg:
 | |
|     // Okay, this block uses an FP register.  If the block has successors (ie,
 | |
|     // it's not an unwind/return), insert the FP_REG_KILL instruction.
 | |
|     if (BB->succ_size () && RequiresFPRegKill(BB)) {
 | |
|       BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
 | |
|       ++NumFPKill;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
 | |
|   AM.BaseType = X86AddressMode::RegBase;
 | |
|   AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
 | |
|     if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
 | |
|                        AM))
 | |
|       return;
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
 | |
|                         AM))
 | |
|         return;
 | |
|   } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
 | |
|     AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|     AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If it's not foldable, reset addr mode.
 | |
|   AM.BaseType = X86AddressMode::RegBase;
 | |
|   AM.Base.Reg = getReg(Addr);
 | |
|   AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
 | |
| }
 | |
| 
 | |
| // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
 | |
| // it into the conditional branch or select instruction which is the only user
 | |
| // of the cc instruction.  This is the case if the conditional branch is the
 | |
| // only user of the setcc.  We also don't handle long arguments below, so we 
 | |
| // reject them here as well.
 | |
| //
 | |
| static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
 | |
|   if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
 | |
|     if (SCI->hasOneUse()) {
 | |
|       Instruction *User = cast<Instruction>(SCI->use_back());
 | |
|       if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
 | |
|           (getClassB(SCI->getOperand(0)->getType()) != cLong ||
 | |
|            SCI->getOpcode() == Instruction::SetEQ ||
 | |
|            SCI->getOpcode() == Instruction::SetNE))
 | |
|         return SCI;
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Return a fixed numbering for setcc instructions which does not depend on the
 | |
| // order of the opcodes.
 | |
| //
 | |
| static unsigned getSetCCNumber(unsigned Opcode) {
 | |
|   switch(Opcode) {
 | |
|   default: assert(0 && "Unknown setcc instruction!");
 | |
|   case Instruction::SetEQ: return 0;
 | |
|   case Instruction::SetNE: return 1;
 | |
|   case Instruction::SetLT: return 2;
 | |
|   case Instruction::SetGE: return 3;
 | |
|   case Instruction::SetGT: return 4;
 | |
|   case Instruction::SetLE: return 5;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // LLVM  -> X86 signed  X86 unsigned
 | |
| // -----    ----------  ------------
 | |
| // seteq -> sete        sete
 | |
| // setne -> setne       setne
 | |
| // setlt -> setl        setb
 | |
| // setge -> setge       setae
 | |
| // setgt -> setg        seta
 | |
| // setle -> setle       setbe
 | |
| // ----
 | |
| //          sets                       // Used by comparison with 0 optimization
 | |
| //          setns
 | |
| static const unsigned SetCCOpcodeTab[2][8] = {
 | |
|   { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
 | |
|     0, 0 },
 | |
|   { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
 | |
|     X86::SETSr, X86::SETNSr },
 | |
| };
 | |
| 
 | |
| /// emitUCOMr - In the future when we support processors before the P6, this
 | |
| /// wraps the logic for emitting an FUCOMr vs FUCOMIr.
 | |
| void ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | |
|                      unsigned LHS, unsigned RHS) {
 | |
|   if (0) { // for processors prior to the P6
 | |
|     BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
 | |
|     BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
 | |
|     BuildMI(*MBB, IP, X86::SAHF, 1);
 | |
|   } else {
 | |
|     BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // EmitComparison - This function emits a comparison of the two operands,
 | |
| // returning the extended setcc code to use.
 | |
| unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
 | |
|                               MachineBasicBlock *MBB,
 | |
|                               MachineBasicBlock::iterator IP) {
 | |
|   // The arguments are already supposed to be of the same type.
 | |
|   const Type *CompTy = Op0->getType();
 | |
|   unsigned Class = getClassB(CompTy);
 | |
|   unsigned Op0r = getReg(Op0, MBB, IP);
 | |
| 
 | |
|   // Special case handling of: cmp R, i
 | |
|   if (isa<ConstantPointerNull>(Op1)) {
 | |
|     if (OpNum < 2)    // seteq/setne -> test
 | |
|       BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
 | |
|     else
 | |
|       BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
 | |
|     return OpNum;
 | |
| 
 | |
|   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (Class == cByte || Class == cShort || Class == cInt) {
 | |
|       unsigned Op1v = CI->getRawValue();
 | |
| 
 | |
|       // Mask off any upper bits of the constant, if there are any...
 | |
|       Op1v &= (1ULL << (8 << Class)) - 1;
 | |
| 
 | |
|       // If this is a comparison against zero, emit more efficient code.  We
 | |
|       // can't handle unsigned comparisons against zero unless they are == or
 | |
|       // !=.  These should have been strength reduced already anyway.
 | |
|       if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
 | |
|         static const unsigned TESTTab[] = {
 | |
|           X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
 | |
|         };
 | |
|         BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
 | |
| 
 | |
|         if (OpNum == 2) return 6;   // Map jl -> js
 | |
|         if (OpNum == 3) return 7;   // Map jg -> jns
 | |
|         return OpNum;
 | |
|       }
 | |
| 
 | |
|       static const unsigned CMPTab[] = {
 | |
|         X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
 | |
|       };
 | |
| 
 | |
|       BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
 | |
|       return OpNum;
 | |
|     } else {
 | |
|       assert(Class == cLong && "Unknown integer class!");
 | |
|       unsigned LowCst = CI->getRawValue();
 | |
|       unsigned HiCst = CI->getRawValue() >> 32;
 | |
|       if (OpNum < 2) {    // seteq, setne
 | |
|         unsigned LoTmp = Op0r;
 | |
|         if (LowCst != 0) {
 | |
|           LoTmp = makeAnotherReg(Type::IntTy);
 | |
|           BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
 | |
|         }
 | |
|         unsigned HiTmp = Op0r+1;
 | |
|         if (HiCst != 0) {
 | |
|           HiTmp = makeAnotherReg(Type::IntTy);
 | |
|           BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
 | |
|         }
 | |
|         unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | |
|         BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | |
|         return OpNum;
 | |
|       } else {
 | |
|         // Emit a sequence of code which compares the high and low parts once
 | |
|         // each, then uses a conditional move to handle the overflow case.  For
 | |
|         // example, a setlt for long would generate code like this:
 | |
|         //
 | |
|         // AL = lo(op1) < lo(op2)   // Always unsigned comparison
 | |
|         // BL = hi(op1) < hi(op2)   // Signedness depends on operands
 | |
|         // dest = hi(op1) == hi(op2) ? BL : AL;
 | |
|         //
 | |
| 
 | |
|         // FIXME: This would be much better if we had hierarchical register
 | |
|         // classes!  Until then, hardcode registers so that we can deal with
 | |
|         // their aliases (because we don't have conditional byte moves).
 | |
|         //
 | |
|         BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
 | |
|         BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
 | |
|         BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
 | |
|         BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
 | |
|         BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
 | |
|         BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
 | |
|         BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
 | |
|           .addReg(X86::AX);
 | |
|         // NOTE: visitSetCondInst knows that the value is dumped into the BL
 | |
|         // register at this point for long values...
 | |
|         return OpNum;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special case handling of comparison against +/- 0.0
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
 | |
|     if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
 | |
|       BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
 | |
|       BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
 | |
|       BuildMI(*MBB, IP, X86::SAHF, 1);
 | |
|       return OpNum;
 | |
|     }
 | |
| 
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|   switch (Class) {
 | |
|   default: assert(0 && "Unknown type class!");
 | |
|     // Emit: cmp <var1>, <var2> (do the comparison).  We can
 | |
|     // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
 | |
|     // 32-bit.
 | |
|   case cByte:
 | |
|     BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
|   case cShort:
 | |
|     BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
|   case cInt:
 | |
|     BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
 | |
|     break;
 | |
|   case cFP:
 | |
|     emitUCOMr(MBB, IP, Op0r, Op1r);
 | |
|     break;
 | |
| 
 | |
|   case cLong:
 | |
|     if (OpNum < 2) {    // seteq, setne
 | |
|       unsigned LoTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned HiTmp = makeAnotherReg(Type::IntTy);
 | |
|       unsigned FinalTmp = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
 | |
|       BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
 | |
|       BuildMI(*MBB, IP, X86::OR32rr,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
 | |
|       break;  // Allow the sete or setne to be generated from flags set by OR
 | |
|     } else {
 | |
|       // Emit a sequence of code which compares the high and low parts once
 | |
|       // each, then uses a conditional move to handle the overflow case.  For
 | |
|       // example, a setlt for long would generate code like this:
 | |
|       //
 | |
|       // AL = lo(op1) < lo(op2)   // Signedness depends on operands
 | |
|       // BL = hi(op1) < hi(op2)   // Always unsigned comparison
 | |
|       // dest = hi(op1) == hi(op2) ? BL : AL;
 | |
|       //
 | |
| 
 | |
|       // FIXME: This would be much better if we had hierarchical register
 | |
|       // classes!  Until then, hardcode registers so that we can deal with their
 | |
|       // aliases (because we don't have conditional byte moves).
 | |
|       //
 | |
|       BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
 | |
|       BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
 | |
|       BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
 | |
|       BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
 | |
|       BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
 | |
|       BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
 | |
|       BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
 | |
|                                                    .addReg(X86::AX);
 | |
|       // NOTE: visitSetCondInst knows that the value is dumped into the BL
 | |
|       // register at this point for long values...
 | |
|       return OpNum;
 | |
|     }
 | |
|   }
 | |
|   return OpNum;
 | |
| }
 | |
| 
 | |
| /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
 | |
| /// register, then move it to wherever the result should be. 
 | |
| ///
 | |
| void ISel::visitSetCondInst(SetCondInst &I) {
 | |
|   if (canFoldSetCCIntoBranchOrSelect(&I))
 | |
|     return;  // Fold this into a branch or select.
 | |
| 
 | |
|   unsigned DestReg = getReg(I);
 | |
|   MachineBasicBlock::iterator MII = BB->end();
 | |
|   emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
 | |
|                      DestReg);
 | |
| }
 | |
| 
 | |
| /// emitSetCCOperation - Common code shared between visitSetCondInst and
 | |
| /// constant expression support.
 | |
| ///
 | |
| void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
 | |
|                               MachineBasicBlock::iterator IP,
 | |
|                               Value *Op0, Value *Op1, unsigned Opcode,
 | |
|                               unsigned TargetReg) {
 | |
|   unsigned OpNum = getSetCCNumber(Opcode);
 | |
|   OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
 | |
| 
 | |
|   const Type *CompTy = Op0->getType();
 | |
|   unsigned CompClass = getClassB(CompTy);
 | |
|   bool isSigned = CompTy->isSigned() && CompClass != cFP;
 | |
| 
 | |
|   if (CompClass != cLong || OpNum < 2) {
 | |
|     // Handle normal comparisons with a setcc instruction...
 | |
|     BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
 | |
|   } else {
 | |
|     // Handle long comparisons by copying the value which is already in BL into
 | |
|     // the register we want...
 | |
|     BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ISel::visitSelectInst(SelectInst &SI) {
 | |
|   unsigned DestReg = getReg(SI);
 | |
|   MachineBasicBlock::iterator MII = BB->end();
 | |
|   emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
 | |
|                       SI.getFalseValue(), DestReg);
 | |
| }
 | |
|  
 | |
| /// emitSelect - Common code shared between visitSelectInst and the constant
 | |
| /// expression support.
 | |
| void ISel::emitSelectOperation(MachineBasicBlock *MBB,
 | |
|                                MachineBasicBlock::iterator IP,
 | |
|                                Value *Cond, Value *TrueVal, Value *FalseVal,
 | |
|                                unsigned DestReg) {
 | |
|   unsigned SelectClass = getClassB(TrueVal->getType());
 | |
|   
 | |
|   // We don't support 8-bit conditional moves.  If we have incoming constants,
 | |
|   // transform them into 16-bit constants to avoid having a run-time conversion.
 | |
|   if (SelectClass == cByte) {
 | |
|     if (Constant *T = dyn_cast<Constant>(TrueVal))
 | |
|       TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
 | |
|     if (Constant *F = dyn_cast<Constant>(FalseVal))
 | |
|       FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
 | |
|   }
 | |
| 
 | |
|   unsigned TrueReg  = getReg(TrueVal, MBB, IP);
 | |
|   unsigned FalseReg = getReg(FalseVal, MBB, IP);
 | |
|   if (TrueReg == FalseReg) {
 | |
|     static const unsigned Opcode[] = {
 | |
|       X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
 | |
|     };
 | |
|     BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
 | |
|     if (SelectClass == cLong)
 | |
|       BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned Opcode;
 | |
|   if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
 | |
|     // We successfully folded the setcc into the select instruction.
