341 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			341 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- UnwindInfoSection.cpp ----------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "UnwindInfoSection.h"
 | |
| #include "Config.h"
 | |
| #include "InputSection.h"
 | |
| #include "MergedOutputSection.h"
 | |
| #include "OutputSection.h"
 | |
| #include "OutputSegment.h"
 | |
| #include "Symbols.h"
 | |
| #include "SyntheticSections.h"
 | |
| #include "Target.h"
 | |
| 
 | |
| #include "lld/Common/ErrorHandler.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/BinaryFormat/MachO.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::MachO;
 | |
| using namespace lld;
 | |
| using namespace lld::macho;
 | |
| 
 | |
| #define COMMON_ENCODINGS_MAX 127
 | |
| #define COMPACT_ENCODINGS_MAX 256
 | |
| 
 | |
| #define SECOND_LEVEL_PAGE_BYTES 4096
 | |
| #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
 | |
| #define REGULAR_SECOND_LEVEL_ENTRIES_MAX                                       \
 | |
|   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
 | |
|     sizeof(unwind_info_regular_second_level_page_header)) /                    \
 | |
|    sizeof(unwind_info_regular_second_level_entry))
 | |
| #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX                                    \
 | |
|   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
 | |
|     sizeof(unwind_info_compressed_second_level_page_header)) /                 \
 | |
|    sizeof(uint32_t))
 | |
| 
 | |
| #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
 | |
| #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK                                      \
 | |
|   UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
 | |
| 
 | |
| // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
 | |
| // optimizes space and exception-time lookup.  Most DWARF unwind
 | |
| // entries can be replaced with Compact Unwind entries, but the ones
 | |
| // that cannot are retained in DWARF form.
 | |
| //
 | |
| // This comment will address macro-level organization of the pre-link
 | |
| // and post-link compact unwind tables. For micro-level organization
 | |
| // pertaining to the bitfield layout of the 32-bit compact unwind
 | |
| // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
 | |
| //
 | |
| // Important clarifying factoids:
 | |
| //
 | |
| // * __LD,__compact_unwind is the compact unwind format for compiler
 | |
| // output and linker input. It is never a final output. It could be
 | |
| // an intermediate output with the `-r` option which retains relocs.
 | |
| //
 | |
| // * __TEXT,__unwind_info is the compact unwind format for final
 | |
| // linker output. It is never an input.
 | |
| //
 | |
| // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
 | |
| //
 | |
| // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
 | |
| // level) by ascending address, and the pages are referenced by an
 | |
| // index (1st level) in the section header.
 | |
| //
 | |
| // * Following the headers in __TEXT,__unwind_info, the bulk of the
 | |
| // section contains a vector of compact unwind entries
 | |
| // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
 | |
| // Adjacent entries with the same encoding can be folded to great
 | |
| // advantage, achieving a 3-order-of-magnitude reduction in the
 | |
| // number of entries.
 | |
| //
 | |
| // * The __TEXT,__unwind_info format can accommodate up to 127 unique
 | |
| // encodings for the space-efficient compressed format. In practice,
 | |
| // fewer than a dozen unique encodings are used by C++ programs of
 | |
| // all sizes. Therefore, we don't even bother implementing the regular
 | |
| // non-compressed format. Time will tell if anyone in the field ever
 | |
| // overflows the 127-encodings limit.
 | |
| 
 | |
| // TODO(gkm): prune __eh_frame entries superseded by __unwind_info
 | |
| // TODO(gkm): how do we align the 2nd-level pages?
 | |
| 
 | |
| UnwindInfoSection::UnwindInfoSection()
 | |
|     : SyntheticSection(segment_names::text, section_names::unwindInfo) {
 | |
|   align = WordSize; // TODO(gkm): make this 4 KiB ?
