803 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			803 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements a top-down list scheduler, using standard algorithms.
 | 
						|
// The basic approach uses a priority queue of available nodes to schedule.
 | 
						|
// One at a time, nodes are taken from the priority queue (thus in priority
 | 
						|
// order), checked for legality to schedule, and emitted if legal.
 | 
						|
//
 | 
						|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
 | 
						|
// pipeline or resource constraints) or because an input to the instruction has
 | 
						|
// not completed execution.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "post-RA-sched"
 | 
						|
#include "AntiDepBreaker.h"
 | 
						|
#include "AggressiveAntiDepBreaker.h"
 | 
						|
#include "CriticalAntiDepBreaker.h"
 | 
						|
#include "ExactHazardRecognizer.h"
 | 
						|
#include "SimpleHazardRecognizer.h"
 | 
						|
#include "ScheduleDAGInstrs.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtarget.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumNoops, "Number of noops inserted");
 | 
						|
STATISTIC(NumStalls, "Number of pipeline stalls");
 | 
						|
STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
 | 
						|
 | 
						|
// Post-RA scheduling is enabled with
 | 
						|
// TargetSubtarget.enablePostRAScheduler(). This flag can be used to
 | 
						|
// override the target.
 | 
						|
static cl::opt<bool>
 | 
						|
EnablePostRAScheduler("post-RA-scheduler",
 | 
						|
                       cl::desc("Enable scheduling after register allocation"),
 | 
						|
                       cl::init(false), cl::Hidden);
 | 
						|
static cl::opt<std::string>
 | 
						|
EnableAntiDepBreaking("break-anti-dependencies",
 | 
						|
                      cl::desc("Break post-RA scheduling anti-dependencies: "
 | 
						|
                               "\"critical\", \"all\", or \"none\""),
 | 
						|
                      cl::init("none"), cl::Hidden);
 | 
						|
static cl::opt<bool>
 | 
						|
EnablePostRAHazardAvoidance("avoid-hazards",
 | 
						|
                      cl::desc("Enable exact hazard avoidance"),
 | 
						|
                      cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
 | 
						|
static cl::opt<int>
 | 
						|
DebugDiv("postra-sched-debugdiv",
 | 
						|
                      cl::desc("Debug control MBBs that are scheduled"),
 | 
						|
                      cl::init(0), cl::Hidden);
 | 
						|
static cl::opt<int>
 | 
						|
DebugMod("postra-sched-debugmod",
 | 
						|
                      cl::desc("Debug control MBBs that are scheduled"),
 | 
						|
                      cl::init(0), cl::Hidden);
 | 
						|
 | 
						|
AntiDepBreaker::~AntiDepBreaker() { }
 | 
						|
 | 
						|
namespace {
 | 
						|
  class PostRAScheduler : public MachineFunctionPass {
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    CodeGenOpt::Level OptLevel;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    PostRAScheduler(CodeGenOpt::Level ol) :
 | 
						|
      MachineFunctionPass(&ID), OptLevel(ol) {}
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    const char *getPassName() const {
 | 
						|
      return "Post RA top-down list latency scheduler";
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn);
 | 
						|
  };
 | 
						|
  char PostRAScheduler::ID = 0;
 | 
						|
 | 
						|
  class SchedulePostRATDList : public ScheduleDAGInstrs {
 | 
						|
    /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
    ///
 | 
						|
    LatencyPriorityQueue AvailableQueue;
 | 
						|
  
 | 
						|
    /// PendingQueue - This contains all of the instructions whose operands have
 | 
						|
    /// been issued, but their results are not ready yet (due to the latency of
 | 
						|
    /// the operation).  Once the operands becomes available, the instruction is
 | 
						|
    /// added to the AvailableQueue.
 | 
						|
    std::vector<SUnit*> PendingQueue;
 | 
						|
 | 
						|
    /// Topo - A topological ordering for SUnits.
