2271 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2271 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Chris Lattner and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements the Preprocessor interface.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Options to support:
 | 
						|
//   -H       - Print the name of each header file used.
 | 
						|
//   -d[MDNI] - Dump various things.
 | 
						|
//   -fworking-directory - #line's with preprocessor's working dir.
 | 
						|
//   -fpreprocessed
 | 
						|
//   -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
 | 
						|
//   -W*
 | 
						|
//   -w
 | 
						|
//
 | 
						|
// Messages to emit:
 | 
						|
//   "Multiple include guards may be useful for:\n"
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Lex/HeaderSearch.h"
 | 
						|
#include "clang/Lex/MacroInfo.h"
 | 
						|
#include "clang/Lex/PPCallbacks.h"
 | 
						|
#include "clang/Lex/Pragma.h"
 | 
						|
#include "clang/Lex/ScratchBuffer.h"
 | 
						|
#include "clang/Basic/Diagnostic.h"
 | 
						|
#include "clang/Basic/FileManager.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/MemoryBuffer.h"
 | 
						|
#include <iostream>
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Preprocessor::Preprocessor(Diagnostic &diags, const LangOptions &opts,
 | 
						|
                           TargetInfo &target, SourceManager &SM, 
 | 
						|
                           HeaderSearch &Headers) 
 | 
						|
  : Diags(diags), Features(opts), Target(target), FileMgr(Headers.getFileMgr()),
 | 
						|
    SourceMgr(SM), HeaderInfo(Headers), Identifiers(opts),
 | 
						|
    CurLexer(0), CurDirLookup(0), CurMacroExpander(0), Callbacks(0) {
 | 
						|
  ScratchBuf = new ScratchBuffer(SourceMgr);
 | 
						|
 | 
						|
  // Clear stats.
 | 
						|
  NumDirectives = NumDefined = NumUndefined = NumPragma = 0;
 | 
						|
  NumIf = NumElse = NumEndif = 0;
 | 
						|
  NumEnteredSourceFiles = 0;
 | 
						|
  NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0;
 | 
						|
  NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0;
 | 
						|
  MaxIncludeStackDepth = 0; 
 | 
						|
  NumSkipped = 0;
 | 
						|
 | 
						|
  // Default to discarding comments.
 | 
						|
  KeepComments = false;
 | 
						|
  KeepMacroComments = false;
 | 
						|
  
 | 
						|
  // Macro expansion is enabled.
 | 
						|
  DisableMacroExpansion = false;
 | 
						|
  InMacroArgs = false;
 | 
						|
  NumCachedMacroExpanders = 0;
 | 
						|
 | 
						|
  // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
 | 
						|
  // This gets unpoisoned where it is allowed.
 | 
						|
  (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
 | 
						|
  
 | 
						|
  // Initialize the pragma handlers.
 | 
						|
  PragmaHandlers = new PragmaNamespace(0);
 | 
						|
  RegisterBuiltinPragmas();
 | 
						|
  
 | 
						|
  // Initialize builtin macros like __LINE__ and friends.
 | 
						|
  RegisterBuiltinMacros();
 | 
						|
}
 | 
						|
 | 
						|
Preprocessor::~Preprocessor() {
 | 
						|
  // Free any active lexers.
 | 
						|
  delete CurLexer;
 | 
						|
  
 | 
						|
  while (!IncludeMacroStack.empty()) {
 | 
						|
    delete IncludeMacroStack.back().TheLexer;
 | 
						|
    delete IncludeMacroStack.back().TheMacroExpander;
 | 
						|
    IncludeMacroStack.pop_back();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Free any cached macro expanders.
 | 
						|
  for (unsigned i = 0, e = NumCachedMacroExpanders; i != e; ++i)
 | 
						|
    delete MacroExpanderCache[i];
 | 
						|
  
 | 
						|
  // Release pragma information.
 | 
						|
  delete PragmaHandlers;
 | 
						|
 | 
						|
  // Delete the scratch buffer info.
 | 
						|
  delete ScratchBuf;
 | 
						|
}
 | 
						|
 | 
						|
PPCallbacks::~PPCallbacks() {
 | 
						|
}
 | 
						|
 | 
						|
/// Diag - Forwarding function for diagnostics.  This emits a diagnostic at
 | 
						|
/// the specified Token's location, translating the token's start
 | 
						|
/// position in the current buffer into a SourcePosition object for rendering.
 | 
						|
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID) {
 | 
						|
  Diags.Report(Loc, DiagID);
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID, 
 | 
						|
                        const std::string &Msg) {
 | 
						|
  Diags.Report(Loc, DiagID, &Msg, 1);
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
 | 
						|
  std::cerr << tok::getTokenName(Tok.getKind()) << " '"
 | 
						|
            << getSpelling(Tok) << "'";
 | 
						|
  
 | 
						|
  if (!DumpFlags) return;
 | 
						|
  std::cerr << "\t";
 | 
						|
  if (Tok.isAtStartOfLine())
 | 
						|
    std::cerr << " [StartOfLine]";
 | 
						|
  if (Tok.hasLeadingSpace())
 | 
						|
    std::cerr << " [LeadingSpace]";
 | 
						|
  if (Tok.isExpandDisabled())
 | 
						|
    std::cerr << " [ExpandDisabled]";
 | 
						|
  if (Tok.needsCleaning()) {
 | 
						|
    const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
 | 
						|
    std::cerr << " [UnClean='" << std::string(Start, Start+Tok.getLength())
 | 
						|
              << "']";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::DumpMacro(const MacroInfo &MI) const {
 | 
						|
  std::cerr << "MACRO: ";
 | 
						|
  for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
 | 
						|
    DumpToken(MI.getReplacementToken(i));
 | 
						|
    std::cerr << "  ";
 | 
						|
  }
 | 
						|
  std::cerr << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::PrintStats() {
 | 
						|
  std::cerr << "\n*** Preprocessor Stats:\n";
 | 
						|
  std::cerr << NumDirectives << " directives found:\n";
 | 
						|
  std::cerr << "  " << NumDefined << " #define.\n";
 | 
						|
  std::cerr << "  " << NumUndefined << " #undef.\n";
 | 
						|
  std::cerr << "  #include/#include_next/#import:\n";
 | 
						|
  std::cerr << "    " << NumEnteredSourceFiles << " source files entered.\n";
 | 
						|
  std::cerr << "    " << MaxIncludeStackDepth << " max include stack depth\n";
 | 
						|
  std::cerr << "  " << NumIf << " #if/#ifndef/#ifdef.\n";
 | 
						|
  std::cerr << "  " << NumElse << " #else/#elif.\n";
 | 
						|
  std::cerr << "  " << NumEndif << " #endif.\n";
 | 
						|
  std::cerr << "  " << NumPragma << " #pragma.\n";
 | 
						|
  std::cerr << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
 | 
						|
 | 
						|
  std::cerr << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
 | 
						|
            << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
 | 
						|
            << NumFastMacroExpanded << " on the fast path.\n";
 | 
						|
  std::cerr << (NumFastTokenPaste+NumTokenPaste)
 | 
						|
            << " token paste (##) operations performed, "
 | 
						|
            << NumFastTokenPaste << " on the fast path.\n";
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Token Spelling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
/// getSpelling() - Return the 'spelling' of this token.  The spelling of a
 | 
						|
/// token are the characters used to represent the token in the source file
 | 
						|
/// after trigraph expansion and escaped-newline folding.  In particular, this
 | 
						|
/// wants to get the true, uncanonicalized, spelling of things like digraphs
 | 
						|
/// UCNs, etc.
 | 
						|
std::string Preprocessor::getSpelling(const Token &Tok) const {
 | 
						|
  assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
 | 
						|
  
 | 
						|
  // If this token contains nothing interesting, return it directly.
 | 
						|
  const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation());
 | 
						|
  if (!Tok.needsCleaning())
 | 
						|
    return std::string(TokStart, TokStart+Tok.getLength());
 | 
						|
  
 | 
						|
  std::string Result;
 | 
						|
  Result.reserve(Tok.getLength());
 | 
						|
  
 | 
						|
  // Otherwise, hard case, relex the characters into the string.
 | 
						|
  for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength();
 | 
						|
       Ptr != End; ) {
 | 
						|
    unsigned CharSize;
 | 
						|
    Result.push_back(Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features));
 | 
						|
    Ptr += CharSize;
 | 
						|
  }
 | 
						|
  assert(Result.size() != unsigned(Tok.getLength()) &&
 | 
						|
         "NeedsCleaning flag set on something that didn't need cleaning!");
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// getSpelling - This method is used to get the spelling of a token into a
 | 
						|
/// preallocated buffer, instead of as an std::string.  The caller is required
 | 
						|
/// to allocate enough space for the token, which is guaranteed to be at least
 | 
						|
/// Tok.getLength() bytes long.  The actual length of the token is returned.
 | 
						|
///
 | 
						|
/// Note that this method may do two possible things: it may either fill in
 | 
						|
/// the buffer specified with characters, or it may *change the input pointer*
 | 
						|
/// to point to a constant buffer with the data already in it (avoiding a
 | 
						|
/// copy).  The caller is not allowed to modify the returned buffer pointer
 | 
						|
/// if an internal buffer is returned.
 | 
						|
unsigned Preprocessor::getSpelling(const Token &Tok,
 | 
						|
                                   const char *&Buffer) const {
 | 
						|
  assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
 | 
						|
  
 | 
						|
  // If this token is an identifier, just return the string from the identifier
 | 
						|
  // table, which is very quick.
 | 
						|
  if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
 | 
						|
    Buffer = II->getName();
 | 
						|
    
 | 
						|
    // Return the length of the token.  If the token needed cleaning, don't
 | 
						|
    // include the size of the newlines or trigraphs in it.
 | 
						|
    if (!Tok.needsCleaning())
 | 
						|
      return Tok.getLength();
 | 
						|
    else
 | 
						|
      return strlen(Buffer);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, compute the start of the token in the input lexer buffer.
 | 
						|
  const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation());
 | 
						|
 | 
						|
  // If this token contains nothing interesting, return it directly.
 | 
						|
  if (!Tok.needsCleaning()) {
 | 
						|
    Buffer = TokStart;
 | 
						|
    return Tok.getLength();
 | 
						|
  }
 | 
						|
  // Otherwise, hard case, relex the characters into the string.
 | 
						|
  char *OutBuf = const_cast<char*>(Buffer);
 | 
						|
  for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength();
 | 
						|
       Ptr != End; ) {
 | 
						|
    unsigned CharSize;
 | 
						|
    *OutBuf++ = Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features);
 | 
						|
    Ptr += CharSize;
 | 
						|
  }
 | 
						|
  assert(unsigned(OutBuf-Buffer) != Tok.getLength() &&
 | 
						|
         "NeedsCleaning flag set on something that didn't need cleaning!");
 | 
						|
  
 | 
						|
  return OutBuf-Buffer;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CreateString - Plop the specified string into a scratch buffer and return a
 | 
						|
/// location for it.  If specified, the source location provides a source
 | 
						|
/// location for the token.
 | 
						|
SourceLocation Preprocessor::
 | 
						|
CreateString(const char *Buf, unsigned Len, SourceLocation SLoc) {
 | 
						|
  if (SLoc.isValid())
 | 
						|
    return ScratchBuf->getToken(Buf, Len, SLoc);
 | 
						|
  return ScratchBuf->getToken(Buf, Len);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AdvanceToTokenCharacter - Given a location that specifies the start of a
 | 
						|
/// token, return a new location that specifies a character within the token.
 | 
						|
SourceLocation Preprocessor::AdvanceToTokenCharacter(SourceLocation TokStart, 
 | 
						|
                                                     unsigned CharNo) {
 | 
						|
  // If they request the first char of the token, we're trivially done.  If this
 | 
						|
  // is a macro expansion, it doesn't make sense to point to a character within
 | 
						|
  // the instantiation point (the name).  We could point to the source
 | 
						|
  // character, but without also pointing to instantiation info, this is
 | 
						|
  // confusing.
 | 
						|
  if (CharNo == 0 || TokStart.isMacroID()) return TokStart;
 | 
						|
  
 | 
						|
  // Figure out how many physical characters away the specified logical
 | 
						|
  // character is.  This needs to take into consideration newlines and
 | 
						|
  // trigraphs.
 | 
						|
  const char *TokPtr = SourceMgr.getCharacterData(TokStart);
 | 
						|
  unsigned PhysOffset = 0;
 | 
						|
  
 | 
						|
  // The usual case is that tokens don't contain anything interesting.  Skip
 | 
						|
  // over the uninteresting characters.  If a token only consists of simple
 | 
						|
  // chars, this method is extremely fast.
 | 
						|
  while (CharNo && Lexer::isObviouslySimpleCharacter(*TokPtr))
 | 
						|
    ++TokPtr, --CharNo, ++PhysOffset;
 | 
						|
  
 | 
						|
  // If we have a character that may be a trigraph or escaped newline, create a
 | 
						|
  // lexer to parse it correctly.
 | 
						|
  if (CharNo != 0) {
 | 
						|
    // Create a lexer starting at this token position.
 | 
						|
    Lexer TheLexer(TokStart, *this, TokPtr);
 | 
						|
    Token Tok;
 | 
						|
    // Skip over characters the remaining characters.
 | 
						|
    const char *TokStartPtr = TokPtr;
 | 
						|
    for (; CharNo; --CharNo)
 | 
						|
      TheLexer.getAndAdvanceChar(TokPtr, Tok);
 | 
						|
    
