4802 lines
		
	
	
		
			171 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4802 lines
		
	
	
		
			171 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// This is the parent TargetLowering class for hardware code gen
 | 
						|
/// targets.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AMDGPUISelLowering.h"
 | 
						|
#include "AMDGPU.h"
 | 
						|
#include "AMDGPUCallLowering.h"
 | 
						|
#include "AMDGPUFrameLowering.h"
 | 
						|
#include "AMDGPUSubtarget.h"
 | 
						|
#include "AMDGPUTargetMachine.h"
 | 
						|
#include "Utils/AMDGPUBaseInfo.h"
 | 
						|
#include "R600MachineFunctionInfo.h"
 | 
						|
#include "SIInstrInfo.h"
 | 
						|
#include "SIMachineFunctionInfo.h"
 | 
						|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#include "AMDGPUGenCallingConv.inc"
 | 
						|
 | 
						|
static cl::opt<bool> AMDGPUBypassSlowDiv(
 | 
						|
  "amdgpu-bypass-slow-div",
 | 
						|
  cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
 | 
						|
  cl::init(true));
 | 
						|
 | 
						|
// Find a larger type to do a load / store of a vector with.
 | 
						|
EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
 | 
						|
  unsigned StoreSize = VT.getStoreSizeInBits();
 | 
						|
  if (StoreSize <= 32)
 | 
						|
    return EVT::getIntegerVT(Ctx, StoreSize);
 | 
						|
 | 
						|
  assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
 | 
						|
  return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
 | 
						|
}
 | 
						|
 | 
						|
unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  KnownBits Known = DAG.computeKnownBits(Op);
 | 
						|
  return VT.getSizeInBits() - Known.countMinLeadingZeros();
 | 
						|
}
 | 
						|
 | 
						|
unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  // In order for this to be a signed 24-bit value, bit 23, must
 | 
						|
  // be a sign bit.
 | 
						|
  return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
 | 
						|
}
 | 
						|
 | 
						|
AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
 | 
						|
                                           const AMDGPUSubtarget &STI)
 | 
						|
    : TargetLowering(TM), Subtarget(&STI) {
 | 
						|
  // Lower floating point store/load to integer store/load to reduce the number
 | 
						|
  // of patterns in tablegen.
 | 
						|
  setOperationAction(ISD::LOAD, MVT::f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::i64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::f64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
 | 
						|
  AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
 | 
						|
 | 
						|
  // There are no 64-bit extloads. These should be done as a 32-bit extload and
 | 
						|
  // an extension to 64-bit.
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    if (VT == MVT::i64)
 | 
						|
      continue;
 | 
						|
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
 | 
						|
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
 | 
						|
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
 | 
						|
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
 | 
						|
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v2f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v3f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v4f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v5f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v8f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v16f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v32f32, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::i64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v2i64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::f64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v2f64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v4i64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v4f64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v8i64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v8f64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v16i64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::STORE, MVT::v16f64, Promote);
 | 
						|
  AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i1, Expand);
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i8, Expand);
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
 | 
						|
  setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
 | 
						|
  setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
 | 
						|
  setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
 | 
						|
  setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
 | 
						|
  setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
 | 
						|
  setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
 | 
						|
  setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::Constant, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::Constant, MVT::i64, Legal);
 | 
						|
  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::BRIND, MVT::Other, Expand);
 | 
						|
 | 
						|
  // This is totally unsupported, just custom lower to produce an error.
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | 
						|
 | 
						|
  // Library functions.  These default to Expand, but we have instructions
 | 
						|
  // for them.
 | 
						|
  setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FPOW,   MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FABS,   MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FRINT,  MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
 | 
						|
  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::FROUND, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FROUND, MVT::f64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::FLOG, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FLOG10, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FEXP, MVT::f32, Custom);
 | 
						|
 | 
						|
 | 
						|
  setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::FREM, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::FREM, MVT::f64, Custom);
 | 
						|
 | 
						|
  // Expand to fneg + fadd.
 | 
						|
  setOperationAction(ISD::FSUB, MVT::f64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
 | 
						|
 | 
						|
  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
 | 
						|
  for (MVT VT : ScalarIntVTs) {
 | 
						|
    // These should use [SU]DIVREM, so set them to expand
 | 
						|
    setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
 | 
						|
    // GPU does not have divrem function for signed or unsigned.
 | 
						|
    setOperationAction(ISD::SDIVREM, VT, Custom);
 | 
						|
    setOperationAction(ISD::UDIVREM, VT, Custom);
 | 
						|
 | 
						|
    // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
 | 
						|
    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | 
						|
    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::BSWAP, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTLZ, VT, Expand);
 | 
						|
 | 
						|
    // AMDGPU uses ADDC/SUBC/ADDE/SUBE
 | 
						|
    setOperationAction(ISD::ADDC, VT, Legal);
 | 
						|
    setOperationAction(ISD::SUBC, VT, Legal);
 | 
						|
    setOperationAction(ISD::ADDE, VT, Legal);
 | 
						|
    setOperationAction(ISD::SUBE, VT, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // The hardware supports 32-bit FSHR, but not FSHL.
 | 
						|
  setOperationAction(ISD::FSHR, MVT::i32, Legal);
 | 
						|
 | 
						|
  // The hardware supports 32-bit ROTR, but not ROTL.
 | 
						|
  setOperationAction(ISD::ROTL, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::ROTL, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::MUL, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::MULHU, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::MULHS, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::SMIN, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::UMIN, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::SMAX, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::UMAX, MVT::i32, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::CTTZ, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::CTLZ, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
 | 
						|
 | 
						|
  static const MVT::SimpleValueType VectorIntTypes[] = {
 | 
						|
    MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32
 | 
						|
  };
 | 
						|
 | 
						|
  for (MVT VT : VectorIntTypes) {
 | 
						|
    // Expand the following operations for the current type by default.
 | 
						|
    setOperationAction(ISD::ADD,  VT, Expand);
 | 
						|
    setOperationAction(ISD::AND,  VT, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::MUL,  VT, Expand);
 | 
						|
    setOperationAction(ISD::MULHU, VT, Expand);
 | 
						|
    setOperationAction(ISD::MULHS, VT, Expand);
 | 
						|
    setOperationAction(ISD::OR,   VT, Expand);
 | 
						|
    setOperationAction(ISD::SHL,  VT, Expand);
 | 
						|
    setOperationAction(ISD::SRA,  VT, Expand);
 | 
						|
    setOperationAction(ISD::SRL,  VT, Expand);
 | 
						|
    setOperationAction(ISD::ROTL, VT, Expand);
 | 
						|
    setOperationAction(ISD::ROTR, VT, Expand);
 | 
						|
    setOperationAction(ISD::SUB,  VT, Expand);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
 | 
						|
    setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | 
						|
    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | 
						|
    setOperationAction(ISD::SDIVREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::UDIVREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, VT, Expand);
 | 
						|
    setOperationAction(ISD::VSELECT, VT, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, VT, Expand);
 | 
						|
    setOperationAction(ISD::XOR,  VT, Expand);
 | 
						|
    setOperationAction(ISD::BSWAP, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTPOP, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTTZ, VT, Expand);
 | 
						|
    setOperationAction(ISD::CTLZ, VT, Expand);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
 | 
						|
    setOperationAction(ISD::SETCC, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  static const MVT::SimpleValueType FloatVectorTypes[] = {
 | 
						|
     MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32
 | 
						|
  };
 | 
						|
 | 
						|
  for (MVT VT : FloatVectorTypes) {
 | 
						|
    setOperationAction(ISD::FABS, VT, Expand);
 | 
						|
    setOperationAction(ISD::FMINNUM, VT, Expand);
 | 
						|
    setOperationAction(ISD::FMAXNUM, VT, Expand);
 | 
						|
    setOperationAction(ISD::FADD, VT, Expand);
 | 
						|
    setOperationAction(ISD::FCEIL, VT, Expand);
 | 
						|
    setOperationAction(ISD::FCOS, VT, Expand);
 | 
						|
    setOperationAction(ISD::FDIV, VT, Expand);
 | 
						|
    setOperationAction(ISD::FEXP2, VT, Expand);
 | 
						|
    setOperationAction(ISD::FEXP, VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG2, VT, Expand);
 | 
						|
    setOperationAction(ISD::FREM, VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG, VT, Expand);
 | 
						|
    setOperationAction(ISD::FLOG10, VT, Expand);
 | 
						|
    setOperationAction(ISD::FPOW, VT, Expand);
 | 
						|
    setOperationAction(ISD::FFLOOR, VT, Expand);
 | 
						|
    setOperationAction(ISD::FTRUNC, VT, Expand);
 | 
						|
    setOperationAction(ISD::FMUL, VT, Expand);
 | 
						|
    setOperationAction(ISD::FMA, VT, Expand);
 | 
						|
    setOperationAction(ISD::FRINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, VT, Expand);
 | 
						|
    setOperationAction(ISD::FSQRT, VT, Expand);
 | 
						|
    setOperationAction(ISD::FSIN, VT, Expand);
 | 
						|
    setOperationAction(ISD::FSUB, VT, Expand);
 | 
						|
    setOperationAction(ISD::FNEG, VT, Expand);
 | 
						|
    setOperationAction(ISD::VSELECT, VT, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, VT, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
 | 
						|
    setOperationAction(ISD::SETCC, VT, Expand);
 | 
						|
    setOperationAction(ISD::FCANONICALIZE, VT, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // This causes using an unrolled select operation rather than expansion with
 | 
						|
  // bit operations. This is in general better, but the alternative using BFI
 | 
						|
  // instructions may be better if the select sources are SGPRs.
 | 
						|
  setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
 | 
						|
  AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
 | 
						|
  AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
 | 
						|
  AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
 | 
						|
 | 
						|
  setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
 | 
						|
  AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
 | 
						|
 | 
						|
  // There are no libcalls of any kind.
 | 
						|
  for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
 | 
						|
    setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
 | 
						|
 | 
						|
  setSchedulingPreference(Sched::RegPressure);
 | 
						|
  setJumpIsExpensive(true);
 | 
						|
 | 
						|
  // FIXME: This is only partially true. If we have to do vector compares, any
 | 
						|
  // SGPR pair can be a condition register. If we have a uniform condition, we
 | 
						|
  // are better off doing SALU operations, where there is only one SCC. For now,
 | 
						|
  // we don't have a way of knowing during instruction selection if a condition
 | 
						|
  // will be uniform and we always use vector compares. Assume we are using
 | 
						|
  // vector compares until that is fixed.
 | 
						|
  setHasMultipleConditionRegisters(true);
 | 
						|
 | 
						|
  setMinCmpXchgSizeInBits(32);
 | 
						|
  setSupportsUnalignedAtomics(false);
 | 
						|
 | 
						|
  PredictableSelectIsExpensive = false;
 | 
						|
 | 
						|
  // We want to find all load dependencies for long chains of stores to enable
 | 
						|
  // merging into very wide vectors. The problem is with vectors with > 4
 | 
						|
  // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
 | 
						|
  // vectors are a legal type, even though we have to split the loads
 | 
						|
  // usually. When we can more precisely specify load legality per address
 | 
						|
  // space, we should be able to make FindBetterChain/MergeConsecutiveStores
 | 
						|
  // smarter so that they can figure out what to do in 2 iterations without all
 | 
						|
  // N > 4 stores on the same chain.
 | 
						|
  GatherAllAliasesMaxDepth = 16;
 | 
						|
 | 
						|
  // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
 | 
						|
  // about these during lowering.
 | 
						|
  MaxStoresPerMemcpy  = 0xffffffff;
 | 
						|
  MaxStoresPerMemmove = 0xffffffff;
 | 
						|
  MaxStoresPerMemset  = 0xffffffff;
 | 
						|
 | 
						|
  // The expansion for 64-bit division is enormous.
 | 
						|
  if (AMDGPUBypassSlowDiv)
 | 
						|
    addBypassSlowDiv(64, 32);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::BITCAST);
 | 
						|
  setTargetDAGCombine(ISD::SHL);
 | 
						|
  setTargetDAGCombine(ISD::SRA);
 | 
						|
  setTargetDAGCombine(ISD::SRL);
 | 
						|
  setTargetDAGCombine(ISD::TRUNCATE);
 | 
						|
  setTargetDAGCombine(ISD::MUL);
 | 
						|
  setTargetDAGCombine(ISD::MULHU);
 | 
						|
  setTargetDAGCombine(ISD::MULHS);
 | 
						|
  setTargetDAGCombine(ISD::SELECT);
 | 
						|
  setTargetDAGCombine(ISD::SELECT_CC);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  setTargetDAGCombine(ISD::FADD);
 | 
						|
  setTargetDAGCombine(ISD::FSUB);
 | 
						|
  setTargetDAGCombine(ISD::FNEG);
 | 
						|
  setTargetDAGCombine(ISD::FABS);
 | 
						|
  setTargetDAGCombine(ISD::AssertZext);
 | 
						|
  setTargetDAGCombine(ISD::AssertSext);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Target Information
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
LLVM_READNONE
 | 
						|
static bool fnegFoldsIntoOp(unsigned Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  case ISD::FADD:
 | 
						|
  case ISD::FSUB:
 | 
						|
  case ISD::FMUL:
 | 
						|
  case ISD::FMA:
 | 
						|
  case ISD::FMAD:
 | 
						|
  case ISD::FMINNUM:
 | 
						|
  case ISD::FMAXNUM:
 | 
						|
  case ISD::FMINNUM_IEEE:
 | 
						|
  case ISD::FMAXNUM_IEEE:
 | 
						|
  case ISD::FSIN:
 | 
						|
  case ISD::FTRUNC:
 | 
						|
  case ISD::FRINT:
 | 
						|
  case ISD::FNEARBYINT:
 | 
						|
  case ISD::FCANONICALIZE:
 | 
						|
  case AMDGPUISD::RCP:
 | 
						|
  case AMDGPUISD::RCP_LEGACY:
 | 
						|
  case AMDGPUISD::RCP_IFLAG:
 | 
						|
  case AMDGPUISD::SIN_HW:
 | 
						|
  case AMDGPUISD::FMUL_LEGACY:
 | 
						|
  case AMDGPUISD::FMIN_LEGACY:
 | 
						|
  case AMDGPUISD::FMAX_LEGACY:
 | 
						|
  case AMDGPUISD::FMED3:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \p returns true if the operation will definitely need to use a 64-bit
 | 
						|
/// encoding, and thus will use a VOP3 encoding regardless of the source
 | 
						|
/// modifiers.
 | 
						|
LLVM_READONLY
 | 
						|
static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
 | 
						|
  return N->getNumOperands() > 2 || VT == MVT::f64;
 | 
						|
}
 | 
						|
 | 
						|
// Most FP instructions support source modifiers, but this could be refined
 | 
						|
// slightly.
 | 
						|
LLVM_READONLY
 | 
						|
static bool hasSourceMods(const SDNode *N) {
 | 
						|
  if (isa<MemSDNode>(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  case ISD::CopyToReg:
 | 
						|
  case ISD::SELECT:
 | 
						|
  case ISD::FDIV:
 | 
						|
  case ISD::FREM:
 | 
						|
  case ISD::INLINEASM:
 | 
						|
  case ISD::INLINEASM_BR:
 | 
						|
  case AMDGPUISD::DIV_SCALE:
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:
 | 
						|
 | 
						|
  // TODO: Should really be looking at the users of the bitcast. These are
 | 
						|
  // problematic because bitcasts are used to legalize all stores to integer
 | 
						|
  // types.
 | 
						|
  case ISD::BITCAST:
 | 
						|
    return false;
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
 | 
						|
    case Intrinsic::amdgcn_interp_p1:
 | 
						|
    case Intrinsic::amdgcn_interp_p2:
 | 
						|
    case Intrinsic::amdgcn_interp_mov:
 | 
						|
    case Intrinsic::amdgcn_interp_p1_f16:
 | 
						|
    case Intrinsic::amdgcn_interp_p2_f16:
 | 
						|
      return false;
 | 
						|
    default:
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
 | 
						|
                                                 unsigned CostThreshold) {
 | 
						|
  // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
 | 
						|
  // it is truly free to use a source modifier in all cases. If there are
 | 
						|
  // multiple users but for each one will necessitate using VOP3, there will be
 | 
						|
  // a code size increase. Try to avoid increasing code size unless we know it
 | 
						|
  // will save on the instruction count.
 | 
						|
  unsigned NumMayIncreaseSize = 0;
 | 
						|
  MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
 | 
						|
 | 
						|
  // XXX - Should this limit number of uses to check?
 | 
						|
  for (const SDNode *U : N->uses()) {
 | 
						|
    if (!hasSourceMods(U))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!opMustUseVOP3Encoding(U, VT)) {
 | 
						|
      if (++NumMayIncreaseSize > CostThreshold)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
 | 
						|
                                              ISD::NodeType ExtendKind) const {
 | 
						|
  assert(!VT.isVector() && "only scalar expected");
 | 
						|
 | 
						|
  // Round to the next multiple of 32-bits.
 | 
						|
  unsigned Size = VT.getSizeInBits();
 | 
						|
  if (Size <= 32)
 | 
						|
    return MVT::i32;
 | 
						|
  return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
 | 
						|
}
 | 
						|
 | 
						|
MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
 | 
						|
  return MVT::i32;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// The backend supports 32 and 64 bit floating point immediates.
 | 
						|
// FIXME: Why are we reporting vectors of FP immediates as legal?
 | 
						|
bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
 | 
						|
                                        bool ForCodeSize) const {
 | 
						|
  EVT ScalarVT = VT.getScalarType();
 | 
						|
  return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
 | 
						|
         (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
 | 
						|
}
 | 
						|
 | 
						|
// We don't want to shrink f64 / f32 constants.
 | 
						|
bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
 | 
						|
  EVT ScalarVT = VT.getScalarType();
 | 
						|
  return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
 | 
						|
                                                 ISD::LoadExtType ExtTy,
 | 
						|
                                                 EVT NewVT) const {
 | 
						|
  // TODO: This may be worth removing. Check regression tests for diffs.
 | 
						|
  if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NewSize = NewVT.getStoreSizeInBits();
 | 
						|
 | 
						|
  // If we are reducing to a 32-bit load or a smaller multi-dword load,
 | 
						|
  // this is always better.
 | 
						|
  if (NewSize >= 32)
 | 
						|
    return true;
 | 
						|
 | 
						|
  EVT OldVT = N->getValueType(0);
 | 
						|
  unsigned OldSize = OldVT.getStoreSizeInBits();
 | 
						|
 | 
						|
  MemSDNode *MN = cast<MemSDNode>(N);
 | 
						|
  unsigned AS = MN->getAddressSpace();
 | 
						|
  // Do not shrink an aligned scalar load to sub-dword.
 | 
						|
  // Scalar engine cannot do sub-dword loads.
 | 
						|
  if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
 | 
						|
      (AS == AMDGPUAS::CONSTANT_ADDRESS ||
 | 
						|
       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
 | 
						|
       (isa<LoadSDNode>(N) &&
 | 
						|
        AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
 | 
						|
      AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
 | 
						|
  // extloads, so doing one requires using a buffer_load. In cases where we
 | 
						|
  // still couldn't use a scalar load, using the wider load shouldn't really
 | 
						|
  // hurt anything.
 | 
						|
 | 
						|
  // If the old size already had to be an extload, there's no harm in continuing
 | 
						|
  // to reduce the width.