 | |
| }
 | |
| 
 | |
| bool UnwindInfoSection::isNeeded() const {
 | |
|   return (compactUnwindSection != nullptr);
 | |
| }
 | |
| 
 | |
| // Scan the __LD,__compact_unwind entries and compute the space needs of
 | |
| // __TEXT,__unwind_info and __TEXT,__eh_frame
 | |
| 
 | |
| void UnwindInfoSection::finalize() {
 | |
|   if (compactUnwindSection == nullptr)
 | |
|     return;
 | |
| 
 | |
|   // At this point, the address space for __TEXT,__text has been
 | |
|   // assigned, so we can relocate the __LD,__compact_unwind entries
 | |
|   // into a temporary buffer. Relocation is necessary in order to sort
 | |
|   // the CU entries by function address. Sorting is necessary so that
 | |
|   // we can fold adjacent CU entries with identical
 | |
|   // encoding+personality+lsda. Folding is necessary because it reduces
 | |
|   // the number of CU entries by as much as 3 orders of magnitude!
 | |
|   compactUnwindSection->finalize();
 | |
|   assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry64) == 0);
 | |
|   size_t cuCount =
 | |
|       compactUnwindSection->getSize() / sizeof(CompactUnwindEntry64);
 | |
|   cuVector.resize(cuCount);
 | |
|   // Relocate all __LD,__compact_unwind entries
 | |
|   compactUnwindSection->writeTo(reinterpret_cast<uint8_t *>(cuVector.data()));
 | |
| 
 | |
|   // Rather than sort & fold the 32-byte entries directly, we create a
 | |
|   // vector of pointers to entries and sort & fold that instead.
 | |
|   cuPtrVector.reserve(cuCount);
 | |
|   for (const CompactUnwindEntry64 &cuEntry : cuVector)
 | |
|     cuPtrVector.emplace_back(&cuEntry);
 | |
|   std::sort(cuPtrVector.begin(), cuPtrVector.end(),
 | |
|             [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
 | |
|               return a->functionAddress < b->functionAddress;
 | |
|             });
 | |
| 
 | |
|   // Fold adjacent entries with matching encoding+personality+lsda
 | |
|   // We use three iterators on the same cuPtrVector to fold in-situ:
 | |
|   // (1) `foldBegin` is the first of a potential sequence of matching entries
 | |
|   // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
 | |
|   // The semi-open interval [ foldBegin .. foldEnd ) contains a range
 | |
|   // entries that can be folded into a single entry and written to ...
 | |
|   // (3) `foldWrite`
 | |
|   auto foldWrite = cuPtrVector.begin();
 | |
|   for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
 | |
|     auto foldEnd = foldBegin;
 | |
|     while (++foldEnd < cuPtrVector.end() &&
 | |
|            (*foldBegin)->encoding == (*foldEnd)->encoding &&
 | |
|            (*foldBegin)->personality == (*foldEnd)->personality &&
 | |
|            (*foldBegin)->lsda == (*foldEnd)->lsda)
 | |
|       ;
 | |
|     *foldWrite++ = *foldBegin;
 | |
|     foldBegin = foldEnd;
 | |
|   }
 | |
|   cuPtrVector.erase(foldWrite, cuPtrVector.end());
 | |
| 
 | |
|   // Count frequencies of the folded encodings
 | |
|   EncodingMap encodingFrequencies;
 | |
|   for (auto cuPtrEntry : cuPtrVector)
 | |
|     encodingFrequencies[cuPtrEntry->encoding]++;
 | |
| 
 | |
|   // Make a vector of encodings, sorted by descending frequency
 | |
|   for (const auto &frequency : encodingFrequencies)
 | |
|     commonEncodings.emplace_back(frequency);
 | |
|   std::sort(commonEncodings.begin(), commonEncodings.end(),
 | |
|             [](const std::pair<compact_unwind_encoding_t, size_t> &a,
 | |
|                const std::pair<compact_unwind_encoding_t, size_t> &b) {
 | |
|               if (a.second == b.second)
 | |
|                 // When frequencies match, secondarily sort on encoding
 | |
|                 // to maintain parity with validate-unwind-info.py
 | |
|                 return a.first > b.first;
 | |
|               return a.second > b.second;
 | |
|             });
 | |
| 
 | |
|   // Truncate the vector to 127 elements.