 | 
						|
    PhysOffset += TokPtr-TokStartPtr;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return TokStart.getFileLocWithOffset(PhysOffset);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Source File Location Methods.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// LookupFile - Given a "foo" or <foo> reference, look up the indicated file,
 | 
						|
/// return null on failure.  isAngled indicates whether the file reference is
 | 
						|
/// for system #include's or not (i.e. using <> instead of "").
 | 
						|
const FileEntry *Preprocessor::LookupFile(const char *FilenameStart,
 | 
						|
                                          const char *FilenameEnd,
 | 
						|
                                          bool isAngled,
 | 
						|
                                          const DirectoryLookup *FromDir,
 | 
						|
                                          const DirectoryLookup *&CurDir) {
 | 
						|
  // If the header lookup mechanism may be relative to the current file, pass in
 | 
						|
  // info about where the current file is.
 | 
						|
  const FileEntry *CurFileEnt = 0;
 | 
						|
  if (!FromDir) {
 | 
						|
    SourceLocation FileLoc = getCurrentFileLexer()->getFileLoc();
 | 
						|
    CurFileEnt = SourceMgr.getFileEntryForLoc(FileLoc);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Do a standard file entry lookup.
 | 
						|
  CurDir = CurDirLookup;
 | 
						|
  const FileEntry *FE =
 | 
						|
    HeaderInfo.LookupFile(FilenameStart, FilenameEnd,
 | 
						|
                          isAngled, FromDir, CurDir, CurFileEnt);
 | 
						|
  if (FE) return FE;
 | 
						|
  
 | 
						|
  // Otherwise, see if this is a subframework header.  If so, this is relative
 | 
						|
  // to one of the headers on the #include stack.  Walk the list of the current
 | 
						|
  // headers on the #include stack and pass them to HeaderInfo.
 | 
						|
  if (CurLexer && !CurLexer->Is_PragmaLexer) {
 | 
						|
    CurFileEnt = SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc());
 | 
						|
    if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd,
 | 
						|
                                                  CurFileEnt)))
 | 
						|
      return FE;
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) {
 | 
						|
    IncludeStackInfo &ISEntry = IncludeMacroStack[e-i-1];
 | 
						|
    if (ISEntry.TheLexer && !ISEntry.TheLexer->Is_PragmaLexer) {
 | 
						|
      CurFileEnt = SourceMgr.getFileEntryForLoc(ISEntry.TheLexer->getFileLoc());
 | 
						|
      if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd,
 | 
						|
                                                    CurFileEnt)))
 | 
						|
        return FE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we really couldn't find the file.
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isInPrimaryFile - Return true if we're in the top-level file, not in a
 | 
						|
/// #include.
 | 
						|
bool Preprocessor::isInPrimaryFile() const {
 | 
						|
  if (CurLexer && !CurLexer->Is_PragmaLexer)
 | 
						|
    return CurLexer->isMainFile();
 | 
						|
  
 | 
						|
  // If there are any stacked lexers, we're in a #include.
 | 
						|
  for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i)
 | 
						|
    if (IncludeMacroStack[i].TheLexer &&
 | 
						|
        !IncludeMacroStack[i].TheLexer->Is_PragmaLexer)
 | 
						|
      return IncludeMacroStack[i].TheLexer->isMainFile();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getCurrentLexer - Return the current file lexer being lexed from.  Note
 | 
						|
/// that this ignores any potentially active macro expansions and _Pragma
 | 
						|
/// expansions going on at the time.
 | 
						|
Lexer *Preprocessor::getCurrentFileLexer() const {
 | 
						|
  if (CurLexer && !CurLexer->Is_PragmaLexer) return CurLexer;
 | 
						|
  
 | 
						|
  // Look for a stacked lexer.
 | 
						|
  for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
 | 
						|
    Lexer *L = IncludeMacroStack[i-1].TheLexer;
 | 
						|
    if (L && !L->Is_PragmaLexer) // Ignore macro & _Pragma expansions.
 | 
						|
      return L;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EnterSourceFile - Add a source file to the top of the include stack and
 | 
						|
/// start lexing tokens from it instead of the current buffer.  Return true
 | 
						|
/// on failure.
 | 
						|
void Preprocessor::EnterSourceFile(unsigned FileID,
 | 
						|
                                   const DirectoryLookup *CurDir,
 | 
						|
                                   bool isMainFile) {
 | 
						|
  assert(CurMacroExpander == 0 && "Cannot #include a file inside a macro!");
 | 
						|
  ++NumEnteredSourceFiles;
 | 
						|
  
 | 
						|
  if (MaxIncludeStackDepth < IncludeMacroStack.size())
 | 
						|
    MaxIncludeStackDepth = IncludeMacroStack.size();
 | 
						|
 | 
						|
  Lexer *TheLexer = new Lexer(SourceLocation::getFileLoc(FileID, 0), *this);
 | 
						|
  if (isMainFile) TheLexer->setIsMainFile();
 | 
						|
  EnterSourceFileWithLexer(TheLexer, CurDir);
 | 
						|
}  
 | 
						|
  
 | 
						|
/// EnterSourceFile - Add a source file to the top of the include stack and
 | 
						|
/// start lexing tokens from it instead of the current buffer.
 | 
						|
void Preprocessor::EnterSourceFileWithLexer(Lexer *TheLexer, 
 | 
						|
                                            const DirectoryLookup *CurDir) {
 | 
						|
    
 | 
						|
  // Add the current lexer to the include stack.
 | 
						|
  if (CurLexer || CurMacroExpander)
 | 
						|
    IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup,
 | 
						|
                                                 CurMacroExpander));
 | 
						|
  
 | 
						|
  CurLexer = TheLexer;
 | 
						|
  CurDirLookup = CurDir;
 | 
						|
  CurMacroExpander = 0;
 | 
						|
  
 | 
						|
  // Notify the client, if desired, that we are in a new source file.
 | 
						|
  if (Callbacks && !CurLexer->Is_PragmaLexer) {
 | 
						|
    DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir;
 | 
						|
    
 | 
						|
    // Get the file entry for the current file.
 | 
						|
    if (const FileEntry *FE = 
 | 
						|
           SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()))
 | 
						|
      FileType = HeaderInfo.getFileDirFlavor(FE);
 | 
						|
    
 | 
						|
    Callbacks->FileChanged(CurLexer->getFileLoc(),
 | 
						|
                           PPCallbacks::EnterFile, FileType);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// EnterMacro - Add a Macro to the top of the include stack and start lexing
 | 
						|
/// tokens from it instead of the current buffer.
 | 
						|
void Preprocessor::EnterMacro(Token &Tok, MacroArgs *Args) {
 | 
						|
  IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup,
 | 
						|
                                               CurMacroExpander));
 | 
						|
  CurLexer     = 0;
 | 
						|
  CurDirLookup = 0;
 | 
						|
  
 | 
						|
  if (NumCachedMacroExpanders == 0) {
 | 
						|
    CurMacroExpander = new MacroExpander(Tok, Args, *this);
 | 
						|
  } else {
 | 
						|
    CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders];
 | 
						|
    CurMacroExpander->Init(Tok, Args);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EnterTokenStream - Add a "macro" context to the top of the include stack,
 | 
						|
/// which will cause the lexer to start returning the specified tokens.  Note
 | 
						|
/// that these tokens will be re-macro-expanded when/if expansion is enabled.
 | 
						|
/// This method assumes that the specified stream of tokens has a permanent
 | 
						|
/// owner somewhere, so they do not need to be copied.
 | 
						|
void Preprocessor::EnterTokenStream(const Token *Toks, unsigned NumToks) {
 | 
						|
  // Save our current state.
 | 
						|
  IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup,
 | 
						|
                                               CurMacroExpander));
 | 
						|
  CurLexer     = 0;
 | 
						|
  CurDirLookup = 0;
 | 
						|
 | 
						|
  // Create a macro expander to expand from the specified token stream.
 | 
						|
  if (NumCachedMacroExpanders == 0) {
 | 
						|
    CurMacroExpander = new MacroExpander(Toks, NumToks, *this);
 | 
						|
  } else {
 | 
						|
    CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders];
 | 
						|
    CurMacroExpander->Init(Toks, NumToks);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveTopOfLexerStack - Pop the current lexer/macro exp off the top of the
 | 
						|
/// lexer stack.  This should only be used in situations where the current
 | 
						|
/// state of the top-of-stack lexer is known.
 | 
						|
void Preprocessor::RemoveTopOfLexerStack() {
 | 
						|
  assert(!IncludeMacroStack.empty() && "Ran out of stack entries to load");
 | 
						|
  
 | 
						|
  if (CurMacroExpander) {
 | 
						|
    // Delete or cache the now-dead macro expander.
 | 
						|
    if (NumCachedMacroExpanders == MacroExpanderCacheSize)
 | 
						|
      delete CurMacroExpander;
 | 
						|
    else
 | 
						|
      MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander;
 | 
						|
  } else {
 | 
						|
    delete CurLexer;
 | 
						|
  }
 | 
						|
  CurLexer         = IncludeMacroStack.back().TheLexer;
 | 
						|
  CurDirLookup     = IncludeMacroStack.back().TheDirLookup;
 | 
						|
  CurMacroExpander = IncludeMacroStack.back().TheMacroExpander;
 | 
						|
  IncludeMacroStack.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Macro Expansion Handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// RegisterBuiltinMacro - Register the specified identifier in the identifier
 | 
						|
/// table and mark it as a builtin macro to be expanded.
 | 
						|
IdentifierInfo *Preprocessor::RegisterBuiltinMacro(const char *Name) {
 | 
						|
  // Get the identifier.
 | 
						|
  IdentifierInfo *Id = getIdentifierInfo(Name);
 | 
						|
  
 | 
						|
  // Mark it as being a macro that is builtin.
 | 
						|
  MacroInfo *MI = new MacroInfo(SourceLocation());
 | 
						|
  MI->setIsBuiltinMacro();
 | 
						|
  Id->setMacroInfo(MI);
 | 
						|
  return Id;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
 | 
						|
/// identifier table.
 | 
						|
void Preprocessor::RegisterBuiltinMacros() {
 | 
						|
  Ident__LINE__ = RegisterBuiltinMacro("__LINE__");
 | 
						|
  Ident__FILE__ = RegisterBuiltinMacro("__FILE__");
 | 
						|
  Ident__DATE__ = RegisterBuiltinMacro("__DATE__");
 | 
						|
  Ident__TIME__ = RegisterBuiltinMacro("__TIME__");
 | 
						|
  Ident_Pragma  = RegisterBuiltinMacro("_Pragma");
 | 
						|
  
 | 
						|
  // GCC Extensions.
 | 
						|
  Ident__BASE_FILE__     = RegisterBuiltinMacro("__BASE_FILE__");
 | 
						|
  Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro("__INCLUDE_LEVEL__");
 | 
						|
  Ident__TIMESTAMP__     = RegisterBuiltinMacro("__TIMESTAMP__");
 | 
						|
}
 | 
						|
 | 
						|
/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
 | 
						|
/// in its expansion, currently expands to that token literally.
 | 
						|
static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
 | 
						|
                                          const IdentifierInfo *MacroIdent) {
 | 
						|
  IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
 | 
						|
 | 
						|
  // If the token isn't an identifier, it's always literally expanded.
 | 
						|
  if (II == 0) return true;
 | 
						|
  
 | 
						|
  // If the identifier is a macro, and if that macro is enabled, it may be
 | 
						|
  // expanded so it's not a trivial expansion.
 | 
						|
  if (II->getMacroInfo() && II->getMacroInfo()->isEnabled() &&
 | 
						|
      // Fast expanding "#define X X" is ok, because X would be disabled.
 | 
						|
      II != MacroIdent)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // If this is an object-like macro invocation, it is safe to trivially expand
 | 
						|
  // it.
 | 
						|
  if (MI->isObjectLike()) return true;
 | 
						|
 | 
						|
  // If this is a function-like macro invocation, it's safe to trivially expand
 | 
						|
  // as long as the identifier is not a macro argument.
 | 
						|
  for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (*I == II)
 | 
						|
      return false;   // Identifier is a macro argument.
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
 | 
						|
/// lexed is a '('.  If so, consume the token and return true, if not, this
 | 
						|
/// method should have no observable side-effect on the lexed tokens.
 | 
						|
bool Preprocessor::isNextPPTokenLParen() {
 | 
						|
  // Do some quick tests for rejection cases.
 | 
						|
  unsigned Val;
 | 
						|
  if (CurLexer)
 | 
						|
    Val = CurLexer->isNextPPTokenLParen();
 | 
						|
  else
 | 
						|
    Val = CurMacroExpander->isNextTokenLParen();
 | 
						|
  
 | 
						|
  if (Val == 2) {
 | 
						|
    // We have run off the end.  If it's a source file we don't
 | 
						|
    // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
 | 
						|
    // macro stack.
 | 
						|
    if (CurLexer)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
 | 
						|
      IncludeStackInfo &Entry = IncludeMacroStack[i-1];
 | 
						|
      if (Entry.TheLexer)
 | 
						|
        Val = Entry.TheLexer->isNextPPTokenLParen();
 | 
						|
      else
 | 
						|
        Val = Entry.TheMacroExpander->isNextTokenLParen();
 | 
						|
      
 | 
						|
      if (Val != 2)
 | 
						|
        break;
 | 
						|
      
 | 
						|
      // Ran off the end of a source file?
 | 
						|
      if (Entry.TheLexer)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
 | 
						|
  // have found something that isn't a '(' or we found the end of the
 | 
						|
  // translation unit.  In either case, return false.
 | 
						|
  if (Val != 1)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  Token Tok;
 | 
						|
  LexUnexpandedToken(Tok);
 | 
						|
  assert(Tok.getKind() == tok::l_paren && "Error computing l-paren-ness?");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
 | 
						|
/// expanded as a macro, handle it and return the next token as 'Identifier'.
 | 
						|
bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 
 | 
						|
                                                 MacroInfo *MI) {
 | 
						|
  