 | 
						|
  return (OldSize < 32);
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
 | 
						|
                                                   const SelectionDAG &DAG,
 | 
						|
                                                   const MachineMemOperand &MMO) const {
 | 
						|
 | 
						|
  assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
 | 
						|
 | 
						|
  if (LoadTy.getScalarType() == MVT::i32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned LScalarSize = LoadTy.getScalarSizeInBits();
 | 
						|
  unsigned CastScalarSize = CastTy.getScalarSizeInBits();
 | 
						|
 | 
						|
  if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Fast = false;
 | 
						|
  return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
 | 
						|
                                        CastTy, MMO, &Fast) &&
 | 
						|
         Fast;
 | 
						|
}
 | 
						|
 | 
						|
// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
 | 
						|
// profitable with the expansion for 64-bit since it's generally good to
 | 
						|
// speculate things.
 | 
						|
// FIXME: These should really have the size as a parameter.
 | 
						|
bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
    default:
 | 
						|
    return false;
 | 
						|
    case ISD::EntryToken:
 | 
						|
    case ISD::TokenFactor:
 | 
						|
      return true;
 | 
						|
    case ISD::INTRINSIC_WO_CHAIN:
 | 
						|
    {
 | 
						|
      unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
      switch (IntrID) {
 | 
						|
        default:
 | 
						|
        return false;
 | 
						|
        case Intrinsic::amdgcn_readfirstlane:
 | 
						|
        case Intrinsic::amdgcn_readlane:
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    case ISD::LOAD:
 | 
						|
    {
 | 
						|
      if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
 | 
						|
          AMDGPUAS::CONSTANT_ADDRESS_32BIT)
 | 
						|
        return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::getNegatedExpression(
 | 
						|
    SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
 | 
						|
    NegatibleCost &Cost, unsigned Depth) const {
 | 
						|
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  case ISD::FMA:
 | 
						|
  case ISD::FMAD: {
 | 
						|
    // Negating a fma is not free if it has users without source mods.
 | 
						|
    if (!allUsesHaveSourceMods(Op.getNode()))
 | 
						|
      return SDValue();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
 | 
						|
                                              ForCodeSize, Cost, Depth);
 | 
						|
}
 | 
						|
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
// Target Properties
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
 | 
						|
  assert(VT.isFloatingPoint());
 | 
						|
 | 
						|
  // Packed operations do not have a fabs modifier.
 | 
						|
  return VT == MVT::f32 || VT == MVT::f64 ||
 | 
						|
         (Subtarget->has16BitInsts() && VT == MVT::f16);
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
 | 
						|
  assert(VT.isFloatingPoint());
 | 
						|
  return VT == MVT::f32 || VT == MVT::f64 ||
 | 
						|
         (Subtarget->has16BitInsts() && VT == MVT::f16) ||
 | 
						|
         (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
 | 
						|
                                                         unsigned NumElem,
 | 
						|
                                                         unsigned AS) const {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
 | 
						|
  // There are few operations which truly have vector input operands. Any vector
 | 
						|
  // operation is going to involve operations on each component, and a
 | 
						|
  // build_vector will be a copy per element, so it always makes sense to use a
 | 
						|
  // build_vector input in place of the extracted element to avoid a copy into a
 | 
						|
  // super register.
 | 
						|
  //
 | 
						|
  // We should probably only do this if all users are extracts only, but this
 | 
						|
  // should be the common case.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
 | 
						|
  // Truncate is just accessing a subregister.
 | 
						|
 | 
						|
  unsigned SrcSize = Source.getSizeInBits();
 | 
						|
  unsigned DestSize = Dest.getSizeInBits();
 | 
						|
 | 
						|
  return DestSize < SrcSize && DestSize % 32 == 0 ;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
 | 
						|
  // Truncate is just accessing a subregister.
 | 
						|
 | 
						|
  unsigned SrcSize = Source->getScalarSizeInBits();
 | 
						|
  unsigned DestSize = Dest->getScalarSizeInBits();
 | 
						|
 | 
						|
  if (DestSize== 16 && Subtarget->has16BitInsts())
 | 
						|
    return SrcSize >= 32;
 | 
						|
 | 
						|
  return DestSize < SrcSize && DestSize % 32 == 0;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
 | 
						|
  unsigned SrcSize = Src->getScalarSizeInBits();
 | 
						|
  unsigned DestSize = Dest->getScalarSizeInBits();
 | 
						|
 | 
						|
  if (SrcSize == 16 && Subtarget->has16BitInsts())
 | 
						|
    return DestSize >= 32;
 | 
						|
 | 
						|
  return SrcSize == 32 && DestSize == 64;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
 | 
						|
  // Any register load of a 64-bit value really requires 2 32-bit moves. For all
 | 
						|
  // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
 | 
						|
  // this will enable reducing 64-bit operations the 32-bit, which is always
 | 
						|
  // good.
 | 
						|
 | 
						|
  if (Src == MVT::i16)
 | 
						|
    return Dest == MVT::i32 ||Dest == MVT::i64 ;
 | 
						|
 | 
						|
  return Src == MVT::i32 && Dest == MVT::i64;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | 
						|
  return isZExtFree(Val.getValueType(), VT2);
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
 | 
						|
  // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
 | 
						|
  // limited number of native 64-bit operations. Shrinking an operation to fit
 | 
						|
  // in a single 32-bit register should always be helpful. As currently used,
 | 
						|
  // this is much less general than the name suggests, and is only used in
 | 
						|
  // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
 | 
						|
  // not profitable, and may actually be harmful.
 | 
						|
  return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
 | 
						|
}
 | 
						|
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
// TargetLowering Callbacks
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
 | 
						|
                                                  bool IsVarArg) {
 | 
						|
  switch (CC) {
 | 
						|
  case CallingConv::AMDGPU_VS:
 | 
						|
  case CallingConv::AMDGPU_GS:
 | 
						|
  case CallingConv::AMDGPU_PS:
 | 
						|
  case CallingConv::AMDGPU_CS:
 | 
						|
  case CallingConv::AMDGPU_HS:
 | 
						|
  case CallingConv::AMDGPU_ES:
 | 
						|
  case CallingConv::AMDGPU_LS:
 | 
						|
    return CC_AMDGPU;
 | 
						|
  case CallingConv::C:
 | 
						|
  case CallingConv::Fast:
 | 
						|
  case CallingConv::Cold:
 | 
						|
    return CC_AMDGPU_Func;
 | 
						|
  case CallingConv::AMDGPU_KERNEL:
 | 
						|
  case CallingConv::SPIR_KERNEL:
 | 
						|
  default:
 | 
						|
    report_fatal_error("Unsupported calling convention for call");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
 | 
						|
                                                    bool IsVarArg) {
 | 
						|
  switch (CC) {
 | 
						|
  case CallingConv::AMDGPU_KERNEL:
 | 
						|
  case CallingConv::SPIR_KERNEL:
 | 
						|
    llvm_unreachable("kernels should not be handled here");
 | 
						|
  case CallingConv::AMDGPU_VS:
 | 
						|
  case CallingConv::AMDGPU_GS:
 | 
						|
  case CallingConv::AMDGPU_PS:
 | 
						|
  case CallingConv::AMDGPU_CS:
 | 
						|
  case CallingConv::AMDGPU_HS:
 | 
						|
  case CallingConv::AMDGPU_ES:
 | 
						|
  case CallingConv::AMDGPU_LS:
 | 
						|
    return RetCC_SI_Shader;
 | 
						|
  case CallingConv::C:
 | 
						|
  case CallingConv::Fast:
 | 
						|
  case CallingConv::Cold:
 | 
						|
    return RetCC_AMDGPU_Func;
 | 
						|
  default:
 | 
						|
    report_fatal_error("Unsupported calling convention.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// The SelectionDAGBuilder will automatically promote function arguments
 | 
						|
/// with illegal types.  However, this does not work for the AMDGPU targets
 | 
						|
/// since the function arguments are stored in memory as these illegal types.
 | 
						|
/// In order to handle this properly we need to get the original types sizes
 | 
						|
/// from the LLVM IR Function and fixup the ISD:InputArg values before
 | 
						|
/// passing them to AnalyzeFormalArguments()
 | 
						|
 | 
						|
/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
 | 
						|
/// input values across multiple registers.  Each item in the Ins array
 | 
						|
/// represents a single value that will be stored in registers.  Ins[x].VT is
 | 
						|
/// the value type of the value that will be stored in the register, so
 | 
						|
/// whatever SDNode we lower the argument to needs to be this type.
 | 
						|
///
 | 
						|
/// In order to correctly lower the arguments we need to know the size of each
 | 
						|
/// argument.  Since Ins[x].VT gives us the size of the register that will
 | 
						|
/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
 | 
						|
/// for the orignal function argument so that we can deduce the correct memory
 | 
						|
/// type to use for Ins[x].  In most cases the correct memory type will be
 | 
						|
/// Ins[x].ArgVT.  However, this will not always be the case.  If, for example,
 | 
						|
/// we have a kernel argument of type v8i8, this argument will be split into
 | 
						|
/// 8 parts and each part will be represented by its own item in the Ins array.
 | 
						|
/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
 | 
						|
/// the argument before it was split.  From this, we deduce that the memory type
 | 
						|
/// for each individual part is i8.  We pass the memory type as LocVT to the
 | 
						|
/// calling convention analysis function and the register type (Ins[x].VT) as
 | 
						|
/// the ValVT.
 | 
						|
void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
 | 
						|
  CCState &State,
 | 
						|
  const SmallVectorImpl<ISD::InputArg> &Ins) const {
 | 
						|
  const MachineFunction &MF = State.getMachineFunction();
 | 
						|
  const Function &Fn = MF.getFunction();
 | 
						|
  LLVMContext &Ctx = Fn.getParent()->getContext();
 | 
						|
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
 | 
						|
  const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
 | 
						|
  CallingConv::ID CC = Fn.getCallingConv();
 | 
						|
 | 
						|
  Align MaxAlign = Align(1);
 | 
						|
  uint64_t ExplicitArgOffset = 0;
 | 
						|
  const DataLayout &DL = Fn.getParent()->getDataLayout();
 | 
						|
 | 
						|
  unsigned InIndex = 0;
 | 
						|
 | 
						|
  for (const Argument &Arg : Fn.args()) {
 | 
						|
    Type *BaseArgTy = Arg.getType();
 | 
						|
    Align Alignment = DL.getABITypeAlign(BaseArgTy);
 | 
						|
    MaxAlign = std::max(Alignment, MaxAlign);
 | 
						|
    unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy);
 | 
						|
 | 
						|
    uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
 | 
						|
    ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
 | 
						|
 | 
						|
    // We're basically throwing away everything passed into us and starting over
 | 
						|
    // to get accurate in-memory offsets. The "PartOffset" is completely useless
 | 
						|
    // to us as computed in Ins.
 | 
						|
    //
 | 
						|
    // We also need to figure out what type legalization is trying to do to get
 | 
						|
    // the correct memory offsets.
 | 
						|
 | 
						|
    SmallVector<EVT, 16> ValueVTs;
 | 
						|
    SmallVector<uint64_t, 16> Offsets;
 | 
						|
    ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
 | 
						|
 | 
						|
    for (unsigned Value = 0, NumValues = ValueVTs.size();
 | 
						|
         Value != NumValues; ++Value) {
 | 
						|
      uint64_t BasePartOffset = Offsets[Value];
 | 
						|
 | 
						|
      EVT ArgVT = ValueVTs[Value];
 | 
						|
      EVT MemVT = ArgVT;
 | 
						|
      MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
 | 
						|
      unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
 | 
						|
 | 
						|
      if (NumRegs == 1) {
 | 
						|
        // This argument is not split, so the IR type is the memory type.
 | 
						|
        if (ArgVT.isExtended()) {
 | 
						|
          // We have an extended type, like i24, so we should just use the
 | 
						|
          // register type.
 | 
						|
          MemVT = RegisterVT;
 | 
						|
        } else {
 | 
						|
          MemVT = ArgVT;
 | 
						|
        }
 | 
						|
      } else if (ArgVT.isVector() && RegisterVT.isVector() &&
 | 
						|
                 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
 | 
						|
        assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
 | 
						|
        // We have a vector value which has been split into a vector with
 | 
						|
        // the same scalar type, but fewer elements.  This should handle
 | 
						|
        // all the floating-point vector types.
 | 
						|
        MemVT = RegisterVT;
 | 
						|
      } else if (ArgVT.isVector() &&
 | 
						|
                 ArgVT.getVectorNumElements() == NumRegs) {
 | 
						|
        // This arg has been split so that each element is stored in a separate
 | 
						|
        // register.
 | 
						|
        MemVT = ArgVT.getScalarType();
 | 
						|
      } else if (ArgVT.isExtended()) {
 | 
						|
        // We have an extended type, like i65.
 | 
						|
        MemVT = RegisterVT;
 | 
						|
      } else {
 | 
						|
        unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
 | 
						|
        assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
 | 
						|
        if (RegisterVT.isInteger()) {
 | 
						|
          MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
 | 
						|
        } else if (RegisterVT.isVector()) {
 | 
						|
          assert(!RegisterVT.getScalarType().isFloatingPoint());
 | 
						|
          unsigned NumElements = RegisterVT.getVectorNumElements();
 | 
						|
          assert(MemoryBits % NumElements == 0);
 | 
						|
          // This vector type has been split into another vector type with
 | 
						|
          // a different elements size.
 | 
						|
          EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
 | 
						|
                                           MemoryBits / NumElements);
 | 
						|
          MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
 | 
						|
        } else {
 | 
						|
          llvm_unreachable("cannot deduce memory type.");
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Convert one element vectors to scalar.
 | 
						|
      if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
 | 
						|
        MemVT = MemVT.getScalarType();
 | 
						|
 | 
						|
      // Round up vec3/vec5 argument.
 | 
						|
      if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
 | 
						|
        assert(MemVT.getVectorNumElements() == 3 ||
 | 
						|
               MemVT.getVectorNumElements() == 5);
 | 
						|
        MemVT = MemVT.getPow2VectorType(State.getContext());
 | 
						|
      } else if (!MemVT.isSimple() && !MemVT.isVector()) {
 | 
						|
        MemVT = MemVT.getRoundIntegerType(State.getContext());
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned PartOffset = 0;
 | 
						|
      for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
        State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
 | 
						|
                                               BasePartOffset + PartOffset,
 | 
						|
                                               MemVT.getSimpleVT(),
 | 
						|
                                               CCValAssign::Full));
 | 
						|
        PartOffset += MemVT.getStoreSize();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerReturn(
 | 
						|
  SDValue Chain, CallingConv::ID CallConv,
 | 
						|
  bool isVarArg,
 | 
						|
  const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
  const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
  const SDLoc &DL, SelectionDAG &DAG) const {
 | 
						|
  // FIXME: Fails for r600 tests
 | 
						|
  //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
 | 
						|
  // "wave terminate should not have return values");
 | 
						|
  return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
 | 
						|
}
 | 
						|
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
// Target specific lowering
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Selects the correct CCAssignFn for a given CallingConvention value.
 | 
						|
CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
 | 
						|
                                                    bool IsVarArg) {
 | 
						|
  return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
 | 
						|
}
 | 
						|
 | 
						|
CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
 | 
						|
                                                      bool IsVarArg) {
 | 
						|
  return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
 | 
						|
                                                  SelectionDAG &DAG,
 | 
						|
                                                  MachineFrameInfo &MFI,
 | 
						|
                                                  int ClobberedFI) const {
 | 
						|
  SmallVector<SDValue, 8> ArgChains;
 | 
						|
  int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
 | 
						|
  int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
 | 
						|
 | 
						|
  // Include the original chain at the beginning of the list. When this is
 | 
						|
  // used by target LowerCall hooks, this helps legalize find the
 | 
						|
  // CALLSEQ_BEGIN node.
 | 
						|
  ArgChains.push_back(Chain);
 | 
						|
 | 
						|
  // Add a chain value for each stack argument corresponding
 | 
						|
  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
 | 
						|
                            UE = DAG.getEntryNode().getNode()->use_end();
 | 
						|
       U != UE; ++U) {
 | 
						|
    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
 | 
						|
        if (FI->getIndex() < 0) {
 | 
						|
          int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
 | 
						|
          int64_t InLastByte = InFirstByte;
 | 
						|
          InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
 | 
						|
 | 
						|
          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
 | 
						|
              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
 | 
						|
            ArgChains.push_back(SDValue(L, 1));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a tokenfactor for all the chains.
 | 
						|
  return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
 | 
						|
                                                 SmallVectorImpl<SDValue> &InVals,
 | 
						|
                                                 StringRef Reason) const {
 | 
						|
  SDValue Callee = CLI.Callee;
 | 
						|
  SelectionDAG &DAG = CLI.DAG;
 | 
						|
 | 
						|
  const Function &Fn = DAG.getMachineFunction().getFunction();
 | 
						|
 | 
						|
  StringRef FuncName("<unknown>");
 | 
						|
 | 
						|
  if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
 | 
						|
    FuncName = G->getSymbol();
 | 
						|
  else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
    FuncName = G->getGlobal()->getName();
 | 
						|
 | 
						|
  DiagnosticInfoUnsupported NoCalls(
 | 
						|
    Fn, Reason + FuncName, CLI.DL.getDebugLoc());
 | 
						|
  DAG.getContext()->diagnose(NoCalls);
 | 
						|
 | 
						|
  if (!CLI.IsTailCall) {
 | 
						|
    for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
 | 
						|
      InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getEntryNode();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
 | 
						|
                                        SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                                      SelectionDAG &DAG) const {
 | 
						|
  const Function &Fn = DAG.getMachineFunction().getFunction();
 | 
						|
 | 
						|
  DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
 | 
						|
                                            SDLoc(Op).getDebugLoc());
 | 
						|
  DAG.getContext()->diagnose(NoDynamicAlloca);
 | 
						|
  auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
 | 
						|
  return DAG.getMergeValues(Ops, SDLoc());
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    Op->print(errs(), &DAG);
 | 
						|
    llvm_unreachable("Custom lowering code for this"
 | 
						|
                     "instruction is not implemented yet!");
 | 
						|
    break;
 | 
						|
  case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
 | 
						|
  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
 | 
						|
  case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
 | 
						|
  case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
 | 
						|
  case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
 | 
						|
  case ISD::FREM: return LowerFREM(Op, DAG);
 | 
						|
  case ISD::FCEIL: return LowerFCEIL(Op, DAG);
 | 
						|
  case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
 | 
						|
  case ISD::FRINT: return LowerFRINT(Op, DAG);
 | 
						|
  case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
 | 
						|
  case ISD::FROUND: return LowerFROUND(Op, DAG);
 | 
						|
  case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
 | 
						|
  case ISD::FLOG:
 | 
						|
    return LowerFLOG(Op, DAG, numbers::ln2f);
 | 
						|
  case ISD::FLOG10:
 | 
						|
    return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
 | 
						|
  case ISD::FEXP:
 | 
						|
    return lowerFEXP(Op, DAG);
 | 
						|
  case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
 | 
						|
  case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
 | 
						|
  case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
 | 
						|
  case ISD::CTTZ:
 | 
						|
  case ISD::CTTZ_ZERO_UNDEF:
 | 
						|
  case ISD::CTLZ:
 | 
						|
  case ISD::CTLZ_ZERO_UNDEF:
 | 
						|
    return LowerCTLZ_CTTZ(Op, DAG);
 | 
						|
  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
 | 
						|
                                              SmallVectorImpl<SDValue> &Results,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  case ISD::SIGN_EXTEND_INREG:
 | 
						|
    // Different parts of legalization seem to interpret which type of
 | 
						|
    // sign_extend_inreg is the one to check for custom lowering. The extended
 | 
						|
    // from type is what really matters, but some places check for custom
 | 
						|
    // lowering of the result type. This results in trying to use
 | 
						|
    // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
 | 
						|
    // nothing here and let the illegal result integer be handled normally.