 | |
|   // Common encoding indexes are limited to 0..126, while enconding
 | |
|   // indexes 127..255 are local to each second-level page
 | |
|   if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
 | |
|     commonEncodings.resize(COMMON_ENCODINGS_MAX);
 | |
| 
 | |
|   // Create a map from encoding to common-encoding-table index
 | |
|   for (size_t i = 0; i < commonEncodings.size(); i++)
 | |
|     commonEncodingIndexes[commonEncodings[i].first] = i;
 | |
| 
 | |
|   // Split folded encodings into pages, where each page is limited by ...
 | |
|   // (a) 4 KiB capacity
 | |
|   // (b) 24-bit difference between first & final function address
 | |
|   // (c) 8-bit compact-encoding-table index,
 | |
|   //     for which 0..126 references the global common-encodings table,
 | |
|   //     and 127..255 references a local per-second-level-page table.
 | |
|   // First we try the compact format and determine how many entries fit.
 | |
|   // If more entries fit in the regular format, we use that.
 | |
|   for (size_t i = 0; i < cuPtrVector.size();) {
 | |
|     secondLevelPages.emplace_back();
 | |
|     auto &page = secondLevelPages.back();
 | |
|     page.entryIndex = i;
 | |
|     uintptr_t functionAddressMax =
 | |
|         cuPtrVector[i]->functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
 | |
|     size_t n = commonEncodings.size();
 | |
|     size_t wordsRemaining =
 | |
|         SECOND_LEVEL_PAGE_WORDS -
 | |
|         sizeof(unwind_info_compressed_second_level_page_header) /
 | |
|             sizeof(uint32_t);
 | |
|     while (wordsRemaining >= 1 && i < cuPtrVector.size()) {
 | |
|       const auto *cuPtr = cuPtrVector[i];
 | |
|       if (cuPtr->functionAddress >= functionAddressMax) {
 | |
|         break;
 | |
|       } else if (commonEncodingIndexes.count(cuPtr->encoding) ||
 | |
|                  page.localEncodingIndexes.count(cuPtr->encoding)) {
 | |
|         i++;
 | |
|         wordsRemaining--;
 | |
|       } else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
 | |
|         page.localEncodings.emplace_back(cuPtr->encoding);
 | |
|         page.localEncodingIndexes[cuPtr->encoding] = n++;
 | |
|         i++;
 | |
|         wordsRemaining -= 2;
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     page.entryCount = i - page.entryIndex;
 | |
| 
 | |
|     // If this is not the final page, see if it's possible to fit more
 | |
|     // entries by using the regular format. This can happen when there
 | |
|     // are many unique encodings, and we we saturated the local
 | |
|     // encoding table early.
 | |
|     if (i < cuPtrVector.size() &&
 | |
|         page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
 | |
|       page.kind = UNWIND_SECOND_LEVEL_REGULAR;
 | |
|       page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
 | |
|                                  cuPtrVector.size() - page.entryIndex);
 | |
|       i = page.entryIndex + page.entryCount;
 | |
|     } else {
 | |
|       page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // compute size of __TEXT,__unwind_info section
 | |
|   level2PagesOffset =
 | |
|       sizeof(unwind_info_section_header) +
 | |
|       commonEncodings.size() * sizeof(uint32_t) +
 | |
|       personalities.size() * sizeof(uint32_t) +
 | |
|       // The extra second-level-page entry is for the sentinel
 | |
|       (secondLevelPages.size() + 1) *
 | |
|           sizeof(unwind_info_section_header_index_entry) +
 | |
|       lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
 | |
|   unwindInfoSize =
 | |
|       level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
 | |
| }
 | |
| 
 | |
| // All inputs are relocated and output addresses are known, so write!