 | 
						|
  // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
 | 
						|
  if (MI->isBuiltinMacro()) {
 | 
						|
    ExpandBuiltinMacro(Identifier);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is the first use of a target-specific macro, warn about it.
 | 
						|
  if (MI->isTargetSpecific()) {
 | 
						|
    MI->setIsTargetSpecific(false);  // Don't warn on second use.
 | 
						|
    getTargetInfo().DiagnoseNonPortability(Identifier.getLocation(),
 | 
						|
                                           diag::port_target_macro_use);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// Args - If this is a function-like macro expansion, this contains,
 | 
						|
  /// for each macro argument, the list of tokens that were provided to the
 | 
						|
  /// invocation.
 | 
						|
  MacroArgs *Args = 0;
 | 
						|
  
 | 
						|
  // If this is a function-like macro, read the arguments.
 | 
						|
  if (MI->isFunctionLike()) {
 | 
						|
    // C99 6.10.3p10: If the preprocessing token immediately after the the macro
 | 
						|
    // name isn't a '(', this macro should not be expanded.  Otherwise, consume
 | 
						|
    // it.
 | 
						|
    if (!isNextPPTokenLParen())
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // Remember that we are now parsing the arguments to a macro invocation.
 | 
						|
    // Preprocessor directives used inside macro arguments are not portable, and
 | 
						|
    // this enables the warning.
 | 
						|
    InMacroArgs = true;
 | 
						|
    Args = ReadFunctionLikeMacroArgs(Identifier, MI);
 | 
						|
    
 | 
						|
    // Finished parsing args.
 | 
						|
    InMacroArgs = false;
 | 
						|
    
 | 
						|
    // If there was an error parsing the arguments, bail out.
 | 
						|
    if (Args == 0) return false;
 | 
						|
    
 | 
						|
    ++NumFnMacroExpanded;
 | 
						|
  } else {
 | 
						|
    ++NumMacroExpanded;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Notice that this macro has been used.
 | 
						|
  MI->setIsUsed(true);
 | 
						|
  
 | 
						|
  // If we started lexing a macro, enter the macro expansion body.
 | 
						|
  
 | 
						|
  // If this macro expands to no tokens, don't bother to push it onto the
 | 
						|
  // expansion stack, only to take it right back off.
 | 
						|
  if (MI->getNumTokens() == 0) {
 | 
						|
    // No need for arg info.
 | 
						|
    if (Args) Args->destroy();
 | 
						|
    
 | 
						|
    // Ignore this macro use, just return the next token in the current
 | 
						|
    // buffer.
 | 
						|
    bool HadLeadingSpace = Identifier.hasLeadingSpace();
 | 
						|
    bool IsAtStartOfLine = Identifier.isAtStartOfLine();
 | 
						|
    
 | 
						|
    Lex(Identifier);
 | 
						|
    
 | 
						|
    // If the identifier isn't on some OTHER line, inherit the leading
 | 
						|
    // whitespace/first-on-a-line property of this token.  This handles
 | 
						|
    // stuff like "! XX," -> "! ," and "   XX," -> "    ,", when XX is
 | 
						|
    // empty.
 | 
						|
    if (!Identifier.isAtStartOfLine()) {
 | 
						|
      if (IsAtStartOfLine) Identifier.setFlag(Token::StartOfLine);
 | 
						|
      if (HadLeadingSpace) Identifier.setFlag(Token::LeadingSpace);
 | 
						|
    }
 | 
						|
    ++NumFastMacroExpanded;
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  } else if (MI->getNumTokens() == 1 &&
 | 
						|
             isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo())){
 | 
						|
    // Otherwise, if this macro expands into a single trivially-expanded
 | 
						|
    // token: expand it now.  This handles common cases like 
 | 
						|
    // "#define VAL 42".
 | 
						|
    
 | 
						|
    // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
 | 
						|
    // identifier to the expanded token.
 | 
						|
    bool isAtStartOfLine = Identifier.isAtStartOfLine();
 | 
						|
    bool hasLeadingSpace = Identifier.hasLeadingSpace();
 | 
						|
    
 | 
						|
    // Remember where the token is instantiated.
 | 
						|
    SourceLocation InstantiateLoc = Identifier.getLocation();
 | 
						|
    
 | 
						|
    // Replace the result token.
 | 
						|
    Identifier = MI->getReplacementToken(0);
 | 
						|
    
 | 
						|
    // Restore the StartOfLine/LeadingSpace markers.
 | 
						|
    Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
 | 
						|
    Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
 | 
						|
    
 | 
						|
    // Update the tokens location to include both its logical and physical
 | 
						|
    // locations.
 | 
						|
    SourceLocation Loc =
 | 
						|
      SourceMgr.getInstantiationLoc(Identifier.getLocation(), InstantiateLoc);
 | 
						|
    Identifier.setLocation(Loc);
 | 
						|
    
 | 
						|
    // If this is #define X X, we must mark the result as unexpandible.
 | 
						|
    if (IdentifierInfo *NewII = Identifier.getIdentifierInfo())
 | 
						|
      if (NewII->getMacroInfo() == MI)
 | 
						|
        Identifier.setFlag(Token::DisableExpand);
 | 
						|
    
 | 
						|
    // Since this is not an identifier token, it can't be macro expanded, so
 | 
						|
    // we're done.
 | 
						|
    ++NumFastMacroExpanded;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Start expanding the macro.
 | 
						|
  EnterMacro(Identifier, Args);
 | 
						|
  
 | 
						|
  // Now that the macro is at the top of the include stack, ask the
 | 
						|
  // preprocessor to read the next token from it.
 | 
						|
  Lex(Identifier);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ReadFunctionLikeMacroArgs - After reading "MACRO(", this method is
 | 
						|
/// invoked to read all of the actual arguments specified for the macro
 | 
						|
/// invocation.  This returns null on error.
 | 
						|
MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
 | 
						|
                                                   MacroInfo *MI) {
 | 
						|
  // The number of fixed arguments to parse.
 | 
						|
  unsigned NumFixedArgsLeft = MI->getNumArgs();
 | 
						|
  bool isVariadic = MI->isVariadic();
 | 
						|
  
 | 
						|
  // Outer loop, while there are more arguments, keep reading them.
 | 
						|
  Token Tok;
 | 
						|
  Tok.setKind(tok::comma);
 | 
						|
  --NumFixedArgsLeft;  // Start reading the first arg.
 | 
						|
 | 
						|
  // ArgTokens - Build up a list of tokens that make up each argument.  Each
 | 
						|
  // argument is separated by an EOF token.  Use a SmallVector so we can avoid
 | 
						|
  // heap allocations in the common case.
 | 
						|
  llvm::SmallVector<Token, 64> ArgTokens;
 | 
						|
 | 
						|
  unsigned NumActuals = 0;
 | 
						|
  while (Tok.getKind() == tok::comma) {
 | 
						|
    // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
 | 
						|
    // that we already consumed the first one.
 | 
						|
    unsigned NumParens = 0;
 | 
						|
    
 | 
						|
    while (1) {
 | 
						|
      // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
 | 
						|
      // an argument value in a macro could expand to ',' or '(' or ')'.
 | 
						|
      LexUnexpandedToken(Tok);
 | 
						|
      
 | 
						|
      if (Tok.getKind() == tok::eof) {
 | 
						|
        Diag(MacroName, diag::err_unterm_macro_invoc);
 | 
						|
        // Do not lose the EOF.  Return it to the client.
 | 
						|
        MacroName = Tok;
 | 
						|
        return 0;
 | 
						|
      } else if (Tok.getKind() == tok::r_paren) {
 | 
						|
        // If we found the ) token, the macro arg list is done.
 | 
						|
        if (NumParens-- == 0)
 | 
						|
          break;
 | 
						|
      } else if (Tok.getKind() == tok::l_paren) {
 | 
						|
        ++NumParens;
 | 
						|
      } else if (Tok.getKind() == tok::comma && NumParens == 0) {
 | 
						|
        // Comma ends this argument if there are more fixed arguments expected.
 | 
						|
        if (NumFixedArgsLeft)
 | 
						|
          break;
 | 
						|
        
 | 
						|
        // If this is not a variadic macro, too many args were specified.
 | 
						|
        if (!isVariadic) {
 | 
						|
          // Emit the diagnostic at the macro name in case there is a missing ).
 | 
						|
          // Emitting it at the , could be far away from the macro name.
 | 
						|
          Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
 | 
						|
          return 0;
 | 
						|
        }
 | 
						|
        // Otherwise, continue to add the tokens to this variable argument.
 | 
						|
      } else if (Tok.getKind() == tok::comment && !KeepMacroComments) {
 | 
						|
        // If this is a comment token in the argument list and we're just in
 | 
						|
        // -C mode (not -CC mode), discard the comment.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
  
 | 
						|
      ArgTokens.push_back(Tok);
 | 
						|
    }
 | 
						|
 | 
						|
    // Empty arguments are standard in C99 and supported as an extension in
 | 
						|
    // other modes.
 | 
						|
    if (ArgTokens.empty() && !Features.C99)
 | 
						|
      Diag(Tok, diag::ext_empty_fnmacro_arg);
 | 
						|
    
 | 
						|
    // Add a marker EOF token to the end of the token list for this argument.
 | 
						|
    Token EOFTok;
 | 
						|
    EOFTok.startToken();
 | 
						|
    EOFTok.setKind(tok::eof);
 | 
						|
    EOFTok.setLocation(Tok.getLocation());
 | 
						|
    EOFTok.setLength(0);
 | 
						|
    ArgTokens.push_back(EOFTok);
 | 
						|
    ++NumActuals;
 | 
						|
    --NumFixedArgsLeft;
 | 
						|
  };
 | 
						|
  
 | 
						|
  // Okay, we either found the r_paren.  Check to see if we parsed too few
 | 
						|
  // arguments.
 | 
						|
  unsigned MinArgsExpected = MI->getNumArgs();
 | 
						|
  
 | 
						|
  // See MacroArgs instance var for description of this.
 | 
						|
  bool isVarargsElided = false;
 | 
						|
  
 | 
						|
  if (NumActuals < MinArgsExpected) {
 | 
						|
    // There are several cases where too few arguments is ok, handle them now.
 | 
						|
    if (NumActuals+1 == MinArgsExpected && MI->isVariadic()) {
 | 
						|
      // Varargs where the named vararg parameter is missing: ok as extension.
 | 
						|
      // #define A(x, ...)
 | 
						|
      // A("blah")
 | 
						|
      Diag(Tok, diag::ext_missing_varargs_arg);
 | 
						|
 | 
						|
      // Remember this occurred if this is a C99 macro invocation with at least
 | 
						|
      // one actual argument.
 | 
						|
      isVarargsElided = MI->isC99Varargs() && MI->getNumArgs() > 1;
 | 
						|
    } else if (MI->getNumArgs() == 1) {
 | 
						|
      // #define A(x)
 | 
						|
      //   A()
 | 
						|
      // is ok because it is an empty argument.
 | 
						|
      
 | 
						|
      // Empty arguments are standard in C99 and supported as an extension in
 | 
						|
      // other modes.
 | 
						|
      if (ArgTokens.empty() && !Features.C99)
 | 
						|
        Diag(Tok, diag::ext_empty_fnmacro_arg);
 | 
						|
    } else {
 | 
						|
      // Otherwise, emit the error.
 | 
						|
      Diag(Tok, diag::err_too_few_args_in_macro_invoc);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add a marker EOF token to the end of the token list for this argument.
 | 
						|
    SourceLocation EndLoc = Tok.getLocation();
 | 
						|
    Tok.startToken();
 | 
						|
    Tok.setKind(tok::eof);
 | 
						|
    Tok.setLocation(EndLoc);
 | 
						|
    Tok.setLength(0);
 | 
						|
    ArgTokens.push_back(Tok);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return MacroArgs::create(MI, &ArgTokens[0], ArgTokens.size(),isVarargsElided);
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeDATE_TIME - Compute the current time, enter it into the specified
 | 
						|
/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
 | 
						|
/// the identifier tokens inserted.
 | 
						|
static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
 | 
						|
                             Preprocessor &PP) {
 | 
						|
  time_t TT = time(0);
 | 
						|
  struct tm *TM = localtime(&TT);
 | 
						|
  
 | 
						|
  static const char * const Months[] = {
 | 
						|
    "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
 | 
						|
  };
 | 
						|
  
 | 
						|
  char TmpBuffer[100];
 | 
						|
  sprintf(TmpBuffer, "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday, 
 | 
						|
          TM->tm_year+1900);
 | 
						|
  DATELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer));
 | 
						|
 | 
						|
  sprintf(TmpBuffer, "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec);
 | 
						|
  TIMELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer));
 | 
						|
}
 | 
						|
 | 
						|
/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
 | 
						|
/// as a builtin macro, handle it and return the next token as 'Tok'.
 | 
						|
void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
 | 
						|
  // Figure out which token this is.
 | 
						|
  IdentifierInfo *II = Tok.getIdentifierInfo();
 | 
						|
  assert(II && "Can't be a macro without id info!");
 | 
						|
  
 | 
						|
  // If this is an _Pragma directive, expand it, invoke the pragma handler, then
 | 
						|
  // lex the token after it.
 | 
						|
  if (II == Ident_Pragma)
 | 
						|
    return Handle_Pragma(Tok);
 | 
						|
  
 | 
						|
  ++NumBuiltinMacroExpanded;
 | 
						|
 | 
						|
  char TmpBuffer[100];
 | 
						|
 | 
						|
  // Set up the return result.
 | 
						|
  Tok.setIdentifierInfo(0);
 | 
						|
  Tok.clearFlag(Token::NeedsCleaning);
 | 
						|
  