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
 | 
						|
  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
 | 
						|
  if (!GVar || !GVar->hasInitializer())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return !isa<UndefValue>(GVar->getInitializer());
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
 | 
						|
                                                 SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  const DataLayout &DL = DAG.getDataLayout();
 | 
						|
  GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
 | 
						|
  const GlobalValue *GV = G->getGlobal();
 | 
						|
 | 
						|
  if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
 | 
						|
      G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
 | 
						|
    if (!MFI->isEntryFunction()) {
 | 
						|
      SDLoc DL(Op);
 | 
						|
      const Function &Fn = DAG.getMachineFunction().getFunction();
 | 
						|
      DiagnosticInfoUnsupported BadLDSDecl(
 | 
						|
        Fn, "local memory global used by non-kernel function",
 | 
						|
        DL.getDebugLoc(), DS_Warning);
 | 
						|
      DAG.getContext()->diagnose(BadLDSDecl);
 | 
						|
 | 
						|
      // We currently don't have a way to correctly allocate LDS objects that
 | 
						|
      // aren't directly associated with a kernel. We do force inlining of
 | 
						|
      // functions that use local objects. However, if these dead functions are
 | 
						|
      // not eliminated, we don't want a compile time error. Just emit a warning
 | 
						|
      // and a trap, since there should be no callable path here.
 | 
						|
      SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
 | 
						|
      SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
 | 
						|
                                        Trap, DAG.getRoot());
 | 
						|
      DAG.setRoot(OutputChain);
 | 
						|
      return DAG.getUNDEF(Op.getValueType());
 | 
						|
    }
 | 
						|
 | 
						|
    // XXX: What does the value of G->getOffset() mean?
 | 
						|
    assert(G->getOffset() == 0 &&
 | 
						|
         "Do not know what to do with an non-zero offset");
 | 
						|
 | 
						|
    // TODO: We could emit code to handle the initialization somewhere.
 | 
						|
    if (!hasDefinedInitializer(GV)) {
 | 
						|
      unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
 | 
						|
      return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const Function &Fn = DAG.getMachineFunction().getFunction();
 | 
						|
  DiagnosticInfoUnsupported BadInit(
 | 
						|
      Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
 | 
						|
  DAG.getContext()->diagnose(BadInit);
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  SmallVector<SDValue, 8> Args;
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  if (VT == MVT::v4i16 || VT == MVT::v4f16) {
 | 
						|
    SDLoc SL(Op);
 | 
						|
    SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
 | 
						|
    SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
 | 
						|
 | 
						|
    SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
 | 
						|
    return DAG.getNode(ISD::BITCAST, SL, VT, BV);
 | 
						|
  }
 | 
						|
 | 
						|
  for (const SDUse &U : Op->ops())
 | 
						|
    DAG.ExtractVectorElements(U.get(), Args);
 | 
						|
 | 
						|
  return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Args;
 | 
						|
  unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
 | 
						|
                            VT.getVectorNumElements());
 | 
						|
 | 
						|
  return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
 | 
						|
}
 | 
						|
 | 
						|
/// Generate Min/Max node
 | 
						|
SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
 | 
						|
                                                   SDValue LHS, SDValue RHS,
 | 
						|
                                                   SDValue True, SDValue False,
 | 
						|
                                                   SDValue CC,
 | 
						|
                                                   DAGCombinerInfo &DCI) const {
 | 
						|
  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
 | 
						|
  switch (CCOpcode) {
 | 
						|
  case ISD::SETOEQ:
 | 
						|
  case ISD::SETONE:
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETEQ:
 | 
						|
  case ISD::SETFALSE:
 | 
						|
  case ISD::SETFALSE2:
 | 
						|
  case ISD::SETTRUE:
 | 
						|
  case ISD::SETTRUE2:
 | 
						|
  case ISD::SETUO:
 | 
						|
  case ISD::SETO:
 | 
						|
    break;
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETULT: {
 | 
						|
    if (LHS == True)
 | 
						|
      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
 | 
						|
    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
 | 
						|
  }
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETOLT:
 | 
						|
  case ISD::SETLE:
 | 
						|
  case ISD::SETLT: {
 | 
						|
    // Ordered. Assume ordered for undefined.
 | 
						|
 | 
						|
    // Only do this after legalization to avoid interfering with other combines
 | 
						|
    // which might occur.
 | 
						|
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
 | 
						|
        !DCI.isCalledByLegalizer())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // We need to permute the operands to get the correct NaN behavior. The
 | 
						|
    // selected operand is the second one based on the failing compare with NaN,
 | 
						|
    // so permute it based on the compare type the hardware uses.
 | 
						|
    if (LHS == True)
 | 
						|
      return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
 | 
						|
    return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
 | 
						|
  }
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETUGT: {
 | 
						|
    if (LHS == True)
 | 
						|
      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
 | 
						|
    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
 | 
						|
  }
 | 
						|
  case ISD::SETGT:
 | 
						|
  case ISD::SETGE:
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETOGT: {
 | 
						|
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
 | 
						|
        !DCI.isCalledByLegalizer())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (LHS == True)
 | 
						|
      return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
 | 
						|
    return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
 | 
						|
  }
 | 
						|
  case ISD::SETCC_INVALID:
 | 
						|
    llvm_unreachable("Invalid setcc condcode!");
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDValue, SDValue>
 | 
						|
AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
 | 
						|
  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
 | 
						|
  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
 | 
						|
 | 
						|
  return std::make_pair(Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
 | 
						|
  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
 | 
						|
  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
 | 
						|
  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
 | 
						|
  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
 | 
						|
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
 | 
						|
}
 | 
						|
 | 
						|
// Split a vector type into two parts. The first part is a power of two vector.
 | 
						|
// The second part is whatever is left over, and is a scalar if it would
 | 
						|
// otherwise be a 1-vector.
 | 
						|
std::pair<EVT, EVT>
 | 
						|
AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
 | 
						|
  EVT LoVT, HiVT;
 | 
						|
  EVT EltVT = VT.getVectorElementType();
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
 | 
						|
  LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
 | 
						|
  HiVT = NumElts - LoNumElts == 1
 | 
						|
             ? EltVT
 | 
						|
             : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
 | 
						|
  return std::make_pair(LoVT, HiVT);
 | 
						|
}
 | 
						|
 | 
						|
// Split a vector value into two parts of types LoVT and HiVT. HiVT could be
 | 
						|
// scalar.
 | 
						|
std::pair<SDValue, SDValue>
 | 
						|
AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
 | 
						|
                                  const EVT &LoVT, const EVT &HiVT,
 | 
						|
                                  SelectionDAG &DAG) const {
 | 
						|
  assert(LoVT.getVectorNumElements() +
 | 
						|
                 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
 | 
						|
             N.getValueType().getVectorNumElements() &&
 | 
						|
         "More vector elements requested than available!");
 | 
						|
  SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
 | 
						|
                           DAG.getVectorIdxConstant(0, DL));
 | 
						|
  SDValue Hi = DAG.getNode(
 | 
						|
      HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
 | 
						|
      HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
 | 
						|
  return std::make_pair(Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  LoadSDNode *Load = cast<LoadSDNode>(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc SL(Op);
 | 
						|
 | 
						|
 | 
						|
  // If this is a 2 element vector, we really want to scalarize and not create
 | 
						|
  // weird 1 element vectors.
 | 
						|
  if (VT.getVectorNumElements() == 2) {
 | 
						|
    SDValue Ops[2];
 | 
						|
    std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
 | 
						|
    return DAG.getMergeValues(Ops, SL);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue BasePtr = Load->getBasePtr();
 | 
						|
  EVT MemVT = Load->getMemoryVT();
 | 
						|
 | 
						|
  const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
 | 
						|
 | 
						|
  EVT LoVT, HiVT;
 | 
						|
  EVT LoMemVT, HiMemVT;
 | 
						|
  SDValue Lo, Hi;
 | 
						|
 | 
						|
  std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
 | 
						|
  std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
 | 
						|
  std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
 | 
						|
 | 
						|
  unsigned Size = LoMemVT.getStoreSize();
 | 
						|
  unsigned BaseAlign = Load->getAlignment();
 | 
						|
  unsigned HiAlign = MinAlign(BaseAlign, Size);
 | 
						|
 | 
						|
  SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
 | 
						|
                                  Load->getChain(), BasePtr, SrcValue, LoMemVT,
 | 
						|
                                  BaseAlign, Load->getMemOperand()->getFlags());
 | 
						|
  SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
 | 
						|
  SDValue HiLoad =
 | 
						|
      DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
 | 
						|
                     HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
 | 
						|
                     HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
 | 
						|
 | 
						|
  SDValue Join;
 | 
						|
  if (LoVT == HiVT) {
 | 
						|
    // This is the case that the vector is power of two so was evenly split.
 | 
						|
    Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
 | 
						|
  } else {
 | 
						|
    Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
 | 
						|
                       DAG.getVectorIdxConstant(0, SL));
 | 
						|
    Join = DAG.getNode(
 | 
						|
        HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
 | 
						|
        VT, Join, HiLoad,
 | 
						|
        DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
 | 
						|
                                     LoLoad.getValue(1), HiLoad.getValue(1))};
 | 
						|
 | 
						|
  return DAG.getMergeValues(Ops, SL);
 | 
						|
}
 | 
						|
 | 
						|
// Widen a vector load from vec3 to vec4.
 | 
						|
SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  LoadSDNode *Load = cast<LoadSDNode>(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  assert(VT.getVectorNumElements() == 3);
 | 
						|
  SDValue BasePtr = Load->getBasePtr();
 | 
						|
  EVT MemVT = Load->getMemoryVT();
 | 
						|
  SDLoc SL(Op);
 | 
						|
  const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
 | 
						|
  unsigned BaseAlign = Load->getAlignment();
 | 
						|
 | 
						|
  EVT WideVT =
 | 
						|
      EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
 | 
						|
  EVT WideMemVT =
 | 
						|
      EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
 | 
						|
  SDValue WideLoad = DAG.getExtLoad(
 | 
						|
      Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
 | 
						|
      WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
 | 
						|
  return DAG.getMergeValues(
 | 
						|
      {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
 | 
						|
                   DAG.getVectorIdxConstant(0, SL)),
 | 
						|
       WideLoad.getValue(1)},
 | 
						|
      SL);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  StoreSDNode *Store = cast<StoreSDNode>(Op);
 | 
						|
  SDValue Val = Store->getValue();
 | 
						|
  EVT VT = Val.getValueType();
 | 
						|
 | 
						|
  // If this is a 2 element vector, we really want to scalarize and not create
 | 
						|
  // weird 1 element vectors.
 | 
						|
  if (VT.getVectorNumElements() == 2)
 | 
						|
    return scalarizeVectorStore(Store, DAG);
 | 
						|
 | 
						|
  EVT MemVT = Store->getMemoryVT();
 | 
						|
  SDValue Chain = Store->getChain();
 | 
						|
  SDValue BasePtr = Store->getBasePtr();
 | 
						|
  SDLoc SL(Op);
 | 
						|
 | 
						|
  EVT LoVT, HiVT;
 | 
						|
  EVT LoMemVT, HiMemVT;
 | 
						|
  SDValue Lo, Hi;
 | 
						|
 | 
						|
  std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
 | 
						|
  std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
 | 
						|
  std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
 | 
						|
 | 
						|
  SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
 | 
						|
 | 
						|
  const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
 | 
						|
  unsigned BaseAlign = Store->getAlignment();
 | 
						|
  unsigned Size = LoMemVT.getStoreSize();
 | 
						|
  unsigned HiAlign = MinAlign(BaseAlign, Size);
 | 
						|
 | 
						|
  SDValue LoStore =
 | 
						|
      DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
 | 
						|
                        Store->getMemOperand()->getFlags());
 | 
						|
  SDValue HiStore =
 | 
						|
      DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
 | 
						|
                        HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
 | 
						|
}
 | 
						|
 | 
						|
// This is a shortcut for integer division because we have fast i32<->f32
 | 
						|
// conversions, and fast f32 reciprocal instructions. The fractional part of a
 | 
						|
// float is enough to accurately represent up to a 24-bit signed integer.
 | 
						|
SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                            bool Sign) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  MVT IntVT = MVT::i32;
 | 
						|
  MVT FltVT = MVT::f32;
 | 
						|
 | 
						|
  unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
 | 
						|
  if (LHSSignBits < 9)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
 | 
						|
  if (RHSSignBits < 9)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  unsigned BitSize = VT.getSizeInBits();
 | 
						|
  unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
 | 
						|
  unsigned DivBits = BitSize - SignBits;
 | 
						|
  if (Sign)
 | 
						|
    ++DivBits;
 | 
						|
 | 
						|
  ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
 | 
						|
  ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
 | 
						|
 | 
						|
  SDValue jq = DAG.getConstant(1, DL, IntVT);
 | 
						|
 | 
						|
  if (Sign) {
 | 
						|
    // char|short jq = ia ^ ib;
 | 
						|
    jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
 | 
						|
 | 
						|
    // jq = jq >> (bitsize - 2)
 | 
						|
    jq = DAG.getNode(ISD::SRA, DL, VT, jq,
 | 
						|
                     DAG.getConstant(BitSize - 2, DL, VT));
 | 
						|
 | 
						|
    // jq = jq | 0x1
 | 
						|
    jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
 | 
						|
  }
 | 
						|
 | 
						|
  // int ia = (int)LHS;
 | 
						|
  SDValue ia = LHS;
 | 
						|
 | 
						|
  // int ib, (int)RHS;
 | 
						|
  SDValue ib = RHS;
 | 
						|
 | 
						|
  // float fa = (float)ia;
 | 
						|
  SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
 | 
						|
 | 
						|
  // float fb = (float)ib;
 | 
						|
  SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
 | 
						|
 | 
						|
  SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
 | 
						|
                           fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
 | 
						|
 | 
						|
  // fq = trunc(fq);
 | 
						|
  fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
 | 
						|
 | 
						|
  // float fqneg = -fq;
 | 
						|
  SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
 | 
						|
 | 
						|
  // float fr = mad(fqneg, fb, fa);
 | 
						|
  unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
 | 
						|
                    (unsigned)ISD::FMA :
 | 
						|
                    !MFI->getMode().allFP32Denormals() ?
 | 
						|
                    (unsigned)ISD::FMAD :
 | 
						|
                    (unsigned)AMDGPUISD::FMAD_FTZ;
 | 
						|
  SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
 | 
						|
 | 
						|
  // int iq = (int)fq;
 | 
						|
  SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
 | 
						|
 | 
						|
  // fr = fabs(fr);
 | 
						|
  fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
 | 
						|
 | 
						|
  // fb = fabs(fb);
 | 
						|
  fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
 | 
						|
 | 
						|
  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						|
 | 
						|
  // int cv = fr >= fb;
 | 
						|
  SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
 | 
						|
 | 
						|
  // jq = (cv ? jq : 0);
 | 
						|
  jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
 | 
						|
 | 
						|
  // dst = iq + jq;
 | 
						|
  SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
 | 
						|
 | 
						|
  // Rem needs compensation, it's easier to recompute it
 | 
						|
  SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
 | 
						|
  Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
 | 
						|
 | 
						|
  // Truncate to number of bits this divide really is.
 | 
						|
  if (Sign) {
 | 
						|
    SDValue InRegSize
 | 
						|
      = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
 | 
						|
    Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
 | 
						|
    Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
 | 
						|
  } else {
 | 
						|
    SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
 | 
						|
    Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
 | 
						|
    Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getMergeValues({ Div, Rem }, DL);
 | 
						|
}
 | 
						|
 | 
						|
void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
 | 
						|
                                      SelectionDAG &DAG,
 | 
						|
                                      SmallVectorImpl<SDValue> &Results) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
 | 
						|
 | 
						|
  EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
 | 
						|
 | 
						|
  SDValue One = DAG.getConstant(1, DL, HalfVT);
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, HalfVT);
 | 
						|
 | 
						|
  //HiLo split
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
 | 
						|
  SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
 | 
						|
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
 | 
						|
  SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
 | 
						|
 | 
						|
  if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
 | 
						|
      DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
 | 
						|
                              LHS_Lo, RHS_Lo);
 | 
						|
 | 
						|
    SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
 | 
						|
    SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
 | 
						|
 | 
						|
    Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
 | 
						|
    Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isTypeLegal(MVT::i64)) {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | 
						|
 | 
						|
    // Compute denominator reciprocal.
 | 
						|
    unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
 | 
						|
                    (unsigned)ISD::FMA :
 | 
						|
                    !MFI->getMode().allFP32Denormals() ?
 | 
						|
                    (unsigned)ISD::FMAD :
 | 
						|
                    (unsigned)AMDGPUISD::FMAD_FTZ;
 | 
						|
 | 
						|
    SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
 | 
						|
    SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
 | 
						|
    SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
 | 
						|
      DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
 | 
						|
      Cvt_Lo);
 | 
						|
    SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
 | 
						|
    SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
 | 
						|
      DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
 | 
						|
    SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
 | 
						|
      DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
 | 
						|
    SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
 | 
						|
    SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
 | 
						|
      DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
 | 
						|
      Mul1);
 | 
						|
    SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
 | 
						|
    SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
 | 
						|
    SDValue Rcp64 = DAG.getBitcast(VT,
 | 
						|
                        DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
 | 
						|
 | 
						|
    SDValue Zero64 = DAG.getConstant(0, DL, VT);
 | 
						|
    SDValue One64  = DAG.getConstant(1, DL, VT);
 | 
						|
    SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
 | 
						|
    SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
 | 
						|
 | 
						|
    SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
 | 
						|
    SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
 | 
						|
    SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
 | 
						|
    SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
 | 
						|
                                    Zero);
 | 
						|
    SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
 | 
						|
                                    One);
 | 
						|
 | 
						|
    SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
 | 
						|
                                  Mulhi1_Lo, Zero1);
 | 
						|
    SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
 | 
						|
                                  Mulhi1_Hi, Add1_Lo.getValue(1));
 | 
						|
    SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
 | 
						|
    SDValue Add1 = DAG.getBitcast(VT,
 | 
						|
                        DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
 | 
						|
 | 
						|
    SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
 | 
						|
    SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
 | 
						|
    SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
 | 
						|
                                    Zero);
 | 
						|
    SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
 | 
						|
                                    One);
 | 
						|
 | 
						|
    SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
 | 
						|
                                  Mulhi2_Lo, Zero1);
 | 
						|
    SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
 | 
						|
                                   Mulhi2_Hi, Add1_Lo.getValue(1));
 | 
						|
    SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
 | 
						|
                                  Zero, Add2_Lo.getValue(1));
 | 
						|
    SDValue Add2 = DAG.getBitcast(VT,
 | 
						|
                        DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
 | 
						|
    SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
 | 
						|
 | 
						|
    SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
 | 
						|
 | 
						|
    SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
 | 
						|
    SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
 | 
						|
    SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
 | 
						|
                                  Mul3_Lo, Zero1);
 | 
						|
    SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
 | 
						|
                                  Mul3_Hi, Sub1_Lo.getValue(1));
 | 
						|
    SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
 | 
						|
    SDValue Sub1 = DAG.getBitcast(VT,
 | 
						|
                        DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
 | 
						|
 | 
						|
    SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
 | 
						|
    SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
 | 
						|
                                 ISD::SETUGE);
 | 
						|
    SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
 | 
						|
                                 ISD::SETUGE);
 | 
						|
    SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
 | 
						|
 | 
						|
    // TODO: Here and below portions of the code can be enclosed into if/endif.
