741 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			741 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is dual licensed under the MIT and the University of Illinois Open
 | 
						|
// Source Licenses. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// REQUIRES: long_tests
 | 
						|
 | 
						|
// <random>
 | 
						|
 | 
						|
// template<class RealType = double>
 | 
						|
// class piecewise_constant_distribution
 | 
						|
 | 
						|
// template<class _URNG> result_type operator()(_URNG& g);
 | 
						|
 | 
						|
#include <random>
 | 
						|
#include <vector>
 | 
						|
#include <iterator>
 | 
						|
#include <numeric>
 | 
						|
#include <algorithm>   // for sort
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline
 | 
						|
T
 | 
						|
sqr(T x)
 | 
						|
{
 | 
						|
    return x*x;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test1()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16, 17};
 | 
						|
    double p[] = {25, 62.5, 12.5};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 1000000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test2()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16, 17};
 | 
						|
    double p[] = {0, 62.5, 12.5};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 1000000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test3()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16, 17};
 | 
						|
    double p[] = {25, 0, 12.5};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 1000000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test4()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16, 17};
 | 
						|
    double p[] = {25, 62.5, 0};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 1000000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test5()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16, 17};
 | 
						|
    double p[] = {25, 0, 0};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 100000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test6()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16, 17};
 | 
						|
    double p[] = {0, 25, 0};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 100000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test7()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16, 17};
 | 
						|
    double p[] = {0, 0, 1};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 100000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test8()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16};
 | 
						|
    double p[] = {75, 25};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 100000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test9()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16};
 | 
						|
    double p[] = {0, 25};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 100000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test10()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14, 16};
 | 
						|
    double p[] = {1, 0};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 100000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
test11()
 | 
						|
{
 | 
						|
    typedef std::piecewise_constant_distribution<> D;
 | 
						|
    typedef std::mt19937_64 G;
 | 
						|
    G g;
 | 
						|
    double b[] = {10, 14};
 | 
						|
    double p[] = {1};
 | 
						|
    const size_t Np = sizeof(p) / sizeof(p[0]);
 | 
						|
    D d(b, b+Np+1, p);
 | 
						|
    const int N = 100000;
 | 
						|
    std::vector<D::result_type> u;
 | 
						|
    for (int i = 0; i < N; ++i)
 | 
						|
    {
 | 
						|
        D::result_type v = d(g);
 | 
						|
        assert(d.min() <= v && v < d.max());
 | 
						|
        u.push_back(v);
 | 
						|
    }
 | 
						|
    std::vector<double> prob(std::begin(p), std::end(p));
 | 
						|
    double s = std::accumulate(prob.begin(), prob.end(), 0.0);
 | 
						|
    for (int i = 0; i < prob.size(); ++i)
 | 
						|
        prob[i] /= s;
 | 
						|
    std::sort(u.begin(), u.end());
 | 
						|
    for (int i = 0; i < Np; ++i)
 | 
						|
    {
 | 
						|
        typedef std::vector<D::result_type>::iterator I;
 | 
						|
        I lb = std::lower_bound(u.begin(), u.end(), b[i]);
 | 
						|
        I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
 | 
						|
        const size_t Ni = ub - lb;
 | 
						|
        if (prob[i] == 0)
 | 
						|
            assert(Ni == 0);
 | 
						|
        else
 | 
						|
        {
 | 
						|
            assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
 | 
						|
            double mean = std::accumulate(lb, ub, 0.0) / Ni;
 | 
						|
            double var = 0;
 | 
						|
            double skew = 0;
 | 
						|
            double kurtosis = 0;
 | 
						|
            for (I j = lb; j != ub; ++j)
 | 
						|
            {
 | 
						|
                double dbl = (*j - mean);
 | 
						|
                double d2 = sqr(dbl);
 | 
						|
                var += d2;
 | 
						|
                skew += dbl * d2;
 | 
						|
                kurtosis += d2 * d2;
 | 
						|
            }
 | 
						|
            var /= Ni;
 | 
						|
            double dev = std::sqrt(var);
 | 
						|
            skew /= Ni * dev * var;
 | 
						|
            kurtosis /= Ni * var * var;
 | 
						|
            kurtosis -= 3;
 | 
						|
            double x_mean = (b[i+1] + b[i]) / 2;
 | 
						|
            double x_var = sqr(b[i+1] - b[i]) / 12;
 | 
						|
            double x_skew = 0;
 | 
						|
            double x_kurtosis = -6./5;
 | 
						|
            assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
            assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
            assert(std::abs(skew - x_skew) < 0.01);
 | 
						|
            assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    test1();
 | 
						|
    test2();
 | 
						|
    test3();
 | 
						|
    test4();
 | 
						|
    test5();
 | 
						|
    test6();
 | 
						|
    test7();
 | 
						|
    test8();
 | 
						|
    test9();
 | 
						|
    test10();
 | 
						|
    test11();
 | 
						|
}
 |