 | |
| 
 | |
| void UnwindInfoSection::writeTo(uint8_t *buf) const {
 | |
|   // section header
 | |
|   auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
 | |
|   uip->version = 1;
 | |
|   uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
 | |
|   uip->commonEncodingsArrayCount = commonEncodings.size();
 | |
|   uip->personalityArraySectionOffset =
 | |
|       uip->commonEncodingsArraySectionOffset +
 | |
|       (uip->commonEncodingsArrayCount * sizeof(uint32_t));
 | |
|   uip->personalityArrayCount = personalities.size();
 | |
|   uip->indexSectionOffset = uip->personalityArraySectionOffset +
 | |
|                             (uip->personalityArrayCount * sizeof(uint32_t));
 | |
|   uip->indexCount = secondLevelPages.size() + 1;
 | |
| 
 | |
|   // Common encodings
 | |
|   auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
 | |
|   for (const auto &encoding : commonEncodings)
 | |
|     *i32p++ = encoding.first;
 | |
| 
 | |
|   // Personalities
 | |
|   for (const uint32_t &personality : personalities)
 | |
|     *i32p++ = personality;
 | |
| 
 | |
|   // Level-1 index
 | |
|   uint32_t lsdaOffset =
 | |
|       uip->indexSectionOffset +
 | |
|       uip->indexCount * sizeof(unwind_info_section_header_index_entry);
 | |
|   uint64_t l2PagesOffset = level2PagesOffset;
 | |
|   auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
 | |
|   for (const SecondLevelPage &page : secondLevelPages) {
 | |
|     iep->functionOffset = cuPtrVector[page.entryIndex]->functionAddress;
 | |
|     iep->secondLevelPagesSectionOffset = l2PagesOffset;
 | |
|     iep->lsdaIndexArraySectionOffset = lsdaOffset;
 | |
|     iep++;
 | |
|     l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
 | |
|   }
 | |
|   // Level-1 sentinel
 | |
|   const CompactUnwindEntry64 &cuEnd = cuVector.back();
 | |
|   iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
 | |
|   iep->secondLevelPagesSectionOffset = 0;
 | |
|   iep->lsdaIndexArraySectionOffset = lsdaOffset;
 | |
|   iep++;
 | |
| 
 | |
|   // LSDAs
 | |
|   auto *lep =
 | |
|       reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
 | |
|   for (const unwind_info_section_header_lsda_index_entry &lsda : lsdaEntries) {
 | |
|     lep->functionOffset = lsda.functionOffset;
 | |
|     lep->lsdaOffset = lsda.lsdaOffset;
 | |
|   }
 | |
| 
 | |
|   // Level-2 pages
 | |
|   auto *pp = reinterpret_cast<uint32_t *>(lep);
 | |
|   for (const SecondLevelPage &page : secondLevelPages) {
 | |
|     if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
 | |
|       uintptr_t functionAddressBase =
 | |
|           cuPtrVector[page.entryIndex]->functionAddress;
 | |
|       auto *p2p =
 | |
|           reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
 | |
|               pp);
 | |
|       p2p->kind = page.kind;
 | |
|       p2p->entryPageOffset =
 | |
|           sizeof(unwind_info_compressed_second_level_page_header);
 | |
|       p2p->entryCount = page.entryCount;
 | |
|       p2p->encodingsPageOffset =
 | |
|           p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
 | |
|       p2p->encodingsCount = page.localEncodings.size();
 | |
|       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
 | |
|       for (size_t i = 0; i < page.entryCount; i++) {
 | |
|         const CompactUnwindEntry64 *cuep = cuPtrVector[page.entryIndex + i];
 | |
|         auto it = commonEncodingIndexes.find(cuep->encoding);
 | |
|         if (it == commonEncodingIndexes.end())
 | |
|           it = page.localEncodingIndexes.find(cuep->encoding);
 | |
|         *ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
 | |
|                 (cuep->functionAddress - functionAddressBase);
 | |
|       }
 | |
|       if (page.localEncodings.size() != 0)
 | |
|         memcpy(ep, page.localEncodings.data(),
 | |
|                page.localEncodings.size() * sizeof(uint32_t));
 | |
|     } else {
 | |
|       auto *p2p =
 | |
|           reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
 | |
|       p2p->kind = page.kind;
 | |
|       p2p->entryPageOffset =
 | |
|           sizeof(unwind_info_regular_second_level_page_header);
 | |
|       p2p->entryCount = page.entryCount;
 | |
|       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
 | |
|       for (size_t i = 0; i < page.entryCount; i++) {
 | |
|         const CompactUnwindEntry64 *cuep = cuPtrVector[page.entryIndex + i];
 | |
|         *ep++ = cuep->functionAddress;
 | |
|         *ep++ = cuep->encoding;
 | |
|       }
 | |
|     }
 | |
|     pp += SECOND_LEVEL_PAGE_WORDS;
 | |
|   }
 | |
| }
 |