337 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			337 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass eliminates machine instruction PHI nodes by inserting copy
 | 
						|
// instructions.  This destroys SSA information, but is the desired input for
 | 
						|
// some register allocators.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "phielim"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <set>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumAtomic, "Number of atomic phis lowered");
 | 
						|
//STATISTIC(NumSimple, "Number of simple phis lowered");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
      analyzePHINodes(Fn);
 | 
						|
 | 
						|
      bool Changed = false;
 | 
						|
 | 
						|
      // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | 
						|
      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
        Changed |= EliminatePHINodes(Fn, *I);
 | 
						|
 | 
						|
      VRegPHIUseCount.clear();
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addPreserved<LiveVariables>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
 | 
						|
    /// in predecessor basic blocks.
 | 
						|
    ///
 | 
						|
    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
 | 
						|
    void LowerAtomicPHINode(MachineBasicBlock &MBB,
 | 
						|
                            MachineBasicBlock::iterator AfterPHIsIt);
 | 
						|
 | 
						|
    /// analyzePHINodes - Gather information about the PHI nodes in
 | 
						|
    /// here. In particular, we want to map the number of uses of a virtual
 | 
						|
    /// register which is used in a PHI node. We map that to the BB the
 | 
						|
    /// vreg is coming from. This is used later to determine when the vreg
 | 
						|
    /// is killed in the BB.
 | 
						|
    ///
 | 
						|
    void analyzePHINodes(const MachineFunction& Fn);
 | 
						|
 | 
						|
    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
 | 
						|
    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
 | 
						|
 | 
						|
    VRegPHIUse VRegPHIUseCount;
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterPass<PNE> X("phi-node-elimination",
 | 
						|
                      "Eliminate PHI nodes for register allocation");
 | 
						|
}
 | 
						|
 | 
						|
const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
 | 
						|
 | 
						|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | 
						|
/// predecessor basic blocks.
 | 
						|
///
 | 
						|
bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
 | 
						|
  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
 | 
						|
    return false;   // Quick exit for basic blocks without PHIs.
 | 
						|
 | 
						|
  // Get an iterator to the first instruction after the last PHI node (this may
 | 
						|
  // also be the end of the basic block).
 | 
						|
  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
 | 
						|
  while (AfterPHIsIt != MBB.end() &&
 | 
						|
         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
 | 
						|
    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
 | 
						|
 | 
						|
  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
 | 
						|
    LowerAtomicPHINode(MBB, AfterPHIsIt);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InstructionUsesRegister - Return true if the specified machine instr has a
 | 
						|
/// use of the specified register.
 | 
						|
static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | 
						|
    if (MI->getOperand(i).isRegister() &&
 | 
						|
        MI->getOperand(i).getReg() == SrcReg &&
 | 
						|
        MI->getOperand(i).isUse())
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
 | 
						|
/// under the assuption that it needs to be lowered in a way that supports
 | 
						|
/// atomic execution of PHIs.  This lowering method is always correct all of the
 | 
						|
/// time.
 | 
						|
void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
 | 
						|
                             MachineBasicBlock::iterator AfterPHIsIt) {
 | 
						|
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
 | 
						|
  MachineInstr *MPhi = MBB.remove(MBB.begin());
 | 
						|
 | 
						|
  unsigned DestReg = MPhi->getOperand(0).getReg();
 | 
						|
 | 
						|
  // Create a new register for the incoming PHI arguments.
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
 | 
						|
  unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
 | 
						|
 | 
						|
  // Insert a register to register copy in the top of the current block (but
 | 
						|
  // after any remaining phi nodes) which copies the new incoming register
 | 
						|
  // into the phi node destination.
 | 
						|
  //
 | 
						|
  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
 | 
						|
  RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
 | 
						|
 | 
						|
  // Update live variable information if there is any...
 | 
						|
  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
 | 
						|
  if (LV) {
 | 
						|
    MachineInstr *PHICopy = prior(AfterPHIsIt);
 | 
						|
 | 
						|
    // Add information to LiveVariables to know that the incoming value is
 | 
						|
    // killed.  Note that because the value is defined in several places (once
 | 
						|
    // each for each incoming block), the "def" block and instruction fields
 | 
						|
    // for the VarInfo is not filled in.
 | 
						|
    //
 | 
						|
    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
 | 
						|
 | 
						|
    // Since we are going to be deleting the PHI node, if it is the last use
 | 
						|
    // of any registers, or if the value itself is dead, we need to move this
 | 
						|
    // information over to the new copy we just inserted.
 | 
						|
    //
 | 
						|
    LV->removeVirtualRegistersKilled(MPhi);
 | 
						|
 | 
						|
    // If the result is dead, update LV.
 | 
						|
    if (LV->RegisterDefIsDead(MPhi, DestReg)) {
 | 
						|
      LV->addVirtualRegisterDead(DestReg, PHICopy);
 | 
						|
      LV->removeVirtualRegistersDead(MPhi);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Realize that the destination register is defined by the PHI copy now, not
 | 
						|
    // the PHI itself.
 | 
						|
    LV->getVarInfo(DestReg).DefInst = PHICopy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
 | 
						|
  // node.
 | 
						|
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | 
						|
    --VRegPHIUseCount[BBVRegPair(
 | 
						|
                        MPhi->getOperand(i + 1).getMachineBasicBlock(),
 | 
						|
                        MPhi->getOperand(i).getReg())];
 | 
						|
 | 
						|
  // Now loop over all of the incoming arguments, changing them to copy into
 | 
						|
  // the IncomingReg register in the corresponding predecessor basic block.
 | 
						|
  //
 | 
						|
  std::set<MachineBasicBlock*> MBBsInsertedInto;
 | 
						|
  for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
 | 
						|
    unsigned SrcReg = MPhi->getOperand(i-1).getReg();
 | 
						|
    assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
 | 
						|
           "Machine PHI Operands must all be virtual registers!");
 | 
						|
 | 
						|
    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
 | 
						|
    // source path the PHI.
 | 
						|
    MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
 | 
						|
 | 
						|
    // Check to make sure we haven't already emitted the copy for this block.
 | 
						|
    // This can happen because PHI nodes may have multiple entries for the
 | 
						|
    // same basic block.
 | 
						|
    if (!MBBsInsertedInto.insert(&opBlock).second)
 | 
						|
      continue;  // If the copy has already been emitted, we're done.
 | 
						|
 
