1190 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1190 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "llvm/MC/MCTargetAsmParser.h"
 | 
						|
#include "llvm/MC/MCStreamer.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCSubtargetInfo.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmLexer.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmParser.h"
 | 
						|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Support/SourceMgr.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
struct X86Operand;
 | 
						|
 | 
						|
class X86ATTAsmParser : public MCTargetAsmParser {
 | 
						|
  MCSubtargetInfo &STI;
 | 
						|
  MCAsmParser &Parser;
 | 
						|
 | 
						|
private:
 | 
						|
  MCAsmParser &getParser() const { return Parser; }
 | 
						|
 | 
						|
  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
 | 
						|
 | 
						|
  bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
 | 
						|
 | 
						|
  X86Operand *ParseOperand();
 | 
						|
  X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
 | 
						|
 | 
						|
  bool ParseDirectiveWord(unsigned Size, SMLoc L);
 | 
						|
  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
 | 
						|
 | 
						|
  bool MatchAndEmitInstruction(SMLoc IDLoc,
 | 
						|
                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
 | 
						|
                               MCStreamer &Out);
 | 
						|
 | 
						|
  /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
 | 
						|
  /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
 | 
						|
  bool isSrcOp(X86Operand &Op);
 | 
						|
 | 
						|
  /// isDstOp - Returns true if operand is either %es:(%rdi) in 64bit mode
 | 
						|
  /// or %es:(%edi) in 32bit mode.
 | 
						|
  bool isDstOp(X86Operand &Op);
 | 
						|
 | 
						|
  bool is64BitMode() const {
 | 
						|
    // FIXME: Can tablegen auto-generate this?
 | 
						|
    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
 | 
						|
  }
 | 
						|
  void SwitchMode() {
 | 
						|
    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit));
 | 
						|
    setAvailableFeatures(FB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @name Auto-generated Matcher Functions
 | 
						|
  /// {
 | 
						|
 | 
						|
#define GET_ASSEMBLER_HEADER
 | 
						|
#include "X86GenAsmMatcher.inc"
 | 
						|
 | 
						|
  /// }
 | 
						|
 | 
						|
public:
 | 
						|
  X86ATTAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
 | 
						|
    : MCTargetAsmParser(), STI(sti), Parser(parser) {
 | 
						|
 | 
						|
    // Initialize the set of available features.
 | 
						|
    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
 | 
						|
  }
 | 
						|
  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
 | 
						|
 | 
						|
  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
 | 
						|
                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
 | 
						|
 | 
						|
  virtual bool ParseDirective(AsmToken DirectiveID);
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// @name Auto-generated Match Functions
 | 
						|
/// {
 | 
						|
 | 
						|
static unsigned MatchRegisterName(StringRef Name);
 | 
						|
 | 
						|
/// }
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// X86Operand - Instances of this class represent a parsed X86 machine
 | 
						|
/// instruction.
 | 
						|
struct X86Operand : public MCParsedAsmOperand {
 | 
						|
  enum KindTy {
 | 
						|
    Token,
 | 
						|
    Register,
 | 
						|
    Immediate,
 | 
						|
    Memory
 | 
						|
  } Kind;
 | 
						|
 | 
						|
  SMLoc StartLoc, EndLoc;
 | 
						|
 | 
						|
  union {
 | 
						|
    struct {
 | 
						|
      const char *Data;
 | 
						|
      unsigned Length;
 | 
						|
    } Tok;
 | 
						|
 | 
						|
    struct {
 | 
						|
      unsigned RegNo;
 | 
						|
    } Reg;
 | 
						|
 | 
						|
    struct {
 | 
						|
      const MCExpr *Val;
 | 
						|
    } Imm;
 | 
						|
 | 
						|
    struct {
 | 
						|
      unsigned SegReg;
 | 
						|
      const MCExpr *Disp;
 | 
						|
      unsigned BaseReg;
 | 
						|
      unsigned IndexReg;
 | 
						|
      unsigned Scale;
 | 
						|
    } Mem;
 | 
						|
  };
 | 
						|
 | 
						|
  X86Operand(KindTy K, SMLoc Start, SMLoc End)
 | 
						|
    : Kind(K), StartLoc(Start), EndLoc(End) {}
 | 
						|
 | 
						|
  /// getStartLoc - Get the location of the first token of this operand.
 | 
						|
  SMLoc getStartLoc() const { return StartLoc; }
 | 
						|
  /// getEndLoc - Get the location of the last token of this operand.