 | 
						|
    ScheduleDAGTopologicalSort Topo;
 | 
						|
 | 
						|
    /// HazardRec - The hazard recognizer to use.
 | 
						|
    ScheduleHazardRecognizer *HazardRec;
 | 
						|
 | 
						|
    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
 | 
						|
    AntiDepBreaker *AntiDepBreak;
 | 
						|
 | 
						|
    /// AA - AliasAnalysis for making memory reference queries.
 | 
						|
    AliasAnalysis *AA;
 | 
						|
 | 
						|
    /// KillIndices - The index of the most recent kill (proceding bottom-up),
 | 
						|
    /// or ~0u if the register is not live.
 | 
						|
    unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
 | 
						|
 | 
						|
  public:
 | 
						|
    SchedulePostRATDList(MachineFunction &MF,
 | 
						|
                         const MachineLoopInfo &MLI,
 | 
						|
                         const MachineDominatorTree &MDT,
 | 
						|
                         ScheduleHazardRecognizer *HR,
 | 
						|
                         AntiDepBreaker *ADB,
 | 
						|
                         AliasAnalysis *aa)
 | 
						|
      : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
 | 
						|
      HazardRec(HR), AntiDepBreak(ADB), AA(aa) {}
 | 
						|
 | 
						|
    ~SchedulePostRATDList() {
 | 
						|
    }
 | 
						|
 | 
						|
    /// StartBlock - Initialize register live-range state for scheduling in
 | 
						|
    /// this block.
 | 
						|
    ///
 | 
						|
    void StartBlock(MachineBasicBlock *BB);
 | 
						|
 | 
						|
    /// Schedule - Schedule the instruction range using list scheduling.
 | 
						|
    ///
 | 
						|
    void Schedule();
 | 
						|
    
 | 
						|
    /// Observe - Update liveness information to account for the current
 | 
						|
    /// instruction, which will not be scheduled.
 | 
						|
    ///
 | 
						|
    void Observe(MachineInstr *MI, unsigned Count);
 | 
						|
 | 
						|
    /// FinishBlock - Clean up register live-range state.
 | 
						|
    ///
 | 
						|
    void FinishBlock();
 | 
						|
 | 
						|
    /// FixupKills - Fix register kill flags that have been made
 | 
						|
    /// invalid due to scheduling
 | 
						|
    ///
 | 
						|
    void FixupKills(MachineBasicBlock *MBB);
 | 
						|
 | 
						|
  private:
 | 
						|
    void ReleaseSucc(SUnit *SU, SDep *SuccEdge, bool IgnoreAntiDep);
 | 
						|
    void ReleaseSuccessors(SUnit *SU, bool IgnoreAntiDep);
 | 
						|
    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle, bool IgnoreAntiDep);
 | 
						|
    void ListScheduleTopDown(
 | 
						|
           AntiDepBreaker::CandidateMap *AntiDepCandidates);
 | 
						|
    void StartBlockForKills(MachineBasicBlock *BB);
 | 
						|
    
 | 
						|
    // ToggleKillFlag - Toggle a register operand kill flag. Other
 | 
						|
    // adjustments may be made to the instruction if necessary. Return
 | 
						|
    // true if the operand has been deleted, false if not.
 | 
						|
    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// isSchedulingBoundary - Test if the given instruction should be
 | 
						|
/// considered a scheduling boundary. This primarily includes labels
 | 
						|
/// and terminators.
 | 
						|
///
 | 
						|
static bool isSchedulingBoundary(const MachineInstr *MI,
 | 
						|
                                 const MachineFunction &MF) {
 | 
						|
  // Terminators and labels can't be scheduled around.
 | 
						|
  if (MI->getDesc().isTerminator() || MI->isLabel())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Don't attempt to schedule around any instruction that modifies
 | 
						|
  // a stack-oriented pointer, as it's unlikely to be profitable. This
 | 
						|
  // saves compile time, because it doesn't require every single
 | 
						|
  // stack slot reference to depend on the instruction that does the
 | 
						|
  // modification.