 | |
|     
 | |
|     unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | |
|     OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
 | |
|                            IP);
 | |
| 
 | |
|     const Type *CompTy = SCI->getOperand(0)->getType();
 | |
|     bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
 | |
|   
 | |
|     // LLVM  -> X86 signed  X86 unsigned
 | |
|     // -----    ----------  ------------
 | |
|     // seteq -> cmovNE      cmovNE
 | |
|     // setne -> cmovE       cmovE
 | |
|     // setlt -> cmovGE      cmovAE
 | |
|     // setge -> cmovL       cmovB
 | |
|     // setgt -> cmovLE      cmovBE
 | |
|     // setle -> cmovG       cmovA
 | |
|     // ----
 | |
|     //          cmovNS              // Used by comparison with 0 optimization
 | |
|     //          cmovS
 | |
|     
 | |
|     switch (SelectClass) {
 | |
|     default: assert(0 && "Unknown value class!");
 | |
|     case cFP: {
 | |
|       // Annoyingly, we don't have a full set of floating point conditional
 | |
|       // moves.  :(
 | |
|       static const unsigned OpcodeTab[2][8] = {
 | |
|         { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
 | |
|           X86::FCMOVBE, X86::FCMOVA, 0, 0 },
 | |
|         { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
 | |
|       };
 | |
|       Opcode = OpcodeTab[isSigned][OpNum];
 | |
| 
 | |
|       // If opcode == 0, we hit a case that we don't support.  Output a setcc
 | |
|       // and compare the result against zero.
 | |
|       if (Opcode == 0) {
 | |
|         unsigned CompClass = getClassB(CompTy);
 | |
|         unsigned CondReg;
 | |
|         if (CompClass != cLong || OpNum < 2) {
 | |
|           CondReg = makeAnotherReg(Type::BoolTy);
 | |
|           // Handle normal comparisons with a setcc instruction...
 | |
|           BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
 | |
|         } else {
 | |
|           // Long comparisons end up in the BL register.
 | |
|           CondReg = X86::BL;
 | |
|         }
 | |
|         
 | |
|         BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
 | |
|         Opcode = X86::FCMOVE;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case cByte:
 | |
|     case cShort: {
 | |
|       static const unsigned OpcodeTab[2][8] = {
 | |
|         { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
 | |
|           X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
 | |
|         { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
 | |
|           X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
 | |
|       };
 | |
|       Opcode = OpcodeTab[isSigned][OpNum];
 | |
|       break;
 | |
|     }
 | |
|     case cInt:
 | |
|     case cLong: {
 | |
|       static const unsigned OpcodeTab[2][8] = {
 | |
|         { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
 | |
|           X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
 | |
|         { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
 | |
|           X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
 | |
|       };
 | |
|       Opcode = OpcodeTab[isSigned][OpNum];
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   } else {
 | |
|     // Get the value being branched on, and use it to set the condition codes.
 | |
|     unsigned CondReg = getReg(Cond, MBB, IP);
 | |
|     BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
 | |
|     switch (SelectClass) {
 | |
|     default: assert(0 && "Unknown value class!");
 | |
|     case cFP:    Opcode = X86::FCMOVE; break;
 | |
|     case cByte:
 | |
|     case cShort: Opcode = X86::CMOVE16rr; break;
 | |
|     case cInt:
 | |
|     case cLong:  Opcode = X86::CMOVE32rr; break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned RealDestReg = DestReg;
 | |
| 
 | |
| 
 | |
|   // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves.  Because of
 | |
|   // this, we have to promote the incoming values to 16 bits, perform a 16-bit
 | |
|   // cmove, then truncate the result.
 | |
|   if (SelectClass == cByte) {
 | |
|     DestReg = makeAnotherReg(Type::ShortTy);
 | |
|     if (getClassB(TrueVal->getType()) == cByte) {
 | |
|       // Promote the true value, by storing it into AL, and reading from AX.
 | |
|       BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
 | |
|       BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
 | |
|       TrueReg = makeAnotherReg(Type::ShortTy);
 | |
|       BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
 | |
|     }
 | |
|     if (getClassB(FalseVal->getType()) == cByte) {
 | |
|       // Promote the true value, by storing it into CL, and reading from CX.
 | |
|       BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
 | |
|       BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
 | |
|       FalseReg = makeAnotherReg(Type::ShortTy);
 | |
|       BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
 | |
| 
 | |
|   switch (SelectClass) {
 | |
|   case cByte:
 | |
|     // We did the computation with 16-bit registers.  Truncate back to our
 | |
|     // result by copying into AX then copying out AL.
 | |
|     BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
 | |
|     BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
 | |
|     break;
 | |
|   case cLong:
 | |
|     // Move the upper half of the value as well.
 | |
|     BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
 | |
| /// operand, in the specified target register.
 | |
| ///
 | |
| void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
 | |
|   bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
 | |
| 
 | |
|   Value *Val = VR.Val;
 | |
|   const Type *Ty = VR.Ty;
 | |
|   if (Val) {
 | |
|     if (Constant *C = dyn_cast<Constant>(Val)) {
 | |
|       Val = ConstantExpr::getCast(C, Type::IntTy);
 | |
|       Ty = Type::IntTy;
 | |
|     }
 | |
| 
 | |
|     // If this is a simple constant, just emit a MOVri directly to avoid the
 | |
|     // copy.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|       int TheVal = CI->getRawValue() & 0xFFFFFFFF;
 | |
|       BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure we have the register number for this value...
 | |
|   unsigned Reg = Val ? getReg(Val) : VR.Reg;
 | |
| 
 | |
|   switch (getClassB(Ty)) {
 | |
|   case cByte:
 | |
|     // Extend value into target register (8->32)
 | |
|     if (isUnsigned)
 | |
|       BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
 | |
|     else
 | |
|       BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cShort:
 | |
|     // Extend value into target register (16->32)
 | |
|     if (isUnsigned)
 | |
|       BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
 | |
|     else
 | |
|       BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   case cInt:
 | |
|     // Move value into target register (32->32)
 | |
|     BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
 | |
|     break;
 | |
|   default:
 | |
|     assert(0 && "Unpromotable operand class in promote32");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
 | |
| /// we have the following possibilities:
 | |
| ///
 | |
| ///   ret void: No return value, simply emit a 'ret' instruction
 | |
| ///   ret sbyte, ubyte : Extend value into EAX and return
 | |
| ///   ret short, ushort: Extend value into EAX and return
 | |
| ///   ret int, uint    : Move value into EAX and return
 | |
| ///   ret pointer      : Move value into EAX and return
 | |
| ///   ret long, ulong  : Move value into EAX/EDX and return
 | |
| ///   ret float/double : Top of FP stack
 | |
| ///
 | |
| void ISel::visitReturnInst(ReturnInst &I) {
 | |
|   if (I.getNumOperands() == 0) {
 | |
|     BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Value *RetVal = I.getOperand(0);
 | |
|   switch (getClassB(RetVal->getType())) {
 | |
|   case cByte:   // integral return values: extend or move into EAX and return
 | |
|   case cShort:
 | |
|   case cInt:
 | |
|     promote32(X86::EAX, ValueRecord(RetVal));
 | |
|     // Declare that EAX is live on exit
 | |
|     BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
 | |
|     break;
 | |
|   case cFP: {                  // Floats & Doubles: Return in ST(0)
 | |
|     unsigned RetReg = getReg(RetVal);
 | |
|     BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
 | |
|     // Declare that top-of-stack is live on exit
 | |
|     BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
 | |
|     break;
 | |
|   }
 | |
|   case cLong: {
 | |
|     unsigned RetReg = getReg(RetVal);
 | |
|     BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
 | |
|     BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
 | |
|     // Declare that EAX & EDX are live on exit
 | |
|     BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
 | |
|       .addReg(X86::ESP);
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     visitInstruction(I);
 | |
|   }
 | |
|   // Emit a 'ret' instruction
 | |
|   BuildMI(BB, X86::RET, 0);
 | |
| }
 | |
| 
 | |
| // getBlockAfter - Return the basic block which occurs lexically after the
 | |
| // specified one.
 | |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
 | |
|   Function::iterator I = BB; ++I;  // Get iterator to next block
 | |
|   return I != BB->getParent()->end() ? &*I : 0;
 | |
| }
 | |
| 
 | |
| /// visitBranchInst - Handle conditional and unconditional branches here.  Note
 | |
| /// that since code layout is frozen at this point, that if we are trying to
 | |
| /// jump to a block that is the immediate successor of the current block, we can
 | |
| /// just make a fall-through (but we don't currently).
 | |
| ///
 | |
| void ISel::visitBranchInst(BranchInst &BI) {
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
 | |
|   if (BI.isConditional())
 | |
|     BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
 | |
| 
 | |
|   BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
 | |
| 
 | |
|   if (!BI.isConditional()) {  // Unconditional branch?
 | |
|     if (BI.getSuccessor(0) != NextBB)
 | |
|       BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the setcc into the branch itself...
 | |
|   SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
 | |
|   if (SCI == 0) {
 | |
|     // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
 | |
|     // computed some other way...
 | |
|     unsigned condReg = getReg(BI.getCondition());
 | |
|     BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
 | |
|     if (BI.getSuccessor(1) == NextBB) {
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     } else {
 | |
|       BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|       
 | |
|       if (BI.getSuccessor(0) != NextBB)
 | |
|         BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned OpNum = getSetCCNumber(SCI->getOpcode());
 | |
|   MachineBasicBlock::iterator MII = BB->end();
 | |
|   OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
 | |
| 
 | |
|   const Type *CompTy = SCI->getOperand(0)->getType();
 | |
|   bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
 | |
|   
 | |
| 
 | |
|   // LLVM  -> X86 signed  X86 unsigned
 | |
|   // -----    ----------  ------------
 | |
|   // seteq -> je          je
 | |
|   // setne -> jne         jne
 | |
|   // setlt -> jl          jb
 | |
|   // setge -> jge         jae
 | |
|   // setgt -> jg          ja
 | |
|   // setle -> jle         jbe
 | |
|   // ----
 | |
|   //          js                  // Used by comparison with 0 optimization
 | |
|   //          jns
 | |
| 
 | |
|   static const unsigned OpcodeTab[2][8] = {
 | |
|     { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
 | |
|     { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
 | |
|       X86::JS, X86::JNS },
 | |
|   };
 | |
|   
 | |
|   if (BI.getSuccessor(0) != NextBB) {
 | |
|     BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
 | |
|       .addMBB(MBBMap[BI.getSuccessor(0)]);
 | |
|     if (BI.getSuccessor(1) != NextBB)
 | |
|       BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|   } else {
 | |
|     // Change to the inverse condition...
 | |
|     if (BI.getSuccessor(1) != NextBB) {
 | |
|       OpNum ^= 1;
 | |
|       BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
 | |
|         .addMBB(MBBMap[BI.getSuccessor(1)]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// doCall - This emits an abstract call instruction, setting up the arguments
 | |
| /// and the return value as appropriate.  For the actual function call itself,
 | |
| /// it inserts the specified CallMI instruction into the stream.
 | |
| ///
 | |
| void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
 | |
|                   const std::vector<ValueRecord> &Args) {
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack...
 | |
|   unsigned NumBytes = 0;
 | |
| 
 | |
|   if (!Args.empty()) {
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i)
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte: case cShort: case cInt:
 | |
|         NumBytes += 4; break;
 | |
|       case cLong:
 | |
|         NumBytes += 8; break;
 | |
|       case cFP:
 | |
|         NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
 | |
|         break;
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
| 
 | |
|     // Adjust the stack pointer for the new arguments...
 | |
|     BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
 | |
| 
 | |
|     // Arguments go on the stack in reverse order, as specified by the ABI.
 | |
|     unsigned ArgOffset = 0;
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|       unsigned ArgReg;
 | |
|       switch (getClassB(Args[i].Ty)) {
 | |
|       case cByte:
 | |
|         if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
 | |
|             .addImm(Args[i].Val == ConstantBool::True);
 | |
|           break;
 | |
|         }
 | |
|         // FALL THROUGH
 | |
|       case cShort:
 | |
|         if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
 | |
|           // Zero/Sign extend constant, then stuff into memory.
 | |
|           ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
 | |
|           Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
 | |
|             .addImm(Val->getRawValue() & 0xFFFFFFFF);
 | |
|         } else {
 | |
|           // Promote arg to 32 bits wide into a temporary register...
 | |
|           ArgReg = makeAnotherReg(Type::UIntTy);
 | |
|           promote32(ArgReg, Args[i]);
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
 | |
|                        X86::ESP, ArgOffset).addReg(ArgReg);
 | |
|         }
 | |
|         break;
 | |
|       case cInt:
 | |
|         if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
 | |
|           unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
 | |
|                        X86::ESP, ArgOffset).addImm(Val);
 | |
|         } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
 | |
|                        X86::ESP, ArgOffset).addImm(0);
 | |
|         } else {
 | |
|           ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
 | |
|                        X86::ESP, ArgOffset).addReg(ArgReg);
 | |
|         }
 | |
|         break;
 | |
|       case cLong:
 | |
|         if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
 | |
|           uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
 | |
|                        X86::ESP, ArgOffset).addImm(Val & ~0U);
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
 | |
|                        X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
 | |
|         } else {
 | |
|           ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
 | |
|                        X86::ESP, ArgOffset).addReg(ArgReg);
 | |
|           addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
 | |
|                        X86::ESP, ArgOffset+4).addReg(ArgReg+1);
 | |
|         }
 | |
|         ArgOffset += 4;        // 8 byte entry, not 4.
 | |
|         break;
 | |
|         
 | |
|       case cFP:
 | |
|         ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
 | |
|         if (Args[i].Ty == Type::FloatTy) {
 | |
|           addRegOffset(BuildMI(BB, X86::FST32m, 5),
 | |
|                        X86::ESP, ArgOffset).addReg(ArgReg);
 | |
|         } else {
 | |
|           assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|           addRegOffset(BuildMI(BB, X86::FST64m, 5),
 | |
|                        X86::ESP, ArgOffset).addReg(ArgReg);
 | |
|           ArgOffset += 4;       // 8 byte entry, not 4.