 | 
						|
    // Currently control flow is unconditional and we have 4 selects after
 | 
						|
    // potential endif to substitute PHIs.
 | 
						|
 | 
						|
    // if C3 != 0 ...
 | 
						|
    SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
 | 
						|
                                  RHS_Lo, Zero1);
 | 
						|
    SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
 | 
						|
                                  RHS_Hi, Sub1_Lo.getValue(1));
 | 
						|
    SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
 | 
						|
                                  Zero, Sub2_Lo.getValue(1));
 | 
						|
    SDValue Sub2 = DAG.getBitcast(VT,
 | 
						|
                        DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
 | 
						|
 | 
						|
    SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
 | 
						|
 | 
						|
    SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
 | 
						|
                                 ISD::SETUGE);
 | 
						|
    SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
 | 
						|
                                 ISD::SETUGE);
 | 
						|
    SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
 | 
						|
 | 
						|
    // if (C6 != 0)
 | 
						|
    SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
 | 
						|
 | 
						|
    SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
 | 
						|
                                  RHS_Lo, Zero1);
 | 
						|
    SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
 | 
						|
                                  RHS_Hi, Sub2_Lo.getValue(1));
 | 
						|
    SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
 | 
						|
                                  Zero, Sub3_Lo.getValue(1));
 | 
						|
    SDValue Sub3 = DAG.getBitcast(VT,
 | 
						|
                        DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
 | 
						|
 | 
						|
    // endif C6
 | 
						|
    // endif C3
 | 
						|
 | 
						|
    SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
 | 
						|
    SDValue Div  = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
 | 
						|
 | 
						|
    SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
 | 
						|
    SDValue Rem  = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
 | 
						|
 | 
						|
    Results.push_back(Div);
 | 
						|
    Results.push_back(Rem);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // r600 expandion.
 | 
						|
  // Get Speculative values
 | 
						|
  SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
 | 
						|
  SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
 | 
						|
 | 
						|
  SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
 | 
						|
  SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
 | 
						|
  REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
 | 
						|
 | 
						|
  SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
 | 
						|
  SDValue DIV_Lo = Zero;
 | 
						|
 | 
						|
  const unsigned halfBitWidth = HalfVT.getSizeInBits();
 | 
						|
 | 
						|
  for (unsigned i = 0; i < halfBitWidth; ++i) {
 | 
						|
    const unsigned bitPos = halfBitWidth - i - 1;
 | 
						|
    SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
 | 
						|
    // Get value of high bit
 | 
						|
    SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
 | 
						|
    HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
 | 
						|
    HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
 | 
						|
 | 
						|
    // Shift
 | 
						|
    REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
 | 
						|
    // Add LHS high bit
 | 
						|
    REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
 | 
						|
 | 
						|
    SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
 | 
						|
    SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
 | 
						|
 | 
						|
    DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
 | 
						|
 | 
						|
    // Update REM
 | 
						|
    SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
 | 
						|
    REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
 | 
						|
  DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
 | 
						|
  Results.push_back(DIV);
 | 
						|
  Results.push_back(REM);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  if (VT == MVT::i64) {
 | 
						|
    SmallVector<SDValue, 2> Results;
 | 
						|
    LowerUDIVREM64(Op, DAG, Results);
 | 
						|
    return DAG.getMergeValues(Results, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::i32) {
 | 
						|
    if (SDValue Res = LowerDIVREM24(Op, DAG, false))
 | 
						|
      return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Num = Op.getOperand(0);
 | 
						|
  SDValue Den = Op.getOperand(1);
 | 
						|
 | 
						|
  // RCP =  URECIP(Den) = 2^32 / Den + e
 | 
						|
  // e is rounding error.
 | 
						|
  SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
 | 
						|
 | 
						|
  // RCP_LO = mul(RCP, Den) */
 | 
						|
  SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
 | 
						|
 | 
						|
  // RCP_HI = mulhu (RCP, Den) */
 | 
						|
  SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
 | 
						|
 | 
						|
  // NEG_RCP_LO = -RCP_LO
 | 
						|
  SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
 | 
						|
                                                     RCP_LO);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstant(0, DL, VT);
 | 
						|
  const EVT CCVT = getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                      *DAG.getContext(), VT);
 | 
						|
 | 
						|
  // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
 | 
						|
  SDValue CmpRcpHiZero = DAG.getSetCC(DL, CCVT, RCP_HI, Zero, ISD::SETEQ);
 | 
						|
  SDValue ABS_RCP_LO = DAG.getNode(ISD::SELECT,
 | 
						|
                                   DL, VT, CmpRcpHiZero, NEG_RCP_LO, RCP_LO);
 | 
						|
 | 
						|
  // Calculate the rounding error from the URECIP instruction
 | 
						|
  // E = mulhu(ABS_RCP_LO, RCP)
 | 
						|
  SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
 | 
						|
 | 
						|
  // RCP_A_E = RCP + E
 | 
						|
  SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
 | 
						|
 | 
						|
  // RCP_S_E = RCP - E
 | 
						|
  SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
 | 
						|
 | 
						|
  // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
 | 
						|
  SDValue Tmp0 = DAG.getNode(ISD::SELECT, DL, VT,
 | 
						|
                             CmpRcpHiZero, RCP_A_E, RCP_S_E);
 | 
						|
 | 
						|
  // Quotient = mulhu(Tmp0, Num)
 | 
						|
  SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
 | 
						|
 | 
						|
  // Num_S_Remainder = Quotient * Den
 | 
						|
  SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
 | 
						|
 | 
						|
  // Remainder = Num - Num_S_Remainder
 | 
						|
  SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
 | 
						|
 | 
						|
  // Remainder_GE_Den = (Remainder >= Den)
 | 
						|
  SDValue Remainder_GE_Den = DAG.getSetCC(DL, CCVT, Remainder, Den, ISD::SETUGE);
 | 
						|
 | 
						|
  // Remainder_GE_Zero = (Num >= Num_S_Remainder)
 | 
						|
  SDValue Remainder_GE_Zero = DAG.getSetCC(DL, CCVT, Num, Num_S_Remainder,
 | 
						|
                                           ISD::SETUGE);
 | 
						|
 | 
						|
  // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::AND, DL, CCVT, Remainder_GE_Den,
 | 
						|
                             Remainder_GE_Zero);
 | 
						|
 | 
						|
  // Calculate Division result:
 | 
						|
 | 
						|
  // Quotient_A_One = Quotient + 1
 | 
						|
  SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
 | 
						|
                                       DAG.getConstant(1, DL, VT));
 | 
						|
 | 
						|
  // Quotient_S_One = Quotient - 1
 | 
						|
  SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
 | 
						|
                                       DAG.getConstant(1, DL, VT));
 | 
						|
 | 
						|
  // Div = (Tmp1 ? Quotient_A_One : Quotient)
 | 
						|
  SDValue Div = DAG.getNode(ISD::SELECT, DL, VT, Tmp1,
 | 
						|
                            Quotient_A_One, Quotient);
 | 
						|
 | 
						|
  // Div = (Remainder_GE_Zero ? Div : Quotient_S_One)
 | 
						|
  Div = DAG.getNode(ISD::SELECT, DL, VT, Remainder_GE_Zero,
 | 
						|
                    Div, Quotient_S_One);
 | 
						|
 | 
						|
  // Calculate Rem result:
 | 
						|
 | 
						|
  // Remainder_S_Den = Remainder - Den
 | 
						|
  SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
 | 
						|
 | 
						|
  // Remainder_A_Den = Remainder + Den
 | 
						|
  SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
 | 
						|
 | 
						|
  // Rem = (Tmp1 ? Remainder_S_Den : Remainder)
 | 
						|
  SDValue Rem = DAG.getNode(ISD::SELECT, DL, VT, Tmp1,
 | 
						|
                            Remainder_S_Den, Remainder);
 | 
						|
 | 
						|
  // Rem = (Remainder_GE_Zero ? Rem : Remainder_A_Den)
 | 
						|
  Rem = DAG.getNode(ISD::SELECT, DL, VT,
 | 
						|
                    Remainder_GE_Zero, Rem, Remainder_A_Den);
 | 
						|
  SDValue Ops[2] = {
 | 
						|
    Div,
 | 
						|
    Rem
 | 
						|
  };
 | 
						|
  return DAG.getMergeValues(Ops, DL);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, VT);
 | 
						|
  SDValue NegOne = DAG.getConstant(-1, DL, VT);
 | 
						|
 | 
						|
  if (VT == MVT::i32) {
 | 
						|
    if (SDValue Res = LowerDIVREM24(Op, DAG, true))
 | 
						|
      return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::i64 &&
 | 
						|
      DAG.ComputeNumSignBits(LHS) > 32 &&
 | 
						|
      DAG.ComputeNumSignBits(RHS) > 32) {
 | 
						|
    EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
 | 
						|
 | 
						|
    //HiLo split
 | 
						|
    SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
 | 
						|
    SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
 | 
						|
    SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
 | 
						|
                                 LHS_Lo, RHS_Lo);
 | 
						|
    SDValue Res[2] = {
 | 
						|
      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
 | 
						|
      DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
 | 
						|
    };
 | 
						|
    return DAG.getMergeValues(Res, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
 | 
						|
  SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
 | 
						|
  SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
 | 
						|
  SDValue RSign = LHSign; // Remainder sign is the same as LHS
 | 
						|
 | 
						|
  LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
 | 
						|
  RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
 | 
						|
 | 
						|
  LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
 | 
						|
  RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
 | 
						|
 | 
						|
  SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
 | 
						|
  SDValue Rem = Div.getValue(1);
 | 
						|
 | 
						|
  Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
 | 
						|
  Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
 | 
						|
 | 
						|
  Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
 | 
						|
  Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
 | 
						|
 | 
						|
  SDValue Res[2] = {
 | 
						|
    Div,
 | 
						|
    Rem
 | 
						|
  };
 | 
						|
  return DAG.getMergeValues(Res, DL);
 | 
						|
}
 | 
						|
 | 
						|
// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
 | 
						|
SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDValue X = Op.getOperand(0);
 | 
						|
  SDValue Y = Op.getOperand(1);
 | 
						|
 | 
						|
  // TODO: Should this propagate fast-math-flags?
 | 
						|
 | 
						|
  SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
 | 
						|
  SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
 | 
						|
  SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  // result = trunc(src)
 | 
						|
  // if (src > 0.0 && src != result)
 | 
						|
  //   result += 1.0
 | 
						|
 | 
						|
  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
 | 
						|
  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
 | 
						|
 | 
						|
  EVT SetCCVT =
 | 
						|
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
 | 
						|
 | 
						|
  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
 | 
						|
  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
 | 
						|
  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
 | 
						|
 | 
						|
  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
 | 
						|
  // TODO: Should this propagate fast-math-flags?
 | 
						|
  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  const unsigned FractBits = 52;
 | 
						|
  const unsigned ExpBits = 11;
 | 
						|
 | 
						|
  SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
 | 
						|
                                Hi,
 | 
						|
                                DAG.getConstant(FractBits - 32, SL, MVT::i32),
 | 
						|
                                DAG.getConstant(ExpBits, SL, MVT::i32));
 | 
						|
  SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
 | 
						|
                            DAG.getConstant(1023, SL, MVT::i32));
 | 
						|
 | 
						|
  return Exp;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  assert(Op.getValueType() == MVT::f64);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
 | 
						|
  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
 | 
						|
 | 
						|
  // Extract the upper half, since this is where we will find the sign and
 | 
						|
  // exponent.
 | 
						|
  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
 | 
						|
 | 
						|
  SDValue Exp = extractF64Exponent(Hi, SL, DAG);
 | 
						|
 | 
						|
  const unsigned FractBits = 52;
 | 
						|
 | 
						|
  // Extract the sign bit.
 | 
						|
  const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
 | 
						|
  SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
 | 
						|
 | 
						|
  // Extend back to 64-bits.
 | 
						|
  SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
 | 
						|
  SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
 | 
						|
 | 
						|
  SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
 | 
						|
  const SDValue FractMask
 | 
						|
    = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
 | 
						|
 | 
						|
  SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
 | 
						|
  SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
 | 
						|
  SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
 | 
						|
 | 
						|
  EVT SetCCVT =
 | 
						|
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
 | 
						|
 | 
						|
  const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
 | 
						|
  SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
 | 
						|
  SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  assert(Op.getValueType() == MVT::f64);
 | 
						|
 | 
						|
  APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
 | 
						|
  SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
 | 
						|
  SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
 | 
						|
 | 
						|
  // TODO: Should this propagate fast-math-flags?
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
 | 
						|
  SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
 | 
						|
 | 
						|
  SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
 | 
						|
 | 
						|
  APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
 | 
						|
  SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
 | 
						|
 | 
						|
  EVT SetCCVT =
 | 
						|
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
 | 
						|
  SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
 | 
						|
 | 
						|
  return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // FNEARBYINT and FRINT are the same, except in their handling of FP
 | 
						|
  // exceptions. Those aren't really meaningful for us, and OpenCL only has
 | 
						|
  // rint, so just treat them as equivalent.
 | 
						|
  return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
// XXX - May require not supporting f32 denormals?
 | 
						|
 | 
						|
// Don't handle v2f16. The extra instructions to scalarize and repack around the
 | 
						|
// compare and vselect end up producing worse code than scalarizing the whole
 | 
						|
// operation.
 | 
						|
SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue X = Op.getOperand(0);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
 | 
						|
 | 
						|
  // TODO: Should this propagate fast-math-flags?
 | 
						|
 | 
						|
  SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
 | 
						|
 | 
						|
  SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
 | 
						|
  const SDValue One = DAG.getConstantFP(1.0, SL, VT);
 | 
						|
  const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
 | 
						|
 | 
						|
  SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
 | 
						|
 | 
						|
  EVT SetCCVT =
 | 
						|
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						|
 | 
						|
  SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
 | 
						|
 | 
						|
  SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  // result = trunc(src);
 | 
						|
  // if (src < 0.0 && src != result)
 | 
						|
  //   result += -1.0.
 | 
						|
 | 
						|
  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
 | 
						|
  const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
 | 
						|
 | 
						|
  EVT SetCCVT =
 | 
						|
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
 | 
						|
 | 
						|
  SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
 | 
						|
  SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
 | 
						|
  SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
 | 
						|
 | 
						|
  SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
 | 
						|
  // TODO: Should this propagate fast-math-flags?
 | 
						|
  return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                        double Log2BaseInverted) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Operand = Op.getOperand(0);
 | 
						|
  SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
 | 
						|
  SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
 | 
						|
}
 | 
						|
 | 
						|
// exp2(M_LOG2E_F * f);
 | 
						|
SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
 | 
						|
  SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
 | 
						|
  return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
 | 
						|
}
 | 
						|
 | 
						|
static bool isCtlzOpc(unsigned Opc) {
 | 
						|
  return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCttzOpc(unsigned Opc) {
 | 
						|
  return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
 | 
						|
                   Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
 | 
						|
 | 
						|
  unsigned ISDOpc, NewOpc;
 | 
						|
  if (isCtlzOpc(Op.getOpcode())) {
 | 
						|
    ISDOpc = ISD::CTLZ_ZERO_UNDEF;
 | 
						|
    NewOpc = AMDGPUISD::FFBH_U32;
 | 
						|
  } else if (isCttzOpc(Op.getOpcode())) {
 | 
						|
    ISDOpc = ISD::CTTZ_ZERO_UNDEF;
 | 
						|
    NewOpc = AMDGPUISD::FFBL_B32;
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Unexpected OPCode!!!");
 | 
						|
 | 
						|
 | 
						|
  if (ZeroUndef && Src.getValueType() == MVT::i32)
 | 
						|
    return DAG.getNode(NewOpc, SL, MVT::i32, Src);
 | 
						|
 | 
						|
  SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
 | 
						|
  const SDValue One = DAG.getConstant(1, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
 | 
						|
 | 
						|
  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                   *DAG.getContext(), MVT::i32);
 | 
						|
 | 
						|
  SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
 | 
						|
  SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
 | 
						|
 | 
						|
  SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
 | 
						|
  SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
 | 
						|
 | 
						|
  const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
 | 
						|
  SDValue Add, NewOpr;
 | 
						|
  if (isCtlzOpc(Op.getOpcode())) {
 | 
						|
    Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
 | 
						|
    // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
 | 
						|
    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
 | 
						|
  } else {
 | 
						|
    Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
 | 
						|
    // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
 | 
						|
    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ZeroUndef) {
 | 
						|
    // Test if the full 64-bit input is zero.
 | 
						|
 | 
						|
    // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
 | 
						|
    // which we probably don't want.
 | 
						|
    SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
 | 
						|
    SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
 | 
						|
    SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
 | 
						|
 | 
						|
    // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
 | 
						|
    // with the same cycles, otherwise it is slower.
 | 
						|
    // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
 | 
						|
    // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
 | 
						|
 | 
						|
    const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
 | 
						|
 | 
						|
    // The instruction returns -1 for 0 input, but the defined intrinsic
 | 
						|
    // behavior is to return the number of bits.
 | 
						|
    NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
 | 
						|
                         SrcIsZero, Bits32, NewOpr);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                               bool Signed) const {
 | 
						|
  // Unsigned
 | 
						|
  // cul2f(ulong u)
 | 
						|
  //{
 | 
						|
  //  uint lz = clz(u);
 | 
						|
  //  uint e = (u != 0) ? 127U + 63U - lz : 0;
 | 
						|
  //  u = (u << lz) & 0x7fffffffffffffffUL;
 | 
						|
  //  ulong t = u & 0xffffffffffUL;
 | 
						|
  //  uint v = (e << 23) | (uint)(u >> 40);
 | 
						|
  //  uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
 | 
						|
  //  return as_float(v + r);
 | 
						|
  //}
 | 
						|
  // Signed
 | 
						|
  // cl2f(long l)
 | 
						|
  //{
 | 
						|
  //  long s = l >> 63;
 | 
						|
  //  float r = cul2f((l + s) ^ s);
 | 
						|
  //  return s ? -r : r;
 | 
						|
  //}
 | 
						|
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  SDValue L = Src;
 | 
						|
 | 
						|
  SDValue S;
 | 
						|
  if (Signed) {
 | 
						|
    const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
 | 
						|
    S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
 | 
						|
 | 
						|
    SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
 | 
						|
    L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
 | 
						|
  }
 | 
						|
 | 
						|
  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                   *DAG.getContext(), MVT::f32);
 | 
						|
 | 
						|
 | 
						|
  SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
 | 
						|
  SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
 | 
						|
  SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
 | 
						|
  LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
 | 
						|
 | 
						|
  SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
 | 
						|
  SDValue E = DAG.getSelect(SL, MVT::i32,
 | 
						|
    DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
 | 
						|
    DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
 | 
						|
    ZeroI32);
 | 
						|
 | 
						|
  SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
 | 
						|
    DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
 | 
						|
    DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
 | 
						|
 | 
						|
  SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
 | 
						|
                          DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
 | 
						|
 | 
						|
  SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
 | 
						|
                             U, DAG.getConstant(40, SL, MVT::i64));
 | 
						|
 | 
						|
  SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
 | 
						|
    DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
 | 
						|
    DAG.getNode(ISD::TRUNCATE, SL, MVT::i32,  UShl));
 | 
						|
 | 
						|
  SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
 | 
						|
  SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
 | 
						|
  SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
 | 
						|
 | 
						|
  SDValue One = DAG.getConstant(1, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
 | 
						|
 | 
						|
  SDValue R = DAG.getSelect(SL, MVT::i32,
 | 
						|
    RCmp,
 | 
						|
    One,
 | 
						|
    DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
 | 
						|
  R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
 | 
						|
  R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
 | 
						|
 | 
						|
  if (!Signed)
 | 
						|
    return R;
 | 
						|
 | 
						|
  SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
 | 
						|
  return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                               bool Signed) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
 | 
						|
 | 
						|
  SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
 | 
						|
                           DAG.getConstant(0, SL, MVT::i32));
 | 
						|
  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
 | 
						|
                           DAG.getConstant(1, SL, MVT::i32));
 | 
						|
 | 
						|
  SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
 | 
						|
                              SL, MVT::f64, Hi);
 | 
						|
 | 
						|
  SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
 | 
						|
 | 
						|
  SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
 | 
						|
                              DAG.getConstant(32, SL, MVT::i32));
 | 
						|
  // TODO: Should this propagate fast-math-flags?