 | 
						|
  const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
 | 
						|
  if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  // Check for explicit enable/disable of post-ra scheduling.
 | 
						|
  TargetSubtarget::AntiDepBreakMode AntiDepMode = TargetSubtarget::ANTIDEP_NONE;
 | 
						|
  if (EnablePostRAScheduler.getPosition() > 0) {
 | 
						|
    if (!EnablePostRAScheduler)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // Check that post-RA scheduling is enabled for this target.
 | 
						|
    const TargetSubtarget &ST = Fn.getTarget().getSubtarget<TargetSubtarget>();
 | 
						|
    if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for antidep breaking override...
 | 
						|
  if (EnableAntiDepBreaking.getPosition() > 0) {
 | 
						|
    AntiDepMode = (EnableAntiDepBreaking == "all") ? TargetSubtarget::ANTIDEP_ALL :
 | 
						|
      (EnableAntiDepBreaking == "critical") ? TargetSubtarget::ANTIDEP_CRITICAL :
 | 
						|
      TargetSubtarget::ANTIDEP_NONE;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(errs() << "PostRAScheduler\n");
 | 
						|
 | 
						|
  const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | 
						|
  const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
 | 
						|
  const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
 | 
						|
  ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
 | 
						|
    (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
 | 
						|
    (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
 | 
						|
  AntiDepBreaker *ADB = 
 | 
						|
    ((AntiDepMode == TargetSubtarget::ANTIDEP_ALL) ?
 | 
						|
     (AntiDepBreaker *)new AggressiveAntiDepBreaker(Fn) :
 | 
						|
     ((AntiDepMode == TargetSubtarget::ANTIDEP_CRITICAL) ? 
 | 
						|
      (AntiDepBreaker *)new CriticalAntiDepBreaker(Fn) : NULL));
 | 
						|
 | 
						|
  SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR, ADB, AA);
 | 
						|
 | 
						|
  // Loop over all of the basic blocks
 | 
						|
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | 
						|
       MBB != MBBe; ++MBB) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
 | 
						|
    if (DebugDiv > 0) {
 | 
						|
      static int bbcnt = 0;
 | 
						|
      if (bbcnt++ % DebugDiv != DebugMod)
 | 
						|
        continue;
 | 
						|
      errs() << "*** DEBUG scheduling " << Fn.getFunction()->getNameStr() <<
 | 
						|
        ":BB#" << MBB->getNumber() << " ***\n";
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // Initialize register live-range state for scheduling in this block.
 | 
						|
    Scheduler.StartBlock(MBB);
 | 
						|
 | 
						|
    // Schedule each sequence of instructions not interrupted by a label
 | 
						|
    // or anything else that effectively needs to shut down scheduling.
 | 
						|
    MachineBasicBlock::iterator Current = MBB->end();
 | 
						|
    unsigned Count = MBB->size(), CurrentCount = Count;
 | 
						|
    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
 | 
						|
      MachineInstr *MI = prior(I);
 | 
						|
      if (isSchedulingBoundary(MI, Fn)) {
 | 
						|
        Scheduler.Run(MBB, I, Current, CurrentCount);
 | 
						|
        Scheduler.EmitSchedule(0);
 | 
						|
        Current = MI;
 | 
						|
        CurrentCount = Count - 1;
 | 
						|
        Scheduler.Observe(MI, CurrentCount);
 | 
						|
      }
 | 
						|
      I = MI;
 | 
						|
      --Count;
 | 
						|
    }
 | 
						|
    assert(Count == 0 && "Instruction count mismatch!");
 | 
						|
    assert((MBB->begin() == Current || CurrentCount != 0) &&
 | 
						|
           "Instruction count mismatch!");
 | 
						|
    Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
 | 
						|
    Scheduler.EmitSchedule(0);
 | 
						|
 | 
						|
    // Clean up register live-range state.