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       default: assert(0 && "Unknown class!");
 | |
|       }
 | |
|       ArgOffset += 4;
 | |
|     }
 | |
|   } else {
 | |
|     BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
 | |
|   }
 | |
| 
 | |
|   BB->push_back(CallMI);
 | |
| 
 | |
|   BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
 | |
| 
 | |
|   // If there is a return value, scavenge the result from the location the call
 | |
|   // leaves it in...
 | |
|   //
 | |
|   if (Ret.Ty != Type::VoidTy) {
 | |
|     unsigned DestClass = getClassB(Ret.Ty);
 | |
|     switch (DestClass) {
 | |
|     case cByte:
 | |
|     case cShort:
 | |
|     case cInt: {
 | |
|       // Integral results are in %eax, or the appropriate portion
 | |
|       // thereof.
 | |
|       static const unsigned regRegMove[] = {
 | |
|         X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
 | |
|       };
 | |
|       static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
 | |
|       BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
 | |
|       break;
 | |
|     }
 | |
|     case cFP:     // Floating-point return values live in %ST(0)
 | |
|       BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
 | |
|       break;
 | |
|     case cLong:   // Long values are left in EDX:EAX
 | |
|       BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
 | |
|       BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
 | |
|       break;
 | |
|     default: assert(0 && "Unknown class!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCallInst - Push args on stack and do a procedure call instruction.
 | |
| void ISel::visitCallInst(CallInst &CI) {
 | |
|   MachineInstr *TheCall;
 | |
|   if (Function *F = CI.getCalledFunction()) {
 | |
|     // Is it an intrinsic function call?
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
 | |
|       visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Emit a CALL instruction with PC-relative displacement.
 | |
|     TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
 | |
|   } else {  // Emit an indirect call...
 | |
|     unsigned Reg = getReg(CI.getCalledValue());
 | |
|     TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
 | |
|     Args.push_back(ValueRecord(CI.getOperand(i)));
 | |
| 
 | |
|   unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
 | |
|   doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
 | |
| }         
 | |
| 
 | |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
 | |
| /// function, lowering any calls to unknown intrinsic functions into the
 | |
| /// equivalent LLVM code.
 | |
| ///
 | |
| void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(I++))
 | |
|         if (Function *F = CI->getCalledFunction())
 | |
|           switch (F->getIntrinsicID()) {
 | |
|           case Intrinsic::not_intrinsic:
 | |
|           case Intrinsic::vastart:
 | |
|           case Intrinsic::vacopy:
 | |
|           case Intrinsic::vaend:
 | |
|           case Intrinsic::returnaddress:
 | |
|           case Intrinsic::frameaddress:
 | |
|           case Intrinsic::memcpy:
 | |
|           case Intrinsic::memset:
 | |
|           case Intrinsic::isunordered:
 | |
|           case Intrinsic::readport:
 | |
|           case Intrinsic::writeport:
 | |
|             // We directly implement these intrinsics
 | |
|             break;
 | |
|           case Intrinsic::readio: {
 | |
|             // On X86, memory operations are in-order.  Lower this intrinsic
 | |
|             // into a volatile load.
 | |
|             Instruction *Before = CI->getPrev();
 | |
|             LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
 | |
|             CI->replaceAllUsesWith(LI);
 | |
|             BB->getInstList().erase(CI);
 | |
|             break;
 | |
|           }
 | |
|           case Intrinsic::writeio: {
 | |
|             // On X86, memory operations are in-order.  Lower this intrinsic
 | |
|             // into a volatile store.
 | |
|             Instruction *Before = CI->getPrev();
 | |
|             StoreInst *LI = new StoreInst(CI->getOperand(1),
 | |
|                                           CI->getOperand(2), true, CI);
 | |
|             CI->replaceAllUsesWith(LI);
 | |
|             BB->getInstList().erase(CI);
 | |
|             break;
 | |
|           }
 | |
|           default:
 | |
|             // All other intrinsic calls we must lower.
 | |
|             Instruction *Before = CI->getPrev();
 | |
|             TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
 | |
|             if (Before) {        // Move iterator to instruction after call
 | |
|               I = Before; ++I;
 | |
|             } else {
 | |
|               I = BB->begin();
 | |
|             }
 | |
|           }
 | |
| }
 | |
| 
 | |
| void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
 | |
|   unsigned TmpReg1, TmpReg2;
 | |
|   switch (ID) {
 | |
|   case Intrinsic::vastart:
 | |
|     // Get the address of the first vararg value...
 | |
|     TmpReg1 = getReg(CI);
 | |
|     addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::vacopy:
 | |
|     TmpReg1 = getReg(CI);
 | |
|     TmpReg2 = getReg(CI.getOperand(1));
 | |
|     BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
 | |
|     return;
 | |
|   case Intrinsic::vaend: return;   // Noop on X86
 | |
| 
 | |
|   case Intrinsic::returnaddress:
 | |
|   case Intrinsic::frameaddress:
 | |
|     TmpReg1 = getReg(CI);
 | |
|     if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
 | |
|       if (ID == Intrinsic::returnaddress) {
 | |
|         // Just load the return address
 | |
|         addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
 | |
|                           ReturnAddressIndex);
 | |
|       } else {
 | |
|         addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
 | |
|                           ReturnAddressIndex, -4);
 | |
|       }
 | |
|     } else {
 | |
|       // Values other than zero are not implemented yet.
 | |
|       BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
 | |
|     }
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::isunordered:
 | |
|     TmpReg1 = getReg(CI.getOperand(1));
 | |
|     TmpReg2 = getReg(CI.getOperand(2));
 | |
|     emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
 | |
|     TmpReg2 = getReg(CI);
 | |
|     BuildMI(BB, X86::SETPr, 0, TmpReg2);
 | |
|     return;
 | |
| 
 | |
|   case Intrinsic::memcpy: {
 | |
|     assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
 | |
|     unsigned Align = 1;
 | |
|     if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
 | |
|       Align = AlignC->getRawValue();
 | |
|       if (Align == 0) Align = 1;
 | |
|     }
 | |
| 
 | |
|     // Turn the byte code into # iterations
 | |
|     unsigned CountReg;
 | |
|     unsigned Opcode;
 | |
|     switch (Align & 3) {
 | |
|     case 2:   // WORD aligned
 | |
|       if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | |
|         CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
 | |
|       } else {
 | |
|         CountReg = makeAnotherReg(Type::IntTy);
 | |
|         unsigned ByteReg = getReg(CI.getOperand(3));
 | |
|         BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
 | |
|       }
 | |
|       Opcode = X86::REP_MOVSW;
 | |
|       break;
 | |
|     case 0:   // DWORD aligned
 | |
|       if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | |
|         CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
 | |
|       } else {
 | |
|         CountReg = makeAnotherReg(Type::IntTy);
 | |
|         unsigned ByteReg = getReg(CI.getOperand(3));
 | |
|         BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
 | |
|       }
 | |
|       Opcode = X86::REP_MOVSD;
 | |
|       break;
 | |
|     default:  // BYTE aligned
 | |
|       CountReg = getReg(CI.getOperand(3));
 | |
|       Opcode = X86::REP_MOVSB;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // No matter what the alignment is, we put the source in ESI, the
 | |
|     // destination in EDI, and the count in ECX.
 | |
|     TmpReg1 = getReg(CI.getOperand(1));
 | |
|     TmpReg2 = getReg(CI.getOperand(2));
 | |
|     BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
 | |
|     BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
 | |
|     BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
 | |
|     BuildMI(BB, Opcode, 0);
 | |
|     return;
 | |
|   }
 | |
|   case Intrinsic::memset: {
 | |
|     assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
 | |
|     unsigned Align = 1;
 | |
|     if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
 | |
|       Align = AlignC->getRawValue();
 | |
|       if (Align == 0) Align = 1;
 | |
|     }
 | |
| 
 | |
|     // Turn the byte code into # iterations
 | |
|     unsigned CountReg;
 | |
|     unsigned Opcode;
 | |
|     if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
 | |
|       unsigned Val = ValC->getRawValue() & 255;
 | |
| 
 | |
|       // If the value is a constant, then we can potentially use larger copies.
 | |
|       switch (Align & 3) {
 | |
|       case 2:   // WORD aligned
 | |
|         if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | |
|           CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
 | |
|         } else {
 | |
|           CountReg = makeAnotherReg(Type::IntTy);
 | |
|           unsigned ByteReg = getReg(CI.getOperand(3));
 | |
|           BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
 | |
|         }
 | |
|         BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
 | |
|         Opcode = X86::REP_STOSW;
 | |
|         break;
 | |
|       case 0:   // DWORD aligned
 | |
|         if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
 | |
|           CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
 | |
|         } else {
 | |
|           CountReg = makeAnotherReg(Type::IntTy);
 | |
|           unsigned ByteReg = getReg(CI.getOperand(3));
 | |
|           BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
 | |
|         }
 | |
|         Val = (Val << 8) | Val;
 | |
|         BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
 | |
|         Opcode = X86::REP_STOSD;
 | |
|         break;
 | |
|       default:  // BYTE aligned
 | |
|         CountReg = getReg(CI.getOperand(3));
 | |
|         BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
 | |
|         Opcode = X86::REP_STOSB;
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       // If it's not a constant value we are storing, just fall back.  We could
 | |
|       // try to be clever to form 16 bit and 32 bit values, but we don't yet.
 | |
|       unsigned ValReg = getReg(CI.getOperand(2));
 | |
|       BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
 | |
|       CountReg = getReg(CI.getOperand(3));
 | |
|       Opcode = X86::REP_STOSB;
 | |
|     }
 | |
| 
 | |
|     // No matter what the alignment is, we put the source in ESI, the
 | |
|     // destination in EDI, and the count in ECX.
 | |
|     TmpReg1 = getReg(CI.getOperand(1));
 | |
|     //TmpReg2 = getReg(CI.getOperand(2));
 | |
|     BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
 | |
|     BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
 | |
|     BuildMI(BB, Opcode, 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::readport: {
 | |
|     // First, determine that the size of the operand falls within the acceptable
 | |
|     // range for this architecture.
 | |
|     //
 | |
|     if (getClassB(CI.getOperand(1)->getType()) != cShort) {
 | |
|       std::cerr << "llvm.readport: Address size is not 16 bits\n";
 | |
|       exit(1);
 | |
|     }
 | |
| 
 | |
|     // Now, move the I/O port address into the DX register and use the IN
 | |
|     // instruction to get the input data.
 | |
|     //
 | |
|     unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
 | |
|     unsigned DestReg = getReg(CI);
 | |
| 
 | |
|     // If the port is a single-byte constant, use the immediate form.
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
 | |
|       if ((C->getRawValue() & 255) == C->getRawValue()) {
 | |
|         switch (Class) {
 | |
|         case cByte:
 | |
|           BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
 | |
|           BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
 | |
|           return;
 | |
|         case cShort:
 | |
|           BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
 | |
|           BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
 | |
|           return;
 | |
|         case cInt:
 | |
|           BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
 | |
|           BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     unsigned Reg = getReg(CI.getOperand(1));
 | |
|     BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
 | |
|     switch (Class) {
 | |
|     case cByte:
 | |
|       BuildMI(BB, X86::IN8rr, 0);
 | |
|       BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
 | |
|       break;
 | |
|     case cShort:
 | |
|       BuildMI(BB, X86::IN16rr, 0);
 | |
|       BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
 | |
|       break;
 | |
|     case cInt:
 | |
|       BuildMI(BB, X86::IN32rr, 0);
 | |
|       BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
 | |
|       break;
 | |
|     default:
 | |
|       std::cerr << "Cannot do input on this data type";
 | |
|       exit (1);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::writeport: {
 | |
|     // First, determine that the size of the operand falls within the
 | |
|     // acceptable range for this architecture.
 | |
|     if (getClass(CI.getOperand(2)->getType()) != cShort) {
 | |
|       std::cerr << "llvm.writeport: Address size is not 16 bits\n";
 | |
|       exit(1);
 | |
|     }
 | |
| 
 | |
|     unsigned Class = getClassB(CI.getOperand(1)->getType());
 | |
|     unsigned ValReg = getReg(CI.getOperand(1));
 | |
|     switch (Class) {
 | |
|     case cByte:
 | |
|       BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
 | |
|       break;
 | |
|     case cShort:
 | |
|       BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
 | |
|       break;
 | |
|     case cInt:
 | |
|       BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
 | |
|       break;
 | |
|     default:
 | |
|       std::cerr << "llvm.writeport: invalid data type for X86 target";
 | |
|       exit(1);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // If the port is a single-byte constant, use the immediate form.