 | 
						|
    // Get an iterator pointing to the first terminator in the block (or end()).
 | 
						|
    // This is the point where we can insert a copy if we'd like to.
 | 
						|
    MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
 | 
						|
    
 | 
						|
    // Insert the copy.
 | 
						|
    RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
 | 
						|
 | 
						|
    // Now update live variable information if we have it.  Otherwise we're done
 | 
						|
    if (!LV) continue;
 | 
						|
    
 | 
						|
    // We want to be able to insert a kill of the register if this PHI
 | 
						|
    // (aka, the copy we just inserted) is the last use of the source
 | 
						|
    // value.  Live variable analysis conservatively handles this by
 | 
						|
    // saying that the value is live until the end of the block the PHI
 | 
						|
    // entry lives in.  If the value really is dead at the PHI copy, there
 | 
						|
    // will be no successor blocks which have the value live-in.
 | 
						|
    //
 | 
						|
    // Check to see if the copy is the last use, and if so, update the
 | 
						|
    // live variables information so that it knows the copy source
 | 
						|
    // instruction kills the incoming value.
 | 
						|
    //
 | 
						|
    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
 | 
						|
 | 
						|
    // Loop over all of the successors of the basic block, checking to see
 | 
						|
    // if the value is either live in the block, or if it is killed in the
 | 
						|
    // block.  Also check to see if this register is in use by another PHI
 | 
						|
    // node which has not yet been eliminated.  If so, it will be killed
 | 
						|
    // at an appropriate point later.
 | 
						|
    //
 | 
						|
 | 
						|
    // Is it used by any PHI instructions in this block?
 | 
						|
    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
 | 
						|
 | 
						|
    std::vector<MachineBasicBlock*> OpSuccBlocks;
 | 
						|
    