 | 
						|
  SMLoc getEndLoc() const { return EndLoc; }
 | 
						|
 | 
						|
  virtual void print(raw_ostream &OS) const {}
 | 
						|
 | 
						|
  StringRef getToken() const {
 | 
						|
    assert(Kind == Token && "Invalid access!");
 | 
						|
    return StringRef(Tok.Data, Tok.Length);
 | 
						|
  }
 | 
						|
  void setTokenValue(StringRef Value) {
 | 
						|
    assert(Kind == Token && "Invalid access!");
 | 
						|
    Tok.Data = Value.data();
 | 
						|
    Tok.Length = Value.size();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getReg() const {
 | 
						|
    assert(Kind == Register && "Invalid access!");
 | 
						|
    return Reg.RegNo;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCExpr *getImm() const {
 | 
						|
    assert(Kind == Immediate && "Invalid access!");
 | 
						|
    return Imm.Val;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCExpr *getMemDisp() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.Disp;
 | 
						|
  }
 | 
						|
  unsigned getMemSegReg() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.SegReg;
 | 
						|
  }
 | 
						|
  unsigned getMemBaseReg() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.BaseReg;
 | 
						|
  }
 | 
						|
  unsigned getMemIndexReg() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.IndexReg;
 | 
						|
  }
 | 
						|
  unsigned getMemScale() const {
 | 
						|
    assert(Kind == Memory && "Invalid access!");
 | 
						|
    return Mem.Scale;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isToken() const {return Kind == Token; }
 | 
						|
 | 
						|
  bool isImm() const { return Kind == Immediate; }
 | 
						|
 | 
						|
  bool isImmSExti16i8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    uint64_t Value = CE->getValue();
 | 
						|
    return ((                                  Value <= 0x000000000000007FULL)||
 | 
						|
            (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
 | 
						|
            (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
  }
 | 
						|
  bool isImmSExti32i8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    uint64_t Value = CE->getValue();
 | 
						|
    return ((                                  Value <= 0x000000000000007FULL)||
 | 
						|
            (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
 | 
						|
            (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
  }
 | 
						|
  bool isImmZExtu32u8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    uint64_t Value = CE->getValue();
 | 
						|
    return (Value <= 0x00000000000000FFULL);
 | 
						|
  }
 | 
						|
  bool isImmSExti64i8() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    uint64_t Value = CE->getValue();
 | 
						|
    return ((                                  Value <= 0x000000000000007FULL)||
 | 
						|
            (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
  }
 | 
						|
  bool isImmSExti64i32() const {
 | 
						|
    if (!isImm())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this isn't a constant expr, just assume it fits and let relaxation
 | 
						|
    // handle it.
 | 
						|
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
 | 
						|
    if (!CE)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise, check the value is in a range that makes sense for this
 | 
						|
    // extension.
 | 
						|
    uint64_t Value = CE->getValue();
 | 
						|
    return ((                                  Value <= 0x000000007FFFFFFFULL)||
 | 
						|
            (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
 | 
						|
  }
 | 
						|
 | 
						|
  bool isMem() const { return Kind == Memory; }
 | 
						|
 | 
						|
  bool isAbsMem() const {
 | 
						|
    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
 | 
						|
      !getMemIndexReg() && getMemScale() == 1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isReg() const { return Kind == Register; }
 | 
						|
 | 
						|
  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
 | 
						|
    // Add as immediates when possible.
 | 
						|
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
 | 
						|
      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
 | 
						|
    else
 | 
						|
      Inst.addOperand(MCOperand::CreateExpr(Expr));
 | 
						|
  }
 | 
						|
 | 
						|
  void addRegOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert(N == 1 && "Invalid number of operands!");
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getReg()));
 | 
						|
  }
 | 
						|
 | 
						|
  void addImmOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert(N == 1 && "Invalid number of operands!");
 | 
						|
    addExpr(Inst, getImm());
 | 
						|
  }
 | 
						|
 | 
						|
  void addMemOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert((N == 5) && "Invalid number of operands!");
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
 | 
						|
    Inst.addOperand(MCOperand::CreateImm(getMemScale()));
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
 | 
						|
    addExpr(Inst, getMemDisp());
 | 
						|
    Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
 | 
						|
  }
 | 
						|
 | 
						|
  void addAbsMemOperands(MCInst &Inst, unsigned N) const {
 | 
						|
    assert((N == 1) && "Invalid number of operands!");
 | 
						|
    Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
 | 
						|
  }
 | 
						|
 | 
						|
  static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
 | 
						|
    X86Operand *Res = new X86Operand(Token, Loc, Loc);
 | 
						|
    Res->Tok.Data = Str.data();
 | 
						|
    Res->Tok.Length = Str.size();
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) {
 | 
						|
    X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
 | 
						|
    Res->Reg.RegNo = RegNo;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
 | 
						|
    X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
 | 
						|
    Res->Imm.Val = Val;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create an absolute memory operand.
 | 
						|
  static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc,
 | 
						|
                               SMLoc EndLoc) {
 | 
						|
    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
 | 
						|
    Res->Mem.SegReg   = 0;
 | 
						|
    Res->Mem.Disp     = Disp;
 | 
						|
    Res->Mem.BaseReg  = 0;
 | 
						|
    Res->Mem.IndexReg = 0;
 | 
						|
    Res->Mem.Scale    = 1;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create a generalized memory operand.
 | 
						|
  static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
 | 
						|
                               unsigned BaseReg, unsigned IndexReg,
 | 
						|
                               unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) {
 | 
						|
    // We should never just have a displacement, that should be parsed as an
 | 
						|
    // absolute memory operand.
 | 
						|
    assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
 | 
						|
 | 
						|
    // The scale should always be one of {1,2,4,8}.