 | 
						|
    Scheduler.FinishBlock();
 | 
						|
 | 
						|
    // Update register kills
 | 
						|
    Scheduler.FixupKills(MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  delete HR;
 | 
						|
  delete ADB;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
  
 | 
						|
/// StartBlock - Initialize register live-range state for scheduling in
 | 
						|
/// this block.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
 | 
						|
  // Call the superclass.
 | 
						|
  ScheduleDAGInstrs::StartBlock(BB);
 | 
						|
 | 
						|
  // Reset the hazard recognizer and anti-dep breaker.
 | 
						|
  HazardRec->Reset();
 | 
						|
  if (AntiDepBreak != NULL)
 | 
						|
    AntiDepBreak->StartBlock(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// Schedule - Schedule the instruction range using list scheduling.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::Schedule() {
 | 
						|
  // Build the scheduling graph.
 | 
						|
  BuildSchedGraph(AA);
 | 
						|
 | 
						|
  if (AntiDepBreak != NULL) {
 | 
						|
    AntiDepBreaker::CandidateMap AntiDepCandidates;
 | 
						|
    const bool NeedCandidates = AntiDepBreak->NeedCandidates();
 | 
						|
    
 | 
						|
    for (unsigned i = 0, Trials = AntiDepBreak->GetMaxTrials();
 | 
						|
         i < Trials; ++i) {
 | 
						|
      DEBUG(errs() << "\n********** Break Anti-Deps, Trial " << 
 | 
						|
            i << " **********\n");
 | 
						|
      
 | 
						|
      // If candidates are required, then schedule forward ignoring
 | 
						|
      // anti-dependencies to collect the candidate operands for
 | 
						|
      // anti-dependence breaking. The candidates will be the def
 | 
						|
      // operands for the anti-dependencies that if broken would allow
 | 
						|
      // an improved schedule
 | 
						|
      if (NeedCandidates) {
 | 
						|
        DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
                SUnits[su].dumpAll(this));
 | 
						|
 | 
						|
        AntiDepCandidates.clear();
 | 
						|
        AvailableQueue.initNodes(SUnits);
 | 
						|
        ListScheduleTopDown(&AntiDepCandidates);
 | 
						|
        AvailableQueue.releaseState();
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned Broken = 
 | 
						|
        AntiDepBreak->BreakAntiDependencies(SUnits, AntiDepCandidates,
 | 
						|
                                            Begin, InsertPos, InsertPosIndex);
 | 
						|
 | 
						|
      // We made changes. Update the dependency graph.
 | 
						|
      // Theoretically we could update the graph in place:
 | 
						|
      // When a live range is changed to use a different register, remove
 | 
						|
      // the def's anti-dependence *and* output-dependence edges due to
 | 
						|
      // that register, and add new anti-dependence and output-dependence
 | 
						|
      // edges based on the next live range of the register.
 | 
						|
      if ((Broken != 0) || NeedCandidates) {
 | 
						|
        SUnits.clear();
 | 
						|
        Sequence.clear();
 | 
						|
        EntrySU = SUnit();
 | 
						|
        ExitSU = SUnit();
 | 
						|
        BuildSchedGraph(AA);
 | 
						|
      }
 | 
						|
 | 
						|
      NumFixedAnti += Broken;
 | 
						|
      if (Broken == 0)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(errs() << "********** List Scheduling **********\n");
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
 | 
						|
  AvailableQueue.initNodes(SUnits);
 | 
						|
  ListScheduleTopDown(NULL);
 | 
						|
  AvailableQueue.releaseState();
 | 
						|
}
 | 
						|
 | 
						|
/// Observe - Update liveness information to account for the current
 | 
						|
/// instruction, which will not be scheduled.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
 | 
						|
  if (AntiDepBreak != NULL)
 | 
						|
    AntiDepBreak->Observe(MI, Count, InsertPosIndex);
 | 
						|
}
 | 
						|
 | 
						|
/// FinishBlock - Clean up register live-range state.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::FinishBlock() {
 | 
						|
  if (AntiDepBreak != NULL)
 | 
						|
    AntiDepBreak->FinishBlock();
 | 
						|
 | 
						|
  // Call the superclass.