 | 
						|
  if (II == Ident__LINE__) {
 | 
						|
    // __LINE__ expands to a simple numeric value.
 | 
						|
    sprintf(TmpBuffer, "%u", SourceMgr.getLogicalLineNumber(Tok.getLocation()));
 | 
						|
    unsigned Length = strlen(TmpBuffer);
 | 
						|
    Tok.setKind(tok::numeric_constant);
 | 
						|
    Tok.setLength(Length);
 | 
						|
    Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation()));
 | 
						|
  } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
 | 
						|
    SourceLocation Loc = Tok.getLocation();
 | 
						|
    if (II == Ident__BASE_FILE__) {
 | 
						|
      Diag(Tok, diag::ext_pp_base_file);
 | 
						|
      SourceLocation NextLoc = SourceMgr.getIncludeLoc(Loc);
 | 
						|
      while (NextLoc.isValid()) {
 | 
						|
        Loc = NextLoc;
 | 
						|
        NextLoc = SourceMgr.getIncludeLoc(Loc);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
 | 
						|
    std::string FN = SourceMgr.getSourceName(SourceMgr.getLogicalLoc(Loc));
 | 
						|
    FN = '"' + Lexer::Stringify(FN) + '"';
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
    Tok.setLength(FN.size());
 | 
						|
    Tok.setLocation(CreateString(&FN[0], FN.size(), Tok.getLocation()));
 | 
						|
  } else if (II == Ident__DATE__) {
 | 
						|
    if (!DATELoc.isValid())
 | 
						|
      ComputeDATE_TIME(DATELoc, TIMELoc, *this);
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
    Tok.setLength(strlen("\"Mmm dd yyyy\""));
 | 
						|
    Tok.setLocation(SourceMgr.getInstantiationLoc(DATELoc, Tok.getLocation()));
 | 
						|
  } else if (II == Ident__TIME__) {
 | 
						|
    if (!TIMELoc.isValid())
 | 
						|
      ComputeDATE_TIME(DATELoc, TIMELoc, *this);
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
    Tok.setLength(strlen("\"hh:mm:ss\""));
 | 
						|
    Tok.setLocation(SourceMgr.getInstantiationLoc(TIMELoc, Tok.getLocation()));
 | 
						|
  } else if (II == Ident__INCLUDE_LEVEL__) {
 | 
						|
    Diag(Tok, diag::ext_pp_include_level);
 | 
						|
 | 
						|
    // Compute the include depth of this token.
 | 
						|
    unsigned Depth = 0;
 | 
						|
    SourceLocation Loc = SourceMgr.getIncludeLoc(Tok.getLocation());
 | 
						|
    for (; Loc.isValid(); ++Depth)
 | 
						|
      Loc = SourceMgr.getIncludeLoc(Loc);
 | 
						|
    
 | 
						|
    // __INCLUDE_LEVEL__ expands to a simple numeric value.
 | 
						|
    sprintf(TmpBuffer, "%u", Depth);
 | 
						|
    unsigned Length = strlen(TmpBuffer);
 | 
						|
    Tok.setKind(tok::numeric_constant);
 | 
						|
    Tok.setLength(Length);
 | 
						|
    Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation()));
 | 
						|
  } else if (II == Ident__TIMESTAMP__) {
 | 
						|
    // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
 | 
						|
    // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
 | 
						|
    Diag(Tok, diag::ext_pp_timestamp);
 | 
						|
 | 
						|
    // Get the file that we are lexing out of.  If we're currently lexing from
 | 
						|
    // a macro, dig into the include stack.
 | 
						|
    const FileEntry *CurFile = 0;
 | 
						|
    Lexer *TheLexer = getCurrentFileLexer();
 | 
						|
    
 | 
						|
    if (TheLexer)
 | 
						|
      CurFile = SourceMgr.getFileEntryForLoc(TheLexer->getFileLoc());
 | 
						|
    
 | 
						|
    // If this file is older than the file it depends on, emit a diagnostic.
 | 
						|
    const char *Result;
 | 
						|
    if (CurFile) {
 | 
						|
      time_t TT = CurFile->getModificationTime();
 | 
						|
      struct tm *TM = localtime(&TT);
 | 
						|
      Result = asctime(TM);
 | 
						|
    } else {
 | 
						|
      Result = "??? ??? ?? ??:??:?? ????\n";
 | 
						|
    }
 | 
						|
    TmpBuffer[0] = '"';
 | 
						|
    strcpy(TmpBuffer+1, Result);
 | 
						|
    unsigned Len = strlen(TmpBuffer);
 | 
						|
    TmpBuffer[Len-1] = '"';  // Replace the newline with a quote.
 | 
						|
    Tok.setKind(tok::string_literal);
 | 
						|
    Tok.setLength(Len);
 | 
						|
    Tok.setLocation(CreateString(TmpBuffer, Len, Tok.getLocation()));
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown identifier!");
 | 
						|
  }  
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Lexer Event Handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// LookUpIdentifierInfo - Given a tok::identifier token, look up the
 | 
						|
/// identifier information for the token and install it into the token.
 | 
						|
IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier,
 | 
						|
                                                   const char *BufPtr) {
 | 
						|
  assert(Identifier.getKind() == tok::identifier && "Not an identifier!");
 | 
						|
  assert(Identifier.getIdentifierInfo() == 0 && "Identinfo already exists!");
 | 
						|
  
 | 
						|
  // Look up this token, see if it is a macro, or if it is a language keyword.
 | 
						|
  IdentifierInfo *II;
 | 
						|
  if (BufPtr && !Identifier.needsCleaning()) {
 | 
						|
    // No cleaning needed, just use the characters from the lexed buffer.
 | 
						|
    II = getIdentifierInfo(BufPtr, BufPtr+Identifier.getLength());
 | 
						|
  } else {
 | 
						|
    // Cleaning needed, alloca a buffer, clean into it, then use the buffer.
 | 
						|
    llvm::SmallVector<char, 64> IdentifierBuffer;
 | 
						|
    IdentifierBuffer.resize(Identifier.getLength());
 | 
						|
    const char *TmpBuf = &IdentifierBuffer[0];
 | 
						|
    unsigned Size = getSpelling(Identifier, TmpBuf);
 | 
						|
    II = getIdentifierInfo(TmpBuf, TmpBuf+Size);
 | 
						|
  }
 | 
						|
  Identifier.setIdentifierInfo(II);
 | 
						|
  return II;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// HandleIdentifier - This callback is invoked when the lexer reads an
 | 
						|
/// identifier.  This callback looks up the identifier in the map and/or
 | 
						|
/// potentially macro expands it or turns it into a named token (like 'for').
 | 
						|
void Preprocessor::HandleIdentifier(Token &Identifier) {
 | 
						|
  assert(Identifier.getIdentifierInfo() &&
 | 
						|
         "Can't handle identifiers without identifier info!");
 | 
						|
  
 | 
						|
  IdentifierInfo &II = *Identifier.getIdentifierInfo();
 | 
						|
 | 
						|
  // If this identifier was poisoned, and if it was not produced from a macro
 | 
						|
  // expansion, emit an error.
 | 
						|
  if (II.isPoisoned() && CurLexer) {
 | 
						|
    if (&II != Ident__VA_ARGS__)   // We warn about __VA_ARGS__ with poisoning.
 | 
						|
      Diag(Identifier, diag::err_pp_used_poisoned_id);
 | 
						|
    else
 | 
						|
      Diag(Identifier, diag::ext_pp_bad_vaargs_use);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is a macro to be expanded, do it.
 | 
						|
  if (MacroInfo *MI = II.getMacroInfo()) {
 | 
						|
    if (!DisableMacroExpansion && !Identifier.isExpandDisabled()) {
 | 
						|
      if (MI->isEnabled()) {
 | 
						|
        if (!HandleMacroExpandedIdentifier(Identifier, MI))
 | 
						|
          return;
 | 
						|
      } else {
 | 
						|
        // C99 6.10.3.4p2 says that a disabled macro may never again be
 | 
						|
        // expanded, even if it's in a context where it could be expanded in the
 | 
						|
        // future.
 | 
						|
        Identifier.setFlag(Token::DisableExpand);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (II.isOtherTargetMacro() && !DisableMacroExpansion) {
 | 
						|
    // If this identifier is a macro on some other target, emit a diagnostic.
 | 
						|
    // This diagnosic is only emitted when macro expansion is enabled, because
 | 
						|
    // the macro would not have been expanded for the other target either.
 | 
						|
    II.setIsOtherTargetMacro(false);  // Don't warn on second use.
 | 
						|
    getTargetInfo().DiagnoseNonPortability(Identifier.getLocation(),
 | 
						|
                                           diag::port_target_macro_use);
 | 
						|
    
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ 2.11p2: If this is an alternative representation of a C++ operator,
 | 
						|
  // then we act as if it is the actual operator and not the textual
 | 
						|
  // representation of it.
 | 
						|
  if (II.isCPlusPlusOperatorKeyword())
 | 
						|
    Identifier.setIdentifierInfo(0);
 | 
						|
 | 
						|
  // Change the kind of this identifier to the appropriate token kind, e.g.
 | 
						|
  // turning "for" into a keyword.
 | 
						|
  Identifier.setKind(II.getTokenID());
 | 
						|
    
 | 
						|
  // If this is an extension token, diagnose its use.
 | 
						|
  // FIXME: tried (unsuccesfully) to shut this up when compiling with gnu99
 | 
						|
  // For now, I'm just commenting it out (while I work on attributes).
 | 
						|
  if (II.isExtensionToken() && Features.C99) 
 | 
						|
    Diag(Identifier, diag::ext_token_used);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleEndOfFile - This callback is invoked when the lexer hits the end of
 | 
						|
/// the current file.  This either returns the EOF token or pops a level off
 | 
						|
/// the include stack and keeps going.
 | 
						|
bool Preprocessor::HandleEndOfFile(Token &Result, bool isEndOfMacro) {
 | 
						|
  assert(!CurMacroExpander &&
 | 
						|
         "Ending a file when currently in a macro!");
 | 
						|
  
 | 
						|
  // See if this file had a controlling macro.
 | 
						|
  if (CurLexer) {  // Not ending a macro, ignore it.
 | 
						|
    if (const IdentifierInfo *ControllingMacro = 
 | 
						|
          CurLexer->MIOpt.GetControllingMacroAtEndOfFile()) {
 | 
						|
      // Okay, this has a controlling macro, remember in PerFileInfo.
 | 
						|
      if (const FileEntry *FE = 
 | 
						|
            SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()))
 | 
						|
        HeaderInfo.SetFileControllingMacro(FE, ControllingMacro);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is a #include'd file, pop it off the include stack and continue
 | 
						|
  // lexing the #includer file.
 | 
						|
  if (!IncludeMacroStack.empty()) {
 | 
						|
    // We're done with the #included file.
 | 
						|
    RemoveTopOfLexerStack();
 | 
						|
 | 
						|
    // Notify the client, if desired, that we are in a new source file.
 | 
						|
    if (Callbacks && !isEndOfMacro && CurLexer) {
 | 
						|
      DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir;
 | 
						|
      
 | 
						|
      // Get the file entry for the current file.
 | 
						|
      if (const FileEntry *FE = 
 | 
						|
            SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()))
 | 
						|
        FileType = HeaderInfo.getFileDirFlavor(FE);
 | 
						|
 | 
						|
      Callbacks->FileChanged(CurLexer->getSourceLocation(CurLexer->BufferPtr),
 | 
						|
                             PPCallbacks::ExitFile, FileType);
 | 
						|
    }
 | 
						|
 | 
						|
    // Client should lex another token.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Result.startToken();
 | 
						|
  CurLexer->BufferPtr = CurLexer->BufferEnd;
 | 
						|
  CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd);
 | 
						|
  Result.setKind(tok::eof);
 | 
						|
  
 | 
						|
  // We're done with the #included file.
 | 
						|
  delete CurLexer;
 | 
						|
  CurLexer = 0;
 | 
						|
 | 
						|
  // This is the end of the top-level file.  If the diag::pp_macro_not_used
 | 
						|
  // diagnostic is enabled, walk all of the identifiers, looking for macros that
 | 
						|
  // have not been used.
 | 
						|
  if (Diags.getDiagnosticLevel(diag::pp_macro_not_used) != Diagnostic::Ignored){
 | 
						|
    for (IdentifierTable::iterator I = Identifiers.begin(),
 | 
						|
         E = Identifiers.end(); I != E; ++I) {
 | 
						|
      const IdentifierInfo &II = I->getValue();
 | 
						|
      if (II.getMacroInfo() && !II.getMacroInfo()->isUsed())
 | 
						|
        Diag(II.getMacroInfo()->getDefinitionLoc(), diag::pp_macro_not_used);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleEndOfMacro - This callback is invoked when the lexer hits the end of
 | 
						|
/// the current macro expansion or token stream expansion.
 | 
						|
bool Preprocessor::HandleEndOfMacro(Token &Result) {
 | 
						|
  assert(CurMacroExpander && !CurLexer &&
 | 
						|
         "Ending a macro when currently in a #include file!");
 | 
						|
 | 
						|
  // Delete or cache the now-dead macro expander.
 | 
						|
  if (NumCachedMacroExpanders == MacroExpanderCacheSize)
 | 
						|
    delete CurMacroExpander;
 | 
						|
  else
 | 
						|
    MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander;
 | 
						|
 | 
						|
  // Handle this like a #include file being popped off the stack.
 | 
						|
  CurMacroExpander = 0;
 | 
						|
  return HandleEndOfFile(Result, true);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Utility Methods for Preprocessor Directive Handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// DiscardUntilEndOfDirective - Read and discard all tokens remaining on the
 | 
						|
/// current line until the tok::eom token is found.
 | 
						|
void Preprocessor::DiscardUntilEndOfDirective() {
 | 
						|
  Token Tmp;
 | 
						|
  do {
 | 
						|
    LexUnexpandedToken(Tmp);
 | 
						|
  } while (Tmp.getKind() != tok::eom);
 | 
						|
}
 | 
						|
 | 
						|
/// isCXXNamedOperator - Returns "true" if the token is a named operator in C++.
 | 
						|
static bool isCXXNamedOperator(const std::string &Spelling) {
 | 
						|
  return Spelling == "and" || Spelling == "bitand" || Spelling == "bitor" ||
 | 
						|
    Spelling == "compl" || Spelling == "not" || Spelling == "not_eq" ||
 | 
						|
    Spelling == "or" || Spelling == "xor";
 | 
						|
}
 | 
						|
 | 
						|
/// ReadMacroName - Lex and validate a macro name, which occurs after a
 | 
						|
/// #define or #undef.  This sets the token kind to eom and discards the rest
 | 
						|
/// of the macro line if the macro name is invalid.  isDefineUndef is 1 if
 | 
						|
/// this is due to a a #define, 2 if #undef directive, 0 if it is something
 | 
						|
/// else (e.g. #ifdef).
 | 
						|
void Preprocessor::ReadMacroName(Token &MacroNameTok, char isDefineUndef) {
 | 
						|
  // Read the token, don't allow macro expansion on it.
 | 
						|
  LexUnexpandedToken(MacroNameTok);
 | 
						|
  