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
 | |
|       if ((C->getRawValue() & 255) == C->getRawValue()) {
 | |
|         static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
 | |
|         BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     // Otherwise, move the I/O port address into the DX register and the value
 | |
|     // to write into the AL/AX/EAX register.
 | |
|     static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
 | |
|     unsigned Reg = getReg(CI.getOperand(2));
 | |
|     BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
 | |
|     BuildMI(BB, Opc[Class], 0);
 | |
|     return;
 | |
|   }
 | |
|     
 | |
|   default: assert(0 && "Error: unknown intrinsics should have been lowered!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
 | |
|   if (LI.getParent() != User.getParent())
 | |
|     return false;
 | |
|   BasicBlock::iterator It = &LI;
 | |
|   // Check all of the instructions between the load and the user.  We should
 | |
|   // really use alias analysis here, but for now we just do something simple.
 | |
|   for (++It; It != BasicBlock::iterator(&User); ++It) {
 | |
|     switch (It->getOpcode()) {
 | |
|     case Instruction::Free:
 | |
|     case Instruction::Store:
 | |
|     case Instruction::Call:
 | |
|     case Instruction::Invoke:
 | |
|       return false;
 | |
|     case Instruction::Load:
 | |
|       if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// visitSimpleBinary - Implement simple binary operators for integral types...
 | |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
 | |
| /// Xor.
 | |
| ///
 | |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
 | |
|   unsigned DestReg = getReg(B);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
 | |
|   unsigned Class = getClassB(B.getType());
 | |
| 
 | |
|   // Special case: op Reg, load [mem]
 | |
|   if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
 | |
|       Op0->hasOneUse() && 
 | |
|       isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
 | |
|     if (!B.swapOperands())
 | |
|       std::swap(Op0, Op1);  // Make sure any loads are in the RHS.
 | |
| 
 | |
|   if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
 | |
|       isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
 | |
| 
 | |
|     unsigned Opcode;
 | |
|     if (Class != cFP) {
 | |
|       static const unsigned OpcodeTab[][3] = {
 | |
|         // Arithmetic operators
 | |
|         { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm },  // ADD
 | |
|         { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm },  // SUB
 | |
|         
 | |
|         // Bitwise operators
 | |
|         { X86::AND8rm, X86::AND16rm, X86::AND32rm },  // AND
 | |
|         { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm },  // OR
 | |
|         { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm },  // XOR
 | |
|       };
 | |
|       Opcode = OpcodeTab[OperatorClass][Class];
 | |
|     } else {
 | |
|       static const unsigned OpcodeTab[][2] = {
 | |
|         { X86::FADD32m, X86::FADD64m },  // ADD
 | |
|         { X86::FSUB32m, X86::FSUB64m },  // SUB
 | |
|       };
 | |
|       const Type *Ty = Op0->getType();
 | |
|       assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|       Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
 | |
|     }
 | |
| 
 | |
|     unsigned Op0r = getReg(Op0);
 | |
|     if (AllocaInst *AI =
 | |
|         dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
 | |
|       unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|       addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
 | |
| 
 | |
|     } else {
 | |
|       X86AddressMode AM;
 | |
|       getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
 | |
|       
 | |
|       addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this is a floating point subtract, check to see if we can fold the first
 | |
|   // operand in.
 | |
|   if (Class == cFP && OperatorClass == 1 &&
 | |
|       isa<LoadInst>(Op0) && 
 | |
|       isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
 | |
|     const Type *Ty = Op0->getType();
 | |
|     assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|     unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
 | |
| 
 | |
|     unsigned Op1r = getReg(Op1);
 | |
|     if (AllocaInst *AI =
 | |
|         dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
 | |
|       unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|       addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
 | |
|     } else {
 | |
|       X86AddressMode AM;
 | |
|       getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
 | |
|       
 | |
|       addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// emitBinaryFPOperation - This method handles emission of floating point
 | |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations.
 | |
| void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
 | |
|                                  MachineBasicBlock::iterator IP,
 | |
|                                  Value *Op0, Value *Op1,
 | |
|                                  unsigned OperatorClass, unsigned DestReg) {
 | |
| 
 | |
|   // Special case: op Reg, <const fp>
 | |
|   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
 | |
|     if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
 | |
|       // Create a constant pool entry for this constant.
 | |
|       MachineConstantPool *CP = F->getConstantPool();
 | |
|       unsigned CPI = CP->getConstantPoolIndex(Op1C);
 | |
|       const Type *Ty = Op1->getType();
 | |
| 
 | |
|       static const unsigned OpcodeTab[][4] = {
 | |
|         { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m },   // Float
 | |
|         { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m },   // Double
 | |
|       };
 | |
| 
 | |
|       assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|       unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
 | |
|       unsigned Op0r = getReg(Op0, BB, IP);
 | |
|       addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
 | |
|                                        DestReg).addReg(Op0r), CPI);
 | |
|       return;
 | |
|     }
 | |
|   
 | |
|   // Special case: R1 = op <const fp>, R2
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
 | |
|     if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
 | |
|       // -0.0 - X === -X
 | |
|       unsigned op1Reg = getReg(Op1, BB, IP);
 | |
|       BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
 | |
|       return;
 | |
|     } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
 | |
|       // R1 = op CST, R2  -->  R1 = opr R2, CST
 | |
| 
 | |
|       // Create a constant pool entry for this constant.
 | |
|       MachineConstantPool *CP = F->getConstantPool();
 | |
|       unsigned CPI = CP->getConstantPoolIndex(CFP);
 | |
|       const Type *Ty = CFP->getType();
 | |
| 
 | |
|       static const unsigned OpcodeTab[][4] = {
 | |
|         { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
 | |
|         { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
 | |
|       };
 | |
|       
 | |
|       assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|       unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
 | |
|       unsigned Op1r = getReg(Op1, BB, IP);
 | |
|       addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
 | |
|                                        DestReg).addReg(Op1r), CPI);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // General case.
 | |
|   static const unsigned OpcodeTab[4] = {
 | |
|     X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
 | |
|   };
 | |
| 
 | |
|   unsigned Opcode = OpcodeTab[OperatorClass];
 | |
|   unsigned Op0r = getReg(Op0, BB, IP);
 | |
|   unsigned Op1r = getReg(Op1, BB, IP);
 | |
|   BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
| }
 | |
| 
 | |
| /// emitSimpleBinaryOperation - Implement simple binary operators for integral
 | |
| /// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
 | |
| /// Or, 4 for Xor.
 | |
| ///
 | |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
 | |
| /// and constant expression support.
 | |
| ///
 | |
| void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
 | |
|                                      MachineBasicBlock::iterator IP,
 | |
|                                      Value *Op0, Value *Op1,
 | |
|                                      unsigned OperatorClass, unsigned DestReg) {
 | |
|   unsigned Class = getClassB(Op0->getType());
 | |
| 
 | |
|   if (Class == cFP) {
 | |
|     assert(OperatorClass < 2 && "No logical ops for FP!");
 | |
|     emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
 | |
|     if (OperatorClass == 1) {
 | |
|       static unsigned const NEGTab[] = {
 | |
|         X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
 | |
|       };
 | |
| 
 | |
|       // sub 0, X -> neg X
 | |
|       if (CI->isNullValue()) {
 | |
|         unsigned op1Reg = getReg(Op1, MBB, IP);
 | |
|         BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
 | |
|       
 | |
|         if (Class == cLong) {
 | |
|           // We just emitted: Dl = neg Sl
 | |
|           // Now emit       : T  = addc Sh, 0
 | |
|           //                : Dh = neg T
 | |
|           unsigned T = makeAnotherReg(Type::IntTy);
 | |
|           BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
 | |
|           BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
 | |
|         }
 | |
|         return;
 | |
|       } else if (Op1->hasOneUse() && Class != cLong) {
 | |
|         // sub C, X -> tmp = neg X; DestReg = add tmp, C.  This is better
 | |
|         // than copying C into a temporary register, because of register
 | |
|         // pressure (tmp and destreg can share a register.
 | |
|         static unsigned const ADDRITab[] = { 
 | |
|           X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
 | |
|         };
 | |
|         unsigned op1Reg = getReg(Op1, MBB, IP);
 | |
|         unsigned Tmp = makeAnotherReg(Op0->getType());
 | |
|         BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
 | |
|         BuildMI(*MBB, IP, ADDRITab[Class], 2,
 | |
|                 DestReg).addReg(Tmp).addImm(CI->getRawValue());
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Special case: op Reg, <const int>
 | |
|   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     unsigned Op0r = getReg(Op0, MBB, IP);
 | |
| 
 | |
|     // xor X, -1 -> not X
 | |
|     if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
 | |
|       static unsigned const NOTTab[] = {
 | |
|         X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
 | |
|       };
 | |
|       BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
 | |
|       if (Class == cLong)  // Invert the top part too
 | |
|         BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // add X, -1 -> dec X
 | |
|     if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
 | |
|       // Note that we can't use dec for 64-bit decrements, because it does not
 | |
|       // set the carry flag!
 | |
|       static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
 | |
|       BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // add X, 1 -> inc X
 | |
|     if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
 | |
|       // Note that we can't use inc for 64-bit increments, because it does not
 | |
|       // set the carry flag!
 | |
|       static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
 | |
|       BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
 | |
|       return;
 | |
|     }
 | |
|   
 | |
|     static const unsigned OpcodeTab[][5] = {
 | |
|       // Arithmetic operators
 | |
|       { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri },  // ADD
 | |
|       { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri },  // SUB
 | |
|     
 | |
|       // Bitwise operators
 | |
|       { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri },  // AND
 | |
|       { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri  },  // OR
 | |
|       { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri },  // XOR
 | |
|     };
 | |
|   
 | |
|     unsigned Opcode = OpcodeTab[OperatorClass][Class];
 | |
|     unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
 | |
| 
 | |
|     if (Class != cLong) {
 | |
|       BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // If this is a long value and the high or low bits have a special
 | |
|     // property, emit some special cases.
 | |
|     unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
 | |
|     
 | |
|     // If the constant is zero in the low 32-bits, just copy the low part
 | |
|     // across and apply the normal 32-bit operation to the high parts.  There
 | |
|     // will be no carry or borrow into the top.
 | |
|     if (Op1l == 0) {
 | |
|       if (OperatorClass != 2) // All but and...
 | |
|         BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
 | |
|       BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
 | |
|         .addReg(Op0r+1).addImm(Op1h);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // If this is a logical operation and the top 32-bits are zero, just
 | |
|     // operate on the lower 32.
 | |
|     if (Op1h == 0 && OperatorClass > 1) {
 | |
|       BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
 | |
|         .addReg(Op0r).addImm(Op1l);
 | |
|       if (OperatorClass != 2)  // All but and
 | |
|         BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
 | |
|       else
 | |
|         BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // TODO: We could handle lots of other special cases here, such as AND'ing
 | |
|     // with 0xFFFFFFFF00000000 -> noop, etc.
 | |
|     
 | |
|     // Otherwise, code generate the full operation with a constant.
 | |
|     static const unsigned TopTab[] = {
 | |
|       X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
 | |
|     };
 | |
|     
 | |
|     BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
 | |
|     BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
 | |
|       .addReg(Op0r+1).addImm(Op1h);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Finally, handle the general case now.
 | |
|   static const unsigned OpcodeTab[][5] = {
 | |
|     // Arithmetic operators
 | |
|     { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr },  // ADD
 | |
|     { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr },  // SUB
 | |
|       
 | |
|     // Bitwise operators
 | |
|     { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr },  // AND
 | |
|     { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr },  // OR
 | |
|     { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr },  // XOR
 | |
|   };
 | |
|     
 | |
|   unsigned Opcode = OpcodeTab[OperatorClass][Class];
 | |
|   unsigned Op0r = getReg(Op0, MBB, IP);
 | |
|   unsigned Op1r = getReg(Op1, MBB, IP);
 | |
|   BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
 | |
|     
 | |
|   if (Class == cLong) {        // Handle the upper 32 bits of long values...
 | |
|     static const unsigned TopTab[] = {
 | |
|       X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
 | |
|     };
 | |
|     BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
 | |
|             DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// doMultiply - Emit appropriate instructions to multiply together the
 | |
| /// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
 | |
| /// result should be given as DestTy.
 | |
| ///
 | |
| void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
 | |
|                       unsigned DestReg, const Type *DestTy,
 | |
|                       unsigned op0Reg, unsigned op1Reg) {
 | |
|   unsigned Class = getClass(DestTy);
 | |
|   switch (Class) {
 | |
|   case cInt:
 | |
|   case cShort:
 | |
|     BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
 | |
|       .addReg(op0Reg).addReg(op1Reg);
 | |
|     return;
 | |
|   case cByte:
 | |
|     // Must use the MUL instruction, which forces use of AL...
 | |
|     BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
 | |
|     BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
 | |
|     BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
 | |
|     return;
 | |
|   default:
 | |
|   case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
 | |
| // returns zero when the input is not exactly a power of two.
 | |
| static unsigned ExactLog2(unsigned Val) {
 | |
|   if (Val == 0 || (Val & (Val-1))) return 0;
 | |
|   unsigned Count = 0;
 | |
|   while (Val != 1) {
 | |
|     Val >>= 1;
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count+1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// doMultiplyConst - This function is specialized to efficiently codegen an 8,
 | |
| /// 16, or 32-bit integer multiply by a constant.
 | |
| void ISel::doMultiplyConst(MachineBasicBlock *MBB,
 | |
|                            MachineBasicBlock::iterator IP,
 | |
|                            unsigned DestReg, const Type *DestTy,
 | |
|                            unsigned op0Reg, unsigned ConstRHS) {
 | |
|   static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
 | |
|   static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
 | |
|   static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
 | |
|   static const unsigned NEGrTab[]  = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
 | |
| 
 | |
|   unsigned Class = getClass(DestTy);
 | |
|   unsigned TmpReg;
 | |
| 
 | |
|   // Handle special cases here.