 | 
						|
  ScheduleDAGInstrs::FinishBlock();
 | 
						|
}
 | 
						|
 | 
						|
/// StartBlockForKills - Initialize register live-range state for updating kills
 | 
						|
///
 | 
						|
void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
 | 
						|
  // Initialize the indices to indicate that no registers are live.
 | 
						|
  std::fill(KillIndices, array_endof(KillIndices), ~0u);
 | 
						|
 | 
						|
  // Determine the live-out physregs for this block.
 | 
						|
  if (!BB->empty() && BB->back().getDesc().isReturn()) {
 | 
						|
    // In a return block, examine the function live-out regs.
 | 
						|
    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
 | 
						|
           E = MRI.liveout_end(); I != E; ++I) {
 | 
						|
      unsigned Reg = *I;
 | 
						|
      KillIndices[Reg] = BB->size();
 | 
						|
      // Repeat, for all subregs.
 | 
						|
      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | 
						|
           *Subreg; ++Subreg) {
 | 
						|
        KillIndices[*Subreg] = BB->size();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // In a non-return block, examine the live-in regs of all successors.
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
           SE = BB->succ_end(); SI != SE; ++SI) {
 | 
						|
      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | 
						|
             E = (*SI)->livein_end(); I != E; ++I) {
 | 
						|
        unsigned Reg = *I;
 | 
						|
        KillIndices[Reg] = BB->size();
 | 
						|
        // Repeat, for all subregs.
 | 
						|
        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | 
						|
             *Subreg; ++Subreg) {
 | 
						|
          KillIndices[*Subreg] = BB->size();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
 | 
						|
                                          MachineOperand &MO) {
 | 
						|
  // Setting kill flag...
 | 
						|
  if (!MO.isKill()) {
 | 
						|
    MO.setIsKill(true);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If MO itself is live, clear the kill flag...
 | 
						|
  if (KillIndices[MO.getReg()] != ~0u) {
 | 
						|
    MO.setIsKill(false);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If any subreg of MO is live, then create an imp-def for that
 | 
						|
  // subreg and keep MO marked as killed.
 | 
						|
  MO.setIsKill(false);
 | 
						|
  bool AllDead = true;
 | 
						|
  const unsigned SuperReg = MO.getReg();
 | 
						|
  for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg);
 | 
						|
       *Subreg; ++Subreg) {
 | 
						|
    if (KillIndices[*Subreg] != ~0u) {
 | 
						|
      MI->addOperand(MachineOperand::CreateReg(*Subreg,
 | 
						|
                                               true  /*IsDef*/,
 | 
						|
                                               true  /*IsImp*/,
 | 
						|
                                               false /*IsKill*/,
 | 
						|
                                               false /*IsDead*/));
 | 
						|
      AllDead = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(AllDead)
 | 
						|
    MO.setIsKill(true);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FixupKills - Fix the register kill flags, they may have been made
 | 
						|
/// incorrect by instruction reordering.
 | 
						|
///
 | 
						|
void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
 | 
						|
  DEBUG(errs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
 | 
						|
 | 
						|
  std::set<unsigned> killedRegs;
 | 
						|
  BitVector ReservedRegs = TRI->getReservedRegs(MF);
 | 
						|
 | 
						|
  StartBlockForKills(MBB);
 | 
						|
  
 | 
						|
  // Examine block from end to start...