 | 
						|
    assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
 | 
						|
           "Invalid scale!");
 | 
						|
    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
 | 
						|
    Res->Mem.SegReg   = SegReg;
 | 
						|
    Res->Mem.Disp     = Disp;
 | 
						|
    Res->Mem.BaseReg  = BaseReg;
 | 
						|
    Res->Mem.IndexReg = IndexReg;
 | 
						|
    Res->Mem.Scale    = Scale;
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
bool X86ATTAsmParser::isSrcOp(X86Operand &Op) {
 | 
						|
  unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI;
 | 
						|
 | 
						|
  return (Op.isMem() &&
 | 
						|
    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
 | 
						|
    isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
 | 
						|
}
 | 
						|
 | 
						|
bool X86ATTAsmParser::isDstOp(X86Operand &Op) {
 | 
						|
  unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI;
 | 
						|
 | 
						|
  return Op.isMem() && Op.Mem.SegReg == X86::ES &&
 | 
						|
    isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
 | 
						|
}
 | 
						|
 | 
						|
bool X86ATTAsmParser::ParseRegister(unsigned &RegNo,
 | 
						|
                                    SMLoc &StartLoc, SMLoc &EndLoc) {
 | 
						|
  RegNo = 0;
 | 
						|
  const AsmToken &TokPercent = Parser.getTok();
 | 
						|
  assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!");
 | 
						|
  StartLoc = TokPercent.getLoc();
 | 
						|
  Parser.Lex(); // Eat percent token.
 | 
						|
 | 
						|
  const AsmToken &Tok = Parser.getTok();
 | 
						|
  if (Tok.isNot(AsmToken::Identifier))
 | 
						|
    return Error(Tok.getLoc(), "invalid register name");
 | 
						|
 | 
						|
  RegNo = MatchRegisterName(Tok.getString());
 | 
						|
 | 
						|
  // If the match failed, try the register name as lowercase.
 | 
						|
  if (RegNo == 0)
 | 
						|
    RegNo = MatchRegisterName(LowercaseString(Tok.getString()));
 | 
						|
 | 
						|
  if (!is64BitMode()) {
 | 
						|
    // FIXME: This should be done using Requires<In32BitMode> and
 | 
						|
    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
 | 
						|
    // checked.
 | 
						|
    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
 | 
						|
    // REX prefix.
 | 
						|
    if (RegNo == X86::RIZ ||
 | 
						|
        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
 | 
						|
        X86II::isX86_64NonExtLowByteReg(RegNo) ||
 | 
						|
        X86II::isX86_64ExtendedReg(RegNo))
 | 
						|
      return Error(Tok.getLoc(), "register %"
 | 
						|
                   + Tok.getString() + " is only available in 64-bit mode");
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
 | 
						|
  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
 | 
						|
    RegNo = X86::ST0;
 | 
						|
    EndLoc = Tok.getLoc();
 | 
						|
    Parser.Lex(); // Eat 'st'
 | 
						|
 | 
						|
    // Check to see if we have '(4)' after %st.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen))
 | 
						|
      return false;
 | 
						|
    // Lex the paren.
 | 
						|
    getParser().Lex();
 | 
						|
 | 
						|
    const AsmToken &IntTok = Parser.getTok();
 | 
						|
    if (IntTok.isNot(AsmToken::Integer))
 | 
						|
      return Error(IntTok.getLoc(), "expected stack index");
 | 
						|
    switch (IntTok.getIntVal()) {
 | 
						|
    case 0: RegNo = X86::ST0; break;
 | 
						|
    case 1: RegNo = X86::ST1; break;
 | 
						|
    case 2: RegNo = X86::ST2; break;
 | 
						|
    case 3: RegNo = X86::ST3; break;
 | 
						|
    case 4: RegNo = X86::ST4; break;
 | 
						|
    case 5: RegNo = X86::ST5; break;
 | 
						|
    case 6: RegNo = X86::ST6; break;
 | 
						|
    case 7: RegNo = X86::ST7; break;
 | 
						|
    default: return Error(IntTok.getLoc(), "invalid stack index");
 | 
						|
    }
 | 
						|
 | 
						|
    if (getParser().Lex().isNot(AsmToken::RParen))
 | 
						|
      return Error(Parser.getTok().getLoc(), "expected ')'");
 | 
						|
 | 
						|
    EndLoc = Tok.getLoc();
 | 
						|
    Parser.Lex(); // Eat ')'
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is "db[0-7]", match it as an alias
 | 
						|
  // for dr[0-7].
 | 
						|
  if (RegNo == 0 && Tok.getString().size() == 3 &&
 | 
						|
      Tok.getString().startswith("db")) {
 | 
						|
    switch (Tok.getString()[2]) {
 | 
						|
    case '0': RegNo = X86::DR0; break;
 | 
						|
    case '1': RegNo = X86::DR1; break;
 | 
						|
    case '2': RegNo = X86::DR2; break;
 | 
						|
    case '3': RegNo = X86::DR3; break;
 | 
						|
    case '4': RegNo = X86::DR4; break;
 | 
						|
    case '5': RegNo = X86::DR5; break;
 | 
						|
    case '6': RegNo = X86::DR6; break;
 | 
						|
    case '7': RegNo = X86::DR7; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RegNo != 0) {
 | 
						|
      EndLoc = Tok.getLoc();
 | 
						|
      Parser.Lex(); // Eat it.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (RegNo == 0)
 | 
						|
    return Error(Tok.getLoc(), "invalid register name");
 | 
						|
 | 
						|
  EndLoc = Tok.getLoc();
 | 
						|
  Parser.Lex(); // Eat identifier token.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
X86Operand *X86ATTAsmParser::ParseOperand() {
 | 
						|
  switch (getLexer().getKind()) {
 | 
						|
  default:
 | 
						|
    // Parse a memory operand with no segment register.
 | 
						|
    return ParseMemOperand(0, Parser.getTok().getLoc());
 | 
						|
  case AsmToken::Percent: {
 | 
						|
    // Read the register.