 | |
|   switch (ConstRHS) {
 | |
|   case -2:
 | |
|     TmpReg = makeAnotherReg(DestTy);
 | |
|     BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
 | |
|     BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
 | |
|     return;
 | |
|   case -1:
 | |
|     BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
 | |
|     return;
 | |
|   case 0:
 | |
|     BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
 | |
|     return;
 | |
|   case 1:
 | |
|     BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
 | |
|     return;
 | |
|   case 2:
 | |
|     BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
 | |
|     return;
 | |
|   case 3:
 | |
|   case 5:
 | |
|   case 9:
 | |
|     if (Class == cInt) {
 | |
|       X86AddressMode AM;
 | |
|       AM.BaseType = X86AddressMode::RegBase;
 | |
|       AM.Base.Reg = op0Reg;
 | |
|       AM.Scale = ConstRHS-1;
 | |
|       AM.IndexReg = op0Reg;
 | |
|       AM.Disp = 0;
 | |
|       addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
 | |
|       return;
 | |
|     }
 | |
|   case -3:
 | |
|   case -5:
 | |
|   case -9:
 | |
|     if (Class == cInt) {
 | |
|       TmpReg = makeAnotherReg(DestTy);
 | |
|       X86AddressMode AM;
 | |
|       AM.BaseType = X86AddressMode::RegBase;
 | |
|       AM.Base.Reg = op0Reg;
 | |
|       AM.Scale = -ConstRHS-1;
 | |
|       AM.IndexReg = op0Reg;
 | |
|       AM.Disp = 0;
 | |
|       addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
 | |
|       BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the element size is exactly a power of 2, use a shift to get it.
 | |
|   if (unsigned Shift = ExactLog2(ConstRHS)) {
 | |
|     switch (Class) {
 | |
|     default: assert(0 && "Unknown class for this function!");
 | |
|     case cByte:
 | |
|       BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
 | |
|       return;
 | |
|     case cShort:
 | |
|       BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
 | |
|       return;
 | |
|     case cInt:
 | |
|       BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the element size is a negative power of 2, use a shift/neg to get it.
 | |
|   if (unsigned Shift = ExactLog2(-ConstRHS)) {
 | |
|     TmpReg = makeAnotherReg(DestTy);
 | |
|     BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
 | |
|     switch (Class) {
 | |
|     default: assert(0 && "Unknown class for this function!");
 | |
|     case cByte:
 | |
|       BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
 | |
|       return;
 | |
|     case cShort:
 | |
|       BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
 | |
|       return;
 | |
|     case cInt:
 | |
|       BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Class == cShort) {
 | |
|     BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
 | |
|     return;
 | |
|   } else if (Class == cInt) {
 | |
|     BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Most general case, emit a normal multiply...
 | |
|   TmpReg = makeAnotherReg(DestTy);
 | |
|   BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
 | |
|   
 | |
|   // Emit a MUL to multiply the register holding the index by
 | |
|   // elementSize, putting the result in OffsetReg.
 | |
|   doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
 | |
| }
 | |
| 
 | |
| /// visitMul - Multiplies are not simple binary operators because they must deal
 | |
| /// with the EAX register explicitly.
 | |
| ///
 | |
| void ISel::visitMul(BinaryOperator &I) {
 | |
|   unsigned ResultReg = getReg(I);
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   Value *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Fold loads into floating point multiplies.
 | |
|   if (getClass(Op0->getType()) == cFP) {
 | |
|     if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
 | |
|       if (!I.swapOperands())
 | |
|         std::swap(Op0, Op1);  // Make sure any loads are in the RHS.
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
 | |
|       if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
 | |
|         const Type *Ty = Op0->getType();
 | |
|         assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|         unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
 | |
|         
 | |
|         unsigned Op0r = getReg(Op0);
 | |
|         if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
 | |
|           unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|           addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
 | |
|         } else {
 | |
|           X86AddressMode AM;
 | |
|           getAddressingMode(LI->getOperand(0), AM);
 | |
|           
 | |
|           addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitMultiply(BB, IP, Op0, Op1, ResultReg);
 | |
| }
 | |
| 
 | |
| void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | |
|                         Value *Op0, Value *Op1, unsigned DestReg) {
 | |
|   MachineBasicBlock &BB = *MBB;
 | |
|   TypeClass Class = getClass(Op0->getType());
 | |
| 
 | |
|   // Simple scalar multiply?
 | |
|   unsigned Op0Reg  = getReg(Op0, &BB, IP);
 | |
|   switch (Class) {
 | |
|   case cByte:
 | |
|   case cShort:
 | |
|   case cInt:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|       unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
 | |
|       doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
 | |
|     } else {
 | |
|       unsigned Op1Reg  = getReg(Op1, &BB, IP);
 | |
|       doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
 | |
|     }
 | |
|     return;
 | |
|   case cFP:
 | |
|     emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
 | |
|     return;
 | |
|   case cLong:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Long value.  We have to do things the hard way...
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     unsigned CLow = CI->getRawValue();
 | |
|     unsigned CHi  = CI->getRawValue() >> 32;
 | |
|     
 | |
|     if (CLow == 0) {
 | |
|       // If the low part of the constant is all zeros, things are simple.
 | |
|       BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
 | |
|       doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Multiply the two low parts... capturing carry into EDX
 | |
|     unsigned OverflowReg = 0;
 | |
|     if (CLow == 1) {
 | |
|       BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
 | |
|     } else {
 | |
|       unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
 | |
|       OverflowReg = makeAnotherReg(Type::UIntTy);
 | |
|       BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
 | |
|       BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
 | |
|       BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL);  // AL*BL
 | |
|       
 | |
|       BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX);   // AL*BL
 | |
|       BuildMI(BB, IP, X86::MOV32rr, 1,
 | |
|               OverflowReg).addReg(X86::EDX);                    // AL*BL >> 32
 | |
|     }
 | |
|     
 | |
|     unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
 | |
|     doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
 | |
|     
 | |
|     unsigned AHBLplusOverflowReg;
 | |
|     if (OverflowReg) {
 | |
|       AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
 | |
|       BuildMI(BB, IP, X86::ADD32rr, 2,                // AH*BL+(AL*BL >> 32)
 | |
|               AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
 | |
|     } else {
 | |
|       AHBLplusOverflowReg = AHBLReg;
 | |
|     }
 | |
|     
 | |
|     if (CHi == 0) {
 | |
|       BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
 | |
|     } else {
 | |
|       unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
 | |
|       doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
 | |
|       
 | |
|       BuildMI(BB, IP, X86::ADD32rr, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
 | |
|               DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // General 64x64 multiply
 | |
| 
 | |
|   unsigned Op1Reg  = getReg(Op1, &BB, IP);
 | |
|   // Multiply the two low parts... capturing carry into EDX
 | |
|   BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
 | |
|   BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg);  // AL*BL
 | |
|   
 | |
|   unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX);     // AL*BL
 | |
|   BuildMI(BB, IP, X86::MOV32rr, 1,
 | |
|           OverflowReg).addReg(X86::EDX); // AL*BL >> 32
 | |
|   
 | |
|   unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
 | |
|   BuildMI(BB, IP, X86::IMUL32rr, 2,
 | |
|           AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
 | |
|   
 | |
|   unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, IP, X86::ADD32rr, 2,                // AH*BL+(AL*BL >> 32)
 | |
|           AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
 | |
|   
 | |
|   unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
 | |
|   BuildMI(BB, IP, X86::IMUL32rr, 2,
 | |
|           ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
 | |
|   
 | |
|   BuildMI(BB, IP, X86::ADD32rr, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
 | |
|           DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitDivRem - Handle division and remainder instructions... these
 | |
| /// instruction both require the same instructions to be generated, they just
 | |
| /// select the result from a different register.  Note that both of these
 | |
| /// instructions work differently for signed and unsigned operands.
 | |
| ///
 | |
| void ISel::visitDivRem(BinaryOperator &I) {
 | |
|   unsigned ResultReg = getReg(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Fold loads into floating point divides.
 | |
|   if (getClass(Op0->getType()) == cFP) {
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
 | |
|       if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
 | |
|         const Type *Ty = Op0->getType();
 | |
|         assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|         unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
 | |
|         
 | |
|         unsigned Op0r = getReg(Op0);
 | |
|         if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
 | |
|           unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|           addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
 | |
|         } else {
 | |
|           X86AddressMode AM;
 | |
|           getAddressingMode(LI->getOperand(0), AM);
 | |
|           
 | |
|           addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
 | |
|       if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
 | |
|         const Type *Ty = Op0->getType();
 | |
|         assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
 | |
|         unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
 | |
|         
 | |
|         unsigned Op1r = getReg(Op1);
 | |
|         if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
 | |
|           unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|           addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
 | |
|         } else {
 | |
|           X86AddressMode AM;
 | |
|           getAddressingMode(LI->getOperand(0), AM);
 | |
|           addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   MachineBasicBlock::iterator IP = BB->end();
 | |
|   emitDivRemOperation(BB, IP, Op0, Op1,
 | |
|                       I.getOpcode() == Instruction::Div, ResultReg);
 | |
| }
 | |
| 
 | |
| void ISel::emitDivRemOperation(MachineBasicBlock *BB,
 | |
|                                MachineBasicBlock::iterator IP,
 | |
|                                Value *Op0, Value *Op1, bool isDiv,
 | |
|                                unsigned ResultReg) {
 | |
|   const Type *Ty = Op0->getType();
 | |
|   unsigned Class = getClass(Ty);
 | |
|   switch (Class) {
 | |
|   case cFP:              // Floating point divide
 | |
|     if (isDiv) {
 | |
|       emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
 | |
|       return;
 | |
|     } else {               // Floating point remainder...
 | |
|       unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|       unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|       MachineInstr *TheCall =
 | |
|         BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
 | |
|       std::vector<ValueRecord> Args;
 | |
|       Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
 | |
|       Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
 | |
|       doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
 | |
|     }
 | |
|     return;
 | |
|   case cLong: {
 | |
|     static const char *FnName[] =
 | |
|       { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
 | |
|     unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|     unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|     unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
 | |
|     MachineInstr *TheCall =
 | |
|       BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
 | |
| 
 | |
|     std::vector<ValueRecord> Args;
 | |
|     Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
 | |
|     Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
 | |
|     doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
 | |
|     return;
 | |
|   }
 | |
|   case cByte: case cShort: case cInt:
 | |
|     break;          // Small integrals, handled below...
 | |
|   default: assert(0 && "Unknown class!");
 | |
|   }
 | |
| 
 | |
|   static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
 | |
|   static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
 | |
|   static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
 | |
|   static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
 | |
|   static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
 | |
| 
 | |
|   // Special case signed division by power of 2.
 | |
|   if (isDiv)
 | |
|     if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
 | |
|       assert(Class != cLong && "This doesn't handle 64-bit divides!");
 | |
|       int V = CI->getValue();
 | |
| 
 | |
|       if (V == 1) {       // X /s 1 => X
 | |
|         unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|         BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (V == -1) {      // X /s -1 => -X
 | |
|         unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|         BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       bool isNeg = false;
 | |
|       if (V < 0) {         // Not a positive power of 2?
 | |
|         V = -V;
 | |
|         isNeg = true;      // Maybe it's a negative power of 2.
 | |
|       }
 | |
|       if (unsigned Log = ExactLog2(V)) {
 | |
|         --Log;
 | |
|         unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|         unsigned TmpReg = makeAnotherReg(Op0->getType());
 | |
|         if (Log != 1) 
 | |
|           BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
 | |
|             .addReg(Op0Reg).addImm(Log-1);
 | |
|         else
 | |
|           BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
 | |
|         unsigned TmpReg2 = makeAnotherReg(Op0->getType());
 | |
|         BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
 | |
|           .addReg(TmpReg).addImm(32-Log);
 | |
|         unsigned TmpReg3 = makeAnotherReg(Op0->getType());
 | |
|         BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
 | |
|           .addReg(Op0Reg).addReg(TmpReg2);
 | |
| 
 | |
|         unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
 | |
|         BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
 | |
|           .addReg(Op0Reg).addImm(Log);
 | |
|         if (isNeg)
 | |
|           BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
 | |
|   static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
 | |
|   static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };
 | |
| 
 | |
|   static const unsigned DivOpcode[][4] = {
 | |
|     { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 },  // Unsigned division
 | |
|     { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 },  // Signed division
 | |
|   };
 | |
| 
 | |
|   unsigned Reg    = Regs[Class];
 | |
|   unsigned ExtReg = ExtRegs[Class];
 | |
| 
 | |
|   // Put the first operand into one of the A registers...
 | |
|   unsigned Op0Reg = getReg(Op0, BB, IP);
 | |
|   unsigned Op1Reg = getReg(Op1, BB, IP);
 | |
|   BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
 | |
| 
 | |
|   if (Ty->isSigned()) {
 | |
|     // Emit a sign extension instruction...
 | |
|     unsigned ShiftResult = makeAnotherReg(Op0->getType());
 | |
|     BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
 | |
|     BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
 | |
| 
 | |
|     // Emit the appropriate divide or remainder instruction...
 | |
|     BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
 | |
|   } else {
 | |
|     // If unsigned, emit a zeroing instruction... (reg = 0)
 | |
|     BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
 | |
| 
 | |
|     // Emit the appropriate divide or remainder instruction...
 | |
|     BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
 | |
|   }
 | |
| 
 | |
|   // Figure out which register we want to pick the result out of...
 | |
|   unsigned DestReg = isDiv ? Reg : ExtReg;
 | |
|   
 | |
|   // Put the result into the destination register...
 | |
|   BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
 | |
| /// for constant immediate shift values, and for constant immediate
 | |
| /// shift values equal to 1. Even the general case is sort of special,
 | |
| /// because the shift amount has to be in CL, not just any old register.