 | 
						|
  return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  // TODO: Factor out code common with LowerSINT_TO_FP.
 | 
						|
  EVT DestVT = Op.getValueType();
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
 | 
						|
  if (SrcVT == MVT::i16) {
 | 
						|
    if (DestVT == MVT::f16)
 | 
						|
      return Op;
 | 
						|
    SDLoc DL(Op);
 | 
						|
 | 
						|
    // Promote src to i32
 | 
						|
    SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
 | 
						|
    return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(SrcVT == MVT::i64 && "operation should be legal");
 | 
						|
 | 
						|
  if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
 | 
						|
    SDLoc DL(Op);
 | 
						|
 | 
						|
    SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
 | 
						|
    SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
 | 
						|
    SDValue FPRound =
 | 
						|
        DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
 | 
						|
 | 
						|
    return FPRound;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DestVT == MVT::f32)
 | 
						|
    return LowerINT_TO_FP32(Op, DAG, false);
 | 
						|
 | 
						|
  assert(DestVT == MVT::f64);
 | 
						|
  return LowerINT_TO_FP64(Op, DAG, false);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  EVT DestVT = Op.getValueType();
 | 
						|
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
 | 
						|
  if (SrcVT == MVT::i16) {
 | 
						|
    if (DestVT == MVT::f16)
 | 
						|
      return Op;
 | 
						|
 | 
						|
    SDLoc DL(Op);
 | 
						|
    // Promote src to i32
 | 
						|
    SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
 | 
						|
    return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(SrcVT == MVT::i64 && "operation should be legal");
 | 
						|
 | 
						|
  // TODO: Factor out code common with LowerUINT_TO_FP.
 | 
						|
 | 
						|
  if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
 | 
						|
    SDLoc DL(Op);
 | 
						|
    SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
    SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
 | 
						|
    SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
 | 
						|
    SDValue FPRound =
 | 
						|
        DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
 | 
						|
 | 
						|
    return FPRound;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DestVT == MVT::f32)
 | 
						|
    return LowerINT_TO_FP32(Op, DAG, true);
 | 
						|
 | 
						|
  assert(DestVT == MVT::f64);
 | 
						|
  return LowerINT_TO_FP64(Op, DAG, true);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                               bool Signed) const {
 | 
						|
  SDLoc SL(Op);
 | 
						|
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
 | 
						|
 | 
						|
  SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
 | 
						|
                                 MVT::f64);
 | 
						|
  SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
 | 
						|
                                 MVT::f64);
 | 
						|
  // TODO: Should this propagate fast-math-flags?
 | 
						|
  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
 | 
						|
 | 
						|
  SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
 | 
						|
 | 
						|
 | 
						|
  SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
 | 
						|
 | 
						|
  SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
 | 
						|
                           MVT::i32, FloorMul);
 | 
						|
  SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
 | 
						|
 | 
						|
  SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
 | 
						|
 | 
						|
  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
 | 
						|
  // Convert to target node to get known bits
 | 
						|
  if (N0.getValueType() == MVT::f32)
 | 
						|
    return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
 | 
						|
 | 
						|
  if (getTargetMachine().Options.UnsafeFPMath) {
 | 
						|
    // There is a generic expand for FP_TO_FP16 with unsafe fast math.
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(N0.getSimpleValueType() == MVT::f64);
 | 
						|
 | 
						|
  // f64 -> f16 conversion using round-to-nearest-even rounding mode.
 | 
						|
  const unsigned ExpMask = 0x7ff;
 | 
						|
  const unsigned ExpBiasf64 = 1023;
 | 
						|
  const unsigned ExpBiasf16 = 15;
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
 | 
						|
  SDValue One = DAG.getConstant(1, DL, MVT::i32);
 | 
						|
  SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
 | 
						|
  SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
 | 
						|
                           DAG.getConstant(32, DL, MVT::i64));
 | 
						|
  UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
 | 
						|
  U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
 | 
						|
  SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
 | 
						|
                          DAG.getConstant(20, DL, MVT::i64));
 | 
						|
  E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
 | 
						|
                  DAG.getConstant(ExpMask, DL, MVT::i32));
 | 
						|
  // Subtract the fp64 exponent bias (1023) to get the real exponent and
 | 
						|
  // add the f16 bias (15) to get the biased exponent for the f16 format.
 | 
						|
  E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
 | 
						|
                  DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
 | 
						|
 | 
						|
  SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
 | 
						|
                          DAG.getConstant(8, DL, MVT::i32));
 | 
						|
  M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
 | 
						|
                  DAG.getConstant(0xffe, DL, MVT::i32));
 | 
						|
 | 
						|
  SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
 | 
						|
                                  DAG.getConstant(0x1ff, DL, MVT::i32));
 | 
						|
  MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
 | 
						|
 | 
						|
  SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
 | 
						|
  M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
 | 
						|
 | 
						|
  // (M != 0 ? 0x0200 : 0) | 0x7c00;
 | 
						|
  SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
 | 
						|
      DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
 | 
						|
                      Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
 | 
						|
 | 
						|
  // N = M | (E << 12);
 | 
						|
  SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
 | 
						|
      DAG.getNode(ISD::SHL, DL, MVT::i32, E,
 | 
						|
                  DAG.getConstant(12, DL, MVT::i32)));
 | 
						|
 | 
						|
  // B = clamp(1-E, 0, 13);
 | 
						|
  SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
 | 
						|
                                  One, E);
 | 
						|
  SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
 | 
						|
  B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
 | 
						|
                  DAG.getConstant(13, DL, MVT::i32));
 | 
						|
 | 
						|
  SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
 | 
						|
                                   DAG.getConstant(0x1000, DL, MVT::i32));
 | 
						|
 | 
						|
  SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
 | 
						|
  SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
 | 
						|
  SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
 | 
						|
  D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
 | 
						|
 | 
						|
  SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
 | 
						|
  SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
 | 
						|
                              DAG.getConstant(0x7, DL, MVT::i32));
 | 
						|
  V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
 | 
						|
                  DAG.getConstant(2, DL, MVT::i32));
 | 
						|
  SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
 | 
						|
                               One, Zero, ISD::SETEQ);
 | 
						|
  SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
 | 
						|
                               One, Zero, ISD::SETGT);
 | 
						|
  V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
 | 
						|
  V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
 | 
						|
 | 
						|
  V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
 | 
						|
                      DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
 | 
						|
  V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
 | 
						|
                      I, V, ISD::SETEQ);
 | 
						|
 | 
						|
  // Extract the sign bit.
 | 
						|
  SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
 | 
						|
                            DAG.getConstant(16, DL, MVT::i32));
 | 
						|
  Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
 | 
						|
                     DAG.getConstant(0x8000, DL, MVT::i32));
 | 
						|
 | 
						|
  V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
 | 
						|
  return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  // TODO: Factor out code common with LowerFP_TO_UINT.
 | 
						|
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
  if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
 | 
						|
    SDLoc DL(Op);
 | 
						|
 | 
						|
    SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
 | 
						|
    SDValue FpToInt32 =
 | 
						|
        DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
 | 
						|
 | 
						|
    return FpToInt32;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
 | 
						|
    return LowerFP64_TO_INT(Op, DAG, true);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  // TODO: Factor out code common with LowerFP_TO_SINT.
 | 
						|
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
  if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
 | 
						|
    SDLoc DL(Op);
 | 
						|
 | 
						|
    SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
 | 
						|
    SDValue FpToInt32 =
 | 
						|
        DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
 | 
						|
 | 
						|
    return FpToInt32;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
 | 
						|
    return LowerFP64_TO_INT(Op, DAG, false);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | 
						|
  MVT VT = Op.getSimpleValueType();
 | 
						|
  MVT ScalarVT = VT.getScalarType();
 | 
						|
 | 
						|
  assert(VT.isVector());
 | 
						|
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  SDLoc DL(Op);
 | 
						|
 | 
						|
  // TODO: Don't scalarize on Evergreen?
 | 
						|
  unsigned NElts = VT.getVectorNumElements();
 | 
						|
  SmallVector<SDValue, 8> Args;
 | 
						|
  DAG.ExtractVectorElements(Src, Args, 0, NElts);
 | 
						|
 | 
						|
  SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
 | 
						|
  for (unsigned I = 0; I < NElts; ++I)
 | 
						|
    Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
 | 
						|
 | 
						|
  return DAG.getBuildVector(VT, DL, Args);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Custom DAG optimizations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool isU24(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
 | 
						|
}
 | 
						|
 | 
						|
static bool isI24(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
 | 
						|
                                     // as unsigned 24-bit values.
 | 
						|
    AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue simplifyI24(SDNode *Node24,
 | 
						|
                           TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
 | 
						|
 | 
						|
  SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
 | 
						|
  SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
 | 
						|
  unsigned NewOpcode = Node24->getOpcode();
 | 
						|
  if (IsIntrin) {
 | 
						|
    unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
 | 
						|
    NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
 | 
						|
      AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
 | 
						|
 | 
						|
  // First try to simplify using SimplifyMultipleUseDemandedBits which allows
 | 
						|
  // the operands to have other uses, but will only perform simplifications that
 | 
						|
  // involve bypassing some nodes for this user.
 | 
						|
  SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
 | 
						|
  SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
 | 
						|
  if (DemandedLHS || DemandedRHS)
 | 
						|
    return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
 | 
						|
                       DemandedLHS ? DemandedLHS : LHS,
 | 
						|
                       DemandedRHS ? DemandedRHS : RHS);
 | 
						|
 | 
						|
  // Now try SimplifyDemandedBits which can simplify the nodes used by our
 | 
						|
  // operands if this node is the only user.
 | 
						|
  if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
 | 
						|
    return SDValue(Node24, 0);
 | 
						|
  if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
 | 
						|
    return SDValue(Node24, 0);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
template <typename IntTy>
 | 
						|
static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
 | 
						|
                               uint32_t Width, const SDLoc &DL) {
 | 
						|
  if (Width + Offset < 32) {
 | 
						|
    uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
 | 
						|
    IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
 | 
						|
    return DAG.getConstant(Result, DL, MVT::i32);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
static bool hasVolatileUser(SDNode *Val) {
 | 
						|
  for (SDNode *U : Val->uses()) {
 | 
						|
    if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
 | 
						|
      if (M->isVolatile())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
 | 
						|
  // i32 vectors are the canonical memory type.
 | 
						|
  if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!VT.isByteSized())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Size = VT.getStoreSize();
 | 
						|
 | 
						|
  if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Replace load of an illegal type with a store of a bitcast to a friendlier
 | 
						|
// type.
 | 
						|
SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  if (!DCI.isBeforeLegalize())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  LoadSDNode *LN = cast<LoadSDNode>(N);
 | 
						|
  if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc SL(N);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = LN->getMemoryVT();
 | 
						|
 | 
						|
  unsigned Size = VT.getStoreSize();
 | 
						|
  Align Alignment = LN->getAlign();
 | 
						|
  if (Alignment < Size && isTypeLegal(VT)) {
 | 
						|
    bool IsFast;
 | 
						|
    unsigned AS = LN->getAddressSpace();
 | 
						|
 | 
						|
    // Expand unaligned loads earlier than legalization. Due to visitation order
 | 
						|
    // problems during legalization, the emitted instructions to pack and unpack
 | 
						|
    // the bytes again are not eliminated in the case of an unaligned copy.
 | 
						|
    if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(),
 | 
						|
                                        LN->getMemOperand()->getFlags(),
 | 
						|
                                        &IsFast)) {
 | 
						|
      SDValue Ops[2];
 | 
						|
 | 
						|
      if (VT.isVector())
 | 
						|
        std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
 | 
						|
      else
 | 
						|
        std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
 | 
						|
 | 
						|
      return DAG.getMergeValues(Ops, SDLoc(N));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsFast)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!shouldCombineMemoryType(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
 | 
						|
 | 
						|
  SDValue NewLoad
 | 
						|
    = DAG.getLoad(NewVT, SL, LN->getChain(),
 | 
						|
                  LN->getBasePtr(), LN->getMemOperand());
 | 
						|
 | 
						|
  SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
 | 
						|
  DCI.CombineTo(N, BC, NewLoad.getValue(1));
 | 
						|
  return SDValue(N, 0);
 | 
						|
}
 | 
						|
 | 
						|
// Replace store of an illegal type with a store of a bitcast to a friendlier
 | 
						|
// type.
 | 
						|
SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  if (!DCI.isBeforeLegalize())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  StoreSDNode *SN = cast<StoreSDNode>(N);
 | 
						|
  if (!SN->isSimple() || !ISD::isNormalStore(SN))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = SN->getMemoryVT();
 | 
						|
  unsigned Size = VT.getStoreSize();
 | 
						|
 | 
						|
  SDLoc SL(N);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  Align Alignment = SN->getAlign();
 | 
						|
  if (Alignment < Size && isTypeLegal(VT)) {
 | 
						|
    bool IsFast;
 | 
						|
    unsigned AS = SN->getAddressSpace();
 | 
						|
 | 
						|
    // Expand unaligned stores earlier than legalization. Due to visitation
 | 
						|
    // order problems during legalization, the emitted instructions to pack and
 | 
						|
    // unpack the bytes again are not eliminated in the case of an unaligned
 | 
						|
    // copy.
 | 
						|
    if (!allowsMisalignedMemoryAccesses(VT, AS, Alignment.value(),
 | 
						|
                                        SN->getMemOperand()->getFlags(),
 | 
						|
                                        &IsFast)) {
 | 
						|
      if (VT.isVector())
 | 
						|
        return scalarizeVectorStore(SN, DAG);
 | 
						|
 | 
						|
      return expandUnalignedStore(SN, DAG);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsFast)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!shouldCombineMemoryType(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
 | 
						|
  SDValue Val = SN->getValue();
 | 
						|
 | 
						|
  //DCI.AddToWorklist(Val.getNode());
 | 
						|
 | 
						|
  bool OtherUses = !Val.hasOneUse();
 | 
						|
  SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
 | 
						|
  if (OtherUses) {
 | 
						|
    SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getStore(SN->getChain(), SL, CastVal,
 | 
						|
                      SN->getBasePtr(), SN->getMemOperand());
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This should go in generic DAG combiner with an isTruncateFree check,
 | 
						|
// but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
 | 
						|
// issues.
 | 
						|
SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
 | 
						|
                                                        DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
 | 
						|
  // (vt2 (assertzext (truncate vt0:x), vt1)) ->
 | 
						|
  //     (vt2 (truncate (assertzext vt0:x, vt1)))
 | 
						|
  if (N0.getOpcode() == ISD::TRUNCATE) {
 | 
						|
    SDValue N1 = N->getOperand(1);
 | 
						|
    EVT ExtVT = cast<VTSDNode>(N1)->getVT();
 | 
						|
    SDLoc SL(N);
 | 
						|
 | 
						|
    SDValue Src = N0.getOperand(0);
 | 
						|
    EVT SrcVT = Src.getValueType();
 | 
						|
    if (SrcVT.bitsGE(ExtVT)) {
 | 
						|
      SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
 | 
						|
      return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
 | 
						|
  SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
  switch (IID) {
 | 
						|
  case Intrinsic::amdgcn_mul_i24:
 | 
						|
  case Intrinsic::amdgcn_mul_u24:
 | 
						|
    return simplifyI24(N, DCI);
 | 
						|
  case Intrinsic::amdgcn_fract:
 | 
						|
  case Intrinsic::amdgcn_rsq:
 | 
						|
  case Intrinsic::amdgcn_rcp_legacy:
 | 
						|
  case Intrinsic::amdgcn_rsq_legacy:
 | 
						|
  case Intrinsic::amdgcn_rsq_clamp:
 | 
						|
  case Intrinsic::amdgcn_ldexp: {
 | 
						|
    // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
 | 
						|
    SDValue Src = N->getOperand(1);
 | 
						|
    return Src.isUndef() ? Src : SDValue();
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Split the 64-bit value \p LHS into two 32-bit components, and perform the
 | 
						|
/// binary operation \p Opc to it with the corresponding constant operands.
 | 
						|
SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
 | 
						|
  DAGCombinerInfo &DCI, const SDLoc &SL,
 | 
						|
  unsigned Opc, SDValue LHS,
 | 
						|
  uint32_t ValLo, uint32_t ValHi) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue Lo, Hi;
 | 
						|
  std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
 | 
						|
 | 
						|
  SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
 | 
						|
  SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
 | 
						|
  SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
 | 
						|
 | 
						|
  // Re-visit the ands. It's possible we eliminated one of them and it could
 | 
						|
  // simplify the vector.
 | 
						|
  DCI.AddToWorklist(Lo.getNode());
 | 
						|
  DCI.AddToWorklist(Hi.getNode());
 | 
						|
 | 
						|
  SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
 | 
						|
  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
 | 
						|
                                                DAGCombinerInfo &DCI) const {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  if (!RHS)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  unsigned RHSVal = RHS->getZExtValue();
 | 
						|
  if (!RHSVal)
 | 
						|
    return LHS;
 | 
						|
 | 
						|
  SDLoc SL(N);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  switch (LHS->getOpcode()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
  case ISD::ANY_EXTEND: {
 | 
						|
    SDValue X = LHS->getOperand(0);
 | 
						|
 | 
						|
    if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
 | 
						|
        isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
 | 
						|
      // Prefer build_vector as the canonical form if packed types are legal.
 | 
						|
      // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
 | 
						|
      SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
 | 
						|
       { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
 | 
						|
      return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
 | 
						|
    }
 | 
						|
 | 
						|
    // shl (ext x) => zext (shl x), if shift does not overflow int
 | 
						|
    if (VT != MVT::i64)
 | 
						|
      break;
 | 
						|
    KnownBits Known = DAG.computeKnownBits(X);
 | 
						|
    unsigned LZ = Known.countMinLeadingZeros();
 | 
						|
    if (LZ < RHSVal)
 | 
						|
      break;
 | 
						|
    EVT XVT = X.getValueType();
 | 
						|
    SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
 | 
						|
    return DAG.getZExtOrTrunc(Shl, SL, VT);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
 | 
						|
 | 
						|
  // On some subtargets, 64-bit shift is a quarter rate instruction. In the
 | 
						|
  // common case, splitting this into a move and a 32-bit shift is faster and
 | 
						|
  // the same code size.