 | 
						|
    unsigned RegNo;
 | 
						|
    SMLoc Start, End;
 | 
						|
    if (ParseRegister(RegNo, Start, End)) return 0;
 | 
						|
    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
 | 
						|
      Error(Start, "%eiz and %riz can only be used as index registers");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a segment register followed by a ':', then this is the start
 | 
						|
    // of a memory reference, otherwise this is a normal register reference.
 | 
						|
    if (getLexer().isNot(AsmToken::Colon))
 | 
						|
      return X86Operand::CreateReg(RegNo, Start, End);
 | 
						|
 | 
						|
 | 
						|
    getParser().Lex(); // Eat the colon.
 | 
						|
    return ParseMemOperand(RegNo, Start);
 | 
						|
  }
 | 
						|
  case AsmToken::Dollar: {
 | 
						|
    // $42 -> immediate.
 | 
						|
    SMLoc Start = Parser.getTok().getLoc(), End;
 | 
						|
    Parser.Lex();
 | 
						|
    const MCExpr *Val;
 | 
						|
    if (getParser().ParseExpression(Val, End))
 | 
						|
      return 0;
 | 
						|
    return X86Operand::CreateImm(Val, Start, End);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
 | 
						|
/// has already been parsed if present.
 | 
						|
X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
 | 
						|
 | 
						|
  // We have to disambiguate a parenthesized expression "(4+5)" from the start
 | 
						|
  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
 | 
						|
  // only way to do this without lookahead is to eat the '(' and see what is
 | 
						|
  // after it.
 | 
						|
  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
 | 
						|
  if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
    SMLoc ExprEnd;
 | 
						|
    if (getParser().ParseExpression(Disp, ExprEnd)) return 0;
 | 
						|
 | 
						|
    // After parsing the base expression we could either have a parenthesized
 | 
						|
    // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
    if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
      // Unless we have a segment register, treat this as an immediate.
 | 
						|
      if (SegReg == 0)
 | 
						|
        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
 | 
						|
      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
 | 
						|
    }
 | 
						|
 | 
						|
    // Eat the '('.
 | 
						|
    Parser.Lex();
 | 
						|
  } else {
 | 
						|
    // Okay, we have a '('.  We don't know if this is an expression or not, but
 | 
						|
    // so we have to eat the ( to see beyond it.
 | 
						|
    SMLoc LParenLoc = Parser.getTok().getLoc();
 | 
						|
    Parser.Lex(); // Eat the '('.
 | 
						|
 | 
						|
    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
 | 
						|
      // Nothing to do here, fall into the code below with the '(' part of the
 | 
						|
      // memory operand consumed.
 | 
						|
    } else {
 | 
						|
      SMLoc ExprEnd;
 | 
						|
 | 
						|
      // It must be an parenthesized expression, parse it now.
 | 
						|
      if (getParser().ParseParenExpression(Disp, ExprEnd))
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // After parsing the base expression we could either have a parenthesized
 | 
						|
      // memory address or not.  If not, return now.  If so, eat the (.
 | 
						|
      if (getLexer().isNot(AsmToken::LParen)) {
 | 
						|
        // Unless we have a segment register, treat this as an immediate.
 | 
						|
        if (SegReg == 0)
 | 
						|
          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
 | 
						|
        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
 | 
						|
      }
 | 
						|
 | 
						|
      // Eat the '('.
 | 
						|
      Parser.Lex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reached here, then we just ate the ( of the memory operand.  Process
 | 
						|
  // the rest of the memory operand.
 | 
						|
  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Percent)) {
 | 
						|
    SMLoc L;
 | 
						|
    if (ParseRegister(BaseReg, L, L)) return 0;
 | 
						|
    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
 | 
						|
      Error(L, "eiz and riz can only be used as index registers");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::Comma)) {
 | 
						|
    Parser.Lex(); // Eat the comma.
 | 
						|
 | 
						|
    // Following the comma we should have either an index register, or a scale
 | 
						|
    // value. We don't support the later form, but we want to parse it
 | 
						|
    // correctly.
 | 
						|
    //
 | 
						|
    // Not that even though it would be completely consistent to support syntax
 | 
						|
    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
 | 
						|
    if (getLexer().is(AsmToken::Percent)) {
 | 
						|
      SMLoc L;
 | 
						|
      if (ParseRegister(IndexReg, L, L)) return 0;
 | 
						|
 | 
						|
      if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
        // Parse the scale amount:
 | 
						|
        //  ::= ',' [scale-expression]
 | 
						|
        if (getLexer().isNot(AsmToken::Comma)) {
 | 
						|
          Error(Parser.getTok().getLoc(),
 | 
						|
                "expected comma in scale expression");
 | 
						|
          return 0;
 | 
						|
        }
 | 
						|
        Parser.Lex(); // Eat the comma.
 | 
						|
 | 
						|
        if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
          SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
          int64_t ScaleVal;
 | 
						|
          if (getParser().ParseAbsoluteExpression(ScaleVal))
 | 
						|
            return 0;
 | 
						|
 | 
						|
          // Validate the scale amount.
 | 
						|
          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
 | 
						|
            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
 | 
						|
            return 0;
 | 
						|
          }
 | 
						|
          Scale = (unsigned)ScaleVal;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
      // A scale amount without an index is ignored.
 | 
						|
      // index.