 | 
						|
  // Missing macro name?
 | 
						|
  if (MacroNameTok.getKind() == tok::eom)
 | 
						|
    return Diag(MacroNameTok, diag::err_pp_missing_macro_name);
 | 
						|
  
 | 
						|
  IdentifierInfo *II = MacroNameTok.getIdentifierInfo();
 | 
						|
  if (II == 0) {
 | 
						|
    std::string Spelling = getSpelling(MacroNameTok);
 | 
						|
    if (isCXXNamedOperator(Spelling))
 | 
						|
      // C++ 2.5p2: Alternative tokens behave the same as its primary token
 | 
						|
      // except for their spellings.
 | 
						|
      Diag(MacroNameTok, diag::err_pp_operator_used_as_macro_name, Spelling);
 | 
						|
    else
 | 
						|
      Diag(MacroNameTok, diag::err_pp_macro_not_identifier);
 | 
						|
    // Fall through on error.
 | 
						|
  } else if (isDefineUndef && II->getPPKeywordID() == tok::pp_defined) {
 | 
						|
    // Error if defining "defined": C99 6.10.8.4.
 | 
						|
    Diag(MacroNameTok, diag::err_defined_macro_name);
 | 
						|
  } else if (isDefineUndef && II->getMacroInfo() &&
 | 
						|
             II->getMacroInfo()->isBuiltinMacro()) {
 | 
						|
    // Error if defining "__LINE__" and other builtins: C99 6.10.8.4.
 | 
						|
    if (isDefineUndef == 1)
 | 
						|
      Diag(MacroNameTok, diag::pp_redef_builtin_macro);
 | 
						|
    else
 | 
						|
      Diag(MacroNameTok, diag::pp_undef_builtin_macro);
 | 
						|
  } else {
 | 
						|
    // Okay, we got a good identifier node.  Return it.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Invalid macro name, read and discard the rest of the line.  Then set the
 | 
						|
  // token kind to tok::eom.
 | 
						|
  MacroNameTok.setKind(tok::eom);
 | 
						|
  return DiscardUntilEndOfDirective();
 | 
						|
}
 | 
						|
 | 
						|
/// CheckEndOfDirective - Ensure that the next token is a tok::eom token.  If
 | 
						|
/// not, emit a diagnostic and consume up until the eom.
 | 
						|
void Preprocessor::CheckEndOfDirective(const char *DirType) {
 | 
						|
  Token Tmp;
 | 
						|
  Lex(Tmp);
 | 
						|
  // There should be no tokens after the directive, but we allow them as an
 | 
						|
  // extension.
 | 
						|
  while (Tmp.getKind() == tok::comment)  // Skip comments in -C mode.
 | 
						|
    Lex(Tmp);
 | 
						|
  
 | 
						|
  if (Tmp.getKind() != tok::eom) {
 | 
						|
    Diag(Tmp, diag::ext_pp_extra_tokens_at_eol, DirType);
 | 
						|
    DiscardUntilEndOfDirective();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// SkipExcludedConditionalBlock - We just read a #if or related directive and
 | 
						|
/// decided that the subsequent tokens are in the #if'd out portion of the
 | 
						|
/// file.  Lex the rest of the file, until we see an #endif.  If
 | 
						|
/// FoundNonSkipPortion is true, then we have already emitted code for part of
 | 
						|
/// this #if directive, so #else/#elif blocks should never be entered. If ElseOk
 | 
						|
/// is true, then #else directives are ok, if not, then we have already seen one
 | 
						|
/// so a #else directive is a duplicate.  When this returns, the caller can lex
 | 
						|
/// the first valid token.
 | 
						|
void Preprocessor::SkipExcludedConditionalBlock(SourceLocation IfTokenLoc,
 | 
						|
                                                bool FoundNonSkipPortion,
 | 
						|
                                                bool FoundElse) {
 | 
						|
  ++NumSkipped;
 | 
						|
  assert(CurMacroExpander == 0 && CurLexer &&
 | 
						|
         "Lexing a macro, not a file?");
 | 
						|
 | 
						|
  CurLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/false,
 | 
						|
                                 FoundNonSkipPortion, FoundElse);
 | 
						|
  
 | 
						|
  // Enter raw mode to disable identifier lookup (and thus macro expansion),
 | 
						|
  // disabling warnings, etc.
 | 
						|
  CurLexer->LexingRawMode = true;
 | 
						|
  Token Tok;
 | 
						|
  while (1) {
 | 
						|
    CurLexer->Lex(Tok);
 | 
						|
    
 | 
						|
    // If this is the end of the buffer, we have an error.
 | 
						|
    if (Tok.getKind() == tok::eof) {
 | 
						|
      // Emit errors for each unterminated conditional on the stack, including
 | 
						|
      // the current one.
 | 
						|
      while (!CurLexer->ConditionalStack.empty()) {
 | 
						|
        Diag(CurLexer->ConditionalStack.back().IfLoc,
 | 
						|
             diag::err_pp_unterminated_conditional);
 | 
						|
        CurLexer->ConditionalStack.pop_back();
 | 
						|
      }  
 | 
						|
      
 | 
						|
      // Just return and let the caller lex after this #include.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this token is not a preprocessor directive, just skip it.
 | 
						|
    if (Tok.getKind() != tok::hash || !Tok.isAtStartOfLine())
 | 
						|
      continue;
 | 
						|
      
 | 
						|
    // We just parsed a # character at the start of a line, so we're in
 | 
						|
    // directive mode.  Tell the lexer this so any newlines we see will be
 | 
						|
    // converted into an EOM token (this terminates the macro).
 | 
						|
    CurLexer->ParsingPreprocessorDirective = true;
 | 
						|
    CurLexer->KeepCommentMode = false;
 | 
						|
 | 
						|
    
 | 
						|
    // Read the next token, the directive flavor.
 | 
						|
    LexUnexpandedToken(Tok);
 | 
						|
    
 | 
						|
    // If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or
 | 
						|
    // something bogus), skip it.
 | 
						|
    if (Tok.getKind() != tok::identifier) {
 | 
						|
      CurLexer->ParsingPreprocessorDirective = false;
 | 
						|
      // Restore comment saving mode.
 | 
						|
      CurLexer->KeepCommentMode = KeepComments;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the first letter isn't i or e, it isn't intesting to us.  We know that
 | 
						|
    // this is safe in the face of spelling differences, because there is no way
 | 
						|
    // to spell an i/e in a strange way that is another letter.  Skipping this
 | 
						|
    // allows us to avoid looking up the identifier info for #define/#undef and
 | 
						|
    // other common directives.
 | 
						|
    const char *RawCharData = SourceMgr.getCharacterData(Tok.getLocation());
 | 
						|
    char FirstChar = RawCharData[0];
 | 
						|
    if (FirstChar >= 'a' && FirstChar <= 'z' && 
 | 
						|
        FirstChar != 'i' && FirstChar != 'e') {
 | 
						|
      CurLexer->ParsingPreprocessorDirective = false;
 | 
						|
      // Restore comment saving mode.
 | 
						|
      CurLexer->KeepCommentMode = KeepComments;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Get the identifier name without trigraphs or embedded newlines.  Note
 | 
						|
    // that we can't use Tok.getIdentifierInfo() because its lookup is disabled
 | 
						|
    // when skipping.
 | 
						|
    // TODO: could do this with zero copies in the no-clean case by using
 | 
						|
    // strncmp below.
 | 
						|
    char Directive[20];
 | 
						|
    unsigned IdLen;
 | 
						|
    if (!Tok.needsCleaning() && Tok.getLength() < 20) {
 | 
						|
      IdLen = Tok.getLength();
 | 
						|
      memcpy(Directive, RawCharData, IdLen);
 | 
						|
      Directive[IdLen] = 0;
 | 
						|
    } else {
 | 
						|
      std::string DirectiveStr = getSpelling(Tok);
 | 
						|
      IdLen = DirectiveStr.size();
 | 
						|
      if (IdLen >= 20) {
 | 
						|
        CurLexer->ParsingPreprocessorDirective = false;
 | 
						|
        // Restore comment saving mode.
 | 
						|
        CurLexer->KeepCommentMode = KeepComments;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      memcpy(Directive, &DirectiveStr[0], IdLen);
 | 
						|
      Directive[IdLen] = 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (FirstChar == 'i' && Directive[1] == 'f') {
 | 
						|
      if ((IdLen == 2) ||   // "if"
 | 
						|
          (IdLen == 5 && !strcmp(Directive+2, "def")) ||   // "ifdef"
 | 
						|
          (IdLen == 6 && !strcmp(Directive+2, "ndef"))) {  // "ifndef"
 | 
						|
        // We know the entire #if/#ifdef/#ifndef block will be skipped, don't
 | 
						|
        // bother parsing the condition.
 | 
						|
        DiscardUntilEndOfDirective();
 | 
						|
        CurLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true,
 | 
						|
                                       /*foundnonskip*/false,
 | 
						|
                                       /*fnddelse*/false);
 | 
						|
      }
 | 
						|
    } else if (FirstChar == 'e') {
 | 
						|
      if (IdLen == 5 && !strcmp(Directive+1, "ndif")) {  // "endif"
 | 
						|
        CheckEndOfDirective("#endif");
 | 
						|
        PPConditionalInfo CondInfo;
 | 
						|
        CondInfo.WasSkipping = true; // Silence bogus warning.
 | 
						|
        bool InCond = CurLexer->popConditionalLevel(CondInfo);
 | 
						|
        InCond = InCond;  // Silence warning in no-asserts mode.
 | 
						|
        assert(!InCond && "Can't be skipping if not in a conditional!");
 | 
						|
        
 | 
						|
        // If we popped the outermost skipping block, we're done skipping!
 | 
						|
        if (!CondInfo.WasSkipping)
 | 
						|
          break;
 | 
						|
      } else if (IdLen == 4 && !strcmp(Directive+1, "lse")) { // "else".
 | 
						|
        // #else directive in a skipping conditional.  If not in some other
 | 
						|
        // skipping conditional, and if #else hasn't already been seen, enter it
 | 
						|
        // as a non-skipping conditional.
 | 
						|
        CheckEndOfDirective("#else");
 | 
						|
        PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel();
 | 
						|
        
 | 
						|
        // If this is a #else with a #else before it, report the error.
 | 
						|
        if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_else_after_else);
 | 
						|
        
 | 
						|
        // Note that we've seen a #else in this conditional.
 | 
						|
        CondInfo.FoundElse = true;
 | 
						|
        
 | 
						|
        // If the conditional is at the top level, and the #if block wasn't
 | 
						|
        // entered, enter the #else block now.
 | 
						|
        if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) {
 | 
						|
          CondInfo.FoundNonSkip = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else if (IdLen == 4 && !strcmp(Directive+1, "lif")) {  // "elif".
 | 
						|
        PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel();
 | 
						|
 | 
						|
        bool ShouldEnter;
 | 
						|
        // If this is in a skipping block or if we're already handled this #if
 | 
						|
        // block, don't bother parsing the condition.
 | 
						|
        if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) {
 | 
						|
          DiscardUntilEndOfDirective();
 | 
						|
          ShouldEnter = false;
 | 
						|
        } else {
 | 
						|
          // Restore the value of LexingRawMode so that identifiers are
 | 
						|
          // looked up, etc, inside the #elif expression.
 | 
						|
          assert(CurLexer->LexingRawMode && "We have to be skipping here!");
 | 
						|
          CurLexer->LexingRawMode = false;
 | 
						|
          IdentifierInfo *IfNDefMacro = 0;
 | 
						|
          ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro);
 | 
						|
          CurLexer->LexingRawMode = true;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If this is a #elif with a #else before it, report the error.
 | 
						|
        if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else);
 | 
						|
        