 | 
						|
  unsigned Count = MBB->size();
 | 
						|
  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
 | 
						|
       I != E; --Count) {
 | 
						|
    MachineInstr *MI = --I;
 | 
						|
 | 
						|
    // Update liveness.  Registers that are defed but not used in this
 | 
						|
    // instruction are now dead. Mark register and all subregs as they
 | 
						|
    // are completely defined.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
      if (!MO.isDef()) continue;
 | 
						|
      // Ignore two-addr defs.
 | 
						|
      if (MI->isRegTiedToUseOperand(i)) continue;
 | 
						|
      
 | 
						|
      KillIndices[Reg] = ~0u;
 | 
						|
      
 | 
						|
      // Repeat for all subregs.
 | 
						|
      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | 
						|
           *Subreg; ++Subreg) {
 | 
						|
        KillIndices[*Subreg] = ~0u;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Examine all used registers and set/clear kill flag. When a
 | 
						|
    // register is used multiple times we only set the kill flag on
 | 
						|
    // the first use.
 | 
						|
    killedRegs.clear();
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isUse()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
 | 
						|
 | 
						|
      bool kill = false;
 | 
						|
      if (killedRegs.find(Reg) == killedRegs.end()) {
 | 
						|
        kill = true;
 | 
						|
        // A register is not killed if any subregs are live...
 | 
						|
        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | 
						|
             *Subreg; ++Subreg) {
 | 
						|
          if (KillIndices[*Subreg] != ~0u) {
 | 
						|
            kill = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If subreg is not live, then register is killed if it became
 | 
						|
        // live in this instruction
 | 
						|
        if (kill)
 | 
						|
          kill = (KillIndices[Reg] == ~0u);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (MO.isKill() != kill) {
 | 
						|
        bool removed = ToggleKillFlag(MI, MO);
 | 
						|
        if (removed) {
 | 
						|
          DEBUG(errs() << "Fixed <removed> in ");
 | 
						|
        } else {
 | 
						|
          DEBUG(errs() << "Fixed " << MO << " in ");
 | 
						|
        }
 | 
						|
        DEBUG(MI->dump());
 | 
						|
      }
 | 
						|
      
 | 
						|
      killedRegs.insert(Reg);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Mark any used register (that is not using undef) and subregs as
 | 
						|
    // now live...
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
 | 
						|
 | 
						|
      KillIndices[Reg] = Count;
 | 
						|
      
 | 
						|
      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | 
						|
           *Subreg; ++Subreg) {
 | 
						|
        KillIndices[*Subreg] = Count;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Top-Down Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | 
						|
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
 | 
						|
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge,
 | 
						|
                                       bool IgnoreAntiDep) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    errs() << "*** Scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(this);
 | 
						|
    errs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
 | 
						|
  // Compute how many cycles it will be before this actually becomes
 | 
						|
  // available.  This is the max of the start time of all predecessors plus
 | 
						|
  // their latencies.
 | 
						|
  SuccSU->setDepthToAtLeast(SU->getDepth(IgnoreAntiDep) +
 | 
						|
                            SuccEdge->getLatency(), IgnoreAntiDep);
 | 
						|
  
 | 
						|
  // If all the node's predecessors are scheduled, this node is ready
 | 
						|
  // to be scheduled. Ignore the special ExitSU node.
 | 
						|
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | 
						|
    PendingQueue.push_back(SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
 | 
						|
void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU, bool IgnoreAntiDep) {
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (IgnoreAntiDep && (I->getKind() == SDep::Anti)) continue;
 | 
						|
    ReleaseSucc(SU, &*I, IgnoreAntiDep);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its successors. If a successor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle,
 | 
						|
                                               bool IgnoreAntiDep) {
 | 
						|
  DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
 | 
						|
  DEBUG(SU->dump(this));
 | 
						|
  
 | 
						|
  Sequence.push_back(SU);
 | 
						|
  assert(CurCycle >= SU->getDepth(IgnoreAntiDep) && 
 | 
						|
         "Node scheduled above its depth!");
 | 
						|
  SU->setDepthToAtLeast(CurCycle, IgnoreAntiDep);
 | 
						|
 | 
						|
  ReleaseSuccessors(SU, IgnoreAntiDep);
 | 
						|
  SU->isScheduled = true;
 | 
						|
  AvailableQueue.ScheduledNode(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
 | 
						|
/// schedulers.