 | 
						|
      SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
 | 
						|
      int64_t Value;
 | 
						|
      if (getParser().ParseAbsoluteExpression(Value))
 | 
						|
        return 0;
 | 
						|
 | 
						|
      if (Value != 1)
 | 
						|
        Warning(Loc, "scale factor without index register is ignored");
 | 
						|
      Scale = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
 | 
						|
  if (getLexer().isNot(AsmToken::RParen)) {
 | 
						|
    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  SMLoc MemEnd = Parser.getTok().getLoc();
 | 
						|
  Parser.Lex(); // Eat the ')'.
 | 
						|
 | 
						|
  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
 | 
						|
                               MemStart, MemEnd);
 | 
						|
}
 | 
						|
 | 
						|
bool X86ATTAsmParser::
 | 
						|
ParseInstruction(StringRef Name, SMLoc NameLoc,
 | 
						|
                 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
 | 
						|
  StringRef PatchedName = Name;
 | 
						|
 | 
						|
  // FIXME: Hack to recognize setneb as setne.
 | 
						|
  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
 | 
						|
      PatchedName != "setb" && PatchedName != "setnb")
 | 
						|
    PatchedName = PatchedName.substr(0, Name.size()-1);
 | 
						|
  
 | 
						|
  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
 | 
						|
  const MCExpr *ExtraImmOp = 0;
 | 
						|
  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
 | 
						|
      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
 | 
						|
       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
 | 
						|
    bool IsVCMP = PatchedName.startswith("vcmp");
 | 
						|
    unsigned SSECCIdx = IsVCMP ? 4 : 3;
 | 
						|
    unsigned SSEComparisonCode = StringSwitch<unsigned>(
 | 
						|
      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
 | 
						|
      .Case("eq",          0)
 | 
						|
      .Case("lt",          1)
 | 
						|
      .Case("le",          2)
 | 
						|
      .Case("unord",       3)
 | 
						|
      .Case("neq",         4)
 | 
						|
      .Case("nlt",         5)
 | 
						|
      .Case("nle",         6)
 | 
						|
      .Case("ord",         7)
 | 
						|
      .Case("eq_uq",       8)
 | 
						|
      .Case("nge",         9)
 | 
						|
      .Case("ngt",      0x0A)
 | 
						|
      .Case("false",    0x0B)
 | 
						|
      .Case("neq_oq",   0x0C)
 | 
						|
      .Case("ge",       0x0D)
 | 
						|
      .Case("gt",       0x0E)
 | 
						|
      .Case("true",     0x0F)
 | 
						|
      .Case("eq_os",    0x10)
 | 
						|
      .Case("lt_oq",    0x11)
 | 
						|
      .Case("le_oq",    0x12)
 | 
						|
      .Case("unord_s",  0x13)
 | 
						|
      .Case("neq_us",   0x14)
 | 
						|
      .Case("nlt_uq",   0x15)
 | 
						|
      .Case("nle_uq",   0x16)
 | 
						|
      .Case("ord_s",    0x17)
 | 
						|
      .Case("eq_us",    0x18)
 | 
						|
      .Case("nge_uq",   0x19)
 | 
						|
      .Case("ngt_uq",   0x1A)
 | 
						|
      .Case("false_os", 0x1B)
 | 
						|
      .Case("neq_os",   0x1C)
 | 
						|
      .Case("ge_oq",    0x1D)
 | 
						|
      .Case("gt_oq",    0x1E)
 | 
						|
      .Case("true_us",  0x1F)
 | 
						|
      .Default(~0U);
 | 
						|
    if (SSEComparisonCode != ~0U) {
 | 
						|
      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
 | 
						|
                                          getParser().getContext());
 | 
						|
      if (PatchedName.endswith("ss")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
 | 
						|
      } else if (PatchedName.endswith("sd")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
 | 
						|
      } else if (PatchedName.endswith("ps")) {
 | 
						|
        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
 | 
						|
      } else {
 | 
						|
        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
 | 
						|
        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
 | 
						|
 | 
						|
  if (ExtraImmOp)
 | 
						|
    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
 | 
						|
 | 
						|
 | 
						|
  // Determine whether this is an instruction prefix.
 | 
						|
  bool isPrefix =
 | 
						|
    Name == "lock" || Name == "rep" ||
 | 
						|
    Name == "repe" || Name == "repz" ||
 | 
						|
    Name == "repne" || Name == "repnz" ||
 | 
						|
    Name == "rex64" || Name == "data16";
 | 
						|
 | 
						|
 | 
						|
  // This does the actual operand parsing.  Don't parse any more if we have a
 | 
						|
  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
 | 
						|
  // just want to parse the "lock" as the first instruction and the "incl" as
 | 
						|
  // the next one.
 | 
						|
  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
 | 
						|
 | 
						|
    // Parse '*' modifier.
 | 
						|
    if (getLexer().is(AsmToken::Star)) {
 | 
						|
      SMLoc Loc = Parser.getTok().getLoc();
 | 
						|
      Operands.push_back(X86Operand::CreateToken("*", Loc));
 | 
						|
      Parser.Lex(); // Eat the star.
 | 
						|
    }
 | 
						|
 | 
						|
    // Read the first operand.
 | 
						|
    if (X86Operand *Op = ParseOperand())
 | 
						|
      Operands.push_back(Op);
 | 
						|
    else {
 | 
						|
      Parser.EatToEndOfStatement();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    while (getLexer().is(AsmToken::Comma)) {
 | 
						|
      Parser.Lex();  // Eat the comma.
