333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Represent a range of possible values that may occur when the program is run
 | |
| // for an integral value.  This keeps track of a lower and upper bound for the
 | |
| // constant, which MAY wrap around the end of the numeric range.  To do this, it
 | |
| // keeps track of a [lower, upper) bound, which specifies an interval just like
 | |
| // STL iterators.  When used with boolean values, the following are important
 | |
| // ranges (other integral ranges use min/max values for special range values):
 | |
| //
 | |
| //  [F, F) = {}     = Empty set
 | |
| //  [T, F) = {T}
 | |
| //  [F, T) = {F}
 | |
| //  [T, T) = {F, T} = Full set
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instruction.h"
 | |
| #include "llvm/Type.h"
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static ConstantIntegral *Next(ConstantIntegral *CI) {
 | |
|   if (CI->getType() == Type::BoolTy)
 | |
|     return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True;
 | |
|       
 | |
|   Constant *Result = ConstantExpr::getAdd(CI,
 | |
|                                           ConstantInt::get(CI->getType(), 1));
 | |
|   return cast<ConstantIntegral>(Result);
 | |
| }
 | |
| 
 | |
| static bool LT(ConstantIntegral *A, ConstantIntegral *B) {
 | |
|   Constant *C = ConstantExpr::getSetLT(A, B);
 | |
|   assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
 | |
|   return cast<ConstantBool>(C)->getValue();
 | |
| }
 | |
| 
 | |
| static bool LTE(ConstantIntegral *A, ConstantIntegral *B) {
 | |
|   Constant *C = ConstantExpr::getSetLE(A, B);
 | |
|   assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??");
 | |
|   return cast<ConstantBool>(C)->getValue();
 | |
| }
 | |
| 
 | |
| static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); }
 | |
| 
 | |
| static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) {
 | |
|   return LT(A, B) ? A : B;
 | |
| }
 | |
| static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) {
 | |
|   return GT(A, B) ? A : B;
 | |
| }
 | |
| 
 | |
| /// Initialize a full (the default) or empty set for the specified type.
 | |
| ///
 | |
| ConstantRange::ConstantRange(const Type *Ty, bool Full) {
 | |
|   assert(Ty->isIntegral() &&
 | |
|          "Cannot make constant range of non-integral type!");
 | |
|   if (Full)
 | |
|     Lower = Upper = ConstantIntegral::getMaxValue(Ty);
 | |
|   else
 | |
|     Lower = Upper = ConstantIntegral::getMinValue(Ty);
 | |
| }
 | |
| 
 | |
| /// Initialize a range to hold the single specified value.
 | |
| ///
 | |
| ConstantRange::ConstantRange(Constant *V)
 | |
|   : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) {
 | |
| }
 | |
| 
 | |
| /// Initialize a range of values explicitly... this will assert out if
 | |
| /// Lower==Upper and Lower != Min or Max for its type (or if the two constants
 | |
| /// have different types)
 | |
| ///
 | |
| ConstantRange::ConstantRange(Constant *L, Constant *U)
 | |
|   : Lower(cast<ConstantIntegral>(L)), Upper(cast<ConstantIntegral>(U)) {
 | |
|   assert(Lower->getType() == Upper->getType() &&
 | |
|          "Incompatible types for ConstantRange!");
 | |
|   
 | |
|   // Make sure that if L & U are equal that they are either Min or Max...
 | |
|   assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) ||
 | |
|                      L == ConstantIntegral::getMinValue(L->getType()))) &&
 | |
|          "Lower == Upper, but they aren't min or max for type!");
 | |
| }
 | |
| 
 | |
| /// Initialize a set of values that all satisfy the condition with C.
 | |
| ///
 | |
| ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) {
 | |
|   switch (SetCCOpcode) {
 | |
|   default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
 | |
|   case Instruction::SetEQ: Lower = C; Upper = Next(C); return;
 | |
|   case Instruction::SetNE: Upper = C; Lower = Next(C); return;
 | |
|   case Instruction::SetLT:
 | |
|     Lower = ConstantIntegral::getMinValue(C->getType());
 | |
|     Upper = C;
 | |
|     return;
 | |
|   case Instruction::SetGT:
 | |
|     Lower = Next(C);
 | |
|     Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max)
 | |
|     return;
 | |
|   case Instruction::SetLE:
 | |
|     Lower = ConstantIntegral::getMinValue(C->getType());
 | |
|     Upper = Next(C);
 | |
|     return;
 | |
|   case Instruction::SetGE:
 | |
|     Lower = C;
 | |
|     Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max)
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getType - Return the LLVM data type of this range.