 | 
						|
  if (RHSVal < 32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
 | 
						|
  SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
 | 
						|
 | 
						|
  const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
 | 
						|
  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
 | 
						|
                                                DAGCombinerInfo &DCI) const {
 | 
						|
  if (N->getValueType(0) != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  if (!RHS)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc SL(N);
 | 
						|
  unsigned RHSVal = RHS->getZExtValue();
 | 
						|
 | 
						|
  // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
 | 
						|
  if (RHSVal == 32) {
 | 
						|
    SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
 | 
						|
    SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
 | 
						|
                                   DAG.getConstant(31, SL, MVT::i32));
 | 
						|
 | 
						|
    SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
 | 
						|
    return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
 | 
						|
  }
 | 
						|
 | 
						|
  // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
 | 
						|
  if (RHSVal == 63) {
 | 
						|
    SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
 | 
						|
    SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
 | 
						|
                                   DAG.getConstant(31, SL, MVT::i32));
 | 
						|
    SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
 | 
						|
    return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
 | 
						|
                                                DAGCombinerInfo &DCI) const {
 | 
						|
  auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  if (!RHS)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  unsigned ShiftAmt = RHS->getZExtValue();
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc SL(N);
 | 
						|
 | 
						|
  // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
 | 
						|
  // this improves the ability to match BFE patterns in isel.
 | 
						|
  if (LHS.getOpcode() == ISD::AND) {
 | 
						|
    if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
 | 
						|
      if (Mask->getAPIntValue().isShiftedMask() &&
 | 
						|
          Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
 | 
						|
        return DAG.getNode(
 | 
						|
            ISD::AND, SL, VT,
 | 
						|
            DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
 | 
						|
            DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (ShiftAmt < 32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // srl i64:x, C for C >= 32
 | 
						|
  // =>
 | 
						|
  //   build_pair (srl hi_32(x), C - 32), 0
 | 
						|
  SDValue One = DAG.getConstant(1, SL, MVT::i32);
 | 
						|
  SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
 | 
						|
 | 
						|
  SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
 | 
						|
 | 
						|
  SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
 | 
						|
  SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
 | 
						|
 | 
						|
  SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
 | 
						|
 | 
						|
  return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performTruncateCombine(
 | 
						|
  SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  SDLoc SL(N);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue Src = N->getOperand(0);
 | 
						|
 | 
						|
  // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
 | 
						|
  if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
 | 
						|
    SDValue Vec = Src.getOperand(0);
 | 
						|
    if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						|
      SDValue Elt0 = Vec.getOperand(0);
 | 
						|
      EVT EltVT = Elt0.getValueType();
 | 
						|
      if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
 | 
						|
        if (EltVT.isFloatingPoint()) {
 | 
						|
          Elt0 = DAG.getNode(ISD::BITCAST, SL,
 | 
						|
                             EltVT.changeTypeToInteger(), Elt0);
 | 
						|
        }
 | 
						|
 | 
						|
        return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Equivalent of above for accessing the high element of a vector as an
 | 
						|
  // integer operation.
 | 
						|
  // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
 | 
						|
  if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
 | 
						|
    if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
 | 
						|
      if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
 | 
						|
        SDValue BV = stripBitcast(Src.getOperand(0));
 | 
						|
        if (BV.getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
            BV.getValueType().getVectorNumElements() == 2) {
 | 
						|
          SDValue SrcElt = BV.getOperand(1);
 | 
						|
          EVT SrcEltVT = SrcElt.getValueType();
 | 
						|
          if (SrcEltVT.isFloatingPoint()) {
 | 
						|
            SrcElt = DAG.getNode(ISD::BITCAST, SL,
 | 
						|
                                 SrcEltVT.changeTypeToInteger(), SrcElt);
 | 
						|
          }
 | 
						|
 | 
						|
          return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
 | 
						|
  //
 | 
						|
  // i16 (trunc (srl i64:x, K)), K <= 16 ->
 | 
						|
  //     i16 (trunc (srl (i32 (trunc x), K)))
 | 
						|
  if (VT.getScalarSizeInBits() < 32) {
 | 
						|
    EVT SrcVT = Src.getValueType();
 | 
						|
    if (SrcVT.getScalarSizeInBits() > 32 &&
 | 
						|
        (Src.getOpcode() == ISD::SRL ||
 | 
						|
         Src.getOpcode() == ISD::SRA ||
 | 
						|
         Src.getOpcode() == ISD::SHL)) {
 | 
						|
      SDValue Amt = Src.getOperand(1);
 | 
						|
      KnownBits Known = DAG.computeKnownBits(Amt);
 | 
						|
      unsigned Size = VT.getScalarSizeInBits();
 | 
						|
      if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
 | 
						|
          (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
 | 
						|
        EVT MidVT = VT.isVector() ?
 | 
						|
          EVT::getVectorVT(*DAG.getContext(), MVT::i32,
 | 
						|
                           VT.getVectorNumElements()) : MVT::i32;
 | 
						|
 | 
						|
        EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
 | 
						|
        SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
 | 
						|
                                    Src.getOperand(0));
 | 
						|
        DCI.AddToWorklist(Trunc.getNode());
 | 
						|
 | 
						|
        if (Amt.getValueType() != NewShiftVT) {
 | 
						|
          Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
 | 
						|
          DCI.AddToWorklist(Amt.getNode());
 | 
						|
        }
 | 
						|
 | 
						|
        SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
 | 
						|
                                          Trunc, Amt);
 | 
						|
        return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// We need to specifically handle i64 mul here to avoid unnecessary conversion
 | 
						|
// instructions. If we only match on the legalized i64 mul expansion,
 | 
						|
// SimplifyDemandedBits will be unable to remove them because there will be
 | 
						|
// multiple uses due to the separate mul + mulh[su].
 | 
						|
static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
 | 
						|
                        SDValue N0, SDValue N1, unsigned Size, bool Signed) {
 | 
						|
  if (Size <= 32) {
 | 
						|
    unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
 | 
						|
    return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Because we want to eliminate extension instructions before the
 | 
						|
  // operation, we need to create a single user here (i.e. not the separate
 | 
						|
  // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
 | 
						|
 | 
						|
  unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
 | 
						|
 | 
						|
  SDValue Mul = DAG.getNode(MulOpc, SL,
 | 
						|
                            DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
 | 
						|
 | 
						|
  return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
 | 
						|
                     Mul.getValue(0), Mul.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
 | 
						|
                                                DAGCombinerInfo &DCI) const {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  unsigned Size = VT.getSizeInBits();
 | 
						|
  if (VT.isVector() || Size > 64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // There are i16 integer mul/mad.
 | 
						|
  if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
 | 
						|
  // in the source into any_extends if the result of the mul is truncated. Since
 | 
						|
  // we can assume the high bits are whatever we want, use the underlying value
 | 
						|
  // to avoid the unknown high bits from interfering.
 | 
						|
  if (N0.getOpcode() == ISD::ANY_EXTEND)
 | 
						|
    N0 = N0.getOperand(0);
 | 
						|
 | 
						|
  if (N1.getOpcode() == ISD::ANY_EXTEND)
 | 
						|
    N1 = N1.getOperand(0);
 | 
						|
 | 
						|
  SDValue Mul;
 | 
						|
 | 
						|
  if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
 | 
						|
    N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
 | 
						|
    N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
 | 
						|
    Mul = getMul24(DAG, DL, N0, N1, Size, false);
 | 
						|
  } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
 | 
						|
    N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
 | 
						|
    N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
 | 
						|
    Mul = getMul24(DAG, DL, N0, N1, Size, true);
 | 
						|
  } else {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // We need to use sext even for MUL_U24, because MUL_U24 is used
 | 
						|
  // for signed multiply of 8 and 16-bit types.
 | 
						|
  return DAG.getSExtOrTrunc(Mul, DL, VT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (!Subtarget->hasMulI24() || VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  if (!isI24(N0, DAG) || !isI24(N1, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
 | 
						|
  N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
 | 
						|
 | 
						|
  SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
 | 
						|
  DCI.AddToWorklist(Mulhi.getNode());
 | 
						|
  return DAG.getSExtOrTrunc(Mulhi, DL, VT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  if (!isU24(N0, DAG) || !isU24(N1, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
 | 
						|
  N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
 | 
						|
 | 
						|
  SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
 | 
						|
  DCI.AddToWorklist(Mulhi.getNode());
 | 
						|
  return DAG.getZExtOrTrunc(Mulhi, DL, VT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
 | 
						|
  SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  // Simplify demanded bits before splitting into multiple users.
 | 
						|
  if (SDValue V = simplifyI24(N, DCI))
 | 
						|
    return V;
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
 | 
						|
 | 
						|
  unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
 | 
						|
  unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
 | 
						|
 | 
						|
  SDLoc SL(N);
 | 
						|
 | 
						|
  SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
 | 
						|
  SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
 | 
						|
  return DAG.getMergeValues({ MulLo, MulHi }, SL);
 | 
						|
}
 | 
						|
 | 
						|
static bool isNegativeOne(SDValue Val) {
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
 | 
						|
    return C->isAllOnesValue();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
 | 
						|
                                          SDValue Op,
 | 
						|
                                          const SDLoc &DL,
 | 
						|
                                          unsigned Opc) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
 | 
						|
  if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
 | 
						|
                              LegalVT != MVT::i16))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (VT != MVT::i32)
 | 
						|
    Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
 | 
						|
 | 
						|
  SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
 | 
						|
  if (VT != MVT::i32)
 | 
						|
    FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
 | 
						|
 | 
						|
  return FFBX;
 | 
						|
}
 | 
						|
 | 
						|
// The native instructions return -1 on 0 input. Optimize out a select that
 | 
						|
// produces -1 on 0.
 | 
						|
//
 | 
						|
// TODO: If zero is not undef, we could also do this if the output is compared
 | 
						|
// against the bitwidth.
 | 
						|
//
 | 
						|
// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
 | 
						|
SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
 | 
						|
                                                 SDValue LHS, SDValue RHS,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
 | 
						|
  if (!CmpRhs || !CmpRhs->isNullValue())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | 
						|
  SDValue CmpLHS = Cond.getOperand(0);
 | 
						|
 | 
						|
  unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
 | 
						|
                                           AMDGPUISD::FFBH_U32;
 | 
						|
 | 
						|
  // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
 | 
						|
  // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
 | 
						|
  if (CCOpcode == ISD::SETEQ &&
 | 
						|
      (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
 | 
						|
      RHS.getOperand(0) == CmpLHS &&
 | 
						|
      isNegativeOne(LHS)) {
 | 
						|
    return getFFBX_U32(DAG, CmpLHS, SL, Opc);
 | 
						|
  }
 | 
						|
 | 
						|
  // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
 | 
						|
  // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
 | 
						|
  if (CCOpcode == ISD::SETNE &&
 | 
						|
      (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
 | 
						|
      LHS.getOperand(0) == CmpLHS &&
 | 
						|
      isNegativeOne(RHS)) {
 | 
						|
    return getFFBX_U32(DAG, CmpLHS, SL, Opc);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                         unsigned Op,
 | 
						|
                                         const SDLoc &SL,
 | 
						|
                                         SDValue Cond,
 | 
						|
                                         SDValue N1,
 | 
						|
                                         SDValue N2) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = N1.getValueType();
 | 
						|
 | 
						|
  SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
 | 
						|
                                  N1.getOperand(0), N2.getOperand(0));
 | 
						|
  DCI.AddToWorklist(NewSelect.getNode());
 | 
						|
  return DAG.getNode(Op, SL, VT, NewSelect);
 | 
						|
}
 | 
						|
 | 
						|
// Pull a free FP operation out of a select so it may fold into uses.
 | 
						|
//
 | 
						|
// select c, (fneg x), (fneg y) -> fneg (select c, x, y)
 | 
						|
// select c, (fneg x), k -> fneg (select c, x, (fneg k))
 | 
						|
//
 | 
						|
// select c, (fabs x), (fabs y) -> fabs (select c, x, y)
 | 
						|
// select c, (fabs x), +k -> fabs (select c, x, k)
 | 
						|
static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                    SDValue N) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue Cond = N.getOperand(0);
 | 
						|
  SDValue LHS = N.getOperand(1);
 | 
						|
  SDValue RHS = N.getOperand(2);
 | 
						|
 | 
						|
  EVT VT = N.getValueType();
 | 
						|
  if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
 | 
						|
      (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
 | 
						|
    return distributeOpThroughSelect(DCI, LHS.getOpcode(),
 | 
						|
                                     SDLoc(N), Cond, LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Inv = false;
 | 
						|
  if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    Inv = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Support vector constants.
 | 
						|
  ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
 | 
						|
  if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
 | 
						|
    SDLoc SL(N);
 | 
						|
    // If one side is an fneg/fabs and the other is a constant, we can push the
 | 
						|
    // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
 | 
						|
    SDValue NewLHS = LHS.getOperand(0);
 | 
						|
    SDValue NewRHS = RHS;
 | 
						|
 | 
						|
    // Careful: if the neg can be folded up, don't try to pull it back down.
 | 
						|
    bool ShouldFoldNeg = true;
 | 
						|
 | 
						|
    if (NewLHS.hasOneUse()) {
 | 
						|
      unsigned Opc = NewLHS.getOpcode();
 | 
						|
      if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
 | 
						|
        ShouldFoldNeg = false;
 | 
						|
      if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
 | 
						|
        ShouldFoldNeg = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ShouldFoldNeg) {
 | 
						|
      if (LHS.getOpcode() == ISD::FNEG)
 | 
						|
        NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
 | 
						|
      else if (CRHS->isNegative())
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      if (Inv)
 | 
						|
        std::swap(NewLHS, NewRHS);
 | 
						|
 | 
						|
      SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
 | 
						|
                                      Cond, NewLHS, NewRHS);
 | 
						|
      DCI.AddToWorklist(NewSelect.getNode());
 | 
						|
      return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
 | 
						|
                                                   DAGCombinerInfo &DCI) const {
 | 
						|
  if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
 | 
						|
    return Folded;
 | 
						|
 | 
						|
  SDValue Cond = N->getOperand(0);
 | 
						|
  if (Cond.getOpcode() != ISD::SETCC)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue LHS = Cond.getOperand(0);
 | 
						|
  SDValue RHS = Cond.getOperand(1);
 | 
						|
  SDValue CC = Cond.getOperand(2);
 | 
						|
 | 
						|
  SDValue True = N->getOperand(1);
 | 
						|
  SDValue False = N->getOperand(2);
 | 
						|
 | 
						|
  if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
 | 
						|
    SelectionDAG &DAG = DCI.DAG;
 | 
						|
    if (DAG.isConstantValueOfAnyType(True) &&
 | 
						|
        !DAG.isConstantValueOfAnyType(False)) {
 | 
						|
      // Swap cmp + select pair to move constant to false input.
 | 
						|
      // This will allow using VOPC cndmasks more often.
 | 
						|
      // select (setcc x, y), k, x -> select (setccinv x, y), x, k
 | 
						|
 | 
						|
      SDLoc SL(N);
 | 
						|
      ISD::CondCode NewCC =
 | 
						|
          getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
 | 
						|
 | 
						|
      SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
 | 
						|
      return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
 | 
						|
    }
 | 
						|
 | 
						|
    if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
 | 
						|
      SDValue MinMax
 | 
						|
        = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
 | 
						|
      // Revisit this node so we can catch min3/max3/med3 patterns.
 | 
						|
      //DCI.AddToWorklist(MinMax.getNode());
 | 
						|
      return MinMax;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // There's no reason to not do this if the condition has other uses.
 | 
						|
  return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
 | 
						|
}
 | 
						|
 | 
						|
static bool isInv2Pi(const APFloat &APF) {
 | 
						|
  static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
 | 
						|
  static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
 | 
						|
  static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
 | 
						|
 | 
						|
  return APF.bitwiseIsEqual(KF16) ||
 | 
						|
         APF.bitwiseIsEqual(KF32) ||
 | 
						|
         APF.bitwiseIsEqual(KF64);
 | 
						|
}
 | 
						|
 | 
						|
// 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
 | 
						|
// additional cost to negate them.
 | 
						|
bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
 | 
						|
  if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
 | 
						|
    if (C->isZero() && !C->isNegative())
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned inverseMinMax(unsigned Opc) {
 | 
						|
  switch (Opc) {
 | 
						|
  case ISD::FMAXNUM:
 | 
						|
    return ISD::FMINNUM;
 | 
						|
  case ISD::FMINNUM:
 | 
						|
    return ISD::FMAXNUM;
 | 
						|
  case ISD::FMAXNUM_IEEE:
 | 
						|
    return ISD::FMINNUM_IEEE;
 | 
						|
  case ISD::FMINNUM_IEEE:
 | 
						|
    return ISD::FMAXNUM_IEEE;
 | 
						|
  case AMDGPUISD::FMAX_LEGACY:
 | 
						|
    return AMDGPUISD::FMIN_LEGACY;
 | 
						|
  case AMDGPUISD::FMIN_LEGACY:
 | 
						|
    return  AMDGPUISD::FMAX_LEGACY;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("invalid min/max opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  unsigned Opc = N0.getOpcode();
 | 
						|
 | 
						|
  // If the input has multiple uses and we can either fold the negate down, or
 | 
						|
  // the other uses cannot, give up. This both prevents unprofitable
 | 
						|
  // transformations and infinite loops: we won't repeatedly try to fold around
 | 
						|
  // a negate that has no 'good' form.
 | 
						|
  if (N0.hasOneUse()) {
 | 
						|
    // This may be able to fold into the source, but at a code size cost. Don't
 | 
						|
    // fold if the fold into the user is free.
 | 
						|
    if (allUsesHaveSourceMods(N, 0))
 | 
						|
      return SDValue();
 | 
						|
  } else {
 | 
						|
    if (fnegFoldsIntoOp(Opc) &&
 | 
						|
        (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc SL(N);
 | 
						|
  switch (Opc) {
 | 
						|
  case ISD::FADD: {
 | 
						|
    if (!mayIgnoreSignedZero(N0))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
 | 
						|
    SDValue LHS = N0.getOperand(0);
 | 
						|
    SDValue RHS = N0.getOperand(1);
 | 
						|
 | 
						|
    if (LHS.getOpcode() != ISD::FNEG)
 | 
						|
      LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
 | 
						|
    else
 | 
						|
      LHS = LHS.getOperand(0);
 | 
						|
 | 
						|
    if (RHS.getOpcode() != ISD::FNEG)
 | 
						|
      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
 | 
						|
    else
 | 
						|
      RHS = RHS.getOperand(0);
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
 | 
						|
    if (Res.getOpcode() != ISD::FADD)
 | 
						|
      return SDValue(); // Op got folded away.
 | 
						|
    if (!N0.hasOneUse())
 | 
						|
      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  case ISD::FMUL:
 | 
						|
  case AMDGPUISD::FMUL_LEGACY: {
 | 
						|
    // (fneg (fmul x, y)) -> (fmul x, (fneg y))
 | 
						|
    // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
 | 
						|
    SDValue LHS = N0.getOperand(0);
 | 
						|
    SDValue RHS = N0.getOperand(1);
 | 
						|
 | 
						|
    if (LHS.getOpcode() == ISD::FNEG)
 | 
						|
      LHS = LHS.getOperand(0);
 | 
						|
    else if (RHS.getOpcode() == ISD::FNEG)
 | 
						|
      RHS = RHS.getOperand(0);
 | 
						|
    else
 | 
						|
      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
 | 
						|
    if (Res.getOpcode() != Opc)
 | 
						|
      return SDValue(); // Op got folded away.