 | 
						|
void SchedulePostRATDList::ListScheduleTopDown(
 | 
						|
                   AntiDepBreaker::CandidateMap *AntiDepCandidates) {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  const bool IgnoreAntiDep = (AntiDepCandidates != NULL);
 | 
						|
  
 | 
						|
  // We're scheduling top-down but we're visiting the regions in
 | 
						|
  // bottom-up order, so we don't know the hazards at the start of a
 | 
						|
  // region. So assume no hazards (this should usually be ok as most
 | 
						|
  // blocks are a single region).
 | 
						|
  HazardRec->Reset();
 | 
						|
 | 
						|
  // If ignoring anti-dependencies, the Schedule DAG still has Anti
 | 
						|
  // dep edges, but we ignore them for scheduling purposes
 | 
						|
  AvailableQueue.setIgnoreAntiDep(IgnoreAntiDep);
 | 
						|
 | 
						|
  // Release any successors of the special Entry node.
 | 
						|
  ReleaseSuccessors(&EntrySU, IgnoreAntiDep);
 | 
						|
 | 
						|
  // Add all leaves to Available queue. If ignoring antideps we also
 | 
						|
  // adjust the predecessor count for each node to not include antidep
 | 
						|
  // edges.
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    // It is available if it has no predecessors.
 | 
						|
    bool available = SUnits[i].Preds.empty();
 | 
						|
    // If we are ignoring anti-dependencies then a node that has only
 | 
						|
    // anti-dep predecessors is available.
 | 
						|
    if (!available && IgnoreAntiDep) {
 | 
						|
      available = true;
 | 
						|
      for (SUnit::const_pred_iterator I = SUnits[i].Preds.begin(),
 | 
						|
             E = SUnits[i].Preds.end(); I != E; ++I) {
 | 
						|
        if (I->getKind() != SDep::Anti) {
 | 
						|
          available = false;
 | 
						|
        } else {
 | 
						|
          SUnits[i].NumPredsLeft -= 1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (available) {
 | 
						|
      AvailableQueue.push(&SUnits[i]);
 | 
						|
      SUnits[i].isAvailable = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In any cycle where we can't schedule any instructions, we must
 | 
						|
  // stall or emit a noop, depending on the target.
 | 
						|
  bool CycleHasInsts = false;
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  std::vector<SUnit*> NotReady;
 | 
						|
  Sequence.reserve(SUnits.size());
 | 
						|
  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
 | 
						|
    // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
    // so, add them to the available queue.
 | 
						|
    unsigned MinDepth = ~0u;
 | 
						|
    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | 
						|
      if (PendingQueue[i]->getDepth(IgnoreAntiDep) <= CurCycle) {
 | 
						|
        AvailableQueue.push(PendingQueue[i]);
 | 
						|
        PendingQueue[i]->isAvailable = true;
 | 
						|
        PendingQueue[i] = PendingQueue.back();
 | 
						|
        PendingQueue.pop_back();
 | 
						|
        --i; --e;
 | 
						|
      } else if (PendingQueue[i]->getDepth(IgnoreAntiDep) < MinDepth)
 | 
						|
        MinDepth = PendingQueue[i]->getDepth(IgnoreAntiDep);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(errs() << "\n*** Examining Available\n";
 | 
						|
          LatencyPriorityQueue q = AvailableQueue;
 | 
						|
          while (!q.empty()) {
 | 
						|
            SUnit *su = q.pop();
 | 
						|
            errs() << "Height " << su->getHeight(IgnoreAntiDep) << ": ";
 | 
						|
            su->dump(this);
 | 
						|
          });
 | 
						|
 | 
						|
    SUnit *FoundSUnit = 0;
 | 
						|
    bool HasNoopHazards = false;
 | 
						|
    while (!AvailableQueue.empty()) {
 | 
						|
      SUnit *CurSUnit = AvailableQueue.pop();
 | 
						|
 | 
						|
      ScheduleHazardRecognizer::HazardType HT =
 | 
						|
        HazardRec->getHazardType(CurSUnit);
 | 
						|
      if (HT == ScheduleHazardRecognizer::NoHazard) {
 | 
						|
        FoundSUnit = CurSUnit;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Remember if this is a noop hazard.