 | 
						|
    // Otherwise, scan successors, including the BB the PHI node lives in.
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
 | 
						|
           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
 | 
						|
      MachineBasicBlock *SuccMBB = *SI;
 | 
						|
 | 
						|
      // Is it alive in this successor?
 | 
						|
      unsigned SuccIdx = SuccMBB->getNumber();
 | 
						|
      if (SuccIdx < InRegVI.AliveBlocks.size() &&
 | 
						|
          InRegVI.AliveBlocks[SuccIdx]) {
 | 
						|
        ValueIsLive = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      OpSuccBlocks.push_back(SuccMBB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if this value is live because there is a use in a successor
 | 
						|
    // that kills it.
 | 
						|
    if (!ValueIsLive) {
 | 
						|
      switch (OpSuccBlocks.size()) {
 | 
						|
      case 1: {
 | 
						|
        MachineBasicBlock *MBB = OpSuccBlocks[0];
 | 
						|
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | 
						|
          if (InRegVI.Kills[i]->getParent() == MBB) {
 | 
						|
            ValueIsLive = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case 2: {
 | 
						|
        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
 | 
						|
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | 
						|
          if (InRegVI.Kills[i]->getParent() == MBB1 || 
 | 
						|
              InRegVI.Kills[i]->getParent() == MBB2) {
 | 
						|
            ValueIsLive = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        break;        
 | 
						|
      }
 | 
						|
      default:
 | 
						|
        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
 | 
						|
        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
 | 
						|
          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
 | 
						|
                                 InRegVI.Kills[i]->getParent())) {
 | 
						|
            ValueIsLive = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }        
 | 
						|
 | 
						|
    // Okay, if we now know that the value is not live out of the block,
 | 
						|
    // we can add a kill marker in this block saying that it kills the incoming
 | 
						|
    // value!
 | 
						|
    if (!ValueIsLive) {
 | 
						|
      // In our final twist, we have to decide which instruction kills the
 | 
						|
      // register.  In most cases this is the copy, however, the first 
 | 
						|
      // terminator instruction at the end of the block may also use the value.
 | 
						|
      // In this case, we should mark *it* as being the killing block, not the
 | 
						|
      // copy.
 | 
						|
      bool FirstTerminatorUsesValue = false;
 | 
						|
      if (I != opBlock.end()) {
 | 
						|
        FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
 | 
						|
      
 | 
						|
        // Check that no other terminators use values.
 | 
						|
#ifndef NDEBUG
 | 
						|
        for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
 | 
						|
             ++TI) {
 | 
						|
          assert(!InstructionUsesRegister(TI, SrcReg) &&
 | 
						|
                 "Terminator instructions cannot use virtual registers unless"
 | 
						|
                 "they are the first terminator in a block!");
 | 
						|
        }
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      
 | 
						|
      MachineBasicBlock::iterator KillInst;
 | 
						|
      if (!FirstTerminatorUsesValue) 
 | 
						|
        KillInst = prior(I);
 | 
						|
      else
 | 
						|
        KillInst = I;
 | 
						|
      
 | 
						|
      // Finally, mark it killed.
 | 
						|
      LV->addVirtualRegisterKilled(SrcReg, KillInst);
 | 
						|
 | 
						|
      // This vreg no longer lives all of the way through opBlock.
 | 
						|
      unsigned opBlockNum = opBlock.getNumber();
 | 
						|
      if (opBlockNum < InRegVI.AliveBlocks.size())
 | 
						|
        InRegVI.AliveBlocks[opBlockNum] = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Really delete the PHI instruction now!
 | 
						|
  delete MPhi;
 | 
						|
  ++NumAtomic;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzePHINodes - Gather information about the PHI nodes in here. In
 | 
						|
/// particular, we want to map the number of uses of a virtual register which is
 | 
						|
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
 | 
						|
/// used later to determine when the vreg is killed in the BB.
 | 
						|
///
 | 
						|
void PNE::analyzePHINodes(const MachineFunction& Fn) {
 | 
						|
  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
 | 
						|
       I != E; ++I)
 | 
						|
    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
 | 
						|
         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
 | 
						|
      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | 
						|
        ++VRegPHIUseCount[BBVRegPair(
 | 
						|
                            BBI->getOperand(i + 1).getMachineBasicBlock(),
 | 
						|
                            BBI->getOperand(i).getReg())];
 | 
						|
}
 |