 | |
| ///
 | |
| void ISel::visitShiftInst(ShiftInst &I) {
 | |
|   MachineBasicBlock::iterator IP = BB->end ();
 | |
|   emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
 | |
|                       I.getOpcode () == Instruction::Shl, I.getType (),
 | |
|                       getReg (I));
 | |
| }
 | |
| 
 | |
| /// emitShiftOperation - Common code shared between visitShiftInst and
 | |
| /// constant expression support.
 | |
| void ISel::emitShiftOperation(MachineBasicBlock *MBB,
 | |
|                               MachineBasicBlock::iterator IP,
 | |
|                               Value *Op, Value *ShiftAmount, bool isLeftShift,
 | |
|                               const Type *ResultTy, unsigned DestReg) {
 | |
|   unsigned SrcReg = getReg (Op, MBB, IP);
 | |
|   bool isSigned = ResultTy->isSigned ();
 | |
|   unsigned Class = getClass (ResultTy);
 | |
|   
 | |
|   static const unsigned ConstantOperand[][4] = {
 | |
|     { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 },  // SHR
 | |
|     { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 },  // SAR
 | |
|     { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 },  // SHL
 | |
|     { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 },  // SAL = SHL
 | |
|   };
 | |
| 
 | |
|   static const unsigned NonConstantOperand[][4] = {
 | |
|     { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL },  // SHR
 | |
|     { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL },  // SAR
 | |
|     { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL },  // SHL
 | |
|     { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL },  // SAL = SHL
 | |
|   };
 | |
| 
 | |
|   // Longs, as usual, are handled specially...
 | |
|   if (Class == cLong) {
 | |
|     // If we have a constant shift, we can generate much more efficient code
 | |
|     // than otherwise...
 | |
|     //
 | |
|     if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | |
|       unsigned Amount = CUI->getValue();
 | |
|       if (Amount < 32) {
 | |
|         const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
 | |
|         if (isLeftShift) {
 | |
|           BuildMI(*MBB, IP, Opc[3], 3, 
 | |
|               DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
 | |
|           BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
 | |
|         } else {
 | |
|           BuildMI(*MBB, IP, Opc[3], 3,
 | |
|               DestReg).addReg(SrcReg  ).addReg(SrcReg+1).addImm(Amount);
 | |
|           BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
 | |
|         }
 | |
|       } else {                 // Shifting more than 32 bits
 | |
|         Amount -= 32;
 | |
|         if (isLeftShift) {
 | |
|           if (Amount != 0) {
 | |
|             BuildMI(*MBB, IP, X86::SHL32ri, 2,
 | |
|                     DestReg + 1).addReg(SrcReg).addImm(Amount);
 | |
|           } else {
 | |
|             BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
 | |
|           }
 | |
|           BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
 | |
|         } else {
 | |
|           if (Amount != 0) {
 | |
|             BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
 | |
|                     DestReg).addReg(SrcReg+1).addImm(Amount);
 | |
|           } else {
 | |
|             BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
 | |
|           }
 | |
|           BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
| 
 | |
|       if (!isLeftShift && isSigned) {
 | |
|         // If this is a SHR of a Long, then we need to do funny sign extension
 | |
|         // stuff.  TmpReg gets the value to use as the high-part if we are
 | |
|         // shifting more than 32 bits.
 | |
|         BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
 | |
|       } else {
 | |
|         // Other shifts use a fixed zero value if the shift is more than 32
 | |
|         // bits.
 | |
|         BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
 | |
|       }
 | |
| 
 | |
|       // Initialize CL with the shift amount...
 | |
|       unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
 | |
|       BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
 | |
| 
 | |
|       unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
 | |
|       unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
 | |
|       if (isLeftShift) {
 | |
|         // TmpReg2 = shld inHi, inLo
 | |
|         BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
 | |
|                                                     .addReg(SrcReg);
 | |
|         // TmpReg3 = shl  inLo, CL
 | |
|         BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
 | |
| 
 | |
|         // Set the flags to indicate whether the shift was by more than 32 bits.
 | |
|         BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
 | |
| 
 | |
|         // DestHi = (>32) ? TmpReg3 : TmpReg2;
 | |
|         BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, 
 | |
|                 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
 | |
|         // DestLo = (>32) ? TmpReg : TmpReg3;
 | |
|         BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
 | |
|             DestReg).addReg(TmpReg3).addReg(TmpReg);
 | |
|       } else {
 | |
|         // TmpReg2 = shrd inLo, inHi
 | |
|         BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
 | |
|                                                     .addReg(SrcReg+1);
 | |
|         // TmpReg3 = s[ah]r  inHi, CL
 | |
|         BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
 | |
|                        .addReg(SrcReg+1);
 | |
| 
 | |
|         // Set the flags to indicate whether the shift was by more than 32 bits.
 | |
|         BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
 | |
| 
 | |
|         // DestLo = (>32) ? TmpReg3 : TmpReg2;
 | |
|         BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, 
 | |
|                 DestReg).addReg(TmpReg2).addReg(TmpReg3);
 | |
| 
 | |
|         // DestHi = (>32) ? TmpReg : TmpReg3;
 | |
|         BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, 
 | |
|                 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
 | |
|     // The shift amount is constant, guaranteed to be a ubyte. Get its value.
 | |
|     assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
 | |
| 
 | |
|     const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
 | |
|     BuildMI(*MBB, IP, Opc[Class], 2,
 | |
|         DestReg).addReg(SrcReg).addImm(CUI->getValue());
 | |
|   } else {                  // The shift amount is non-constant.
 | |
|     unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
 | |
|     BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
 | |
| 
 | |
|     const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
 | |
|     BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
 | |
| /// instruction.  The load and store instructions are the only place where we
 | |
| /// need to worry about the memory layout of the target machine.
 | |
| ///
 | |
| void ISel::visitLoadInst(LoadInst &I) {
 | |
|   // Check to see if this load instruction is going to be folded into a binary
 | |
|   // instruction, like add.  If so, we don't want to emit it.  Wouldn't a real
 | |
|   // pattern matching instruction selector be nice?
 | |
|   unsigned Class = getClassB(I.getType());
 | |
|   if (I.hasOneUse()) {
 | |
|     Instruction *User = cast<Instruction>(I.use_back());
 | |
|     switch (User->getOpcode()) {
 | |
|     case Instruction::Cast:
 | |
|       // If this is a cast from a signed-integer type to a floating point type,
 | |
|       // fold the cast here.
 | |
|       if (getClassB(User->getType()) == cFP &&
 | |
|           (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
 | |
|            I.getType() == Type::LongTy)) {
 | |
|         unsigned DestReg = getReg(User);
 | |
|         static const unsigned Opcode[] = {
 | |
|           0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
 | |
|         };
 | |
| 
 | |
|         if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
 | |
|           unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|           addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
 | |
|         } else {
 | |
|           X86AddressMode AM;
 | |
|           getAddressingMode(I.getOperand(0), AM);
 | |
|           addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
 | |
|         }
 | |
|         return;
 | |
|       } else {
 | |
|         User = 0;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|       if (Class == cLong) User = 0;
 | |
|       break;
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::Div:
 | |
|       if (Class != cFP) User = 0;
 | |
|       break;  // Folding only implemented for floating point.
 | |
|     default: User = 0; break;
 | |
|     }
 | |
| 
 | |
|     if (User) {
 | |
|       // Okay, we found a user.  If the load is the first operand and there is
 | |
|       // no second operand load, reverse the operand ordering.  Note that this
 | |
|       // can fail for a subtract (ie, no change will be made).
 | |
|       bool Swapped = false;
 | |
|       if (!isa<LoadInst>(User->getOperand(1)))
 | |
|         Swapped = !cast<BinaryOperator>(User)->swapOperands();
 | |
|       
 | |
|       // Okay, now that everything is set up, if this load is used by the second
 | |
|       // operand, and if there are no instructions that invalidate the load
 | |
|       // before the binary operator, eliminate the load.
 | |
|       if (User->getOperand(1) == &I &&
 | |
|           isSafeToFoldLoadIntoInstruction(I, *User))
 | |
|         return;   // Eliminate the load!
 | |
| 
 | |
|       // If this is a floating point sub or div, we won't be able to swap the
 | |
|       // operands, but we will still be able to eliminate the load.
 | |
|       if (Class == cFP && User->getOperand(0) == &I &&
 | |
|           !isa<LoadInst>(User->getOperand(1)) &&
 | |
|           (User->getOpcode() == Instruction::Sub ||
 | |
|            User->getOpcode() == Instruction::Div) &&
 | |
|           isSafeToFoldLoadIntoInstruction(I, *User))
 | |
|         return;  // Eliminate the load!
 | |
| 
 | |
|       // If we swapped the operands to the instruction, but couldn't fold the
 | |
|       // load anyway, swap them back.  We don't want to break add X, int 
 | |
|       // folding.
 | |
|       if (Swapped) cast<BinaryOperator>(User)->swapOperands();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static const unsigned Opcodes[] = {
 | |
|     X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
 | |
|   };
 | |
|   unsigned Opcode = Opcodes[Class];
 | |
|   if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
 | |
| 
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
 | |
|     unsigned FI = getFixedSizedAllocaFI(AI);
 | |
|     if (Class == cLong) {
 | |
|       addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
 | |
|       addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
 | |
|     } else {
 | |
|       addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
 | |
|     }
 | |
|   } else {
 | |
|     X86AddressMode AM;
 | |
|     getAddressingMode(I.getOperand(0), AM);
 | |
|     
 | |
|     if (Class == cLong) {
 | |
|       addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
 | |
|       AM.Disp += 4;
 | |
|       addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
 | |
|     } else {
 | |
|       addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
 | |
| /// instruction.
 | |
| ///
 | |
| void ISel::visitStoreInst(StoreInst &I) {
 | |
|   X86AddressMode AM;
 | |
|   getAddressingMode(I.getOperand(1), AM);
 | |
| 
 | |
|   const Type *ValTy = I.getOperand(0)->getType();
 | |
|   unsigned Class = getClassB(ValTy);
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
 | |
|     uint64_t Val = CI->getRawValue();
 | |
|     if (Class == cLong) {
 | |
|       addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
 | |
|       AM.Disp += 4;
 | |
|       addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
 | |
|     } else {
 | |
|       static const unsigned Opcodes[] = {
 | |
|         X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
 | |
|       };
 | |
|       unsigned Opcode = Opcodes[Class];
 | |
|       addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
 | |
|     }
 | |
|   } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
 | |
|      addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
 | |
|   } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
 | |
|     addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
 | |
|   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
 | |
|     // Store constant FP values with integer instructions to avoid having to
 | |
|     // load the constants from the constant pool then do a store.
 | |
|     if (CFP->getType() == Type::FloatTy) {
 | |
|       union {
 | |
|         unsigned I;
 | |
|         float    F;
 | |
|       } V;
 | |
|       V.F = CFP->getValue();
 | |
|       addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
 | |
|     } else {
 | |
|       union {
 | |
|         uint64_t I;
 | |
|         double   F;
 | |
|       } V;
 | |
|       V.F = CFP->getValue();
 | |
|       addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
 | |
|       AM.Disp += 4;
 | |
|       addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
 | |
|                                                           unsigned(V.I >> 32));
 | |
|     }
 | |
|     
 | |
|   } else if (Class == cLong) {
 | |
|     unsigned ValReg = getReg(I.getOperand(0));
 | |
|     addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
 | |
|     AM.Disp += 4;
 | |
|     addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
 | |
|   } else {
 | |
|     unsigned ValReg = getReg(I.getOperand(0));
 | |
|     static const unsigned Opcodes[] = {
 | |
|       X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
 | |
|     };
 | |
|     unsigned Opcode = Opcodes[Class];
 | |
|     if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
 | |
| 
 | |
|     addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCastInst - Here we have various kinds of copying with or without sign
 | |
| /// extension going on.
 | |
| ///
 | |
| void ISel::visitCastInst(CastInst &CI) {
 | |
|   Value *Op = CI.getOperand(0);
 | |
| 
 | |
|   unsigned SrcClass = getClassB(Op->getType());
 | |
|   unsigned DestClass = getClassB(CI.getType());
 | |
|   // Noop casts are not emitted: getReg will return the source operand as the
 | |
|   // register to use for any uses of the noop cast.
 | |
|   if (DestClass == SrcClass) {
 | |
|     // The only detail in this plan is that casts from double -> float are 
 | |
|     // truncating operations that we have to codegen through memory (despite
 | |
|     // the fact that the source/dest registers are the same class).
 | |
|     if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // If this is a cast from a 32-bit integer to a Long type, and the only uses
 | |
|   // of the case are GEP instructions, then the cast does not need to be
 | |
|   // generated explicitly, it will be folded into the GEP.
 | |
|   if (DestClass == cLong && SrcClass == cInt) {
 | |
|     bool AllUsesAreGEPs = true;
 | |
|     for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
 | |
|       if (!isa<GetElementPtrInst>(*I)) {
 | |
|         AllUsesAreGEPs = false;
 | |
|         break;
 | |
|       }        
 | |
| 
 | |
|     // No need to codegen this cast if all users are getelementptr instrs...
 | |
|     if (AllUsesAreGEPs) return;
 | |
|   }
 | |
| 
 | |
|   // If this cast converts a load from a short,int, or long integer to a FP
 | |
|   // value, we will have folded this cast away.