 | |
| ///
 | |
| const Type *ConstantRange::getType() const { return Lower->getType(); }
 | |
| 
 | |
| /// isFullSet - Return true if this set contains all of the elements possible
 | |
| /// for this data-type
 | |
| bool ConstantRange::isFullSet() const {
 | |
|   return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType());
 | |
| }
 | |
|   
 | |
| /// isEmptySet - Return true if this set contains no members.
 | |
| ///
 | |
| bool ConstantRange::isEmptySet() const {
 | |
|   return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType());
 | |
| }
 | |
| 
 | |
| /// isWrappedSet - Return true if this set wraps around the top of the range,
 | |
| /// for example: [100, 8)
 | |
| ///
 | |
| bool ConstantRange::isWrappedSet() const {
 | |
|   return GT(Lower, Upper);
 | |
| }
 | |
| 
 | |
|   
 | |
| /// getSingleElement - If this set contains a single element, return it,
 | |
| /// otherwise return null.
 | |
| ConstantIntegral *ConstantRange::getSingleElement() const {
 | |
|   if (Upper == Next(Lower))  // Is it a single element range?
 | |
|     return Lower;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getSetSize - Return the number of elements in this set.
 | |
| ///
 | |
| uint64_t ConstantRange::getSetSize() const {
 | |
|   if (isEmptySet()) return 0;
 | |
|   if (getType() == Type::BoolTy) {
 | |
|     if (Lower != Upper)  // One of T or F in the set...
 | |
|       return 1;
 | |
|     return 2;            // Must be full set...
 | |
|   }
 | |
|   
 | |
|   // Simply subtract the bounds...
 | |
|   Constant *Result = ConstantExpr::getSub(Upper, Lower);
 | |
|   return cast<ConstantInt>(Result)->getRawValue();
 | |
| }
 | |
| 
 | |
| /// contains - Return true if the specified value is in the set.
 | |
| ///
 | |
| bool ConstantRange::contains(ConstantInt *Val) const {
 | |
|   if (Lower == Upper) {
 | |
|     if (isFullSet()) return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!isWrappedSet())
 | |
|     return LTE(Lower, Val) && LT(Val, Upper);
 | |
|   return LTE(Lower, Val) || LT(Val, Upper);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// subtract - Subtract the specified constant from the endpoints of this
 | |
| /// constant range.
 | |
| ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
 | |
|   assert(CI->getType() == getType() && getType()->isInteger() &&
 | |
|          "Cannot subtract from different type range or non-integer!");
 | |
|   // If the set is empty or full, don't modify the endpoints.
 | |
|   if (Lower == Upper) return *this;
 | |
|   return ConstantRange(ConstantExpr::getSub(Lower, CI),
 | |
|                        ConstantExpr::getSub(Upper, CI));
 | |
| }
 | |
| 
 | |
| 
 | |
| // intersect1Wrapped - This helper function is used to intersect two ranges when
 | |
| // it is known that LHS is wrapped and RHS isn't.
 | |
| //
 | |
| static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
 | |
|                                        const ConstantRange &RHS) {
 | |
|   assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
 | |
| 
 | |
|   // Check to see if we overlap on the Left side of RHS...
 | |
|   //
 | |
|   if (LT(RHS.getLower(), LHS.getUpper())) {
 | |
|     // We do overlap on the left side of RHS, see if we overlap on the right of
 | |
|     // RHS...
 | |
|     if (GT(RHS.getUpper(), LHS.getLower())) {
 | |
|       // Ok, the result overlaps on both the left and right sides.  See if the
 | |
|       // resultant interval will be smaller if we wrap or not...
 | |
|       //
 | |
|       if (LHS.getSetSize() < RHS.getSetSize())
 | |
|         return LHS;
 | |
|       else
 | |
|         return RHS;
 | |
| 
 | |
|     } else {
 | |
|       // No overlap on the right, just on the left.
 | |
|       return ConstantRange(RHS.getLower(), LHS.getUpper());
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // We don't overlap on the left side of RHS, see if we overlap on the right
 | |
|     // of RHS...
 | |
|     if (GT(RHS.getUpper(), LHS.getLower())) {
 | |
|       // Simple overlap...
 | |
|       return ConstantRange(LHS.getLower(), RHS.getUpper());
 | |
|     } else {
 | |
|       // No overlap...
 | |
|       return ConstantRange(LHS.getType(), false);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// intersect - Return the range that results from the intersection of this
 | |
| /// range with another range.