 | 
						|
 | 
						|
      // Parse and remember the operand.
 | 
						|
      if (X86Operand *Op = ParseOperand())
 | 
						|
        Operands.push_back(Op);
 | 
						|
      else {
 | 
						|
        Parser.EatToEndOfStatement();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
      SMLoc Loc = getLexer().getLoc();
 | 
						|
      Parser.EatToEndOfStatement();
 | 
						|
      return Error(Loc, "unexpected token in argument list");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLexer().is(AsmToken::EndOfStatement))
 | 
						|
    Parser.Lex(); // Consume the EndOfStatement
 | 
						|
  else if (isPrefix && getLexer().is(AsmToken::Slash))
 | 
						|
    Parser.Lex(); // Consume the prefix separator Slash
 | 
						|
 | 
						|
  // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
 | 
						|
  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
 | 
						|
  // documented form in various unofficial manuals, so a lot of code uses it.
 | 
						|
  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.back();
 | 
						|
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | 
						|
        isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | 
						|
      SMLoc Loc = Op.getEndLoc();
 | 
						|
      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | 
						|
      delete &Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
 | 
						|
  if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    if (Op.isMem() && Op.Mem.SegReg == 0 &&
 | 
						|
        isa<MCConstantExpr>(Op.Mem.Disp) &&
 | 
						|
        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
 | 
						|
        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
 | 
						|
      SMLoc Loc = Op.getEndLoc();
 | 
						|
      Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
 | 
						|
      delete &Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
 | 
						|
  if (Name.startswith("ins") && Operands.size() == 3 &&
 | 
						|
      (Name == "insb" || Name == "insw" || Name == "insl")) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
 | 
						|
    if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
 | 
						|
      Operands.pop_back();
 | 
						|
      Operands.pop_back();
 | 
						|
      delete &Op;
 | 
						|
      delete &Op2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
 | 
						|
  if (Name.startswith("outs") && Operands.size() == 3 &&
 | 
						|
      (Name == "outsb" || Name == "outsw" || Name == "outsl")) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
 | 
						|
    if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
 | 
						|
      Operands.pop_back();
 | 
						|
      Operands.pop_back();
 | 
						|
      delete &Op;
 | 
						|
      delete &Op2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
 | 
						|
  if (Name.startswith("movs") && Operands.size() == 3 &&
 | 
						|
      (Name == "movsb" || Name == "movsw" || Name == "movsl" ||
 | 
						|
       (is64BitMode() && Name == "movsq"))) {
 | 
						|
    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
 | 
						|
    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
 | 
						|
    if (isSrcOp(Op) && isDstOp(Op2)) {
 | 
						|
      Operands.pop_back();
 | 
						|
      Operands.pop_back();
 | 
						|
      delete &Op;
 | 
						|
      delete &Op2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
 | 
						|
  if (Name.startswith("lods") && Operands.size() == 3 &&
 | 
						|
      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
 | 
						|
       Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) {
 | 
						|
    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
 | 
						|
    if (isSrcOp(*Op1) && Op2->isReg()) {
 | 
						|
      const char *ins;
 | 
						|
      unsigned reg = Op2->getReg();
 | 
						|
      bool isLods = Name == "lods";
 | 
						|
      if (reg == X86::AL && (isLods || Name == "lodsb"))
 | 
						|
        ins = "lodsb";
 | 
						|
      else if (reg == X86::AX && (isLods || Name == "lodsw"))
 | 
						|
        ins = "lodsw";
 | 
						|
      else if (reg == X86::EAX && (isLods || Name == "lodsl"))
 | 
						|
        ins = "lodsl";
 | 
						|
      else if (reg == X86::RAX && (isLods || Name == "lodsq"))
 | 
						|
        ins = "lodsq";
 | 
						|
      else
 | 
						|
        ins = NULL;
 | 
						|
      if (ins != NULL) {
 | 
						|
        Operands.pop_back();
 | 
						|
        Operands.pop_back();
 | 
						|
        delete Op1;
 | 
						|
        delete Op2;
 | 
						|
        if (Name != ins)
 | 
						|
          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
 | 
						|
  if (Name.startswith("stos") && Operands.size() == 3 &&
 | 
						|
      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
 | 
						|
       Name == "stosl" || (is64BitMode() && Name == "stosq"))) {
 | 
						|
    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
 | 
						|
    if (isDstOp(*Op2) && Op1->isReg()) {
 | 
						|
      const char *ins;
 | 
						|
      unsigned reg = Op1->getReg();
 | 
						|
      bool isStos = Name == "stos";
 | 
						|
      if (reg == X86::AL && (isStos || Name == "stosb"))
 | 
						|
        ins = "stosb";
 | 
						|
      else if (reg == X86::AX && (isStos || Name == "stosw"))
 | 
						|
        ins = "stosw";
 | 
						|
      else if (reg == X86::EAX && (isStos || Name == "stosl"))
 | 
						|
        ins = "stosl";
 | 
						|
      else if (reg == X86::RAX && (isStos || Name == "stosq"))
 | 
						|
        ins = "stosq";
 | 
						|
      else
 | 
						|
        ins = NULL;
 | 
						|
      if (ins != NULL) {
 | 
						|
        Operands.pop_back();
 | 
						|
        Operands.pop_back();
 | 
						|
        delete Op1;
 | 
						|
        delete Op2;
 | 
						|
        if (Name != ins)
 | 
						|
          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
 | 
						|
  // "shift <op>".