 | 
						|
      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
 | 
						|
 | 
						|
      NotReady.push_back(CurSUnit);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    if (!NotReady.empty()) {
 | 
						|
      AvailableQueue.push_all(NotReady);
 | 
						|
      NotReady.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a node to schedule...
 | 
						|
    if (FoundSUnit) {
 | 
						|
      // If we are ignoring anti-dependencies and the SUnit we are
 | 
						|
      // scheduling has an antidep predecessor that has not been
 | 
						|
      // scheduled, then we will need to break that antidep if we want
 | 
						|
      // to get this schedule when not ignoring anti-dependencies.
 | 
						|
      if (IgnoreAntiDep) {
 | 
						|
        AntiDepBreaker::AntiDepRegVector AntiDepRegs;
 | 
						|
        for (SUnit::const_pred_iterator I = FoundSUnit->Preds.begin(),
 | 
						|
               E = FoundSUnit->Preds.end(); I != E; ++I) {
 | 
						|
          if ((I->getKind() == SDep::Anti) && !I->getSUnit()->isScheduled)
 | 
						|
            AntiDepRegs.push_back(I->getReg());
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (AntiDepRegs.size() > 0) {
 | 
						|
          DEBUG(errs() << "*** AntiDep Candidate: ");
 | 
						|
          DEBUG(FoundSUnit->dump(this));
 | 
						|
          AntiDepCandidates->insert(
 | 
						|
            AntiDepBreaker::CandidateMap::value_type(FoundSUnit, AntiDepRegs));
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // ... schedule the node...
 | 
						|
      ScheduleNodeTopDown(FoundSUnit, CurCycle, IgnoreAntiDep);
 | 
						|
      HazardRec->EmitInstruction(FoundSUnit);
 | 
						|
      CycleHasInsts = true;
 | 
						|
 | 
						|
      // If we are using the target-specific hazards, then don't
 | 
						|
      // advance the cycle time just because we schedule a node. If
 | 
						|
      // the target allows it we can schedule multiple nodes in the
 | 
						|
      // same cycle.
 | 
						|
      if (!EnablePostRAHazardAvoidance) {
 | 
						|
        if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
 | 
						|
          ++CurCycle;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (CycleHasInsts) {
 | 
						|
        DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
      } else if (!HasNoopHazards) {
 | 
						|
        // Otherwise, we have a pipeline stall, but no other problem,
 | 
						|
        // just advance the current cycle and try again.
 | 
						|
        DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
        if (!IgnoreAntiDep)
 | 
						|
          ++NumStalls;
 | 
						|
      } else {
 | 
						|
        // Otherwise, we have no instructions to issue and we have instructions
 | 
						|
        // that will fault if we don't do this right.  This is the case for
 | 
						|
        // processors without pipeline interlocks and other cases.
 | 
						|
        DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
 | 
						|
        HazardRec->EmitNoop();
 | 
						|
        Sequence.push_back(0);   // NULL here means noop
 | 
						|
        if (!IgnoreAntiDep)
 | 
						|
          ++NumNoops;
 | 
						|
      }
 | 
						|
 | 
						|
      ++CurCycle;
 | 
						|
      CycleHasInsts = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  VerifySchedule(/*isBottomUp=*/false);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) {
 | 
						|
  return new PostRAScheduler(OptLevel);
 | 
						|
}
 |