 | 
						|
        // If this condition is true, enter it!
 | 
						|
        if (ShouldEnter) {
 | 
						|
          CondInfo.FoundNonSkip = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    CurLexer->ParsingPreprocessorDirective = false;
 | 
						|
    // Restore comment saving mode.
 | 
						|
    CurLexer->KeepCommentMode = KeepComments;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, if we are out of the conditional (saw an #endif or ran off the end
 | 
						|
  // of the file, just stop skipping and return to lexing whatever came after
 | 
						|
  // the #if block.
 | 
						|
  CurLexer->LexingRawMode = false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Preprocessor Directive Handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// HandleDirective - This callback is invoked when the lexer sees a # token
 | 
						|
/// at the start of a line.  This consumes the directive, modifies the 
 | 
						|
/// lexer/preprocessor state, and advances the lexer(s) so that the next token
 | 
						|
/// read is the correct one.
 | 
						|
void Preprocessor::HandleDirective(Token &Result) {
 | 
						|
  // FIXME: Traditional: # with whitespace before it not recognized by K&R?
 | 
						|
  
 | 
						|
  // We just parsed a # character at the start of a line, so we're in directive
 | 
						|
  // mode.  Tell the lexer this so any newlines we see will be converted into an
 | 
						|
  // EOM token (which terminates the directive).
 | 
						|
  CurLexer->ParsingPreprocessorDirective = true;
 | 
						|
  
 | 
						|
  ++NumDirectives;
 | 
						|
  
 | 
						|
  // We are about to read a token.  For the multiple-include optimization FA to
 | 
						|
  // work, we have to remember if we had read any tokens *before* this 
 | 
						|
  // pp-directive.
 | 
						|
  bool ReadAnyTokensBeforeDirective = CurLexer->MIOpt.getHasReadAnyTokensVal();
 | 
						|
  
 | 
						|
  // Read the next token, the directive flavor.  This isn't expanded due to
 | 
						|
  // C99 6.10.3p8.
 | 
						|
  LexUnexpandedToken(Result);
 | 
						|
  
 | 
						|
  // C99 6.10.3p11: Is this preprocessor directive in macro invocation?  e.g.:
 | 
						|
  //   #define A(x) #x
 | 
						|
  //   A(abc
 | 
						|
  //     #warning blah
 | 
						|
  //   def)
 | 
						|
  // If so, the user is relying on non-portable behavior, emit a diagnostic.
 | 
						|
  if (InMacroArgs)
 | 
						|
    Diag(Result, diag::ext_embedded_directive);
 | 
						|
  
 | 
						|
TryAgain:
 | 
						|
  switch (Result.getKind()) {
 | 
						|
  case tok::eom:
 | 
						|
    return;   // null directive.
 | 
						|
  case tok::comment:
 | 
						|
    // Handle stuff like "# /*foo*/ define X" in -E -C mode.
 | 
						|
    LexUnexpandedToken(Result);
 | 
						|
    goto TryAgain;
 | 
						|
 | 
						|
  case tok::numeric_constant:
 | 
						|
    // FIXME: implement # 7 line numbers!
 | 
						|
    DiscardUntilEndOfDirective();
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    IdentifierInfo *II = Result.getIdentifierInfo();
 | 
						|
    if (II == 0) break;  // Not an identifier.
 | 
						|
      
 | 
						|
    // Ask what the preprocessor keyword ID is.
 | 
						|
    switch (II->getPPKeywordID()) {
 | 
						|
    default: break;
 | 
						|
    // C99 6.10.1 - Conditional Inclusion.
 | 
						|
    case tok::pp_if:
 | 
						|
      return HandleIfDirective(Result, ReadAnyTokensBeforeDirective);
 | 
						|
    case tok::pp_ifdef:
 | 
						|
      return HandleIfdefDirective(Result, false, true/*not valid for miopt*/);
 | 
						|
    case tok::pp_ifndef:
 | 
						|
      return HandleIfdefDirective(Result, true, ReadAnyTokensBeforeDirective);
 | 
						|
    case tok::pp_elif:
 | 
						|
      return HandleElifDirective(Result);
 | 
						|
    case tok::pp_else:
 | 
						|
      return HandleElseDirective(Result);
 | 
						|
    case tok::pp_endif:
 | 
						|
      return HandleEndifDirective(Result);
 | 
						|
      
 | 
						|
    // C99 6.10.2 - Source File Inclusion.
 | 
						|
    case tok::pp_include:
 | 
						|
      return HandleIncludeDirective(Result);            // Handle #include.
 | 
						|
 | 
						|
    // C99 6.10.3 - Macro Replacement.
 | 
						|
    case tok::pp_define:
 | 
						|
      return HandleDefineDirective(Result, false);
 | 
						|
    case tok::pp_undef:
 | 
						|
      return HandleUndefDirective(Result);
 | 
						|
 | 
						|
    // C99 6.10.4 - Line Control.
 | 
						|
    case tok::pp_line:
 | 
						|
      // FIXME: implement #line
 | 
						|
      DiscardUntilEndOfDirective();
 | 
						|
      return;
 | 
						|
      
 | 
						|
    // C99 6.10.5 - Error Directive.
 | 
						|
    case tok::pp_error:
 | 
						|
      return HandleUserDiagnosticDirective(Result, false);
 | 
						|
      
 | 
						|
    // C99 6.10.6 - Pragma Directive.
 | 
						|
    case tok::pp_pragma:
 | 
						|
      return HandlePragmaDirective();
 | 
						|
      
 | 
						|
    // GNU Extensions.
 | 
						|
    case tok::pp_import:
 | 
						|
      return HandleImportDirective(Result);
 | 
						|
    case tok::pp_include_next:
 | 
						|
      return HandleIncludeNextDirective(Result);
 | 
						|
      
 | 
						|
    case tok::pp_warning:
 | 
						|
      Diag(Result, diag::ext_pp_warning_directive);
 | 
						|
      return HandleUserDiagnosticDirective(Result, true);
 | 
						|
    case tok::pp_ident:
 | 
						|
      return HandleIdentSCCSDirective(Result);
 | 
						|
    case tok::pp_sccs:
 | 
						|
      return HandleIdentSCCSDirective(Result);
 | 
						|
    case tok::pp_assert:
 | 
						|
      //isExtension = true;  // FIXME: implement #assert
 | 
						|
      break;
 | 
						|
    case tok::pp_unassert:
 | 
						|
      //isExtension = true;  // FIXME: implement #unassert
 | 
						|
      break;
 | 
						|
      
 | 
						|
    // clang extensions.
 | 
						|
    case tok::pp_define_target:
 | 
						|
      return HandleDefineDirective(Result, true);
 | 
						|
    case tok::pp_define_other_target:
 | 
						|
      return HandleDefineOtherTargetDirective(Result);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we reached here, the preprocessing token is not valid!
 | 
						|
  Diag(Result, diag::err_pp_invalid_directive);
 | 
						|
  
 | 
						|
  // Read the rest of the PP line.
 | 
						|
  DiscardUntilEndOfDirective();
 | 
						|
  
 | 
						|
  // Okay, we're done parsing the directive.
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::HandleUserDiagnosticDirective(Token &Tok, 
 | 
						|
                                                 bool isWarning) {
 | 
						|
  // Read the rest of the line raw.  We do this because we don't want macros
 | 
						|
  // to be expanded and we don't require that the tokens be valid preprocessing
 | 
						|
  // tokens.  For example, this is allowed: "#warning `   'foo".  GCC does
 | 
						|
  // collapse multiple consequtive white space between tokens, but this isn't
 | 
						|
  // specified by the standard.
 | 
						|
  std::string Message = CurLexer->ReadToEndOfLine();
 | 
						|
 | 
						|
  unsigned DiagID = isWarning ? diag::pp_hash_warning : diag::err_pp_hash_error;
 | 
						|
  return Diag(Tok, DiagID, Message);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleIdentSCCSDirective - Handle a #ident/#sccs directive.
 | 
						|
///
 | 
						|
void Preprocessor::HandleIdentSCCSDirective(Token &Tok) {
 | 
						|
  // Yes, this directive is an extension.
 | 
						|
  Diag(Tok, diag::ext_pp_ident_directive);
 | 
						|
  
 | 
						|
  // Read the string argument.
 | 
						|
  Token StrTok;
 | 
						|
  Lex(StrTok);
 | 
						|
  
 | 
						|
  // If the token kind isn't a string, it's a malformed directive.
 | 
						|
  if (StrTok.getKind() != tok::string_literal &&
 | 
						|
      StrTok.getKind() != tok::wide_string_literal)
 | 
						|
    return Diag(StrTok, diag::err_pp_malformed_ident);
 | 
						|
  
 | 
						|
  // Verify that there is nothing after the string, other than EOM.
 | 
						|
  CheckEndOfDirective("#ident");
 | 
						|
 | 
						|
  if (Callbacks)
 | 
						|
    Callbacks->Ident(Tok.getLocation(), getSpelling(StrTok));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Preprocessor Include Directive Handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// GetIncludeFilenameSpelling - Turn the specified lexer token into a fully
 | 
						|
/// checked and spelled filename, e.g. as an operand of #include. This returns
 | 
						|
/// true if the input filename was in <>'s or false if it were in ""'s.  The
 | 
						|
/// caller is expected to provide a buffer that is large enough to hold the
 | 
						|
/// spelling of the filename, but is also expected to handle the case when
 | 
						|
/// this method decides to use a different buffer.
 | 
						|
bool Preprocessor::GetIncludeFilenameSpelling(SourceLocation Loc,
 | 
						|
                                              const char *&BufStart,
 | 
						|
                                              const char *&BufEnd) {
 | 
						|
  // Get the text form of the filename.
 | 
						|
  assert(BufStart != BufEnd && "Can't have tokens with empty spellings!");
 | 
						|
  
 | 
						|
  // Make sure the filename is <x> or "x".
 | 
						|
  bool isAngled;
 | 
						|
  if (BufStart[0] == '<') {
 | 
						|
    if (BufEnd[-1] != '>') {
 | 
						|
      Diag(Loc, diag::err_pp_expects_filename);
 | 
						|
      BufStart = 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    isAngled = true;
 | 
						|
  } else if (BufStart[0] == '"') {
 | 
						|
    if (BufEnd[-1] != '"') {
 | 
						|
      Diag(Loc, diag::err_pp_expects_filename);
 | 
						|
      BufStart = 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    isAngled = false;
 | 
						|
  } else {
 | 
						|
    Diag(Loc, diag::err_pp_expects_filename);
 | 
						|
    BufStart = 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Diagnose #include "" as invalid.
 | 
						|
  if (BufEnd-BufStart <= 2) {
 | 
						|
    Diag(Loc, diag::err_pp_empty_filename);
 | 
						|
    BufStart = 0;
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Skip the brackets.
 | 
						|
  ++BufStart;
 | 
						|
  --BufEnd;
 | 
						|
  return isAngled;
 | 
						|
}
 | 
						|
 | 
						|
/// ConcatenateIncludeName - Handle cases where the #include name is expanded
 | 
						|
/// from a macro as multiple tokens, which need to be glued together.  This
 | 
						|
/// occurs for code like:
 | 
						|
///    #define FOO <a/b.h>
 | 
						|
///    #include FOO
 | 
						|
/// because in this case, "<a/b.h>" is returned as 7 tokens, not one.
 | 
						|
///
 | 
						|
/// This code concatenates and consumes tokens up to the '>' token.  It returns
 | 
						|
/// false if the > was found, otherwise it returns true if it finds and consumes
 | 
						|
/// the EOM marker.
 | 
						|
static bool ConcatenateIncludeName(llvm::SmallVector<char, 128> &FilenameBuffer,
 | 
						|
                                   Preprocessor &PP) {
 | 
						|
  Token CurTok;
 | 
						|
  
 | 
						|
  PP.Lex(CurTok);
 | 
						|
  while (CurTok.getKind() != tok::eom) {
 | 
						|
    // Append the spelling of this token to the buffer. If there was a space
 | 
						|
    // before it, add it now.
 | 
						|
    if (CurTok.hasLeadingSpace())
 | 
						|
      FilenameBuffer.push_back(' ');
 | 
						|
    
 | 
						|
    // Get the spelling of the token, directly into FilenameBuffer if possible.
 | 
						|
    unsigned PreAppendSize = FilenameBuffer.size();
 | 
						|
    FilenameBuffer.resize(PreAppendSize+CurTok.getLength());
 | 
						|
    
 | 
						|
    const char *BufPtr = &FilenameBuffer[PreAppendSize];
 | 
						|
    unsigned ActualLen = PP.getSpelling(CurTok, BufPtr);
 | 
						|
    
 | 
						|
    // If the token was spelled somewhere else, copy it into FilenameBuffer.
 | 
						|
    if (BufPtr != &FilenameBuffer[PreAppendSize])
 | 
						|
      memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen);
 | 
						|
    
 | 
						|
    // Resize FilenameBuffer to the correct size.
 | 
						|
    if (CurTok.getLength() != ActualLen)
 | 
						|
      FilenameBuffer.resize(PreAppendSize+ActualLen);
 | 
						|
    
 | 
						|
    // If we found the '>' marker, return success.
 | 
						|
    if (CurTok.getKind() == tok::greater)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    PP.Lex(CurTok);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we hit the eom marker, emit an error and return true so that the caller
 | 
						|
  // knows the EOM has been read.
 | 
						|
  PP.Diag(CurTok.getLocation(), diag::err_pp_expects_filename);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleIncludeDirective - The "#include" tokens have just been read, read the
 | 
						|
/// file to be included from the lexer, then include it!  This is a common
 | 
						|
/// routine with functionality shared between #include, #include_next and
 | 
						|
/// #import.
 | 
						|
void Preprocessor::HandleIncludeDirective(Token &IncludeTok,
 | 
						|
                                          const DirectoryLookup *LookupFrom,
 | 
						|
                                          bool isImport) {
 | 
						|
 | 
						|
  Token FilenameTok;
 | 
						|
  CurLexer->LexIncludeFilename(FilenameTok);
 | 
						|
  