 | 
						|
    if (!N0.hasOneUse())
 | 
						|
      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  case ISD::FMA:
 | 
						|
  case ISD::FMAD: {
 | 
						|
    if (!mayIgnoreSignedZero(N0))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
 | 
						|
    SDValue LHS = N0.getOperand(0);
 | 
						|
    SDValue MHS = N0.getOperand(1);
 | 
						|
    SDValue RHS = N0.getOperand(2);
 | 
						|
 | 
						|
    if (LHS.getOpcode() == ISD::FNEG)
 | 
						|
      LHS = LHS.getOperand(0);
 | 
						|
    else if (MHS.getOpcode() == ISD::FNEG)
 | 
						|
      MHS = MHS.getOperand(0);
 | 
						|
    else
 | 
						|
      MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
 | 
						|
 | 
						|
    if (RHS.getOpcode() != ISD::FNEG)
 | 
						|
      RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
 | 
						|
    else
 | 
						|
      RHS = RHS.getOperand(0);
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
 | 
						|
    if (Res.getOpcode() != Opc)
 | 
						|
      return SDValue(); // Op got folded away.
 | 
						|
    if (!N0.hasOneUse())
 | 
						|
      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  case ISD::FMAXNUM:
 | 
						|
  case ISD::FMINNUM:
 | 
						|
  case ISD::FMAXNUM_IEEE:
 | 
						|
  case ISD::FMINNUM_IEEE:
 | 
						|
  case AMDGPUISD::FMAX_LEGACY:
 | 
						|
  case AMDGPUISD::FMIN_LEGACY: {
 | 
						|
    // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
 | 
						|
    // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
 | 
						|
    // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
 | 
						|
    // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
 | 
						|
 | 
						|
    SDValue LHS = N0.getOperand(0);
 | 
						|
    SDValue RHS = N0.getOperand(1);
 | 
						|
 | 
						|
    // 0 doesn't have a negated inline immediate.
 | 
						|
    // TODO: This constant check should be generalized to other operations.
 | 
						|
    if (isConstantCostlierToNegate(RHS))
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
 | 
						|
    SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
 | 
						|
    unsigned Opposite = inverseMinMax(Opc);
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
 | 
						|
    if (Res.getOpcode() != Opposite)
 | 
						|
      return SDValue(); // Op got folded away.
 | 
						|
    if (!N0.hasOneUse())
 | 
						|
      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::FMED3: {
 | 
						|
    SDValue Ops[3];
 | 
						|
    for (unsigned I = 0; I < 3; ++I)
 | 
						|
      Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
 | 
						|
    if (Res.getOpcode() != AMDGPUISD::FMED3)
 | 
						|
      return SDValue(); // Op got folded away.
 | 
						|
    if (!N0.hasOneUse())
 | 
						|
      DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  case ISD::FP_EXTEND:
 | 
						|
  case ISD::FTRUNC:
 | 
						|
  case ISD::FRINT:
 | 
						|
  case ISD::FNEARBYINT: // XXX - Should fround be handled?
 | 
						|
  case ISD::FSIN:
 | 
						|
  case ISD::FCANONICALIZE:
 | 
						|
  case AMDGPUISD::RCP:
 | 
						|
  case AMDGPUISD::RCP_LEGACY:
 | 
						|
  case AMDGPUISD::RCP_IFLAG:
 | 
						|
  case AMDGPUISD::SIN_HW: {
 | 
						|
    SDValue CvtSrc = N0.getOperand(0);
 | 
						|
    if (CvtSrc.getOpcode() == ISD::FNEG) {
 | 
						|
      // (fneg (fp_extend (fneg x))) -> (fp_extend x)
 | 
						|
      // (fneg (rcp (fneg x))) -> (rcp x)
 | 
						|
      return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!N0.hasOneUse())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // (fneg (fp_extend x)) -> (fp_extend (fneg x))
 | 
						|
    // (fneg (rcp x)) -> (rcp (fneg x))
 | 
						|
    SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
 | 
						|
    return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
 | 
						|
  }
 | 
						|
  case ISD::FP_ROUND: {
 | 
						|
    SDValue CvtSrc = N0.getOperand(0);
 | 
						|
 | 
						|
    if (CvtSrc.getOpcode() == ISD::FNEG) {
 | 
						|
      // (fneg (fp_round (fneg x))) -> (fp_round x)
 | 
						|
      return DAG.getNode(ISD::FP_ROUND, SL, VT,
 | 
						|
                         CvtSrc.getOperand(0), N0.getOperand(1));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!N0.hasOneUse())
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // (fneg (fp_round x)) -> (fp_round (fneg x))
 | 
						|
    SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
 | 
						|
    return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
 | 
						|
  }
 | 
						|
  case ISD::FP16_TO_FP: {
 | 
						|
    // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
 | 
						|
    // f16, but legalization of f16 fneg ends up pulling it out of the source.
 | 
						|
    // Put the fneg back as a legal source operation that can be matched later.
 | 
						|
    SDLoc SL(N);
 | 
						|
 | 
						|
    SDValue Src = N0.getOperand(0);
 | 
						|
    EVT SrcVT = Src.getValueType();
 | 
						|
 | 
						|
    // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
 | 
						|
    SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
 | 
						|
                                  DAG.getConstant(0x8000, SL, SrcVT));
 | 
						|
    return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
 | 
						|
  if (!N0.hasOneUse())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  switch (N0.getOpcode()) {
 | 
						|
  case ISD::FP16_TO_FP: {
 | 
						|
    assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
 | 
						|
    SDLoc SL(N);
 | 
						|
    SDValue Src = N0.getOperand(0);
 | 
						|
    EVT SrcVT = Src.getValueType();
 | 
						|
 | 
						|
    // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
 | 
						|
    SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
 | 
						|
                                  DAG.getConstant(0x7fff, SL, SrcVT));
 | 
						|
    return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
 | 
						|
                                                DAGCombinerInfo &DCI) const {
 | 
						|
  const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
 | 
						|
  if (!CFP)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // XXX - Should this flush denormals?
 | 
						|
  const APFloat &Val = CFP->getValueAPF();
 | 
						|
  APFloat One(Val.getSemantics(), "1.0");
 | 
						|
  return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
 | 
						|
                                                DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  switch(N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case ISD::BITCAST: {
 | 
						|
    EVT DestVT = N->getValueType(0);
 | 
						|
 | 
						|
    // Push casts through vector builds. This helps avoid emitting a large
 | 
						|
    // number of copies when materializing floating point vector constants.
 | 
						|
    //
 | 
						|
    // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
 | 
						|
    //   vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
 | 
						|
    if (DestVT.isVector()) {
 | 
						|
      SDValue Src = N->getOperand(0);
 | 
						|
      if (Src.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						|
        EVT SrcVT = Src.getValueType();
 | 
						|
        unsigned NElts = DestVT.getVectorNumElements();
 | 
						|
 | 
						|
        if (SrcVT.getVectorNumElements() == NElts) {
 | 
						|
          EVT DestEltVT = DestVT.getVectorElementType();
 | 
						|
 | 
						|
          SmallVector<SDValue, 8> CastedElts;
 | 
						|
          SDLoc SL(N);
 | 
						|
          for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
 | 
						|
            SDValue Elt = Src.getOperand(I);
 | 
						|
            CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
 | 
						|
          }
 | 
						|
 | 
						|
          return DAG.getBuildVector(DestVT, SL, CastedElts);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
 | 
						|
      break;
 | 
						|
 | 
						|
    // Fold bitcasts of constants.
 | 
						|
    //
 | 
						|
    // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
 | 
						|
    // TODO: Generalize and move to DAGCombiner
 | 
						|
    SDValue Src = N->getOperand(0);
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
 | 
						|
      if (Src.getValueType() == MVT::i64) {
 | 
						|
        SDLoc SL(N);
 | 
						|
        uint64_t CVal = C->getZExtValue();
 | 
						|
        SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
 | 
						|
                                 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
 | 
						|
                                 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
 | 
						|
        return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
 | 
						|
      const APInt &Val = C->getValueAPF().bitcastToAPInt();
 | 
						|
      SDLoc SL(N);
 | 
						|
      uint64_t CVal = Val.getZExtValue();
 | 
						|
      SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
 | 
						|
                                DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
 | 
						|
                                DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
 | 
						|
 | 
						|
      return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SHL: {
 | 
						|
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
 | 
						|
      break;
 | 
						|
 | 
						|
    return performShlCombine(N, DCI);
 | 
						|
  }
 | 
						|
  case ISD::SRL: {
 | 
						|
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
 | 
						|
      break;
 | 
						|
 | 
						|
    return performSrlCombine(N, DCI);
 | 
						|
  }
 | 
						|
  case ISD::SRA: {
 | 
						|
    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
 | 
						|
      break;
 | 
						|
 | 
						|
    return performSraCombine(N, DCI);
 | 
						|
  }
 | 
						|
  case ISD::TRUNCATE:
 | 
						|
    return performTruncateCombine(N, DCI);
 | 
						|
  case ISD::MUL:
 | 
						|
    return performMulCombine(N, DCI);
 | 
						|
  case ISD::MULHS:
 | 
						|
    return performMulhsCombine(N, DCI);
 | 
						|
  case ISD::MULHU:
 | 
						|
    return performMulhuCombine(N, DCI);
 | 
						|
  case AMDGPUISD::MUL_I24:
 | 
						|
  case AMDGPUISD::MUL_U24:
 | 
						|
  case AMDGPUISD::MULHI_I24:
 | 
						|
  case AMDGPUISD::MULHI_U24: {
 | 
						|
    if (SDValue V = simplifyI24(N, DCI))
 | 
						|
      return V;
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  case AMDGPUISD::MUL_LOHI_I24:
 | 
						|
  case AMDGPUISD::MUL_LOHI_U24:
 | 
						|
    return performMulLoHi24Combine(N, DCI);
 | 
						|
  case ISD::SELECT:
 | 
						|
    return performSelectCombine(N, DCI);
 | 
						|
  case ISD::FNEG:
 | 
						|
    return performFNegCombine(N, DCI);
 | 
						|
  case ISD::FABS:
 | 
						|
    return performFAbsCombine(N, DCI);
 | 
						|
  case AMDGPUISD::BFE_I32:
 | 
						|
  case AMDGPUISD::BFE_U32: {
 | 
						|
    assert(!N->getValueType(0).isVector() &&
 | 
						|
           "Vector handling of BFE not implemented");
 | 
						|
    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
 | 
						|
    if (!Width)
 | 
						|
      break;
 | 
						|
 | 
						|
    uint32_t WidthVal = Width->getZExtValue() & 0x1f;
 | 
						|
    if (WidthVal == 0)
 | 
						|
      return DAG.getConstant(0, DL, MVT::i32);
 | 
						|
 | 
						|
    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
    if (!Offset)
 | 
						|
      break;
 | 
						|
 | 
						|
    SDValue BitsFrom = N->getOperand(0);
 | 
						|
    uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
 | 
						|
 | 
						|
    bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
 | 
						|
 | 
						|
    if (OffsetVal == 0) {
 | 
						|
      // This is already sign / zero extended, so try to fold away extra BFEs.
 | 
						|
      unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
 | 
						|
 | 
						|
      unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
 | 
						|
      if (OpSignBits >= SignBits)
 | 
						|
        return BitsFrom;
 | 
						|
 | 
						|
      EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
 | 
						|
      if (Signed) {
 | 
						|
        // This is a sign_extend_inreg. Replace it to take advantage of existing
 | 
						|
        // DAG Combines. If not eliminated, we will match back to BFE during
 | 
						|
        // selection.
 | 
						|
 | 
						|
        // TODO: The sext_inreg of extended types ends, although we can could
 | 
						|
        // handle them in a single BFE.
 | 
						|
        return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
 | 
						|
                           DAG.getValueType(SmallVT));
 | 
						|
      }
 | 
						|
 | 
						|
      return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
 | 
						|
      if (Signed) {
 | 
						|
        return constantFoldBFE<int32_t>(DAG,
 | 
						|
                                        CVal->getSExtValue(),
 | 
						|
                                        OffsetVal,
 | 
						|
                                        WidthVal,
 | 
						|
                                        DL);
 | 
						|
      }
 | 
						|
 | 
						|
      return constantFoldBFE<uint32_t>(DAG,
 | 
						|
                                       CVal->getZExtValue(),
 | 
						|
                                       OffsetVal,
 | 
						|
                                       WidthVal,
 | 
						|
                                       DL);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((OffsetVal + WidthVal) >= 32 &&
 | 
						|
        !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
 | 
						|
      SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
 | 
						|
      return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
 | 
						|
                         BitsFrom, ShiftVal);
 | 
						|
    }
 | 
						|
 | 
						|
    if (BitsFrom.hasOneUse()) {
 | 
						|
      APInt Demanded = APInt::getBitsSet(32,
 | 
						|
                                         OffsetVal,
 | 
						|
                                         OffsetVal + WidthVal);
 | 
						|
 | 
						|
      KnownBits Known;
 | 
						|
      TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | 
						|
                                            !DCI.isBeforeLegalizeOps());
 | 
						|
      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
      if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
 | 
						|
          TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
 | 
						|
        DCI.CommitTargetLoweringOpt(TLO);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::LOAD:
 | 
						|
    return performLoadCombine(N, DCI);
 | 
						|
  case ISD::STORE:
 | 
						|
    return performStoreCombine(N, DCI);
 | 
						|
  case AMDGPUISD::RCP:
 | 
						|
  case AMDGPUISD::RCP_IFLAG:
 | 
						|
    return performRcpCombine(N, DCI);
 | 
						|
  case ISD::AssertZext:
 | 
						|
  case ISD::AssertSext:
 | 
						|
    return performAssertSZExtCombine(N, DCI);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN:
 | 
						|
    return performIntrinsicWOChainCombine(N, DCI);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
 | 
						|
                                                   const TargetRegisterClass *RC,
 | 
						|
                                                   Register Reg, EVT VT,
 | 
						|
                                                   const SDLoc &SL,
 | 
						|
                                                   bool RawReg) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  Register VReg;
 | 
						|
 | 
						|
  if (!MRI.isLiveIn(Reg)) {
 | 
						|
    VReg = MRI.createVirtualRegister(RC);
 | 
						|
    MRI.addLiveIn(Reg, VReg);
 | 
						|
  } else {
 | 
						|
    VReg = MRI.getLiveInVirtReg(Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (RawReg)
 | 
						|
    return DAG.getRegister(VReg, VT);
 | 
						|
 | 
						|
  return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
 | 
						|
}
 | 
						|
 | 
						|
// This may be called multiple times, and nothing prevents creating multiple
 | 
						|
// objects at the same offset. See if we already defined this object.
 | 
						|
static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
 | 
						|
                                       int64_t Offset) {
 | 
						|
  for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
 | 
						|
    if (MFI.getObjectOffset(I) == Offset) {
 | 
						|
      assert(MFI.getObjectSize(I) == Size);
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MFI.CreateFixedObject(Size, Offset, true);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
 | 
						|
                                                  EVT VT,
 | 
						|
                                                  const SDLoc &SL,
 | 
						|
                                                  int64_t Offset) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
 | 
						|
 | 
						|
  auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
 | 
						|
  SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
 | 
						|
  return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
 | 
						|
                     MachineMemOperand::MODereferenceable |
 | 
						|
                     MachineMemOperand::MOInvariant);
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
 | 
						|
                                                   const SDLoc &SL,
 | 
						|
                                                   SDValue Chain,
 | 
						|
                                                   SDValue ArgVal,
 | 
						|
                                                   int64_t Offset) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
 | 
						|
 | 
						|
  SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
 | 
						|
  SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
 | 
						|
                               MachineMemOperand::MODereferenceable);
 | 
						|
  return Store;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
 | 
						|
                                             const TargetRegisterClass *RC,
 | 
						|
                                             EVT VT, const SDLoc &SL,
 | 
						|
                                             const ArgDescriptor &Arg) const {
 | 
						|
  assert(Arg && "Attempting to load missing argument");
 | 
						|
 | 
						|
  SDValue V = Arg.isRegister() ?