 | |
| ///
 | |
| ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
 | |
|   assert(getType() == CR.getType() && "ConstantRange types don't agree!");
 | |
|   // Handle common special cases
 | |
|   if (isEmptySet() || CR.isFullSet())  return *this;
 | |
|   if (isFullSet()  || CR.isEmptySet()) return CR;
 | |
| 
 | |
|   if (!isWrappedSet()) {
 | |
|     if (!CR.isWrappedSet()) {
 | |
|       ConstantIntegral *L = Max(Lower, CR.Lower);
 | |
|       ConstantIntegral *U = Min(Upper, CR.Upper);
 | |
| 
 | |
|       if (LT(L, U))  // If range isn't empty...
 | |
|         return ConstantRange(L, U);
 | |
|       else
 | |
|         return ConstantRange(getType(), false);  // Otherwise, return empty set
 | |
|     } else
 | |
|       return intersect1Wrapped(CR, *this);
 | |
|   } else {   // We know "this" is wrapped...
 | |
|     if (!CR.isWrappedSet())
 | |
|       return intersect1Wrapped(*this, CR);
 | |
|     else {
 | |
|       // Both ranges are wrapped...
 | |
|       ConstantIntegral *L = Max(Lower, CR.Lower);
 | |
|       ConstantIntegral *U = Min(Upper, CR.Upper);
 | |
|       return ConstantRange(L, U);
 | |
|     }
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| /// union - Return the range that results from the union of this range with
 | |
| /// another range.  The resultant range is guaranteed to include the elements of
 | |
| /// both sets, but may contain more.  For example, [3, 9) union [12,15) is [3,
 | |
| /// 15), which includes 9, 10, and 11, which were not included in either set
 | |
| /// before.
 | |
| ///
 | |
| ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
 | |
|   assert(getType() == CR.getType() && "ConstantRange types don't agree!");
 | |
| 
 | |
|   assert(0 && "Range union not implemented yet!");
 | |
| 
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| /// zeroExtend - Return a new range in the specified integer type, which must
 | |
| /// be strictly larger than the current type.  The returned range will
 | |
| /// correspond to the possible range of values if the source range had been
 | |
| /// zero extended.
 | |
| ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
 | |
|   assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
 | |
|          "Not a value extension");
 | |
|   if (isFullSet()) {
 | |
|     // Change a source full set into [0, 1 << 8*numbytes)
 | |
|     unsigned SrcTySize = getLower()->getType()->getPrimitiveSize();
 | |
|     return ConstantRange(Constant::getNullValue(Ty),
 | |
|                          ConstantUInt::get(Ty, 1ULL << SrcTySize*8));
 | |
|   }
 | |
| 
 | |
|   Constant *Lower = getLower();
 | |
|   Constant *Upper = getUpper();
 | |
|   if (Lower->getType()->isInteger() && !Lower->getType()->isUnsigned()) {
 | |
|     // Ensure we are doing a ZERO extension even if the input range is signed.
 | |
|     Lower = ConstantExpr::getCast(Lower, Ty->getUnsignedVersion());
 | |
|     Upper = ConstantExpr::getCast(Upper, Ty->getUnsignedVersion());
 | |
|   }
 | |
| 
 | |
|   return ConstantRange(ConstantExpr::getCast(Lower, Ty),
 | |
|                        ConstantExpr::getCast(Upper, Ty));
 | |
| }
 | |
| 
 | |
| /// truncate - Return a new range in the specified integer type, which must be
 | |
| /// strictly smaller than the current type.  The returned range will
 | |
| /// correspond to the possible range of values if the source range had been
 | |
| /// truncated to the specified type.
 | |
| ConstantRange ConstantRange::truncate(const Type *Ty) const {
 | |
|   assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
 | |
|          "Not a value truncation");
 | |
|   uint64_t Size = 1ULL << Ty->getPrimitiveSize()*8;
 | |
|   if (isFullSet() || getSetSize() >= Size)
 | |
|     return ConstantRange(getType());
 | |
| 
 | |
|   return ConstantRange(ConstantExpr::getCast(getLower(), Ty),
 | |
|                        ConstantExpr::getCast(getUpper(), Ty));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// print - Print out the bounds to a stream...
 | |
| ///
 | |
| void ConstantRange::print(std::ostream &OS) const {
 | |
|   OS << "[" << *Lower << "," << *Upper << " )";
 | |
| }
 | |
| 
 | |
| /// dump - Allow printing from a debugger easily...
 | |
| ///
 | |
| void ConstantRange::dump() const {
 | |
|   print(std::cerr);
 | |
| }
 |