 | |
|   if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
 | |
|       (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
 | |
|        Op->getType() == Type::LongTy))
 | |
|     return;
 | |
| 
 | |
| 
 | |
|   unsigned DestReg = getReg(CI);
 | |
|   MachineBasicBlock::iterator MI = BB->end();
 | |
|   emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
 | |
| }
 | |
| 
 | |
| /// emitCastOperation - Common code shared between visitCastInst and constant
 | |
| /// expression cast support.
 | |
| ///
 | |
| void ISel::emitCastOperation(MachineBasicBlock *BB,
 | |
|                              MachineBasicBlock::iterator IP,
 | |
|                              Value *Src, const Type *DestTy,
 | |
|                              unsigned DestReg) {
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   unsigned SrcClass = getClassB(SrcTy);
 | |
|   unsigned DestClass = getClassB(DestTy);
 | |
|   unsigned SrcReg = getReg(Src, BB, IP);
 | |
| 
 | |
|   // Implement casts to bool by using compare on the operand followed by set if
 | |
|   // not zero on the result.
 | |
|   if (DestTy == Type::BoolTy) {
 | |
|     switch (SrcClass) {
 | |
|     case cByte:
 | |
|       BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cShort:
 | |
|       BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cInt:
 | |
|       BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
 | |
|       break;
 | |
|     case cLong: {
 | |
|       unsigned TmpReg = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
 | |
|       break;
 | |
|     }
 | |
|     case cFP:
 | |
|       BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
 | |
|       BuildMI(*BB, IP, X86::FNSTSW8r, 0);
 | |
|       BuildMI(*BB, IP, X86::SAHF, 1);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If the zero flag is not set, then the value is true, set the byte to
 | |
|     // true.
 | |
|     BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   static const unsigned RegRegMove[] = {
 | |
|     X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
 | |
|   };
 | |
| 
 | |
|   // Implement casts between values of the same type class (as determined by
 | |
|   // getClass) by using a register-to-register move.
 | |
|   if (SrcClass == DestClass) {
 | |
|     if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
 | |
|       BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
 | |
|     } else if (SrcClass == cFP) {
 | |
|       if (SrcTy == Type::FloatTy) {  // double -> float
 | |
|         assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
 | |
|         BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
 | |
|       } else {                       // float -> double
 | |
|         assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
 | |
|                "Unknown cFP member!");
 | |
|         // Truncate from double to float by storing to memory as short, then
 | |
|         // reading it back.
 | |
|         unsigned FltAlign = TM.getTargetData().getFloatAlignment();
 | |
|         int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
 | |
|         addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
 | |
|         addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
 | |
|       }
 | |
|     } else if (SrcClass == cLong) {
 | |
|       BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
 | |
|       BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
 | |
|     } else {
 | |
|       assert(0 && "Cannot handle this type of cast instruction!");
 | |
|       abort();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle cast of SMALLER int to LARGER int using a move with sign extension
 | |
|   // or zero extension, depending on whether the source type was signed.
 | |
|   if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
 | |
|       SrcClass < DestClass) {
 | |
|     bool isLong = DestClass == cLong;
 | |
|     if (isLong) DestClass = cInt;
 | |
| 
 | |
|     static const unsigned Opc[][4] = {
 | |
|       { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
 | |
|       { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr }  // u
 | |
|     };
 | |
|     
 | |
|     bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
 | |
|     BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
 | |
|         DestReg).addReg(SrcReg);
 | |
| 
 | |
|     if (isLong) {  // Handle upper 32 bits as appropriate...
 | |
|       if (isUnsigned)     // Zero out top bits...
 | |
|         BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
 | |
|       else                // Sign extend bottom half...
 | |
|         BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Special case long -> int ...
 | |
|   if (SrcClass == cLong && DestClass == cInt) {
 | |
|     BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
 | |
|   // move out of AX or AL.
 | |
|   if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
 | |
|       && SrcClass > DestClass) {
 | |
|     static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
 | |
|     BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
 | |
|     BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle casts from integer to floating point now...
 | |
|   if (DestClass == cFP) {
 | |
|     // Promote the integer to a type supported by FLD.  We do this because there
 | |
|     // are no unsigned FLD instructions, so we must promote an unsigned value to
 | |
|     // a larger signed value, then use FLD on the larger value.
 | |
|     //
 | |
|     const Type *PromoteType = 0;
 | |
|     unsigned PromoteOpcode = 0;
 | |
|     unsigned RealDestReg = DestReg;
 | |
|     switch (SrcTy->getTypeID()) {
 | |
|     case Type::BoolTyID:
 | |
|     case Type::SByteTyID:
 | |
|       // We don't have the facilities for directly loading byte sized data from
 | |
|       // memory (even signed).  Promote it to 16 bits.
 | |
|       PromoteType = Type::ShortTy;
 | |
|       PromoteOpcode = X86::MOVSX16rr8;
 | |
|       break;
 | |
|     case Type::UByteTyID:
 | |
|       PromoteType = Type::ShortTy;
 | |
|       PromoteOpcode = X86::MOVZX16rr8;
 | |
|       break;
 | |
|     case Type::UShortTyID:
 | |
|       PromoteType = Type::IntTy;
 | |
|       PromoteOpcode = X86::MOVZX32rr16;
 | |
|       break;
 | |
|     case Type::UIntTyID: {
 | |
|       // Make a 64 bit temporary... and zero out the top of it...
 | |
|       unsigned TmpReg = makeAnotherReg(Type::LongTy);
 | |
|       BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
 | |
|       BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
 | |
|       SrcTy = Type::LongTy;
 | |
|       SrcClass = cLong;
 | |
|       SrcReg = TmpReg;
 | |
|       break;
 | |
|     }
 | |
|     case Type::ULongTyID:
 | |
|       // Don't fild into the read destination.
 | |
|       DestReg = makeAnotherReg(Type::DoubleTy);
 | |
|       break;
 | |
|     default:  // No promotion needed...
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (PromoteType) {
 | |
|       unsigned TmpReg = makeAnotherReg(PromoteType);
 | |
|       BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
 | |
|       SrcTy = PromoteType;
 | |
|       SrcClass = getClass(PromoteType);
 | |
|       SrcReg = TmpReg;
 | |
|     }
 | |
| 
 | |
|     // Spill the integer to memory and reload it from there...
 | |
|     int FrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
 | |
| 
 | |
|     if (SrcClass == cLong) {
 | |
|       addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
 | |
|                         FrameIdx).addReg(SrcReg);
 | |
|       addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
 | |
|                         FrameIdx, 4).addReg(SrcReg+1);
 | |
|     } else {
 | |
|       static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
 | |
|       addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
 | |
|                         FrameIdx).addReg(SrcReg);
 | |
|     }
 | |
| 
 | |
|     static const unsigned Op2[] =
 | |
|       { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
 | |
|     addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
 | |
| 
 | |
|     // We need special handling for unsigned 64-bit integer sources.  If the
 | |
|     // input number has the "sign bit" set, then we loaded it incorrectly as a
 | |
|     // negative 64-bit number.  In this case, add an offset value.
 | |
|     if (SrcTy == Type::ULongTy) {
 | |
|       // Emit a test instruction to see if the dynamic input value was signed.
 | |
|       BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
 | |
| 
 | |
|       // If the sign bit is set, get a pointer to an offset, otherwise get a
 | |
|       // pointer to a zero.
 | |
|       MachineConstantPool *CP = F->getConstantPool();
 | |
|       unsigned Zero = makeAnotherReg(Type::IntTy);
 | |
|       Constant *Null = Constant::getNullValue(Type::UIntTy);
 | |
|       addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), 
 | |
|                                CP->getConstantPoolIndex(Null));
 | |
|       unsigned Offset = makeAnotherReg(Type::IntTy);
 | |
|       Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
 | |
|                                              
 | |
|       addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
 | |
|                                CP->getConstantPoolIndex(OffsetCst));
 | |
|       unsigned Addr = makeAnotherReg(Type::IntTy);
 | |
|       BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
 | |
| 
 | |
|       // Load the constant for an add.  FIXME: this could make an 'fadd' that
 | |
|       // reads directly from memory, but we don't support these yet.
 | |
|       unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
 | |
|       addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
 | |
| 
 | |
|       BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
 | |
|                 .addReg(ConstReg).addReg(DestReg);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle casts from floating point to integer now...
 | |
|   if (SrcClass == cFP) {
 | |
|     // Change the floating point control register to use "round towards zero"
 | |
|     // mode when truncating to an integer value.
 | |
|     //
 | |
|     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
 | |
|     addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
 | |
| 
 | |
|     // Load the old value of the high byte of the control word...
 | |
|     unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
 | |
|     addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
 | |
|                       CWFrameIdx, 1);
 | |
| 
 | |
|     // Set the high part to be round to zero...
 | |
|     addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
 | |
|                       CWFrameIdx, 1).addImm(12);
 | |
| 
 | |
|     // Reload the modified control word now...
 | |
|     addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
 | |
|     
 | |
|     // Restore the memory image of control word to original value
 | |
|     addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
 | |
|                       CWFrameIdx, 1).addReg(HighPartOfCW);
 | |
| 
 | |
|     // We don't have the facilities for directly storing byte sized data to
 | |
|     // memory.  Promote it to 16 bits.  We also must promote unsigned values to
 | |
|     // larger classes because we only have signed FP stores.
 | |
|     unsigned StoreClass  = DestClass;
 | |
|     const Type *StoreTy  = DestTy;
 | |
|     if (StoreClass == cByte || DestTy->isUnsigned())
 | |
|       switch (StoreClass) {
 | |
|       case cByte:  StoreTy = Type::ShortTy; StoreClass = cShort; break;
 | |
|       case cShort: StoreTy = Type::IntTy;   StoreClass = cInt;   break;
 | |
|       case cInt:   StoreTy = Type::LongTy;  StoreClass = cLong;  break;
 | |
|       // The following treatment of cLong may not be perfectly right,
 | |
|       // but it survives chains of casts of the form
 | |
|       // double->ulong->double.
 | |
|       case cLong:  StoreTy = Type::LongTy;  StoreClass = cLong;  break;
 | |
|       default: assert(0 && "Unknown store class!");
 | |
|       }
 | |
| 
 | |
|     // Spill the integer to memory and reload it from there...
 | |
|     int FrameIdx =
 | |
|       F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
 | |
| 
 | |
|     static const unsigned Op1[] =
 | |
|       { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
 | |
|     addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
 | |
|                       FrameIdx).addReg(SrcReg);
 | |
| 
 | |
|     if (DestClass == cLong) {
 | |
|       addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
 | |
|       addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
 | |
|                         FrameIdx, 4);
 | |
|     } else {
 | |
|       static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
 | |
|       addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
 | |
|     }
 | |
| 
 | |
|     // Reload the original control word now...
 | |
|     addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Anything we haven't handled already, we can't (yet) handle at all.
 | |
|   assert(0 && "Unhandled cast instruction!");
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| /// visitVANextInst - Implement the va_next instruction...
 | |
| ///
 | |
| void ISel::visitVANextInst(VANextInst &I) {
 | |
|   unsigned VAList = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   unsigned Size;
 | |
|   switch (I.getArgType()->getTypeID()) {
 | |
|   default:
 | |
|     std::cerr << I;
 | |
|     assert(0 && "Error: bad type for va_next instruction!");
 | |
|     return;
 | |
|   case Type::PointerTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::IntTyID:
 | |
|     Size = 4;
 | |
|     break;
 | |
|   case Type::ULongTyID:
 | |
|   case Type::LongTyID:
 | |
|   case Type::DoubleTyID:
 | |
|     Size = 8;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Increment the VAList pointer...
 | |
|   BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
 | |
| }
 | |
| 
 | |
| void ISel::visitVAArgInst(VAArgInst &I) {
 | |
|   unsigned VAList = getReg(I.getOperand(0));
 | |
|   unsigned DestReg = getReg(I);
 | |
| 
 | |
|   switch (I.getType()->getTypeID()) {
 | |
|   default:
 | |
|     std::cerr << I;
 | |
|     assert(0 && "Error: bad type for va_next instruction!");
 | |
|     return;
 | |
|   case Type::PointerTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::IntTyID:
 | |
|     addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
 | |
|     break;
 | |
|   case Type::ULongTyID:
 | |
|   case Type::LongTyID:
 | |
|     addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
 | |
|     addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitGetElementPtrInst - instruction-select GEP instructions
 | |
| ///
 | |
| void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   // If this GEP instruction will be folded into all of its users, we don't need
 | |
|   // to explicitly calculate it!
 | |
|   X86AddressMode AM;
 | |
|   if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
 | |
|     // Check all of the users of the instruction to see if they are loads and
 | |
|     // stores.
 | |
|     bool AllWillFold = true;
 | |
|     for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
 | |
|       if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
 | |
|         if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
 | |
|             cast<Instruction>(*UI)->getOperand(0) == &I) {
 | |
|           AllWillFold = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|     // If the instruction is foldable, and will be folded into all users, don't
 | |
|     // emit it!
 | |
|     if (AllWillFold) return;
 | |
|   }
 | |
| 
 | |
|   unsigned outputReg = getReg(I);
 | |
|   emitGEPOperation(BB, BB->end(), I.getOperand(0),
 | |
|                    I.op_begin()+1, I.op_end(), outputReg);
 | |
| }
 | |
| 
 | |
| /// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
 | |
| /// GEPTypes (the derived types being stepped through at each level).  On return
 | |
| /// from this function, if some indexes of the instruction are representable as
 | |
| /// an X86 lea instruction, the machine operands are put into the Ops
 | |
| /// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
 | |
| /// lists.  Otherwise, GEPOps.size() is returned.  If this returns a an
 | |
| /// addressing mode that only partially consumes the input, the BaseReg input of
 | |
| /// the addressing mode must be left free.