 | 
						|
    CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
 | 
						|
    loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
 | 
						|
 | 
						|
  if (!Arg.isMasked())
 | 
						|
    return V;
 | 
						|
 | 
						|
  unsigned Mask = Arg.getMask();
 | 
						|
  unsigned Shift = countTrailingZeros<unsigned>(Mask);
 | 
						|
  V = DAG.getNode(ISD::SRL, SL, VT, V,
 | 
						|
                  DAG.getShiftAmountConstant(Shift, VT, SL));
 | 
						|
  return DAG.getNode(ISD::AND, SL, VT, V,
 | 
						|
                     DAG.getConstant(Mask >> Shift, SL, VT));
 | 
						|
}
 | 
						|
 | 
						|
uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
 | 
						|
    const MachineFunction &MF, const ImplicitParameter Param) const {
 | 
						|
  const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
 | 
						|
  const AMDGPUSubtarget &ST =
 | 
						|
      AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
 | 
						|
  unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
 | 
						|
  const Align Alignment = ST.getAlignmentForImplicitArgPtr();
 | 
						|
  uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
 | 
						|
                       ExplicitArgOffset;
 | 
						|
  switch (Param) {
 | 
						|
  case GRID_DIM:
 | 
						|
    return ArgOffset;
 | 
						|
  case GRID_OFFSET:
 | 
						|
    return ArgOffset + 4;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected implicit parameter type");
 | 
						|
}
 | 
						|
 | 
						|
#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
 | 
						|
 | 
						|
const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch ((AMDGPUISD::NodeType)Opcode) {
 | 
						|
  case AMDGPUISD::FIRST_NUMBER: break;
 | 
						|
  // AMDIL DAG nodes
 | 
						|
  NODE_NAME_CASE(UMUL);
 | 
						|
  NODE_NAME_CASE(BRANCH_COND);
 | 
						|
 | 
						|
  // AMDGPU DAG nodes
 | 
						|
  NODE_NAME_CASE(IF)
 | 
						|
  NODE_NAME_CASE(ELSE)
 | 
						|
  NODE_NAME_CASE(LOOP)
 | 
						|
  NODE_NAME_CASE(CALL)
 | 
						|
  NODE_NAME_CASE(TC_RETURN)
 | 
						|
  NODE_NAME_CASE(TRAP)
 | 
						|
  NODE_NAME_CASE(RET_FLAG)
 | 
						|
  NODE_NAME_CASE(RETURN_TO_EPILOG)
 | 
						|
  NODE_NAME_CASE(ENDPGM)
 | 
						|
  NODE_NAME_CASE(DWORDADDR)
 | 
						|
  NODE_NAME_CASE(FRACT)
 | 
						|
  NODE_NAME_CASE(SETCC)
 | 
						|
  NODE_NAME_CASE(SETREG)
 | 
						|
  NODE_NAME_CASE(DENORM_MODE)
 | 
						|
  NODE_NAME_CASE(FMA_W_CHAIN)
 | 
						|
  NODE_NAME_CASE(FMUL_W_CHAIN)
 | 
						|
  NODE_NAME_CASE(CLAMP)
 | 
						|
  NODE_NAME_CASE(COS_HW)
 | 
						|
  NODE_NAME_CASE(SIN_HW)
 | 
						|
  NODE_NAME_CASE(FMAX_LEGACY)
 | 
						|
  NODE_NAME_CASE(FMIN_LEGACY)
 | 
						|
  NODE_NAME_CASE(FMAX3)
 | 
						|
  NODE_NAME_CASE(SMAX3)
 | 
						|
  NODE_NAME_CASE(UMAX3)
 | 
						|
  NODE_NAME_CASE(FMIN3)
 | 
						|
  NODE_NAME_CASE(SMIN3)
 | 
						|
  NODE_NAME_CASE(UMIN3)
 | 
						|
  NODE_NAME_CASE(FMED3)
 | 
						|
  NODE_NAME_CASE(SMED3)
 | 
						|
  NODE_NAME_CASE(UMED3)
 | 
						|
  NODE_NAME_CASE(FDOT2)
 | 
						|
  NODE_NAME_CASE(URECIP)
 | 
						|
  NODE_NAME_CASE(DIV_SCALE)
 | 
						|
  NODE_NAME_CASE(DIV_FMAS)
 | 
						|
  NODE_NAME_CASE(DIV_FIXUP)
 | 
						|
  NODE_NAME_CASE(FMAD_FTZ)
 | 
						|
  NODE_NAME_CASE(RCP)
 | 
						|
  NODE_NAME_CASE(RSQ)
 | 
						|
  NODE_NAME_CASE(RCP_LEGACY)
 | 
						|
  NODE_NAME_CASE(RCP_IFLAG)
 | 
						|
  NODE_NAME_CASE(FMUL_LEGACY)
 | 
						|
  NODE_NAME_CASE(RSQ_CLAMP)
 | 
						|
  NODE_NAME_CASE(LDEXP)
 | 
						|
  NODE_NAME_CASE(FP_CLASS)
 | 
						|
  NODE_NAME_CASE(DOT4)
 | 
						|
  NODE_NAME_CASE(CARRY)
 | 
						|
  NODE_NAME_CASE(BORROW)
 | 
						|
  NODE_NAME_CASE(BFE_U32)
 | 
						|
  NODE_NAME_CASE(BFE_I32)
 | 
						|
  NODE_NAME_CASE(BFI)
 | 
						|
  NODE_NAME_CASE(BFM)
 | 
						|
  NODE_NAME_CASE(FFBH_U32)
 | 
						|
  NODE_NAME_CASE(FFBH_I32)
 | 
						|
  NODE_NAME_CASE(FFBL_B32)
 | 
						|
  NODE_NAME_CASE(MUL_U24)
 | 
						|
  NODE_NAME_CASE(MUL_I24)
 | 
						|
  NODE_NAME_CASE(MULHI_U24)
 | 
						|
  NODE_NAME_CASE(MULHI_I24)
 | 
						|
  NODE_NAME_CASE(MUL_LOHI_U24)
 | 
						|
  NODE_NAME_CASE(MUL_LOHI_I24)
 | 
						|
  NODE_NAME_CASE(MAD_U24)
 | 
						|
  NODE_NAME_CASE(MAD_I24)
 | 
						|
  NODE_NAME_CASE(MAD_I64_I32)
 | 
						|
  NODE_NAME_CASE(MAD_U64_U32)
 | 
						|
  NODE_NAME_CASE(PERM)
 | 
						|
  NODE_NAME_CASE(TEXTURE_FETCH)
 | 
						|
  NODE_NAME_CASE(R600_EXPORT)
 | 
						|
  NODE_NAME_CASE(CONST_ADDRESS)
 | 
						|
  NODE_NAME_CASE(REGISTER_LOAD)
 | 
						|
  NODE_NAME_CASE(REGISTER_STORE)
 | 
						|
  NODE_NAME_CASE(SAMPLE)
 | 
						|
  NODE_NAME_CASE(SAMPLEB)
 | 
						|
  NODE_NAME_CASE(SAMPLED)
 | 
						|
  NODE_NAME_CASE(SAMPLEL)
 | 
						|
  NODE_NAME_CASE(CVT_F32_UBYTE0)
 | 
						|
  NODE_NAME_CASE(CVT_F32_UBYTE1)
 | 
						|
  NODE_NAME_CASE(CVT_F32_UBYTE2)
 | 
						|
  NODE_NAME_CASE(CVT_F32_UBYTE3)
 | 
						|
  NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
 | 
						|
  NODE_NAME_CASE(CVT_PKNORM_I16_F32)
 | 
						|
  NODE_NAME_CASE(CVT_PKNORM_U16_F32)
 | 
						|
  NODE_NAME_CASE(CVT_PK_I16_I32)
 | 
						|
  NODE_NAME_CASE(CVT_PK_U16_U32)
 | 
						|
  NODE_NAME_CASE(FP_TO_FP16)
 | 
						|
  NODE_NAME_CASE(FP16_ZEXT)
 | 
						|
  NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
 | 
						|
  NODE_NAME_CASE(CONST_DATA_PTR)
 | 
						|
  NODE_NAME_CASE(PC_ADD_REL_OFFSET)
 | 
						|
  NODE_NAME_CASE(LDS)
 | 
						|
  NODE_NAME_CASE(DUMMY_CHAIN)
 | 
						|
  case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
 | 
						|
  NODE_NAME_CASE(LOAD_D16_HI)
 | 
						|
  NODE_NAME_CASE(LOAD_D16_LO)
 | 
						|
  NODE_NAME_CASE(LOAD_D16_HI_I8)
 | 
						|
  NODE_NAME_CASE(LOAD_D16_HI_U8)
 | 
						|
  NODE_NAME_CASE(LOAD_D16_LO_I8)
 | 
						|
  NODE_NAME_CASE(LOAD_D16_LO_U8)
 | 
						|
  NODE_NAME_CASE(STORE_MSKOR)
 | 
						|
  NODE_NAME_CASE(LOAD_CONSTANT)
 | 
						|
  NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
 | 
						|
  NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
 | 
						|
  NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
 | 
						|
  NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
 | 
						|
  NODE_NAME_CASE(DS_ORDERED_COUNT)
 | 
						|
  NODE_NAME_CASE(ATOMIC_CMP_SWAP)
 | 
						|
  NODE_NAME_CASE(ATOMIC_INC)
 | 
						|
  NODE_NAME_CASE(ATOMIC_DEC)
 | 
						|
  NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
 | 
						|
  NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
 | 
						|
  NODE_NAME_CASE(ATOMIC_LOAD_CSUB)
 | 
						|
  NODE_NAME_CASE(BUFFER_LOAD)
 | 
						|
  NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
 | 
						|
  NODE_NAME_CASE(BUFFER_LOAD_USHORT)
 | 
						|
  NODE_NAME_CASE(BUFFER_LOAD_BYTE)
 | 
						|
  NODE_NAME_CASE(BUFFER_LOAD_SHORT)
 | 
						|
  NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
 | 
						|
  NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
 | 
						|
  NODE_NAME_CASE(SBUFFER_LOAD)
 | 
						|
  NODE_NAME_CASE(BUFFER_STORE)
 | 
						|
  NODE_NAME_CASE(BUFFER_STORE_BYTE)
 | 
						|
  NODE_NAME_CASE(BUFFER_STORE_SHORT)
 | 
						|
  NODE_NAME_CASE(BUFFER_STORE_FORMAT)
 | 
						|
  NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_AND)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_OR)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_INC)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
 | 
						|
  NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD)
 | 
						|
  NODE_NAME_CASE(ATOMIC_PK_FADD)
 | 
						|
 | 
						|
  case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
 | 
						|
                                              SelectionDAG &DAG, int Enabled,
 | 
						|
                                              int &RefinementSteps,
 | 
						|
                                              bool &UseOneConstNR,
 | 
						|
                                              bool Reciprocal) const {
 | 
						|
  EVT VT = Operand.getValueType();
 | 
						|
 | 
						|
  if (VT == MVT::f32) {
 | 
						|
    RefinementSteps = 0;
 | 
						|
    return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: There is also f64 rsq instruction, but the documentation is less
 | 
						|
  // clear on its precision.
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
 | 
						|
                                               SelectionDAG &DAG, int Enabled,
 | 
						|
                                               int &RefinementSteps) const {
 | 
						|
  EVT VT = Operand.getValueType();
 | 
						|
 | 
						|
  if (VT == MVT::f32) {
 | 
						|
    // Reciprocal, < 1 ulp error.
 | 
						|
    //
 | 
						|
    // This reciprocal approximation converges to < 0.5 ulp error with one
 | 
						|
    // newton rhapson performed with two fused multiple adds (FMAs).
 | 
						|
 | 
						|
    RefinementSteps = 0;
 | 
						|
    return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: There is also f64 rcp instruction, but the documentation is less
 | 
						|
  // clear on its precision.
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
 | 
						|
    const SDValue Op, KnownBits &Known,
 | 
						|
    const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
 | 
						|
 | 
						|
  Known.resetAll(); // Don't know anything.
 | 
						|
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case AMDGPUISD::CARRY:
 | 
						|
  case AMDGPUISD::BORROW: {
 | 
						|
    Known.Zero = APInt::getHighBitsSet(32, 31);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case AMDGPUISD::BFE_I32:
 | 
						|
  case AMDGPUISD::BFE_U32: {
 | 
						|
    ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						|
    if (!CWidth)
 | 
						|
      return;
 | 
						|
 | 
						|
    uint32_t Width = CWidth->getZExtValue() & 0x1f;
 | 
						|
 | 
						|
    if (Opc == AMDGPUISD::BFE_U32)
 | 
						|
      Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::FP_TO_FP16:
 | 
						|
  case AMDGPUISD::FP16_ZEXT: {
 | 
						|
    unsigned BitWidth = Known.getBitWidth();
 | 
						|
 | 
						|
    // High bits are zero.
 | 
						|
    Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::MUL_U24:
 | 
						|
  case AMDGPUISD::MUL_I24: {
 | 
						|
    KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
 | 
						|
    KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
 | 
						|
    unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
 | 
						|
                      RHSKnown.countMinTrailingZeros();
 | 
						|
    Known.Zero.setLowBits(std::min(TrailZ, 32u));
 | 
						|
    // Skip extra check if all bits are known zeros.
 | 
						|
    if (TrailZ >= 32)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Truncate to 24 bits.
 | 
						|
    LHSKnown = LHSKnown.trunc(24);
 | 
						|
    RHSKnown = RHSKnown.trunc(24);
 | 
						|
 | 
						|
    if (Opc == AMDGPUISD::MUL_I24) {
 | 
						|
      unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
 | 
						|
      unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
 | 
						|
      unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
 | 
						|
      if (MaxValBits >= 32)
 | 
						|
        break;
 | 
						|
      bool LHSNegative = LHSKnown.isNegative();
 | 
						|
      bool LHSNonNegative = LHSKnown.isNonNegative();
 | 
						|
      bool LHSPositive = LHSKnown.isStrictlyPositive();
 | 
						|
      bool RHSNegative = RHSKnown.isNegative();
 | 
						|
      bool RHSNonNegative = RHSKnown.isNonNegative();
 | 
						|
      bool RHSPositive = RHSKnown.isStrictlyPositive();
 | 
						|
 | 
						|
      if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
 | 
						|
        Known.Zero.setHighBits(32 - MaxValBits);
 | 
						|
      else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
 | 
						|
        Known.One.setHighBits(32 - MaxValBits);
 | 
						|
    } else {
 | 
						|
      unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
 | 
						|
      unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
 | 
						|
      unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
 | 
						|
      if (MaxValBits >= 32)
 | 
						|
        break;
 | 
						|
      Known.Zero.setHighBits(32 - MaxValBits);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::PERM: {
 | 
						|
    ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						|
    if (!CMask)
 | 
						|
      return;
 | 
						|
 | 
						|
    KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
 | 
						|
    KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
 | 
						|
    unsigned Sel = CMask->getZExtValue();
 | 
						|
 | 
						|
    for (unsigned I = 0; I < 32; I += 8) {
 | 
						|
      unsigned SelBits = Sel & 0xff;
 | 
						|
      if (SelBits < 4) {
 | 
						|
        SelBits *= 8;
 | 
						|
        Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
 | 
						|
        Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
 | 
						|
      } else if (SelBits < 7) {
 | 
						|
        SelBits = (SelBits & 3) * 8;
 | 
						|
        Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
 | 
						|
        Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
 | 
						|
      } else if (SelBits == 0x0c) {
 | 
						|
        Known.Zero |= 0xFFull << I;
 | 
						|
      } else if (SelBits > 0x0c) {
 | 
						|
        Known.One |= 0xFFull << I;
 | 
						|
      }
 | 
						|
      Sel >>= 8;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::BUFFER_LOAD_UBYTE:  {
 | 
						|
    Known.Zero.setHighBits(24);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::BUFFER_LOAD_USHORT: {
 | 
						|
    Known.Zero.setHighBits(16);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::LDS: {
 | 
						|
    auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
 | 
						|
    Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
 | 
						|
 | 
						|
    Known.Zero.setHighBits(16);
 | 
						|
    Known.Zero.setLowBits(Log2(Alignment));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
    switch (IID) {
 | 
						|
    case Intrinsic::amdgcn_mbcnt_lo:
 | 
						|
    case Intrinsic::amdgcn_mbcnt_hi: {
 | 
						|
      const GCNSubtarget &ST =
 | 
						|
          DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
 | 
						|
      // These return at most the wavefront size - 1.
 | 
						|
      unsigned Size = Op.getValueType().getSizeInBits();
 | 
						|
      Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
 | 
						|
    SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
 | 
						|
    unsigned Depth) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  case AMDGPUISD::BFE_I32: {
 | 
						|
    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						|
    if (!Width)
 | 
						|
      return 1;
 | 
						|
 | 
						|
    unsigned SignBits = 32 - Width->getZExtValue() + 1;
 | 
						|
    if (!isNullConstant(Op.getOperand(1)))
 | 
						|
      return SignBits;
 | 
						|
 | 
						|
    // TODO: Could probably figure something out with non-0 offsets.
 | 
						|
    unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
 | 
						|
    return std::max(SignBits, Op0SignBits);
 | 
						|
  }
 | 
						|
 | 
						|
  case AMDGPUISD::BFE_U32: {
 | 
						|
    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						|
    return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  case AMDGPUISD::CARRY:
 | 
						|
  case AMDGPUISD::BORROW:
 | 
						|
    return 31;
 | 
						|
  case AMDGPUISD::BUFFER_LOAD_BYTE:
 | 
						|
    return 25;
 | 
						|
  case AMDGPUISD::BUFFER_LOAD_SHORT:
 | 
						|
    return 17;
 | 
						|
  case AMDGPUISD::BUFFER_LOAD_UBYTE:
 | 
						|
    return 24;
 | 
						|
  case AMDGPUISD::BUFFER_LOAD_USHORT:
 | 
						|
    return 16;
 | 
						|
  case AMDGPUISD::FP_TO_FP16:
 | 
						|
  case AMDGPUISD::FP16_ZEXT:
 | 
						|
    return 16;
 | 
						|
  default:
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
 | 
						|
  GISelKnownBits &Analysis, Register R,
 | 
						|
  const APInt &DemandedElts, const MachineRegisterInfo &MRI,
 | 
						|
  unsigned Depth) const {
 | 
						|
  const MachineInstr *MI = MRI.getVRegDef(R);
 | 
						|
  if (!MI)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // TODO: Check range metadata on MMO.
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
 | 
						|
    return 25;
 | 
						|
  case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
 | 
						|
    return 17;
 | 
						|
  case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
 | 
						|
    return 24;
 | 
						|
  case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
 | 
						|
    return 16;
 | 
						|
  default:
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
 | 
						|
                                                        const SelectionDAG &DAG,
 | 
						|
                                                        bool SNaN,
 | 
						|
                                                        unsigned Depth) const {
 | 
						|
  unsigned Opcode = Op.getOpcode();
 | 
						|
  switch (Opcode) {
 | 
						|
  case AMDGPUISD::FMIN_LEGACY:
 | 
						|
  case AMDGPUISD::FMAX_LEGACY: {
 | 
						|
    if (SNaN)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // TODO: Can check no nans on one of the operands for each one, but which
 | 
						|
    // one?
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::FMUL_LEGACY:
 | 
						|
  case AMDGPUISD::CVT_PKRTZ_F16_F32: {
 | 
						|
    if (SNaN)
 | 
						|
      return true;
 | 
						|
    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
 | 
						|
           DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
 | 
						|
  }
 | 
						|
  case AMDGPUISD::FMED3:
 | 
						|
  case AMDGPUISD::FMIN3:
 | 
						|
  case AMDGPUISD::FMAX3:
 | 
						|
  case AMDGPUISD::FMAD_FTZ: {
 | 
						|
    if (SNaN)
 | 
						|
      return true;
 | 
						|
    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
 | 
						|
           DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
 | 
						|
           DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
 | 
						|
  }
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE0:
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE1:
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE2:
 | 
						|
  case AMDGPUISD::CVT_F32_UBYTE3:
 | 
						|
    return true;
 | 
						|
 | 
						|
  case AMDGPUISD::RCP:
 | 
						|
  case AMDGPUISD::RSQ:
 | 
						|
  case AMDGPUISD::RCP_LEGACY:
 | 
						|
  case AMDGPUISD::RSQ_CLAMP: {
 | 
						|
    if (SNaN)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // TODO: Need is known positive check.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case AMDGPUISD::LDEXP:
 | 
						|
  case AMDGPUISD::FRACT: {
 | 
						|
    if (SNaN)
 | 
						|
      return true;
 | 
						|
    return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
 | 
						|
  }
 | 
						|
  case AMDGPUISD::DIV_SCALE:
 | 
						|
  case AMDGPUISD::DIV_FMAS:
 | 
						|
  case AMDGPUISD::DIV_FIXUP:
 | 
						|
    // TODO: Refine on operands.
 | 
						|
    return SNaN;
 | 
						|
  case AMDGPUISD::SIN_HW:
 | 
						|
  case AMDGPUISD::COS_HW: {
 | 
						|
    // TODO: Need check for infinity
 | 
						|
    return SNaN;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    unsigned IntrinsicID
 | 
						|
      = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
    // TODO: Handle more intrinsics
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    case Intrinsic::amdgcn_cubeid:
 | 
						|
      return true;
 | 
						|
 | 
						|
    case Intrinsic::amdgcn_frexp_mant: {
 | 
						|
      if (SNaN)
 | 
						|
        return true;
 | 
						|
      return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
 | 
						|
    }
 | 
						|
    case Intrinsic::amdgcn_cvt_pkrtz: {
 | 
						|
      if (SNaN)
 | 
						|
        return true;
 | 
						|
      return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
 | 
						|
             DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
 | 
						|
    }
 | 
						|
    case Intrinsic::amdgcn_rcp:
 | 
						|
    case Intrinsic::amdgcn_rsq:
 | 
						|
    case Intrinsic::amdgcn_rcp_legacy:
 | 
						|
    case Intrinsic::amdgcn_rsq_legacy:
 | 
						|
    case Intrinsic::amdgcn_rsq_clamp: {
 | 
						|
      if (SNaN)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // TODO: Need is known positive check.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    case Intrinsic::amdgcn_trig_preop:
 | 
						|
    case Intrinsic::amdgcn_fdot2:
 | 
						|
      // TODO: Refine on operand
 | 
						|
      return SNaN;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TargetLowering::AtomicExpansionKind
 | 
						|
AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
 | 
						|
  switch (RMW->getOperation()) {
 | 
						|
  case AtomicRMWInst::Nand:
 | 
						|
  case AtomicRMWInst::FAdd:
 | 
						|
  case AtomicRMWInst::FSub:
 | 
						|
    return AtomicExpansionKind::CmpXChg;
 | 
						|
  default:
 | 
						|
    return AtomicExpansionKind::None;
 | 
						|
  }
 | 
						|
}
 |