 | 
						|
  // Reserve a buffer to get the spelling.
 | 
						|
  llvm::SmallVector<char, 128> FilenameBuffer;
 | 
						|
  const char *FilenameStart, *FilenameEnd;
 | 
						|
 | 
						|
  switch (FilenameTok.getKind()) {
 | 
						|
  case tok::eom:
 | 
						|
    // If the token kind is EOM, the error has already been diagnosed.
 | 
						|
    return;
 | 
						|
  
 | 
						|
  case tok::angle_string_literal:
 | 
						|
  case tok::string_literal: {
 | 
						|
    FilenameBuffer.resize(FilenameTok.getLength());
 | 
						|
    FilenameStart = &FilenameBuffer[0];
 | 
						|
    unsigned Len = getSpelling(FilenameTok, FilenameStart);
 | 
						|
    FilenameEnd = FilenameStart+Len;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  case tok::less:
 | 
						|
    // This could be a <foo/bar.h> file coming from a macro expansion.  In this
 | 
						|
    // case, glue the tokens together into FilenameBuffer and interpret those.
 | 
						|
    FilenameBuffer.push_back('<');
 | 
						|
    if (ConcatenateIncludeName(FilenameBuffer, *this))
 | 
						|
      return;   // Found <eom> but no ">"?  Diagnostic already emitted.
 | 
						|
    FilenameStart = &FilenameBuffer[0];
 | 
						|
    FilenameEnd = &FilenameBuffer[FilenameBuffer.size()];
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename);
 | 
						|
    DiscardUntilEndOfDirective();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool isAngled = GetIncludeFilenameSpelling(FilenameTok.getLocation(),
 | 
						|
                                             FilenameStart, FilenameEnd);
 | 
						|
  // If GetIncludeFilenameSpelling set the start ptr to null, there was an
 | 
						|
  // error.
 | 
						|
  if (FilenameStart == 0) {
 | 
						|
    DiscardUntilEndOfDirective();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Verify that there is nothing after the filename, other than EOM.  Use the
 | 
						|
  // preprocessor to lex this in case lexing the filename entered a macro.
 | 
						|
  CheckEndOfDirective("#include");
 | 
						|
 | 
						|
  // Check that we don't have infinite #include recursion.
 | 
						|
  if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1)
 | 
						|
    return Diag(FilenameTok, diag::err_pp_include_too_deep);
 | 
						|
  
 | 
						|
  // Search include directories.
 | 
						|
  const DirectoryLookup *CurDir;
 | 
						|
  const FileEntry *File = LookupFile(FilenameStart, FilenameEnd,
 | 
						|
                                     isAngled, LookupFrom, CurDir);
 | 
						|
  if (File == 0)
 | 
						|
    return Diag(FilenameTok, diag::err_pp_file_not_found,
 | 
						|
                std::string(FilenameStart, FilenameEnd));
 | 
						|
  
 | 
						|
  // Ask HeaderInfo if we should enter this #include file.
 | 
						|
  if (!HeaderInfo.ShouldEnterIncludeFile(File, isImport)) {
 | 
						|
    // If it returns true, #including this file will have no effect.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look up the file, create a File ID for it.
 | 
						|
  unsigned FileID = SourceMgr.createFileID(File, FilenameTok.getLocation());
 | 
						|
  if (FileID == 0)
 | 
						|
    return Diag(FilenameTok, diag::err_pp_file_not_found,
 | 
						|
                std::string(FilenameStart, FilenameEnd));
 | 
						|
 | 
						|
  // Finally, if all is good, enter the new file!
 | 
						|
  EnterSourceFile(FileID, CurDir);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleIncludeNextDirective - Implements #include_next.
 | 
						|
///
 | 
						|
void Preprocessor::HandleIncludeNextDirective(Token &IncludeNextTok) {
 | 
						|
  Diag(IncludeNextTok, diag::ext_pp_include_next_directive);
 | 
						|
  
 | 
						|
  // #include_next is like #include, except that we start searching after
 | 
						|
  // the current found directory.  If we can't do this, issue a
 | 
						|
  // diagnostic.
 | 
						|
  const DirectoryLookup *Lookup = CurDirLookup;
 | 
						|
  if (isInPrimaryFile()) {
 | 
						|
    Lookup = 0;
 | 
						|
    Diag(IncludeNextTok, diag::pp_include_next_in_primary);
 | 
						|
  } else if (Lookup == 0) {
 | 
						|
    Diag(IncludeNextTok, diag::pp_include_next_absolute_path);
 | 
						|
  } else {
 | 
						|
    // Start looking up in the next directory.
 | 
						|
    ++Lookup;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return HandleIncludeDirective(IncludeNextTok, Lookup);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleImportDirective - Implements #import.
 | 
						|
///
 | 
						|
void Preprocessor::HandleImportDirective(Token &ImportTok) {
 | 
						|
  Diag(ImportTok, diag::ext_pp_import_directive);
 | 
						|
  
 | 
						|
  return HandleIncludeDirective(ImportTok, 0, true);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Preprocessor Macro Directive Handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReadMacroDefinitionArgList - The ( starting an argument list of a macro
 | 
						|
/// definition has just been read.  Lex the rest of the arguments and the
 | 
						|
/// closing ), updating MI with what we learn.  Return true if an error occurs
 | 
						|
/// parsing the arg list.
 | 
						|
bool Preprocessor::ReadMacroDefinitionArgList(MacroInfo *MI) {
 | 
						|
  llvm::SmallVector<IdentifierInfo*, 32> Arguments;
 | 
						|
  
 | 
						|
  Token Tok;
 | 
						|
  while (1) {
 | 
						|
    LexUnexpandedToken(Tok);
 | 
						|
    switch (Tok.getKind()) {
 | 
						|
    case tok::r_paren:
 | 
						|
      // Found the end of the argument list.
 | 
						|
      if (Arguments.empty()) {  // #define FOO()
 | 
						|
        MI->setArgumentList(Arguments.begin(), Arguments.end());
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // Otherwise we have #define FOO(A,)
 | 
						|
      Diag(Tok, diag::err_pp_expected_ident_in_arg_list);
 | 
						|
      return true;
 | 
						|
    case tok::ellipsis:  // #define X(... -> C99 varargs
 | 
						|
      // Warn if use of C99 feature in non-C99 mode.
 | 
						|
      if (!Features.C99) Diag(Tok, diag::ext_variadic_macro);
 | 
						|
 | 
						|
      // Lex the token after the identifier.
 | 
						|
      LexUnexpandedToken(Tok);
 | 
						|
      if (Tok.getKind() != tok::r_paren) {
 | 
						|
        Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      // Add the __VA_ARGS__ identifier as an argument.
 | 
						|
      Arguments.push_back(Ident__VA_ARGS__);
 | 
						|
      MI->setIsC99Varargs();
 | 
						|
      MI->setArgumentList(Arguments.begin(), Arguments.end());
 | 
						|
      return false;
 | 
						|
    case tok::eom:  // #define X(
 | 
						|
      Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
 | 
						|
      return true;
 | 
						|
    default:
 | 
						|
      // Handle keywords and identifiers here to accept things like
 | 
						|
      // #define Foo(for) for.
 | 
						|
      IdentifierInfo *II = Tok.getIdentifierInfo();
 | 
						|
      if (II == 0) {
 | 
						|
        // #define X(1
 | 
						|
        Diag(Tok, diag::err_pp_invalid_tok_in_arg_list);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is already used as an argument, it is used multiple times (e.g.
 | 
						|
      // #define X(A,A.
 | 
						|
      if (std::find(Arguments.begin(), Arguments.end(), II) != 
 | 
						|
          Arguments.end()) {  // C99 6.10.3p6
 | 
						|
        Diag(Tok, diag::err_pp_duplicate_name_in_arg_list, II->getName());
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
        
 | 
						|
      // Add the argument to the macro info.
 | 
						|
      Arguments.push_back(II);
 | 
						|
      
 | 
						|
      // Lex the token after the identifier.
 | 
						|
      LexUnexpandedToken(Tok);
 | 
						|
      
 | 
						|
      switch (Tok.getKind()) {
 | 
						|
      default:          // #define X(A B
 | 
						|
        Diag(Tok, diag::err_pp_expected_comma_in_arg_list);
 | 
						|
        return true;
 | 
						|
      case tok::r_paren: // #define X(A)
 | 
						|
        MI->setArgumentList(Arguments.begin(), Arguments.end());
 | 
						|
        return false;
 | 
						|
      case tok::comma:  // #define X(A,
 | 
						|
        break;
 | 
						|
      case tok::ellipsis:  // #define X(A... -> GCC extension
 | 
						|
        // Diagnose extension.
 | 
						|
        Diag(Tok, diag::ext_named_variadic_macro);
 | 
						|
        
 | 
						|
        // Lex the token after the identifier.
 | 
						|
        LexUnexpandedToken(Tok);
 | 
						|
        if (Tok.getKind() != tok::r_paren) {
 | 
						|
          Diag(Tok, diag::err_pp_missing_rparen_in_macro_def);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
          
 | 
						|
        MI->setIsGNUVarargs();
 | 
						|
        MI->setArgumentList(Arguments.begin(), Arguments.end());
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleDefineDirective - Implements #define.  This consumes the entire macro
 | 
						|
/// line then lets the caller lex the next real token.  If 'isTargetSpecific' is
 | 
						|
/// true, then this is a "#define_target", otherwise this is a "#define".
 | 
						|
///
 | 
						|
void Preprocessor::HandleDefineDirective(Token &DefineTok,
 | 
						|
                                         bool isTargetSpecific) {
 | 
						|
  ++NumDefined;
 | 
						|
 | 
						|
  Token MacroNameTok;
 | 
						|
  ReadMacroName(MacroNameTok, 1);
 | 
						|
  
 | 
						|
  // Error reading macro name?  If so, diagnostic already issued.
 | 
						|
  if (MacroNameTok.getKind() == tok::eom)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we are supposed to keep comments in #defines, reenable comment saving
 | 
						|
  // mode.
 | 
						|
  CurLexer->KeepCommentMode = KeepMacroComments;
 | 
						|
  
 | 
						|
  // Create the new macro.
 | 
						|
  MacroInfo *MI = new MacroInfo(MacroNameTok.getLocation());
 | 
						|
  if (isTargetSpecific) MI->setIsTargetSpecific();
 | 
						|
  
 | 
						|
  // If the identifier is an 'other target' macro, clear this bit.
 | 
						|
  MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false);
 | 
						|
 | 
						|
  
 | 
						|
  Token Tok;
 | 
						|
  LexUnexpandedToken(Tok);
 | 
						|
  
 | 
						|
  // If this is a function-like macro definition, parse the argument list,
 | 
						|
  // marking each of the identifiers as being used as macro arguments.  Also,
 | 
						|
  // check other constraints on the first token of the macro body.
 | 
						|
  if (Tok.getKind() == tok::eom) {
 | 
						|
    // If there is no body to this macro, we have no special handling here.
 | 
						|
  } else if (Tok.getKind() == tok::l_paren && !Tok.hasLeadingSpace()) {
 | 
						|
    // This is a function-like macro definition.  Read the argument list.
 | 
						|
    MI->setIsFunctionLike();
 | 
						|
    if (ReadMacroDefinitionArgList(MI)) {
 | 
						|
      // Forget about MI.
 | 
						|
      delete MI;
 | 
						|
      // Throw away the rest of the line.
 | 
						|
      if (CurLexer->ParsingPreprocessorDirective)
 | 
						|
        DiscardUntilEndOfDirective();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Read the first token after the arg list for down below.
 | 
						|
    LexUnexpandedToken(Tok);
 | 
						|
  } else if (!Tok.hasLeadingSpace()) {
 | 
						|
    // C99 requires whitespace between the macro definition and the body.  Emit
 | 
						|
    // a diagnostic for something like "#define X+".
 | 
						|
    if (Features.C99) {
 | 
						|
      Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name);
 | 
						|
    } else {
 | 
						|
      // FIXME: C90/C++ do not get this diagnostic, but it does get a similar
 | 
						|
      // one in some cases!
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // This is a normal token with leading space.  Clear the leading space
 | 
						|
    // marker on the first token to get proper expansion.
 | 
						|
    Tok.clearFlag(Token::LeadingSpace);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is a definition of a variadic C99 function-like macro, not using
 | 
						|
  // the GNU named varargs extension, enabled __VA_ARGS__.
 | 
						|
  
 | 
						|
  // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
 | 
						|
  // This gets unpoisoned where it is allowed.
 | 
						|
  assert(Ident__VA_ARGS__->isPoisoned() && "__VA_ARGS__ should be poisoned!");
 | 
						|
  if (MI->isC99Varargs())
 | 
						|
    Ident__VA_ARGS__->setIsPoisoned(false);
 | 
						|
  
 | 
						|
  // Read the rest of the macro body.
 | 
						|
  if (MI->isObjectLike()) {
 | 
						|
    // Object-like macros are very simple, just read their body.
 | 
						|
    while (Tok.getKind() != tok::eom) {
 | 
						|
      MI->AddTokenToBody(Tok);
 | 
						|
      // Get the next token of the macro.
 | 
						|
      LexUnexpandedToken(Tok);
 | 
						|
    }
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // Otherwise, read the body of a function-like macro.  This has to validate
 | 
						|
    // the # (stringize) operator.
 | 
						|
    while (Tok.getKind() != tok::eom) {
 | 
						|
      MI->AddTokenToBody(Tok);
 | 
						|
 | 
						|
      // Check C99 6.10.3.2p1: ensure that # operators are followed by macro
 | 
						|
      // parameters in function-like macro expansions.
 | 
						|
      if (Tok.getKind() != tok::hash) {
 | 
						|
        // Get the next token of the macro.
 | 
						|
        LexUnexpandedToken(Tok);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Get the next token of the macro.
 | 
						|
      LexUnexpandedToken(Tok);
 | 
						|
     