 | 
						|
  if ((Name.startswith("shr") || Name.startswith("sar") ||
 | 
						|
       Name.startswith("shl") || Name.startswith("sal") ||
 | 
						|
       Name.startswith("rcl") || Name.startswith("rcr") ||
 | 
						|
       Name.startswith("rol") || Name.startswith("ror")) &&
 | 
						|
      Operands.size() == 3) {
 | 
						|
    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
    if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
 | 
						|
        cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
 | 
						|
      delete Operands[1];
 | 
						|
      Operands.erase(Operands.begin() + 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
 | 
						|
  // instalias with an immediate operand yet.
 | 
						|
  if (Name == "int" && Operands.size() == 2) {
 | 
						|
    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
 | 
						|
    if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
 | 
						|
        cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
 | 
						|
      delete Operands[1];
 | 
						|
      Operands.erase(Operands.begin() + 1);
 | 
						|
      static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86ATTAsmParser::
 | 
						|
MatchAndEmitInstruction(SMLoc IDLoc,
 | 
						|
                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
 | 
						|
                        MCStreamer &Out) {
 | 
						|
  assert(!Operands.empty() && "Unexpect empty operand list!");
 | 
						|
  X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
 | 
						|
  assert(Op->isToken() && "Leading operand should always be a mnemonic!");
 | 
						|
 | 
						|
  // First, handle aliases that expand to multiple instructions.
 | 
						|
  // FIXME: This should be replaced with a real .td file alias mechanism.
 | 
						|
  // Also, MatchInstructionImpl should do actually *do* the EmitInstruction
 | 
						|
  // call.
 | 
						|
  if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
 | 
						|
      Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
 | 
						|
      Op->getToken() == "finit" || Op->getToken() == "fsave" ||
 | 
						|
      Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
 | 
						|
    MCInst Inst;
 | 
						|
    Inst.setOpcode(X86::WAIT);
 | 
						|
    Out.EmitInstruction(Inst);
 | 
						|
 | 
						|
    const char *Repl =
 | 
						|
      StringSwitch<const char*>(Op->getToken())
 | 
						|
        .Case("finit",  "fninit")
 | 
						|
        .Case("fsave",  "fnsave")
 | 
						|
        .Case("fstcw",  "fnstcw")
 | 
						|
        .Case("fstcww",  "fnstcw")
 | 
						|
        .Case("fstenv", "fnstenv")
 | 
						|
        .Case("fstsw",  "fnstsw")
 | 
						|
        .Case("fstsww", "fnstsw")
 | 
						|
        .Case("fclex",  "fnclex")
 | 
						|
        .Default(0);
 | 
						|
    assert(Repl && "Unknown wait-prefixed instruction");
 | 
						|
    delete Operands[0];
 | 
						|
    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  bool WasOriginallyInvalidOperand = false;
 | 
						|
  unsigned OrigErrorInfo;
 | 
						|
  MCInst Inst;
 | 
						|
 | 
						|
  // First, try a direct match.
 | 
						|
  switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) {
 | 
						|
  default: break;
 | 
						|
  case Match_Success:
 | 
						|
    Out.EmitInstruction(Inst);
 | 
						|
    return false;
 | 
						|
  case Match_MissingFeature:
 | 
						|
    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
 | 
						|
    return true;
 | 
						|
  case Match_ConversionFail:
 | 
						|
    return Error(IDLoc, "unable to convert operands to instruction");
 | 
						|
  case Match_InvalidOperand:
 | 
						|
    WasOriginallyInvalidOperand = true;
 | 
						|
    break;
 | 
						|
  case Match_MnemonicFail:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Ideally, we would only attempt suffix matches for things which are
 | 
						|
  // valid prefixes, and we could just infer the right unambiguous
 | 
						|
  // type. However, that requires substantially more matcher support than the
 | 
						|
  // following hack.
 | 
						|
 | 
						|
  // Change the operand to point to a temporary token.
 | 
						|
  StringRef Base = Op->getToken();
 | 
						|
  SmallString<16> Tmp;
 | 
						|
  Tmp += Base;
 | 
						|
  Tmp += ' ';
 | 
						|
  Op->setTokenValue(Tmp.str());
 | 
						|
 | 
						|
  // If this instruction starts with an 'f', then it is a floating point stack
 | 
						|
  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
 | 
						|
  // 80-bit floating point, which use the suffixes s,l,t respectively.
 | 
						|
  //
 | 
						|
  // Otherwise, we assume that this may be an integer instruction, which comes
 | 
						|
  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
 | 
						|
  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
 | 
						|
  
 | 
						|
  // Check for the various suffix matches.
 | 
						|
  Tmp[Base.size()] = Suffixes[0];
 | 
						|
  unsigned ErrorInfoIgnore;
 | 
						|
  unsigned Match1, Match2, Match3, Match4;
 | 
						|
  
 | 
						|
  Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
 | 
						|
  Tmp[Base.size()] = Suffixes[1];
 | 
						|
  Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
 | 
						|
  Tmp[Base.size()] = Suffixes[2];
 | 
						|
  Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
 | 
						|
  Tmp[Base.size()] = Suffixes[3];
 | 
						|
  Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore);
 | 
						|
 | 
						|
  // Restore the old token.
 | 
						|
  Op->setTokenValue(Base);
 | 
						|
 | 
						|
  // If exactly one matched, then we treat that as a successful match (and the
 | 
						|
  // instruction will already have been filled in correctly, since the failing
 | 
						|
  // matches won't have modified it).