 | |
| ///
 | |
| /// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
 | |
| ///
 | |
| void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
 | |
|                        std::vector<Value*> &GEPOps,
 | |
|                        std::vector<const Type*> &GEPTypes,
 | |
|                        X86AddressMode &AM) {
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
| 
 | |
|   // Clear out the state we are working with...
 | |
|   AM.BaseType = X86AddressMode::RegBase;
 | |
|   AM.Base.Reg = 0;   // No base register
 | |
|   AM.Scale = 1;      // Unit scale
 | |
|   AM.IndexReg = 0;   // No index register
 | |
|   AM.Disp = 0;       // No displacement
 | |
| 
 | |
|   // While there are GEP indexes that can be folded into the current address,
 | |
|   // keep processing them.
 | |
|   while (!GEPTypes.empty()) {
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
 | |
|       // It's a struct access.  CUI is the index into the structure,
 | |
|       // which names the field. This index must have unsigned type.
 | |
|       const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
 | |
|       
 | |
|       // Use the TargetData structure to pick out what the layout of the
 | |
|       // structure is in memory.  Since the structure index must be constant, we
 | |
|       // can get its value and use it to find the right byte offset from the
 | |
|       // StructLayout class's list of structure member offsets.
 | |
|       AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
 | |
|       GEPOps.pop_back();        // Consume a GEP operand
 | |
|       GEPTypes.pop_back();
 | |
|     } else {
 | |
|       // It's an array or pointer access: [ArraySize x ElementType].
 | |
|       const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
 | |
|       Value *idx = GEPOps.back();
 | |
| 
 | |
|       // idx is the index into the array.  Unlike with structure
 | |
|       // indices, we may not know its actual value at code-generation
 | |
|       // time.
 | |
| 
 | |
|       // If idx is a constant, fold it into the offset.
 | |
|       unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
 | |
|       if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
 | |
|         AM.Disp += TypeSize*CSI->getValue();
 | |
|       } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
 | |
|         AM.Disp += TypeSize*CUI->getValue();
 | |
|       } else {
 | |
|         // If the index reg is already taken, we can't handle this index.
 | |
|         if (AM.IndexReg) return;
 | |
| 
 | |
|         // If this is a size that we can handle, then add the index as 
 | |
|         switch (TypeSize) {
 | |
|         case 1: case 2: case 4: case 8:
 | |
|           // These are all acceptable scales on X86.
 | |
|           AM.Scale = TypeSize;
 | |
|           break;
 | |
|         default:
 | |
|           // Otherwise, we can't handle this scale
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (CastInst *CI = dyn_cast<CastInst>(idx))
 | |
|           if (CI->getOperand(0)->getType() == Type::IntTy ||
 | |
|               CI->getOperand(0)->getType() == Type::UIntTy)
 | |
|             idx = CI->getOperand(0);
 | |
| 
 | |
|         AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
 | |
|       }
 | |
| 
 | |
|       GEPOps.pop_back();        // Consume a GEP operand
 | |
|       GEPTypes.pop_back();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // GEPTypes is empty, which means we have a single operand left.  Set it as
 | |
|   // the base register.
 | |
|   //
 | |
|   assert(AM.Base.Reg == 0);
 | |
| 
 | |
|   if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
 | |
|     AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|     AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
 | |
|     GEPOps.pop_back();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #if 0   // FIXME: TODO!
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // FIXME: When addressing modes are more powerful/correct, we could load
 | |
|     // global addresses directly as 32-bit immediates.
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
 | |
|   GEPOps.pop_back();        // Consume the last GEP operand
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isGEPFoldable - Return true if the specified GEP can be completely
 | |
| /// folded into the addressing mode of a load/store or lea instruction.
 | |
| bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
 | |
|                          Value *Src, User::op_iterator IdxBegin,
 | |
|                          User::op_iterator IdxEnd, X86AddressMode &AM) {
 | |
| 
 | |
|   std::vector<Value*> GEPOps;
 | |
|   GEPOps.resize(IdxEnd-IdxBegin+1);
 | |
|   GEPOps[0] = Src;
 | |
|   std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
 | |
|   
 | |
|   std::vector<const Type*>
 | |
|     GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
 | |
|              gep_type_end(Src->getType(), IdxBegin, IdxEnd));
 | |
| 
 | |
|   MachineBasicBlock::iterator IP;
 | |
|   if (MBB) IP = MBB->end();
 | |
|   getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
 | |
| 
 | |
|   // We can fold it away iff the getGEPIndex call eliminated all operands.
 | |
|   return GEPOps.empty();
 | |
| }
 | |
| 
 | |
| void ISel::emitGEPOperation(MachineBasicBlock *MBB,
 | |
|                             MachineBasicBlock::iterator IP,
 | |
|                             Value *Src, User::op_iterator IdxBegin,
 | |
|                             User::op_iterator IdxEnd, unsigned TargetReg) {
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
| 
 | |
|   // If this is a getelementptr null, with all constant integer indices, just
 | |
|   // replace it with TargetReg = 42.
 | |
|   if (isa<ConstantPointerNull>(Src)) {
 | |
|     User::op_iterator I = IdxBegin;
 | |
|     for (; I != IdxEnd; ++I)
 | |
|       if (!isa<ConstantInt>(*I))
 | |
|         break;
 | |
|     if (I == IdxEnd) {   // All constant indices
 | |
|       unsigned Offset = TD.getIndexedOffset(Src->getType(),
 | |
|                                          std::vector<Value*>(IdxBegin, IdxEnd));
 | |
|       BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::vector<Value*> GEPOps;
 | |
|   GEPOps.resize(IdxEnd-IdxBegin+1);
 | |
|   GEPOps[0] = Src;
 | |
|   std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
 | |
|   
 | |
|   std::vector<const Type*> GEPTypes;
 | |
|   GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
 | |
|                   gep_type_end(Src->getType(), IdxBegin, IdxEnd));
 | |
| 
 | |
|   // Keep emitting instructions until we consume the entire GEP instruction.
 | |
|   while (!GEPOps.empty()) {
 | |
|     unsigned OldSize = GEPOps.size();
 | |
|     X86AddressMode AM;
 | |
|     getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
 | |
|     
 | |
|     if (GEPOps.size() != OldSize) {
 | |
|       // getGEPIndex consumed some of the input.  Build an LEA instruction here.
 | |
|       unsigned NextTarget = 0;
 | |
|       if (!GEPOps.empty()) {
 | |
|         assert(AM.Base.Reg == 0 &&
 | |
|            "getGEPIndex should have left the base register open for chaining!");
 | |
|         NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
 | |
|       }
 | |
| 
 | |
|       if (AM.BaseType == X86AddressMode::RegBase &&
 | |
|               AM.IndexReg == 0 && AM.Disp == 0)
 | |
|         BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
 | |
|       else
 | |
|         addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
 | |
|       --IP;
 | |
|       TargetReg = NextTarget;
 | |
|     } else if (GEPTypes.empty()) {
 | |
|       // The getGEPIndex operation didn't want to build an LEA.  Check to see if
 | |
|       // all operands are consumed but the base pointer.  If so, just load it
 | |
|       // into the register.
 | |
|       if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
 | |
|         BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
 | |
|       } else {
 | |
|         unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
 | |
|         BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
 | |
|       }
 | |
|       break;                // we are now done
 | |
| 
 | |
|     } else {
 | |
|       // It's an array or pointer access: [ArraySize x ElementType].
 | |
|       const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
 | |
|       Value *idx = GEPOps.back();
 | |
|       GEPOps.pop_back();        // Consume a GEP operand
 | |
|       GEPTypes.pop_back();
 | |
| 
 | |
|       // Many GEP instructions use a [cast (int/uint) to LongTy] as their
 | |
|       // operand on X86.  Handle this case directly now...
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(idx))
 | |
|         if (CI->getOperand(0)->getType() == Type::IntTy ||
 | |
|             CI->getOperand(0)->getType() == Type::UIntTy)
 | |
|           idx = CI->getOperand(0);
 | |
| 
 | |
|       // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
 | |
|       // must find the size of the pointed-to type (Not coincidentally, the next
 | |
|       // type is the type of the elements in the array).
 | |
|       const Type *ElTy = SqTy->getElementType();
 | |
|       unsigned elementSize = TD.getTypeSize(ElTy);
 | |
| 
 | |
|       // If idxReg is a constant, we don't need to perform the multiply!
 | |
|       if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
 | |
|         if (!CSI->isNullValue()) {
 | |
|           unsigned Offset = elementSize*CSI->getRawValue();
 | |
|           unsigned Reg = makeAnotherReg(Type::UIntTy);
 | |
|           BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
 | |
|                                 .addReg(Reg).addImm(Offset);
 | |
|           --IP;            // Insert the next instruction before this one.
 | |
|           TargetReg = Reg; // Codegen the rest of the GEP into this
 | |
|         }
 | |
|       } else if (elementSize == 1) {
 | |
|         // If the element size is 1, we don't have to multiply, just add
 | |
|         unsigned idxReg = getReg(idx, MBB, IP);
 | |
|         unsigned Reg = makeAnotherReg(Type::UIntTy);
 | |
|         BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
 | |
|         --IP;            // Insert the next instruction before this one.
 | |
|         TargetReg = Reg; // Codegen the rest of the GEP into this
 | |
|       } else {
 | |
|         unsigned idxReg = getReg(idx, MBB, IP);
 | |
|         unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
 | |
| 
 | |
|         // Make sure we can back the iterator up to point to the first
 | |
|         // instruction emitted.
 | |
|         MachineBasicBlock::iterator BeforeIt = IP;
 | |
|         if (IP == MBB->begin())
 | |
|           BeforeIt = MBB->end();
 | |
|         else
 | |
|           --BeforeIt;
 | |
|         doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
 | |
| 
 | |
|         // Emit an ADD to add OffsetReg to the basePtr.
 | |
|         unsigned Reg = makeAnotherReg(Type::UIntTy);
 | |
|         BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
 | |
|                           .addReg(Reg).addReg(OffsetReg);
 | |
| 
 | |
|         // Step to the first instruction of the multiply.
 | |
|         if (BeforeIt == MBB->end())
 | |
|           IP = MBB->begin();
 | |
|         else
 | |
|           IP = ++BeforeIt;
 | |
| 
 | |
|         TargetReg = Reg; // Codegen the rest of the GEP into this
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitAllocaInst - If this is a fixed size alloca, allocate space from the
 | |
| /// frame manager, otherwise do it the hard way.
 | |
| ///
 | |
| void ISel::visitAllocaInst(AllocaInst &I) {
 | |
|   // If this is a fixed size alloca in the entry block for the function, we
 | |
|   // statically stack allocate the space, so we don't need to do anything here.
 | |
|   //
 | |
|   if (dyn_castFixedAlloca(&I)) return;
 | |
|   
 | |
|   // Find the data size of the alloca inst's getAllocatedType.
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   unsigned TySize = TM.getTargetData().getTypeSize(Ty);
 | |
| 
 | |
|   // Create a register to hold the temporary result of multiplying the type size
 | |
|   // constant by the variable amount.
 | |
|   unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   unsigned SrcReg1 = getReg(I.getArraySize());
 | |
|   
 | |
|   // TotalSizeReg = mul <numelements>, <TypeSize>
 | |
|   MachineBasicBlock::iterator MBBI = BB->end();
 | |
|   doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
 | |
| 
 | |
|   // AddedSize = add <TotalSizeReg>, 15
 | |
|   unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
 | |
| 
 | |
|   // AlignedSize = and <AddedSize>, ~15
 | |
|   unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
 | |
|   BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
 | |
|   
 | |
|   // Subtract size from stack pointer, thereby allocating some space.
 | |
|   BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
 | |
| 
 | |
|   // Put a pointer to the space into the result register, by copying
 | |
|   // the stack pointer.
 | |
|   BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   F->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| /// visitMallocInst - Malloc instructions are code generated into direct calls
 | |
| /// to the library malloc.
 | |
| ///
 | |
| void ISel::visitMallocInst(MallocInst &I) {
 | |
|   unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
 | |
|   unsigned Arg;
 | |
| 
 | |
|   if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
 | |
|     Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
 | |
|   } else {
 | |
|     Arg = makeAnotherReg(Type::UIntTy);
 | |
|     unsigned Op0Reg = getReg(I.getOperand(0));
 | |
|     MachineBasicBlock::iterator MBBI = BB->end();
 | |
|     doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
 | |
|   }
 | |
| 
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(Arg, Type::UIntTy));
 | |
|   MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
 | |
|                                   1).addExternalSymbol("malloc", true);
 | |
|   doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitFreeInst - Free instructions are code gen'd to call the free libc
 | |
| /// function.
 | |
| ///
 | |
| void ISel::visitFreeInst(FreeInst &I) {
 | |
|   std::vector<ValueRecord> Args;
 | |
|   Args.push_back(ValueRecord(I.getOperand(0)));
 | |
|   MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
 | |
|                                   1).addExternalSymbol("free", true);
 | |
|   doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
 | |
| }
 | |
|    
 | |
| /// createX86SimpleInstructionSelector - This pass converts an LLVM function
 | |
| /// into a machine code representation is a very simple peep-hole fashion.  The
 | |
| /// generated code sucks but the implementation is nice and simple.
 | |
| ///
 | |
| FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
 | |
|   return new ISel(TM);
 | |
| }
 |