 | 
						|
      // Not a macro arg identifier?
 | 
						|
      if (!Tok.getIdentifierInfo() ||
 | 
						|
          MI->getArgumentNum(Tok.getIdentifierInfo()) == -1) {
 | 
						|
        Diag(Tok, diag::err_pp_stringize_not_parameter);
 | 
						|
        delete MI;
 | 
						|
        
 | 
						|
        // Disable __VA_ARGS__ again.
 | 
						|
        Ident__VA_ARGS__->setIsPoisoned(true);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Things look ok, add the param name token to the macro.
 | 
						|
      MI->AddTokenToBody(Tok);
 | 
						|
 | 
						|
      // Get the next token of the macro.
 | 
						|
      LexUnexpandedToken(Tok);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Disable __VA_ARGS__ again.
 | 
						|
  Ident__VA_ARGS__->setIsPoisoned(true);
 | 
						|
 | 
						|
  // Check that there is no paste (##) operator at the begining or end of the
 | 
						|
  // replacement list.
 | 
						|
  unsigned NumTokens = MI->getNumTokens();
 | 
						|
  if (NumTokens != 0) {
 | 
						|
    if (MI->getReplacementToken(0).getKind() == tok::hashhash) {
 | 
						|
      Diag(MI->getReplacementToken(0), diag::err_paste_at_start);
 | 
						|
      delete MI;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (MI->getReplacementToken(NumTokens-1).getKind() == tok::hashhash) {
 | 
						|
      Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end);
 | 
						|
      delete MI;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this is the primary source file, remember that this macro hasn't been
 | 
						|
  // used yet.
 | 
						|
  if (isInPrimaryFile())
 | 
						|
    MI->setIsUsed(false);
 | 
						|
  
 | 
						|
  // Finally, if this identifier already had a macro defined for it, verify that
 | 
						|
  // the macro bodies are identical and free the old definition.
 | 
						|
  if (MacroInfo *OtherMI = MacroNameTok.getIdentifierInfo()->getMacroInfo()) {
 | 
						|
    if (!OtherMI->isUsed())
 | 
						|
      Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used);
 | 
						|
 | 
						|
    // Macros must be identical.  This means all tokes and whitespace separation
 | 
						|
    // must be the same.  C99 6.10.3.2.
 | 
						|
    if (!MI->isIdenticalTo(*OtherMI, *this)) {
 | 
						|
      Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef,
 | 
						|
           MacroNameTok.getIdentifierInfo()->getName());
 | 
						|
      Diag(OtherMI->getDefinitionLoc(), diag::ext_pp_macro_redef2);
 | 
						|
    }
 | 
						|
    delete OtherMI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  MacroNameTok.getIdentifierInfo()->setMacroInfo(MI);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleDefineOtherTargetDirective - Implements #define_other_target.
 | 
						|
void Preprocessor::HandleDefineOtherTargetDirective(Token &Tok) {
 | 
						|
  Token MacroNameTok;
 | 
						|
  ReadMacroName(MacroNameTok, 1);
 | 
						|
  
 | 
						|
  // Error reading macro name?  If so, diagnostic already issued.
 | 
						|
  if (MacroNameTok.getKind() == tok::eom)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check to see if this is the last token on the #undef line.
 | 
						|
  CheckEndOfDirective("#define_other_target");
 | 
						|
 | 
						|
  // If there is already a macro defined by this name, turn it into a
 | 
						|
  // target-specific define.
 | 
						|
  if (MacroInfo *MI = MacroNameTok.getIdentifierInfo()->getMacroInfo()) {
 | 
						|
    MI->setIsTargetSpecific(true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark the identifier as being a macro on some other target.
 | 
						|
  MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// HandleUndefDirective - Implements #undef.
 | 
						|
///
 | 
						|
void Preprocessor::HandleUndefDirective(Token &UndefTok) {
 | 
						|
  ++NumUndefined;
 | 
						|
 | 
						|
  Token MacroNameTok;
 | 
						|
  ReadMacroName(MacroNameTok, 2);
 | 
						|
  
 | 
						|
  // Error reading macro name?  If so, diagnostic already issued.
 | 
						|
  if (MacroNameTok.getKind() == tok::eom)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Check to see if this is the last token on the #undef line.
 | 
						|
  CheckEndOfDirective("#undef");
 | 
						|
  
 | 
						|
  // Okay, we finally have a valid identifier to undef.
 | 
						|
  MacroInfo *MI = MacroNameTok.getIdentifierInfo()->getMacroInfo();
 | 
						|
  
 | 
						|
  // #undef untaints an identifier if it were marked by define_other_target.
 | 
						|
  MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false);
 | 
						|
  
 | 
						|
  // If the macro is not defined, this is a noop undef, just return.
 | 
						|
  if (MI == 0) return;
 | 
						|
 | 
						|
  if (!MI->isUsed())
 | 
						|
    Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used);
 | 
						|
  
 | 
						|
  // Free macro definition.
 | 
						|
  delete MI;
 | 
						|
  MacroNameTok.getIdentifierInfo()->setMacroInfo(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Preprocessor Conditional Directive Handling.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// HandleIfdefDirective - Implements the #ifdef/#ifndef directive.  isIfndef is
 | 
						|
/// true when this is a #ifndef directive.  ReadAnyTokensBeforeDirective is true
 | 
						|
/// if any tokens have been returned or pp-directives activated before this
 | 
						|
/// #ifndef has been lexed.
 | 
						|
///
 | 
						|
void Preprocessor::HandleIfdefDirective(Token &Result, bool isIfndef,
 | 
						|
                                        bool ReadAnyTokensBeforeDirective) {
 | 
						|
  ++NumIf;
 | 
						|
  Token DirectiveTok = Result;
 | 
						|
 | 
						|
  Token MacroNameTok;
 | 
						|
  ReadMacroName(MacroNameTok);
 | 
						|
  
 | 
						|
  // Error reading macro name?  If so, diagnostic already issued.
 | 
						|
  if (MacroNameTok.getKind() == tok::eom)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Check to see if this is the last token on the #if[n]def line.
 | 
						|
  CheckEndOfDirective(isIfndef ? "#ifndef" : "#ifdef");
 | 
						|
  
 | 
						|
  // If the start of a top-level #ifdef, inform MIOpt.
 | 
						|
  if (!ReadAnyTokensBeforeDirective &&
 | 
						|
      CurLexer->getConditionalStackDepth() == 0) {
 | 
						|
    assert(isIfndef && "#ifdef shouldn't reach here");
 | 
						|
    CurLexer->MIOpt.EnterTopLevelIFNDEF(MacroNameTok.getIdentifierInfo());
 | 
						|
  }
 | 
						|
  
 | 
						|
  IdentifierInfo *MII = MacroNameTok.getIdentifierInfo();
 | 
						|
  MacroInfo *MI = MII->getMacroInfo();
 | 
						|
 | 
						|
  // If there is a macro, process it.
 | 
						|
  if (MI) {
 | 
						|
    // Mark it used.
 | 
						|
    MI->setIsUsed(true);
 | 
						|
 | 
						|
    // If this is the first use of a target-specific macro, warn about it.
 | 
						|
    if (MI->isTargetSpecific()) {
 | 
						|
      MI->setIsTargetSpecific(false);  // Don't warn on second use.
 | 
						|
      getTargetInfo().DiagnoseNonPortability(MacroNameTok.getLocation(),
 | 
						|
                                             diag::port_target_macro_use);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Use of a target-specific macro for some other target?  If so, warn.
 | 
						|
    if (MII->isOtherTargetMacro()) {
 | 
						|
      MII->setIsOtherTargetMacro(false);  // Don't warn on second use.
 | 
						|
      getTargetInfo().DiagnoseNonPortability(MacroNameTok.getLocation(),
 | 
						|
                                             diag::port_target_macro_use);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Should we include the stuff contained by this directive?
 | 
						|
  if (!MI == isIfndef) {
 | 
						|
    // Yes, remember that we are inside a conditional, then lex the next token.
 | 
						|
    CurLexer->pushConditionalLevel(DirectiveTok.getLocation(), /*wasskip*/false,
 | 
						|
                                   /*foundnonskip*/true, /*foundelse*/false);
 | 
						|
  } else {
 | 
						|
    // No, skip the contents of this block and return the first token after it.
 | 
						|
    SkipExcludedConditionalBlock(DirectiveTok.getLocation(),
 | 
						|
                                 /*Foundnonskip*/false, 
 | 
						|
                                 /*FoundElse*/false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleIfDirective - Implements the #if directive.
 | 
						|
///
 | 
						|
void Preprocessor::HandleIfDirective(Token &IfToken,
 | 
						|
                                     bool ReadAnyTokensBeforeDirective) {
 | 
						|
  ++NumIf;
 | 
						|
  
 | 
						|
  // Parse and evaluation the conditional expression.
 | 
						|
  IdentifierInfo *IfNDefMacro = 0;
 | 
						|
  bool ConditionalTrue = EvaluateDirectiveExpression(IfNDefMacro);
 | 
						|
  
 | 
						|
  // Should we include the stuff contained by this directive?
 | 
						|
  if (ConditionalTrue) {
 | 
						|
    // If this condition is equivalent to #ifndef X, and if this is the first
 | 
						|
    // directive seen, handle it for the multiple-include optimization.
 | 
						|
    if (!ReadAnyTokensBeforeDirective &&
 | 
						|
        CurLexer->getConditionalStackDepth() == 0 && IfNDefMacro)
 | 
						|
      CurLexer->MIOpt.EnterTopLevelIFNDEF(IfNDefMacro);
 | 
						|
    
 | 
						|
    // Yes, remember that we are inside a conditional, then lex the next token.
 | 
						|
    CurLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false,
 | 
						|
                                   /*foundnonskip*/true, /*foundelse*/false);
 | 
						|
  } else {
 | 
						|
    // No, skip the contents of this block and return the first token after it.
 | 
						|
    SkipExcludedConditionalBlock(IfToken.getLocation(), /*Foundnonskip*/false, 
 | 
						|
                                 /*FoundElse*/false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleEndifDirective - Implements the #endif directive.
 | 
						|
///
 | 
						|
void Preprocessor::HandleEndifDirective(Token &EndifToken) {
 | 
						|
  ++NumEndif;
 | 
						|
  
 | 
						|
  // Check that this is the whole directive.
 | 
						|
  CheckEndOfDirective("#endif");
 | 
						|
  
 | 
						|
  PPConditionalInfo CondInfo;
 | 
						|
  if (CurLexer->popConditionalLevel(CondInfo)) {
 | 
						|
    // No conditionals on the stack: this is an #endif without an #if.
 | 
						|
    return Diag(EndifToken, diag::err_pp_endif_without_if);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this the end of a top-level #endif, inform MIOpt.
 | 
						|
  if (CurLexer->getConditionalStackDepth() == 0)
 | 
						|
    CurLexer->MIOpt.ExitTopLevelConditional();
 | 
						|
  
 | 
						|
  assert(!CondInfo.WasSkipping && !CurLexer->LexingRawMode &&
 | 
						|
         "This code should only be reachable in the non-skipping case!");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Preprocessor::HandleElseDirective(Token &Result) {
 | 
						|
  ++NumElse;
 | 
						|
  
 | 
						|
  // #else directive in a non-skipping conditional... start skipping.
 | 
						|
  CheckEndOfDirective("#else");
 | 
						|
  
 | 
						|
  PPConditionalInfo CI;
 | 
						|
  if (CurLexer->popConditionalLevel(CI))
 | 
						|
    return Diag(Result, diag::pp_err_else_without_if);
 | 
						|
  
 | 
						|
  // If this is a top-level #else, inform the MIOpt.
 | 
						|
  if (CurLexer->getConditionalStackDepth() == 0)
 | 
						|
    CurLexer->MIOpt.FoundTopLevelElse();
 | 
						|
 | 
						|
  // If this is a #else with a #else before it, report the error.
 | 
						|
  if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else);
 | 
						|
  
 | 
						|
  // Finally, skip the rest of the contents of this block and return the first
 | 
						|
  // token after it.
 | 
						|
  return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true,
 | 
						|
                                      /*FoundElse*/true);
 | 
						|
}
 | 
						|
 | 
						|
void Preprocessor::HandleElifDirective(Token &ElifToken) {
 | 
						|
  ++NumElse;
 | 
						|
  
 | 
						|
  // #elif directive in a non-skipping conditional... start skipping.
 | 
						|
  // We don't care what the condition is, because we will always skip it (since
 | 
						|
  // the block immediately before it was included).
 | 
						|
  DiscardUntilEndOfDirective();
 | 
						|
 | 
						|
  PPConditionalInfo CI;
 | 
						|
  if (CurLexer->popConditionalLevel(CI))
 | 
						|
    return Diag(ElifToken, diag::pp_err_elif_without_if);
 | 
						|
  
 | 
						|
  // If this is a top-level #elif, inform the MIOpt.
 | 
						|
  if (CurLexer->getConditionalStackDepth() == 0)
 | 
						|
    CurLexer->MIOpt.FoundTopLevelElse();
 | 
						|
  
 | 
						|
  // If this is a #elif with a #else before it, report the error.
 | 
						|
  if (CI.FoundElse) Diag(ElifToken, diag::pp_err_elif_after_else);
 | 
						|
 | 
						|
  // Finally, skip the rest of the contents of this block and return the first
 | 
						|
  // token after it.
 | 
						|
  return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true,
 | 
						|
                                      /*FoundElse*/CI.FoundElse);
 | 
						|
}
 | 
						|
 |