 | 
						|
  unsigned NumSuccessfulMatches =
 | 
						|
    (Match1 == Match_Success) + (Match2 == Match_Success) +
 | 
						|
    (Match3 == Match_Success) + (Match4 == Match_Success);
 | 
						|
  if (NumSuccessfulMatches == 1) {
 | 
						|
    Out.EmitInstruction(Inst);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the match failed, try to produce a decent error message.
 | 
						|
 | 
						|
  // If we had multiple suffix matches, then identify this as an ambiguous
 | 
						|
  // match.
 | 
						|
  if (NumSuccessfulMatches > 1) {
 | 
						|
    char MatchChars[4];
 | 
						|
    unsigned NumMatches = 0;
 | 
						|
    if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
 | 
						|
    if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
 | 
						|
    if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
 | 
						|
    if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
 | 
						|
 | 
						|
    SmallString<126> Msg;
 | 
						|
    raw_svector_ostream OS(Msg);
 | 
						|
    OS << "ambiguous instructions require an explicit suffix (could be ";
 | 
						|
    for (unsigned i = 0; i != NumMatches; ++i) {
 | 
						|
      if (i != 0)
 | 
						|
        OS << ", ";
 | 
						|
      if (i + 1 == NumMatches)
 | 
						|
        OS << "or ";
 | 
						|
      OS << "'" << Base << MatchChars[i] << "'";
 | 
						|
    }
 | 
						|
    OS << ")";
 | 
						|
    Error(IDLoc, OS.str());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know that none of the variants matched successfully.
 | 
						|
 | 
						|
  // If all of the instructions reported an invalid mnemonic, then the original
 | 
						|
  // mnemonic was invalid.
 | 
						|
  if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
 | 
						|
      (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
 | 
						|
    if (!WasOriginallyInvalidOperand) {
 | 
						|
      Error(IDLoc, "invalid instruction mnemonic '" + Base + "'");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Recover location info for the operand if we know which was the problem.
 | 
						|
    SMLoc ErrorLoc = IDLoc;
 | 
						|
    if (OrigErrorInfo != ~0U) {
 | 
						|
      if (OrigErrorInfo >= Operands.size())
 | 
						|
        return Error(IDLoc, "too few operands for instruction");
 | 
						|
 | 
						|
      ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc();
 | 
						|
      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
 | 
						|
    }
 | 
						|
 | 
						|
    return Error(ErrorLoc, "invalid operand for instruction");
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with a missing feature, report this as a
 | 
						|
  // missing feature.
 | 
						|
  if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
 | 
						|
      (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
 | 
						|
    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If one instruction matched with an invalid operand, report this as an
 | 
						|
  // operand failure.
 | 
						|
  if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
 | 
						|
      (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
 | 
						|
    Error(IDLoc, "invalid operand for instruction");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all of these were an outright failure, report it in a useless way.
 | 
						|
  // FIXME: We should give nicer diagnostics about the exact failure.
 | 
						|
  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) {
 | 
						|
  StringRef IDVal = DirectiveID.getIdentifier();
 | 
						|
  if (IDVal == ".word")
 | 
						|
    return ParseDirectiveWord(2, DirectiveID.getLoc());
 | 
						|
  else if (IDVal.startswith(".code"))
 | 
						|
    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDirectiveWord
 | 
						|
///  ::= .word [ expression (, expression)* ]
 | 
						|
bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
 | 
						|
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | 
						|
    for (;;) {
 | 
						|
      const MCExpr *Value;
 | 
						|
      if (getParser().ParseExpression(Value))
 | 
						|
        return true;
 | 
						|
      
 | 
						|
      getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/);
 | 
						|
      
 | 
						|
      if (getLexer().is(AsmToken::EndOfStatement))
 | 
						|
        break;
 | 
						|
      
 | 
						|
      // FIXME: Improve diagnostic.
 | 
						|
      if (getLexer().isNot(AsmToken::Comma))
 | 
						|
        return Error(L, "unexpected token in directive");
 | 
						|
      Parser.Lex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Parser.Lex();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ParseDirectiveCode
 | 
						|
///  ::= .code32 | .code64
 | 
						|
bool X86ATTAsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
 | 
						|
  if (IDVal == ".code32") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (is64BitMode()) {
 | 
						|
      SwitchMode();
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
 | 
						|
    }
 | 
						|
  } else if (IDVal == ".code64") {
 | 
						|
    Parser.Lex();
 | 
						|
    if (!is64BitMode()) {
 | 
						|
      SwitchMode();
 | 
						|
      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return Error(L, "unexpected directive " + IDVal);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
extern "C" void LLVMInitializeX86AsmLexer();
 | 
						|
 | 
						|
// Force static initialization.
 | 
						|
extern "C" void LLVMInitializeX86AsmParser() {
 | 
						|
  RegisterMCAsmParser<X86ATTAsmParser> X(TheX86_32Target);
 | 
						|
  RegisterMCAsmParser<X86ATTAsmParser> Y(TheX86_64Target);
 | 
						|
  LLVMInitializeX86AsmLexer();
 | 
						|
}
 | 
						|
 | 
						|
#define GET_REGISTER_MATCHER
 | 
						|
#define GET_MATCHER_IMPLEMENTATION
 | 
						|
#include "X86GenAsmMatcher.inc"
 |